at v3.2-rc2 2052 lines 56 kB view raw
1/* 2 * linux/fs/jbd/journal.c 3 * 4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 5 * 6 * Copyright 1998 Red Hat corp --- All Rights Reserved 7 * 8 * This file is part of the Linux kernel and is made available under 9 * the terms of the GNU General Public License, version 2, or at your 10 * option, any later version, incorporated herein by reference. 11 * 12 * Generic filesystem journal-writing code; part of the ext2fs 13 * journaling system. 14 * 15 * This file manages journals: areas of disk reserved for logging 16 * transactional updates. This includes the kernel journaling thread 17 * which is responsible for scheduling updates to the log. 18 * 19 * We do not actually manage the physical storage of the journal in this 20 * file: that is left to a per-journal policy function, which allows us 21 * to store the journal within a filesystem-specified area for ext2 22 * journaling (ext2 can use a reserved inode for storing the log). 23 */ 24 25#include <linux/module.h> 26#include <linux/time.h> 27#include <linux/fs.h> 28#include <linux/jbd.h> 29#include <linux/errno.h> 30#include <linux/slab.h> 31#include <linux/init.h> 32#include <linux/mm.h> 33#include <linux/freezer.h> 34#include <linux/pagemap.h> 35#include <linux/kthread.h> 36#include <linux/poison.h> 37#include <linux/proc_fs.h> 38#include <linux/debugfs.h> 39#include <linux/ratelimit.h> 40 41#define CREATE_TRACE_POINTS 42#include <trace/events/jbd.h> 43 44#include <asm/uaccess.h> 45#include <asm/page.h> 46 47EXPORT_SYMBOL(journal_start); 48EXPORT_SYMBOL(journal_restart); 49EXPORT_SYMBOL(journal_extend); 50EXPORT_SYMBOL(journal_stop); 51EXPORT_SYMBOL(journal_lock_updates); 52EXPORT_SYMBOL(journal_unlock_updates); 53EXPORT_SYMBOL(journal_get_write_access); 54EXPORT_SYMBOL(journal_get_create_access); 55EXPORT_SYMBOL(journal_get_undo_access); 56EXPORT_SYMBOL(journal_dirty_data); 57EXPORT_SYMBOL(journal_dirty_metadata); 58EXPORT_SYMBOL(journal_release_buffer); 59EXPORT_SYMBOL(journal_forget); 60#if 0 61EXPORT_SYMBOL(journal_sync_buffer); 62#endif 63EXPORT_SYMBOL(journal_flush); 64EXPORT_SYMBOL(journal_revoke); 65 66EXPORT_SYMBOL(journal_init_dev); 67EXPORT_SYMBOL(journal_init_inode); 68EXPORT_SYMBOL(journal_update_format); 69EXPORT_SYMBOL(journal_check_used_features); 70EXPORT_SYMBOL(journal_check_available_features); 71EXPORT_SYMBOL(journal_set_features); 72EXPORT_SYMBOL(journal_create); 73EXPORT_SYMBOL(journal_load); 74EXPORT_SYMBOL(journal_destroy); 75EXPORT_SYMBOL(journal_abort); 76EXPORT_SYMBOL(journal_errno); 77EXPORT_SYMBOL(journal_ack_err); 78EXPORT_SYMBOL(journal_clear_err); 79EXPORT_SYMBOL(log_wait_commit); 80EXPORT_SYMBOL(log_start_commit); 81EXPORT_SYMBOL(journal_start_commit); 82EXPORT_SYMBOL(journal_force_commit_nested); 83EXPORT_SYMBOL(journal_wipe); 84EXPORT_SYMBOL(journal_blocks_per_page); 85EXPORT_SYMBOL(journal_invalidatepage); 86EXPORT_SYMBOL(journal_try_to_free_buffers); 87EXPORT_SYMBOL(journal_force_commit); 88 89static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *); 90static void __journal_abort_soft (journal_t *journal, int errno); 91static const char *journal_dev_name(journal_t *journal, char *buffer); 92 93/* 94 * Helper function used to manage commit timeouts 95 */ 96 97static void commit_timeout(unsigned long __data) 98{ 99 struct task_struct * p = (struct task_struct *) __data; 100 101 wake_up_process(p); 102} 103 104/* 105 * kjournald: The main thread function used to manage a logging device 106 * journal. 107 * 108 * This kernel thread is responsible for two things: 109 * 110 * 1) COMMIT: Every so often we need to commit the current state of the 111 * filesystem to disk. The journal thread is responsible for writing 112 * all of the metadata buffers to disk. 113 * 114 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all 115 * of the data in that part of the log has been rewritten elsewhere on 116 * the disk. Flushing these old buffers to reclaim space in the log is 117 * known as checkpointing, and this thread is responsible for that job. 118 */ 119 120static int kjournald(void *arg) 121{ 122 journal_t *journal = arg; 123 transaction_t *transaction; 124 125 /* 126 * Set up an interval timer which can be used to trigger a commit wakeup 127 * after the commit interval expires 128 */ 129 setup_timer(&journal->j_commit_timer, commit_timeout, 130 (unsigned long)current); 131 132 /* Record that the journal thread is running */ 133 journal->j_task = current; 134 wake_up(&journal->j_wait_done_commit); 135 136 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n", 137 journal->j_commit_interval / HZ); 138 139 /* 140 * And now, wait forever for commit wakeup events. 141 */ 142 spin_lock(&journal->j_state_lock); 143 144loop: 145 if (journal->j_flags & JFS_UNMOUNT) 146 goto end_loop; 147 148 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n", 149 journal->j_commit_sequence, journal->j_commit_request); 150 151 if (journal->j_commit_sequence != journal->j_commit_request) { 152 jbd_debug(1, "OK, requests differ\n"); 153 spin_unlock(&journal->j_state_lock); 154 del_timer_sync(&journal->j_commit_timer); 155 journal_commit_transaction(journal); 156 spin_lock(&journal->j_state_lock); 157 goto loop; 158 } 159 160 wake_up(&journal->j_wait_done_commit); 161 if (freezing(current)) { 162 /* 163 * The simpler the better. Flushing journal isn't a 164 * good idea, because that depends on threads that may 165 * be already stopped. 166 */ 167 jbd_debug(1, "Now suspending kjournald\n"); 168 spin_unlock(&journal->j_state_lock); 169 refrigerator(); 170 spin_lock(&journal->j_state_lock); 171 } else { 172 /* 173 * We assume on resume that commits are already there, 174 * so we don't sleep 175 */ 176 DEFINE_WAIT(wait); 177 int should_sleep = 1; 178 179 prepare_to_wait(&journal->j_wait_commit, &wait, 180 TASK_INTERRUPTIBLE); 181 if (journal->j_commit_sequence != journal->j_commit_request) 182 should_sleep = 0; 183 transaction = journal->j_running_transaction; 184 if (transaction && time_after_eq(jiffies, 185 transaction->t_expires)) 186 should_sleep = 0; 187 if (journal->j_flags & JFS_UNMOUNT) 188 should_sleep = 0; 189 if (should_sleep) { 190 spin_unlock(&journal->j_state_lock); 191 schedule(); 192 spin_lock(&journal->j_state_lock); 193 } 194 finish_wait(&journal->j_wait_commit, &wait); 195 } 196 197 jbd_debug(1, "kjournald wakes\n"); 198 199 /* 200 * Were we woken up by a commit wakeup event? 201 */ 202 transaction = journal->j_running_transaction; 203 if (transaction && time_after_eq(jiffies, transaction->t_expires)) { 204 journal->j_commit_request = transaction->t_tid; 205 jbd_debug(1, "woke because of timeout\n"); 206 } 207 goto loop; 208 209end_loop: 210 spin_unlock(&journal->j_state_lock); 211 del_timer_sync(&journal->j_commit_timer); 212 journal->j_task = NULL; 213 wake_up(&journal->j_wait_done_commit); 214 jbd_debug(1, "Journal thread exiting.\n"); 215 return 0; 216} 217 218static int journal_start_thread(journal_t *journal) 219{ 220 struct task_struct *t; 221 222 t = kthread_run(kjournald, journal, "kjournald"); 223 if (IS_ERR(t)) 224 return PTR_ERR(t); 225 226 wait_event(journal->j_wait_done_commit, journal->j_task != NULL); 227 return 0; 228} 229 230static void journal_kill_thread(journal_t *journal) 231{ 232 spin_lock(&journal->j_state_lock); 233 journal->j_flags |= JFS_UNMOUNT; 234 235 while (journal->j_task) { 236 wake_up(&journal->j_wait_commit); 237 spin_unlock(&journal->j_state_lock); 238 wait_event(journal->j_wait_done_commit, 239 journal->j_task == NULL); 240 spin_lock(&journal->j_state_lock); 241 } 242 spin_unlock(&journal->j_state_lock); 243} 244 245/* 246 * journal_write_metadata_buffer: write a metadata buffer to the journal. 247 * 248 * Writes a metadata buffer to a given disk block. The actual IO is not 249 * performed but a new buffer_head is constructed which labels the data 250 * to be written with the correct destination disk block. 251 * 252 * Any magic-number escaping which needs to be done will cause a 253 * copy-out here. If the buffer happens to start with the 254 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the 255 * magic number is only written to the log for descripter blocks. In 256 * this case, we copy the data and replace the first word with 0, and we 257 * return a result code which indicates that this buffer needs to be 258 * marked as an escaped buffer in the corresponding log descriptor 259 * block. The missing word can then be restored when the block is read 260 * during recovery. 261 * 262 * If the source buffer has already been modified by a new transaction 263 * since we took the last commit snapshot, we use the frozen copy of 264 * that data for IO. If we end up using the existing buffer_head's data 265 * for the write, then we *have* to lock the buffer to prevent anyone 266 * else from using and possibly modifying it while the IO is in 267 * progress. 268 * 269 * The function returns a pointer to the buffer_heads to be used for IO. 270 * 271 * We assume that the journal has already been locked in this function. 272 * 273 * Return value: 274 * <0: Error 275 * >=0: Finished OK 276 * 277 * On success: 278 * Bit 0 set == escape performed on the data 279 * Bit 1 set == buffer copy-out performed (kfree the data after IO) 280 */ 281 282int journal_write_metadata_buffer(transaction_t *transaction, 283 struct journal_head *jh_in, 284 struct journal_head **jh_out, 285 unsigned int blocknr) 286{ 287 int need_copy_out = 0; 288 int done_copy_out = 0; 289 int do_escape = 0; 290 char *mapped_data; 291 struct buffer_head *new_bh; 292 struct journal_head *new_jh; 293 struct page *new_page; 294 unsigned int new_offset; 295 struct buffer_head *bh_in = jh2bh(jh_in); 296 journal_t *journal = transaction->t_journal; 297 298 /* 299 * The buffer really shouldn't be locked: only the current committing 300 * transaction is allowed to write it, so nobody else is allowed 301 * to do any IO. 302 * 303 * akpm: except if we're journalling data, and write() output is 304 * also part of a shared mapping, and another thread has 305 * decided to launch a writepage() against this buffer. 306 */ 307 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in)); 308 309 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL); 310 /* keep subsequent assertions sane */ 311 new_bh->b_state = 0; 312 init_buffer(new_bh, NULL, NULL); 313 atomic_set(&new_bh->b_count, 1); 314 new_jh = journal_add_journal_head(new_bh); /* This sleeps */ 315 316 /* 317 * If a new transaction has already done a buffer copy-out, then 318 * we use that version of the data for the commit. 319 */ 320 jbd_lock_bh_state(bh_in); 321repeat: 322 if (jh_in->b_frozen_data) { 323 done_copy_out = 1; 324 new_page = virt_to_page(jh_in->b_frozen_data); 325 new_offset = offset_in_page(jh_in->b_frozen_data); 326 } else { 327 new_page = jh2bh(jh_in)->b_page; 328 new_offset = offset_in_page(jh2bh(jh_in)->b_data); 329 } 330 331 mapped_data = kmap_atomic(new_page, KM_USER0); 332 /* 333 * Check for escaping 334 */ 335 if (*((__be32 *)(mapped_data + new_offset)) == 336 cpu_to_be32(JFS_MAGIC_NUMBER)) { 337 need_copy_out = 1; 338 do_escape = 1; 339 } 340 kunmap_atomic(mapped_data, KM_USER0); 341 342 /* 343 * Do we need to do a data copy? 344 */ 345 if (need_copy_out && !done_copy_out) { 346 char *tmp; 347 348 jbd_unlock_bh_state(bh_in); 349 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS); 350 jbd_lock_bh_state(bh_in); 351 if (jh_in->b_frozen_data) { 352 jbd_free(tmp, bh_in->b_size); 353 goto repeat; 354 } 355 356 jh_in->b_frozen_data = tmp; 357 mapped_data = kmap_atomic(new_page, KM_USER0); 358 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size); 359 kunmap_atomic(mapped_data, KM_USER0); 360 361 new_page = virt_to_page(tmp); 362 new_offset = offset_in_page(tmp); 363 done_copy_out = 1; 364 } 365 366 /* 367 * Did we need to do an escaping? Now we've done all the 368 * copying, we can finally do so. 369 */ 370 if (do_escape) { 371 mapped_data = kmap_atomic(new_page, KM_USER0); 372 *((unsigned int *)(mapped_data + new_offset)) = 0; 373 kunmap_atomic(mapped_data, KM_USER0); 374 } 375 376 set_bh_page(new_bh, new_page, new_offset); 377 new_jh->b_transaction = NULL; 378 new_bh->b_size = jh2bh(jh_in)->b_size; 379 new_bh->b_bdev = transaction->t_journal->j_dev; 380 new_bh->b_blocknr = blocknr; 381 set_buffer_mapped(new_bh); 382 set_buffer_dirty(new_bh); 383 384 *jh_out = new_jh; 385 386 /* 387 * The to-be-written buffer needs to get moved to the io queue, 388 * and the original buffer whose contents we are shadowing or 389 * copying is moved to the transaction's shadow queue. 390 */ 391 JBUFFER_TRACE(jh_in, "file as BJ_Shadow"); 392 spin_lock(&journal->j_list_lock); 393 __journal_file_buffer(jh_in, transaction, BJ_Shadow); 394 spin_unlock(&journal->j_list_lock); 395 jbd_unlock_bh_state(bh_in); 396 397 JBUFFER_TRACE(new_jh, "file as BJ_IO"); 398 journal_file_buffer(new_jh, transaction, BJ_IO); 399 400 return do_escape | (done_copy_out << 1); 401} 402 403/* 404 * Allocation code for the journal file. Manage the space left in the 405 * journal, so that we can begin checkpointing when appropriate. 406 */ 407 408/* 409 * __log_space_left: Return the number of free blocks left in the journal. 410 * 411 * Called with the journal already locked. 412 * 413 * Called under j_state_lock 414 */ 415 416int __log_space_left(journal_t *journal) 417{ 418 int left = journal->j_free; 419 420 assert_spin_locked(&journal->j_state_lock); 421 422 /* 423 * Be pessimistic here about the number of those free blocks which 424 * might be required for log descriptor control blocks. 425 */ 426 427#define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */ 428 429 left -= MIN_LOG_RESERVED_BLOCKS; 430 431 if (left <= 0) 432 return 0; 433 left -= (left >> 3); 434 return left; 435} 436 437/* 438 * Called under j_state_lock. Returns true if a transaction commit was started. 439 */ 440int __log_start_commit(journal_t *journal, tid_t target) 441{ 442 /* 443 * The only transaction we can possibly wait upon is the 444 * currently running transaction (if it exists). Otherwise, 445 * the target tid must be an old one. 446 */ 447 if (journal->j_running_transaction && 448 journal->j_running_transaction->t_tid == target) { 449 /* 450 * We want a new commit: OK, mark the request and wakeup the 451 * commit thread. We do _not_ do the commit ourselves. 452 */ 453 454 journal->j_commit_request = target; 455 jbd_debug(1, "JBD: requesting commit %d/%d\n", 456 journal->j_commit_request, 457 journal->j_commit_sequence); 458 wake_up(&journal->j_wait_commit); 459 return 1; 460 } else if (!tid_geq(journal->j_commit_request, target)) 461 /* This should never happen, but if it does, preserve 462 the evidence before kjournald goes into a loop and 463 increments j_commit_sequence beyond all recognition. */ 464 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n", 465 journal->j_commit_request, journal->j_commit_sequence, 466 target, journal->j_running_transaction ? 467 journal->j_running_transaction->t_tid : 0); 468 return 0; 469} 470 471int log_start_commit(journal_t *journal, tid_t tid) 472{ 473 int ret; 474 475 spin_lock(&journal->j_state_lock); 476 ret = __log_start_commit(journal, tid); 477 spin_unlock(&journal->j_state_lock); 478 return ret; 479} 480 481/* 482 * Force and wait upon a commit if the calling process is not within 483 * transaction. This is used for forcing out undo-protected data which contains 484 * bitmaps, when the fs is running out of space. 485 * 486 * We can only force the running transaction if we don't have an active handle; 487 * otherwise, we will deadlock. 488 * 489 * Returns true if a transaction was started. 490 */ 491int journal_force_commit_nested(journal_t *journal) 492{ 493 transaction_t *transaction = NULL; 494 tid_t tid; 495 496 spin_lock(&journal->j_state_lock); 497 if (journal->j_running_transaction && !current->journal_info) { 498 transaction = journal->j_running_transaction; 499 __log_start_commit(journal, transaction->t_tid); 500 } else if (journal->j_committing_transaction) 501 transaction = journal->j_committing_transaction; 502 503 if (!transaction) { 504 spin_unlock(&journal->j_state_lock); 505 return 0; /* Nothing to retry */ 506 } 507 508 tid = transaction->t_tid; 509 spin_unlock(&journal->j_state_lock); 510 log_wait_commit(journal, tid); 511 return 1; 512} 513 514/* 515 * Start a commit of the current running transaction (if any). Returns true 516 * if a transaction is going to be committed (or is currently already 517 * committing), and fills its tid in at *ptid 518 */ 519int journal_start_commit(journal_t *journal, tid_t *ptid) 520{ 521 int ret = 0; 522 523 spin_lock(&journal->j_state_lock); 524 if (journal->j_running_transaction) { 525 tid_t tid = journal->j_running_transaction->t_tid; 526 527 __log_start_commit(journal, tid); 528 /* There's a running transaction and we've just made sure 529 * it's commit has been scheduled. */ 530 if (ptid) 531 *ptid = tid; 532 ret = 1; 533 } else if (journal->j_committing_transaction) { 534 /* 535 * If ext3_write_super() recently started a commit, then we 536 * have to wait for completion of that transaction 537 */ 538 if (ptid) 539 *ptid = journal->j_committing_transaction->t_tid; 540 ret = 1; 541 } 542 spin_unlock(&journal->j_state_lock); 543 return ret; 544} 545 546/* 547 * Wait for a specified commit to complete. 548 * The caller may not hold the journal lock. 549 */ 550int log_wait_commit(journal_t *journal, tid_t tid) 551{ 552 int err = 0; 553 554#ifdef CONFIG_JBD_DEBUG 555 spin_lock(&journal->j_state_lock); 556 if (!tid_geq(journal->j_commit_request, tid)) { 557 printk(KERN_EMERG 558 "%s: error: j_commit_request=%d, tid=%d\n", 559 __func__, journal->j_commit_request, tid); 560 } 561 spin_unlock(&journal->j_state_lock); 562#endif 563 spin_lock(&journal->j_state_lock); 564 while (tid_gt(tid, journal->j_commit_sequence)) { 565 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n", 566 tid, journal->j_commit_sequence); 567 wake_up(&journal->j_wait_commit); 568 spin_unlock(&journal->j_state_lock); 569 wait_event(journal->j_wait_done_commit, 570 !tid_gt(tid, journal->j_commit_sequence)); 571 spin_lock(&journal->j_state_lock); 572 } 573 spin_unlock(&journal->j_state_lock); 574 575 if (unlikely(is_journal_aborted(journal))) { 576 printk(KERN_EMERG "journal commit I/O error\n"); 577 err = -EIO; 578 } 579 return err; 580} 581 582/* 583 * Return 1 if a given transaction has not yet sent barrier request 584 * connected with a transaction commit. If 0 is returned, transaction 585 * may or may not have sent the barrier. Used to avoid sending barrier 586 * twice in common cases. 587 */ 588int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid) 589{ 590 int ret = 0; 591 transaction_t *commit_trans; 592 593 if (!(journal->j_flags & JFS_BARRIER)) 594 return 0; 595 spin_lock(&journal->j_state_lock); 596 /* Transaction already committed? */ 597 if (tid_geq(journal->j_commit_sequence, tid)) 598 goto out; 599 /* 600 * Transaction is being committed and we already proceeded to 601 * writing commit record? 602 */ 603 commit_trans = journal->j_committing_transaction; 604 if (commit_trans && commit_trans->t_tid == tid && 605 commit_trans->t_state >= T_COMMIT_RECORD) 606 goto out; 607 ret = 1; 608out: 609 spin_unlock(&journal->j_state_lock); 610 return ret; 611} 612EXPORT_SYMBOL(journal_trans_will_send_data_barrier); 613 614/* 615 * Log buffer allocation routines: 616 */ 617 618int journal_next_log_block(journal_t *journal, unsigned int *retp) 619{ 620 unsigned int blocknr; 621 622 spin_lock(&journal->j_state_lock); 623 J_ASSERT(journal->j_free > 1); 624 625 blocknr = journal->j_head; 626 journal->j_head++; 627 journal->j_free--; 628 if (journal->j_head == journal->j_last) 629 journal->j_head = journal->j_first; 630 spin_unlock(&journal->j_state_lock); 631 return journal_bmap(journal, blocknr, retp); 632} 633 634/* 635 * Conversion of logical to physical block numbers for the journal 636 * 637 * On external journals the journal blocks are identity-mapped, so 638 * this is a no-op. If needed, we can use j_blk_offset - everything is 639 * ready. 640 */ 641int journal_bmap(journal_t *journal, unsigned int blocknr, 642 unsigned int *retp) 643{ 644 int err = 0; 645 unsigned int ret; 646 647 if (journal->j_inode) { 648 ret = bmap(journal->j_inode, blocknr); 649 if (ret) 650 *retp = ret; 651 else { 652 char b[BDEVNAME_SIZE]; 653 654 printk(KERN_ALERT "%s: journal block not found " 655 "at offset %u on %s\n", 656 __func__, 657 blocknr, 658 bdevname(journal->j_dev, b)); 659 err = -EIO; 660 __journal_abort_soft(journal, err); 661 } 662 } else { 663 *retp = blocknr; /* +journal->j_blk_offset */ 664 } 665 return err; 666} 667 668/* 669 * We play buffer_head aliasing tricks to write data/metadata blocks to 670 * the journal without copying their contents, but for journal 671 * descriptor blocks we do need to generate bona fide buffers. 672 * 673 * After the caller of journal_get_descriptor_buffer() has finished modifying 674 * the buffer's contents they really should run flush_dcache_page(bh->b_page). 675 * But we don't bother doing that, so there will be coherency problems with 676 * mmaps of blockdevs which hold live JBD-controlled filesystems. 677 */ 678struct journal_head *journal_get_descriptor_buffer(journal_t *journal) 679{ 680 struct buffer_head *bh; 681 unsigned int blocknr; 682 int err; 683 684 err = journal_next_log_block(journal, &blocknr); 685 686 if (err) 687 return NULL; 688 689 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 690 if (!bh) 691 return NULL; 692 lock_buffer(bh); 693 memset(bh->b_data, 0, journal->j_blocksize); 694 set_buffer_uptodate(bh); 695 unlock_buffer(bh); 696 BUFFER_TRACE(bh, "return this buffer"); 697 return journal_add_journal_head(bh); 698} 699 700/* 701 * Management for journal control blocks: functions to create and 702 * destroy journal_t structures, and to initialise and read existing 703 * journal blocks from disk. */ 704 705/* First: create and setup a journal_t object in memory. We initialise 706 * very few fields yet: that has to wait until we have created the 707 * journal structures from from scratch, or loaded them from disk. */ 708 709static journal_t * journal_init_common (void) 710{ 711 journal_t *journal; 712 int err; 713 714 journal = kzalloc(sizeof(*journal), GFP_KERNEL); 715 if (!journal) 716 goto fail; 717 718 init_waitqueue_head(&journal->j_wait_transaction_locked); 719 init_waitqueue_head(&journal->j_wait_logspace); 720 init_waitqueue_head(&journal->j_wait_done_commit); 721 init_waitqueue_head(&journal->j_wait_checkpoint); 722 init_waitqueue_head(&journal->j_wait_commit); 723 init_waitqueue_head(&journal->j_wait_updates); 724 mutex_init(&journal->j_barrier); 725 mutex_init(&journal->j_checkpoint_mutex); 726 spin_lock_init(&journal->j_revoke_lock); 727 spin_lock_init(&journal->j_list_lock); 728 spin_lock_init(&journal->j_state_lock); 729 730 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE); 731 732 /* The journal is marked for error until we succeed with recovery! */ 733 journal->j_flags = JFS_ABORT; 734 735 /* Set up a default-sized revoke table for the new mount. */ 736 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH); 737 if (err) { 738 kfree(journal); 739 goto fail; 740 } 741 return journal; 742fail: 743 return NULL; 744} 745 746/* journal_init_dev and journal_init_inode: 747 * 748 * Create a journal structure assigned some fixed set of disk blocks to 749 * the journal. We don't actually touch those disk blocks yet, but we 750 * need to set up all of the mapping information to tell the journaling 751 * system where the journal blocks are. 752 * 753 */ 754 755/** 756 * journal_t * journal_init_dev() - creates and initialises a journal structure 757 * @bdev: Block device on which to create the journal 758 * @fs_dev: Device which hold journalled filesystem for this journal. 759 * @start: Block nr Start of journal. 760 * @len: Length of the journal in blocks. 761 * @blocksize: blocksize of journalling device 762 * 763 * Returns: a newly created journal_t * 764 * 765 * journal_init_dev creates a journal which maps a fixed contiguous 766 * range of blocks on an arbitrary block device. 767 * 768 */ 769journal_t * journal_init_dev(struct block_device *bdev, 770 struct block_device *fs_dev, 771 int start, int len, int blocksize) 772{ 773 journal_t *journal = journal_init_common(); 774 struct buffer_head *bh; 775 int n; 776 777 if (!journal) 778 return NULL; 779 780 /* journal descriptor can store up to n blocks -bzzz */ 781 journal->j_blocksize = blocksize; 782 n = journal->j_blocksize / sizeof(journal_block_tag_t); 783 journal->j_wbufsize = n; 784 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 785 if (!journal->j_wbuf) { 786 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 787 __func__); 788 goto out_err; 789 } 790 journal->j_dev = bdev; 791 journal->j_fs_dev = fs_dev; 792 journal->j_blk_offset = start; 793 journal->j_maxlen = len; 794 795 bh = __getblk(journal->j_dev, start, journal->j_blocksize); 796 if (!bh) { 797 printk(KERN_ERR 798 "%s: Cannot get buffer for journal superblock\n", 799 __func__); 800 goto out_err; 801 } 802 journal->j_sb_buffer = bh; 803 journal->j_superblock = (journal_superblock_t *)bh->b_data; 804 805 return journal; 806out_err: 807 kfree(journal->j_wbuf); 808 kfree(journal); 809 return NULL; 810} 811 812/** 813 * journal_t * journal_init_inode () - creates a journal which maps to a inode. 814 * @inode: An inode to create the journal in 815 * 816 * journal_init_inode creates a journal which maps an on-disk inode as 817 * the journal. The inode must exist already, must support bmap() and 818 * must have all data blocks preallocated. 819 */ 820journal_t * journal_init_inode (struct inode *inode) 821{ 822 struct buffer_head *bh; 823 journal_t *journal = journal_init_common(); 824 int err; 825 int n; 826 unsigned int blocknr; 827 828 if (!journal) 829 return NULL; 830 831 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev; 832 journal->j_inode = inode; 833 jbd_debug(1, 834 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n", 835 journal, inode->i_sb->s_id, inode->i_ino, 836 (long long) inode->i_size, 837 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize); 838 839 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits; 840 journal->j_blocksize = inode->i_sb->s_blocksize; 841 842 /* journal descriptor can store up to n blocks -bzzz */ 843 n = journal->j_blocksize / sizeof(journal_block_tag_t); 844 journal->j_wbufsize = n; 845 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL); 846 if (!journal->j_wbuf) { 847 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n", 848 __func__); 849 goto out_err; 850 } 851 852 err = journal_bmap(journal, 0, &blocknr); 853 /* If that failed, give up */ 854 if (err) { 855 printk(KERN_ERR "%s: Cannot locate journal superblock\n", 856 __func__); 857 goto out_err; 858 } 859 860 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 861 if (!bh) { 862 printk(KERN_ERR 863 "%s: Cannot get buffer for journal superblock\n", 864 __func__); 865 goto out_err; 866 } 867 journal->j_sb_buffer = bh; 868 journal->j_superblock = (journal_superblock_t *)bh->b_data; 869 870 return journal; 871out_err: 872 kfree(journal->j_wbuf); 873 kfree(journal); 874 return NULL; 875} 876 877/* 878 * If the journal init or create aborts, we need to mark the journal 879 * superblock as being NULL to prevent the journal destroy from writing 880 * back a bogus superblock. 881 */ 882static void journal_fail_superblock (journal_t *journal) 883{ 884 struct buffer_head *bh = journal->j_sb_buffer; 885 brelse(bh); 886 journal->j_sb_buffer = NULL; 887} 888 889/* 890 * Given a journal_t structure, initialise the various fields for 891 * startup of a new journaling session. We use this both when creating 892 * a journal, and after recovering an old journal to reset it for 893 * subsequent use. 894 */ 895 896static int journal_reset(journal_t *journal) 897{ 898 journal_superblock_t *sb = journal->j_superblock; 899 unsigned int first, last; 900 901 first = be32_to_cpu(sb->s_first); 902 last = be32_to_cpu(sb->s_maxlen); 903 if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) { 904 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n", 905 first, last); 906 journal_fail_superblock(journal); 907 return -EINVAL; 908 } 909 910 journal->j_first = first; 911 journal->j_last = last; 912 913 journal->j_head = first; 914 journal->j_tail = first; 915 journal->j_free = last - first; 916 917 journal->j_tail_sequence = journal->j_transaction_sequence; 918 journal->j_commit_sequence = journal->j_transaction_sequence - 1; 919 journal->j_commit_request = journal->j_commit_sequence; 920 921 journal->j_max_transaction_buffers = journal->j_maxlen / 4; 922 923 /* Add the dynamic fields and write it to disk. */ 924 journal_update_superblock(journal, 1); 925 return journal_start_thread(journal); 926} 927 928/** 929 * int journal_create() - Initialise the new journal file 930 * @journal: Journal to create. This structure must have been initialised 931 * 932 * Given a journal_t structure which tells us which disk blocks we can 933 * use, create a new journal superblock and initialise all of the 934 * journal fields from scratch. 935 **/ 936int journal_create(journal_t *journal) 937{ 938 unsigned int blocknr; 939 struct buffer_head *bh; 940 journal_superblock_t *sb; 941 int i, err; 942 943 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) { 944 printk (KERN_ERR "Journal length (%d blocks) too short.\n", 945 journal->j_maxlen); 946 journal_fail_superblock(journal); 947 return -EINVAL; 948 } 949 950 if (journal->j_inode == NULL) { 951 /* 952 * We don't know what block to start at! 953 */ 954 printk(KERN_EMERG 955 "%s: creation of journal on external device!\n", 956 __func__); 957 BUG(); 958 } 959 960 /* Zero out the entire journal on disk. We cannot afford to 961 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */ 962 jbd_debug(1, "JBD: Zeroing out journal blocks...\n"); 963 for (i = 0; i < journal->j_maxlen; i++) { 964 err = journal_bmap(journal, i, &blocknr); 965 if (err) 966 return err; 967 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize); 968 if (unlikely(!bh)) 969 return -ENOMEM; 970 lock_buffer(bh); 971 memset (bh->b_data, 0, journal->j_blocksize); 972 BUFFER_TRACE(bh, "marking dirty"); 973 mark_buffer_dirty(bh); 974 BUFFER_TRACE(bh, "marking uptodate"); 975 set_buffer_uptodate(bh); 976 unlock_buffer(bh); 977 __brelse(bh); 978 } 979 980 sync_blockdev(journal->j_dev); 981 jbd_debug(1, "JBD: journal cleared.\n"); 982 983 /* OK, fill in the initial static fields in the new superblock */ 984 sb = journal->j_superblock; 985 986 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER); 987 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2); 988 989 sb->s_blocksize = cpu_to_be32(journal->j_blocksize); 990 sb->s_maxlen = cpu_to_be32(journal->j_maxlen); 991 sb->s_first = cpu_to_be32(1); 992 993 journal->j_transaction_sequence = 1; 994 995 journal->j_flags &= ~JFS_ABORT; 996 journal->j_format_version = 2; 997 998 return journal_reset(journal); 999} 1000 1001/** 1002 * void journal_update_superblock() - Update journal sb on disk. 1003 * @journal: The journal to update. 1004 * @wait: Set to '0' if you don't want to wait for IO completion. 1005 * 1006 * Update a journal's dynamic superblock fields and write it to disk, 1007 * optionally waiting for the IO to complete. 1008 */ 1009void journal_update_superblock(journal_t *journal, int wait) 1010{ 1011 journal_superblock_t *sb = journal->j_superblock; 1012 struct buffer_head *bh = journal->j_sb_buffer; 1013 1014 /* 1015 * As a special case, if the on-disk copy is already marked as needing 1016 * no recovery (s_start == 0) and there are no outstanding transactions 1017 * in the filesystem, then we can safely defer the superblock update 1018 * until the next commit by setting JFS_FLUSHED. This avoids 1019 * attempting a write to a potential-readonly device. 1020 */ 1021 if (sb->s_start == 0 && journal->j_tail_sequence == 1022 journal->j_transaction_sequence) { 1023 jbd_debug(1,"JBD: Skipping superblock update on recovered sb " 1024 "(start %u, seq %d, errno %d)\n", 1025 journal->j_tail, journal->j_tail_sequence, 1026 journal->j_errno); 1027 goto out; 1028 } 1029 1030 if (buffer_write_io_error(bh)) { 1031 char b[BDEVNAME_SIZE]; 1032 /* 1033 * Oh, dear. A previous attempt to write the journal 1034 * superblock failed. This could happen because the 1035 * USB device was yanked out. Or it could happen to 1036 * be a transient write error and maybe the block will 1037 * be remapped. Nothing we can do but to retry the 1038 * write and hope for the best. 1039 */ 1040 printk(KERN_ERR "JBD: previous I/O error detected " 1041 "for journal superblock update for %s.\n", 1042 journal_dev_name(journal, b)); 1043 clear_buffer_write_io_error(bh); 1044 set_buffer_uptodate(bh); 1045 } 1046 1047 spin_lock(&journal->j_state_lock); 1048 jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n", 1049 journal->j_tail, journal->j_tail_sequence, journal->j_errno); 1050 1051 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence); 1052 sb->s_start = cpu_to_be32(journal->j_tail); 1053 sb->s_errno = cpu_to_be32(journal->j_errno); 1054 spin_unlock(&journal->j_state_lock); 1055 1056 BUFFER_TRACE(bh, "marking dirty"); 1057 mark_buffer_dirty(bh); 1058 if (wait) { 1059 sync_dirty_buffer(bh); 1060 if (buffer_write_io_error(bh)) { 1061 char b[BDEVNAME_SIZE]; 1062 printk(KERN_ERR "JBD: I/O error detected " 1063 "when updating journal superblock for %s.\n", 1064 journal_dev_name(journal, b)); 1065 clear_buffer_write_io_error(bh); 1066 set_buffer_uptodate(bh); 1067 } 1068 } else 1069 write_dirty_buffer(bh, WRITE); 1070 1071 trace_jbd_update_superblock_end(journal, wait); 1072out: 1073 /* If we have just flushed the log (by marking s_start==0), then 1074 * any future commit will have to be careful to update the 1075 * superblock again to re-record the true start of the log. */ 1076 1077 spin_lock(&journal->j_state_lock); 1078 if (sb->s_start) 1079 journal->j_flags &= ~JFS_FLUSHED; 1080 else 1081 journal->j_flags |= JFS_FLUSHED; 1082 spin_unlock(&journal->j_state_lock); 1083} 1084 1085/* 1086 * Read the superblock for a given journal, performing initial 1087 * validation of the format. 1088 */ 1089 1090static int journal_get_superblock(journal_t *journal) 1091{ 1092 struct buffer_head *bh; 1093 journal_superblock_t *sb; 1094 int err = -EIO; 1095 1096 bh = journal->j_sb_buffer; 1097 1098 J_ASSERT(bh != NULL); 1099 if (!buffer_uptodate(bh)) { 1100 ll_rw_block(READ, 1, &bh); 1101 wait_on_buffer(bh); 1102 if (!buffer_uptodate(bh)) { 1103 printk (KERN_ERR 1104 "JBD: IO error reading journal superblock\n"); 1105 goto out; 1106 } 1107 } 1108 1109 sb = journal->j_superblock; 1110 1111 err = -EINVAL; 1112 1113 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) || 1114 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) { 1115 printk(KERN_WARNING "JBD: no valid journal superblock found\n"); 1116 goto out; 1117 } 1118 1119 switch(be32_to_cpu(sb->s_header.h_blocktype)) { 1120 case JFS_SUPERBLOCK_V1: 1121 journal->j_format_version = 1; 1122 break; 1123 case JFS_SUPERBLOCK_V2: 1124 journal->j_format_version = 2; 1125 break; 1126 default: 1127 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n"); 1128 goto out; 1129 } 1130 1131 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen) 1132 journal->j_maxlen = be32_to_cpu(sb->s_maxlen); 1133 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) { 1134 printk (KERN_WARNING "JBD: journal file too short\n"); 1135 goto out; 1136 } 1137 1138 if (be32_to_cpu(sb->s_first) == 0 || 1139 be32_to_cpu(sb->s_first) >= journal->j_maxlen) { 1140 printk(KERN_WARNING 1141 "JBD: Invalid start block of journal: %u\n", 1142 be32_to_cpu(sb->s_first)); 1143 goto out; 1144 } 1145 1146 return 0; 1147 1148out: 1149 journal_fail_superblock(journal); 1150 return err; 1151} 1152 1153/* 1154 * Load the on-disk journal superblock and read the key fields into the 1155 * journal_t. 1156 */ 1157 1158static int load_superblock(journal_t *journal) 1159{ 1160 int err; 1161 journal_superblock_t *sb; 1162 1163 err = journal_get_superblock(journal); 1164 if (err) 1165 return err; 1166 1167 sb = journal->j_superblock; 1168 1169 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence); 1170 journal->j_tail = be32_to_cpu(sb->s_start); 1171 journal->j_first = be32_to_cpu(sb->s_first); 1172 journal->j_last = be32_to_cpu(sb->s_maxlen); 1173 journal->j_errno = be32_to_cpu(sb->s_errno); 1174 1175 return 0; 1176} 1177 1178 1179/** 1180 * int journal_load() - Read journal from disk. 1181 * @journal: Journal to act on. 1182 * 1183 * Given a journal_t structure which tells us which disk blocks contain 1184 * a journal, read the journal from disk to initialise the in-memory 1185 * structures. 1186 */ 1187int journal_load(journal_t *journal) 1188{ 1189 int err; 1190 journal_superblock_t *sb; 1191 1192 err = load_superblock(journal); 1193 if (err) 1194 return err; 1195 1196 sb = journal->j_superblock; 1197 /* If this is a V2 superblock, then we have to check the 1198 * features flags on it. */ 1199 1200 if (journal->j_format_version >= 2) { 1201 if ((sb->s_feature_ro_compat & 1202 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) || 1203 (sb->s_feature_incompat & 1204 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) { 1205 printk (KERN_WARNING 1206 "JBD: Unrecognised features on journal\n"); 1207 return -EINVAL; 1208 } 1209 } 1210 1211 /* Let the recovery code check whether it needs to recover any 1212 * data from the journal. */ 1213 if (journal_recover(journal)) 1214 goto recovery_error; 1215 1216 /* OK, we've finished with the dynamic journal bits: 1217 * reinitialise the dynamic contents of the superblock in memory 1218 * and reset them on disk. */ 1219 if (journal_reset(journal)) 1220 goto recovery_error; 1221 1222 journal->j_flags &= ~JFS_ABORT; 1223 journal->j_flags |= JFS_LOADED; 1224 return 0; 1225 1226recovery_error: 1227 printk (KERN_WARNING "JBD: recovery failed\n"); 1228 return -EIO; 1229} 1230 1231/** 1232 * void journal_destroy() - Release a journal_t structure. 1233 * @journal: Journal to act on. 1234 * 1235 * Release a journal_t structure once it is no longer in use by the 1236 * journaled object. 1237 * Return <0 if we couldn't clean up the journal. 1238 */ 1239int journal_destroy(journal_t *journal) 1240{ 1241 int err = 0; 1242 1243 1244 /* Wait for the commit thread to wake up and die. */ 1245 journal_kill_thread(journal); 1246 1247 /* Force a final log commit */ 1248 if (journal->j_running_transaction) 1249 journal_commit_transaction(journal); 1250 1251 /* Force any old transactions to disk */ 1252 1253 /* Totally anal locking here... */ 1254 spin_lock(&journal->j_list_lock); 1255 while (journal->j_checkpoint_transactions != NULL) { 1256 spin_unlock(&journal->j_list_lock); 1257 log_do_checkpoint(journal); 1258 spin_lock(&journal->j_list_lock); 1259 } 1260 1261 J_ASSERT(journal->j_running_transaction == NULL); 1262 J_ASSERT(journal->j_committing_transaction == NULL); 1263 J_ASSERT(journal->j_checkpoint_transactions == NULL); 1264 spin_unlock(&journal->j_list_lock); 1265 1266 if (journal->j_sb_buffer) { 1267 if (!is_journal_aborted(journal)) { 1268 /* We can now mark the journal as empty. */ 1269 journal->j_tail = 0; 1270 journal->j_tail_sequence = 1271 ++journal->j_transaction_sequence; 1272 journal_update_superblock(journal, 1); 1273 } else { 1274 err = -EIO; 1275 } 1276 brelse(journal->j_sb_buffer); 1277 } 1278 1279 if (journal->j_inode) 1280 iput(journal->j_inode); 1281 if (journal->j_revoke) 1282 journal_destroy_revoke(journal); 1283 kfree(journal->j_wbuf); 1284 kfree(journal); 1285 1286 return err; 1287} 1288 1289 1290/** 1291 *int journal_check_used_features () - Check if features specified are used. 1292 * @journal: Journal to check. 1293 * @compat: bitmask of compatible features 1294 * @ro: bitmask of features that force read-only mount 1295 * @incompat: bitmask of incompatible features 1296 * 1297 * Check whether the journal uses all of a given set of 1298 * features. Return true (non-zero) if it does. 1299 **/ 1300 1301int journal_check_used_features (journal_t *journal, unsigned long compat, 1302 unsigned long ro, unsigned long incompat) 1303{ 1304 journal_superblock_t *sb; 1305 1306 if (!compat && !ro && !incompat) 1307 return 1; 1308 if (journal->j_format_version == 1) 1309 return 0; 1310 1311 sb = journal->j_superblock; 1312 1313 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) && 1314 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) && 1315 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat)) 1316 return 1; 1317 1318 return 0; 1319} 1320 1321/** 1322 * int journal_check_available_features() - Check feature set in journalling layer 1323 * @journal: Journal to check. 1324 * @compat: bitmask of compatible features 1325 * @ro: bitmask of features that force read-only mount 1326 * @incompat: bitmask of incompatible features 1327 * 1328 * Check whether the journaling code supports the use of 1329 * all of a given set of features on this journal. Return true 1330 * (non-zero) if it can. */ 1331 1332int journal_check_available_features (journal_t *journal, unsigned long compat, 1333 unsigned long ro, unsigned long incompat) 1334{ 1335 if (!compat && !ro && !incompat) 1336 return 1; 1337 1338 /* We can support any known requested features iff the 1339 * superblock is in version 2. Otherwise we fail to support any 1340 * extended sb features. */ 1341 1342 if (journal->j_format_version != 2) 1343 return 0; 1344 1345 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat && 1346 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro && 1347 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat) 1348 return 1; 1349 1350 return 0; 1351} 1352 1353/** 1354 * int journal_set_features () - Mark a given journal feature in the superblock 1355 * @journal: Journal to act on. 1356 * @compat: bitmask of compatible features 1357 * @ro: bitmask of features that force read-only mount 1358 * @incompat: bitmask of incompatible features 1359 * 1360 * Mark a given journal feature as present on the 1361 * superblock. Returns true if the requested features could be set. 1362 * 1363 */ 1364 1365int journal_set_features (journal_t *journal, unsigned long compat, 1366 unsigned long ro, unsigned long incompat) 1367{ 1368 journal_superblock_t *sb; 1369 1370 if (journal_check_used_features(journal, compat, ro, incompat)) 1371 return 1; 1372 1373 if (!journal_check_available_features(journal, compat, ro, incompat)) 1374 return 0; 1375 1376 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n", 1377 compat, ro, incompat); 1378 1379 sb = journal->j_superblock; 1380 1381 sb->s_feature_compat |= cpu_to_be32(compat); 1382 sb->s_feature_ro_compat |= cpu_to_be32(ro); 1383 sb->s_feature_incompat |= cpu_to_be32(incompat); 1384 1385 return 1; 1386} 1387 1388 1389/** 1390 * int journal_update_format () - Update on-disk journal structure. 1391 * @journal: Journal to act on. 1392 * 1393 * Given an initialised but unloaded journal struct, poke about in the 1394 * on-disk structure to update it to the most recent supported version. 1395 */ 1396int journal_update_format (journal_t *journal) 1397{ 1398 journal_superblock_t *sb; 1399 int err; 1400 1401 err = journal_get_superblock(journal); 1402 if (err) 1403 return err; 1404 1405 sb = journal->j_superblock; 1406 1407 switch (be32_to_cpu(sb->s_header.h_blocktype)) { 1408 case JFS_SUPERBLOCK_V2: 1409 return 0; 1410 case JFS_SUPERBLOCK_V1: 1411 return journal_convert_superblock_v1(journal, sb); 1412 default: 1413 break; 1414 } 1415 return -EINVAL; 1416} 1417 1418static int journal_convert_superblock_v1(journal_t *journal, 1419 journal_superblock_t *sb) 1420{ 1421 int offset, blocksize; 1422 struct buffer_head *bh; 1423 1424 printk(KERN_WARNING 1425 "JBD: Converting superblock from version 1 to 2.\n"); 1426 1427 /* Pre-initialise new fields to zero */ 1428 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb); 1429 blocksize = be32_to_cpu(sb->s_blocksize); 1430 memset(&sb->s_feature_compat, 0, blocksize-offset); 1431 1432 sb->s_nr_users = cpu_to_be32(1); 1433 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2); 1434 journal->j_format_version = 2; 1435 1436 bh = journal->j_sb_buffer; 1437 BUFFER_TRACE(bh, "marking dirty"); 1438 mark_buffer_dirty(bh); 1439 sync_dirty_buffer(bh); 1440 return 0; 1441} 1442 1443 1444/** 1445 * int journal_flush () - Flush journal 1446 * @journal: Journal to act on. 1447 * 1448 * Flush all data for a given journal to disk and empty the journal. 1449 * Filesystems can use this when remounting readonly to ensure that 1450 * recovery does not need to happen on remount. 1451 */ 1452 1453int journal_flush(journal_t *journal) 1454{ 1455 int err = 0; 1456 transaction_t *transaction = NULL; 1457 unsigned int old_tail; 1458 1459 spin_lock(&journal->j_state_lock); 1460 1461 /* Force everything buffered to the log... */ 1462 if (journal->j_running_transaction) { 1463 transaction = journal->j_running_transaction; 1464 __log_start_commit(journal, transaction->t_tid); 1465 } else if (journal->j_committing_transaction) 1466 transaction = journal->j_committing_transaction; 1467 1468 /* Wait for the log commit to complete... */ 1469 if (transaction) { 1470 tid_t tid = transaction->t_tid; 1471 1472 spin_unlock(&journal->j_state_lock); 1473 log_wait_commit(journal, tid); 1474 } else { 1475 spin_unlock(&journal->j_state_lock); 1476 } 1477 1478 /* ...and flush everything in the log out to disk. */ 1479 spin_lock(&journal->j_list_lock); 1480 while (!err && journal->j_checkpoint_transactions != NULL) { 1481 spin_unlock(&journal->j_list_lock); 1482 mutex_lock(&journal->j_checkpoint_mutex); 1483 err = log_do_checkpoint(journal); 1484 mutex_unlock(&journal->j_checkpoint_mutex); 1485 spin_lock(&journal->j_list_lock); 1486 } 1487 spin_unlock(&journal->j_list_lock); 1488 1489 if (is_journal_aborted(journal)) 1490 return -EIO; 1491 1492 cleanup_journal_tail(journal); 1493 1494 /* Finally, mark the journal as really needing no recovery. 1495 * This sets s_start==0 in the underlying superblock, which is 1496 * the magic code for a fully-recovered superblock. Any future 1497 * commits of data to the journal will restore the current 1498 * s_start value. */ 1499 spin_lock(&journal->j_state_lock); 1500 old_tail = journal->j_tail; 1501 journal->j_tail = 0; 1502 spin_unlock(&journal->j_state_lock); 1503 journal_update_superblock(journal, 1); 1504 spin_lock(&journal->j_state_lock); 1505 journal->j_tail = old_tail; 1506 1507 J_ASSERT(!journal->j_running_transaction); 1508 J_ASSERT(!journal->j_committing_transaction); 1509 J_ASSERT(!journal->j_checkpoint_transactions); 1510 J_ASSERT(journal->j_head == journal->j_tail); 1511 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence); 1512 spin_unlock(&journal->j_state_lock); 1513 return 0; 1514} 1515 1516/** 1517 * int journal_wipe() - Wipe journal contents 1518 * @journal: Journal to act on. 1519 * @write: flag (see below) 1520 * 1521 * Wipe out all of the contents of a journal, safely. This will produce 1522 * a warning if the journal contains any valid recovery information. 1523 * Must be called between journal_init_*() and journal_load(). 1524 * 1525 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise 1526 * we merely suppress recovery. 1527 */ 1528 1529int journal_wipe(journal_t *journal, int write) 1530{ 1531 int err = 0; 1532 1533 J_ASSERT (!(journal->j_flags & JFS_LOADED)); 1534 1535 err = load_superblock(journal); 1536 if (err) 1537 return err; 1538 1539 if (!journal->j_tail) 1540 goto no_recovery; 1541 1542 printk (KERN_WARNING "JBD: %s recovery information on journal\n", 1543 write ? "Clearing" : "Ignoring"); 1544 1545 err = journal_skip_recovery(journal); 1546 if (write) 1547 journal_update_superblock(journal, 1); 1548 1549 no_recovery: 1550 return err; 1551} 1552 1553/* 1554 * journal_dev_name: format a character string to describe on what 1555 * device this journal is present. 1556 */ 1557 1558static const char *journal_dev_name(journal_t *journal, char *buffer) 1559{ 1560 struct block_device *bdev; 1561 1562 if (journal->j_inode) 1563 bdev = journal->j_inode->i_sb->s_bdev; 1564 else 1565 bdev = journal->j_dev; 1566 1567 return bdevname(bdev, buffer); 1568} 1569 1570/* 1571 * Journal abort has very specific semantics, which we describe 1572 * for journal abort. 1573 * 1574 * Two internal function, which provide abort to te jbd layer 1575 * itself are here. 1576 */ 1577 1578/* 1579 * Quick version for internal journal use (doesn't lock the journal). 1580 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else, 1581 * and don't attempt to make any other journal updates. 1582 */ 1583static void __journal_abort_hard(journal_t *journal) 1584{ 1585 transaction_t *transaction; 1586 char b[BDEVNAME_SIZE]; 1587 1588 if (journal->j_flags & JFS_ABORT) 1589 return; 1590 1591 printk(KERN_ERR "Aborting journal on device %s.\n", 1592 journal_dev_name(journal, b)); 1593 1594 spin_lock(&journal->j_state_lock); 1595 journal->j_flags |= JFS_ABORT; 1596 transaction = journal->j_running_transaction; 1597 if (transaction) 1598 __log_start_commit(journal, transaction->t_tid); 1599 spin_unlock(&journal->j_state_lock); 1600} 1601 1602/* Soft abort: record the abort error status in the journal superblock, 1603 * but don't do any other IO. */ 1604static void __journal_abort_soft (journal_t *journal, int errno) 1605{ 1606 if (journal->j_flags & JFS_ABORT) 1607 return; 1608 1609 if (!journal->j_errno) 1610 journal->j_errno = errno; 1611 1612 __journal_abort_hard(journal); 1613 1614 if (errno) 1615 journal_update_superblock(journal, 1); 1616} 1617 1618/** 1619 * void journal_abort () - Shutdown the journal immediately. 1620 * @journal: the journal to shutdown. 1621 * @errno: an error number to record in the journal indicating 1622 * the reason for the shutdown. 1623 * 1624 * Perform a complete, immediate shutdown of the ENTIRE 1625 * journal (not of a single transaction). This operation cannot be 1626 * undone without closing and reopening the journal. 1627 * 1628 * The journal_abort function is intended to support higher level error 1629 * recovery mechanisms such as the ext2/ext3 remount-readonly error 1630 * mode. 1631 * 1632 * Journal abort has very specific semantics. Any existing dirty, 1633 * unjournaled buffers in the main filesystem will still be written to 1634 * disk by bdflush, but the journaling mechanism will be suspended 1635 * immediately and no further transaction commits will be honoured. 1636 * 1637 * Any dirty, journaled buffers will be written back to disk without 1638 * hitting the journal. Atomicity cannot be guaranteed on an aborted 1639 * filesystem, but we _do_ attempt to leave as much data as possible 1640 * behind for fsck to use for cleanup. 1641 * 1642 * Any attempt to get a new transaction handle on a journal which is in 1643 * ABORT state will just result in an -EROFS error return. A 1644 * journal_stop on an existing handle will return -EIO if we have 1645 * entered abort state during the update. 1646 * 1647 * Recursive transactions are not disturbed by journal abort until the 1648 * final journal_stop, which will receive the -EIO error. 1649 * 1650 * Finally, the journal_abort call allows the caller to supply an errno 1651 * which will be recorded (if possible) in the journal superblock. This 1652 * allows a client to record failure conditions in the middle of a 1653 * transaction without having to complete the transaction to record the 1654 * failure to disk. ext3_error, for example, now uses this 1655 * functionality. 1656 * 1657 * Errors which originate from within the journaling layer will NOT 1658 * supply an errno; a null errno implies that absolutely no further 1659 * writes are done to the journal (unless there are any already in 1660 * progress). 1661 * 1662 */ 1663 1664void journal_abort(journal_t *journal, int errno) 1665{ 1666 __journal_abort_soft(journal, errno); 1667} 1668 1669/** 1670 * int journal_errno () - returns the journal's error state. 1671 * @journal: journal to examine. 1672 * 1673 * This is the errno numbet set with journal_abort(), the last 1674 * time the journal was mounted - if the journal was stopped 1675 * without calling abort this will be 0. 1676 * 1677 * If the journal has been aborted on this mount time -EROFS will 1678 * be returned. 1679 */ 1680int journal_errno(journal_t *journal) 1681{ 1682 int err; 1683 1684 spin_lock(&journal->j_state_lock); 1685 if (journal->j_flags & JFS_ABORT) 1686 err = -EROFS; 1687 else 1688 err = journal->j_errno; 1689 spin_unlock(&journal->j_state_lock); 1690 return err; 1691} 1692 1693/** 1694 * int journal_clear_err () - clears the journal's error state 1695 * @journal: journal to act on. 1696 * 1697 * An error must be cleared or Acked to take a FS out of readonly 1698 * mode. 1699 */ 1700int journal_clear_err(journal_t *journal) 1701{ 1702 int err = 0; 1703 1704 spin_lock(&journal->j_state_lock); 1705 if (journal->j_flags & JFS_ABORT) 1706 err = -EROFS; 1707 else 1708 journal->j_errno = 0; 1709 spin_unlock(&journal->j_state_lock); 1710 return err; 1711} 1712 1713/** 1714 * void journal_ack_err() - Ack journal err. 1715 * @journal: journal to act on. 1716 * 1717 * An error must be cleared or Acked to take a FS out of readonly 1718 * mode. 1719 */ 1720void journal_ack_err(journal_t *journal) 1721{ 1722 spin_lock(&journal->j_state_lock); 1723 if (journal->j_errno) 1724 journal->j_flags |= JFS_ACK_ERR; 1725 spin_unlock(&journal->j_state_lock); 1726} 1727 1728int journal_blocks_per_page(struct inode *inode) 1729{ 1730 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 1731} 1732 1733/* 1734 * Journal_head storage management 1735 */ 1736static struct kmem_cache *journal_head_cache; 1737#ifdef CONFIG_JBD_DEBUG 1738static atomic_t nr_journal_heads = ATOMIC_INIT(0); 1739#endif 1740 1741static int journal_init_journal_head_cache(void) 1742{ 1743 int retval; 1744 1745 J_ASSERT(journal_head_cache == NULL); 1746 journal_head_cache = kmem_cache_create("journal_head", 1747 sizeof(struct journal_head), 1748 0, /* offset */ 1749 SLAB_TEMPORARY, /* flags */ 1750 NULL); /* ctor */ 1751 retval = 0; 1752 if (!journal_head_cache) { 1753 retval = -ENOMEM; 1754 printk(KERN_EMERG "JBD: no memory for journal_head cache\n"); 1755 } 1756 return retval; 1757} 1758 1759static void journal_destroy_journal_head_cache(void) 1760{ 1761 if (journal_head_cache) { 1762 kmem_cache_destroy(journal_head_cache); 1763 journal_head_cache = NULL; 1764 } 1765} 1766 1767/* 1768 * journal_head splicing and dicing 1769 */ 1770static struct journal_head *journal_alloc_journal_head(void) 1771{ 1772 struct journal_head *ret; 1773 1774#ifdef CONFIG_JBD_DEBUG 1775 atomic_inc(&nr_journal_heads); 1776#endif 1777 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS); 1778 if (ret == NULL) { 1779 jbd_debug(1, "out of memory for journal_head\n"); 1780 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n", 1781 __func__); 1782 1783 while (ret == NULL) { 1784 yield(); 1785 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS); 1786 } 1787 } 1788 return ret; 1789} 1790 1791static void journal_free_journal_head(struct journal_head *jh) 1792{ 1793#ifdef CONFIG_JBD_DEBUG 1794 atomic_dec(&nr_journal_heads); 1795 memset(jh, JBD_POISON_FREE, sizeof(*jh)); 1796#endif 1797 kmem_cache_free(journal_head_cache, jh); 1798} 1799 1800/* 1801 * A journal_head is attached to a buffer_head whenever JBD has an 1802 * interest in the buffer. 1803 * 1804 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit 1805 * is set. This bit is tested in core kernel code where we need to take 1806 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable 1807 * there. 1808 * 1809 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one. 1810 * 1811 * When a buffer has its BH_JBD bit set it is immune from being released by 1812 * core kernel code, mainly via ->b_count. 1813 * 1814 * A journal_head is detached from its buffer_head when the journal_head's 1815 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint 1816 * transaction (b_cp_transaction) hold their references to b_jcount. 1817 * 1818 * Various places in the kernel want to attach a journal_head to a buffer_head 1819 * _before_ attaching the journal_head to a transaction. To protect the 1820 * journal_head in this situation, journal_add_journal_head elevates the 1821 * journal_head's b_jcount refcount by one. The caller must call 1822 * journal_put_journal_head() to undo this. 1823 * 1824 * So the typical usage would be: 1825 * 1826 * (Attach a journal_head if needed. Increments b_jcount) 1827 * struct journal_head *jh = journal_add_journal_head(bh); 1828 * ... 1829 * (Get another reference for transaction) 1830 * journal_grab_journal_head(bh); 1831 * jh->b_transaction = xxx; 1832 * (Put original reference) 1833 * journal_put_journal_head(jh); 1834 */ 1835 1836/* 1837 * Give a buffer_head a journal_head. 1838 * 1839 * May sleep. 1840 */ 1841struct journal_head *journal_add_journal_head(struct buffer_head *bh) 1842{ 1843 struct journal_head *jh; 1844 struct journal_head *new_jh = NULL; 1845 1846repeat: 1847 if (!buffer_jbd(bh)) { 1848 new_jh = journal_alloc_journal_head(); 1849 memset(new_jh, 0, sizeof(*new_jh)); 1850 } 1851 1852 jbd_lock_bh_journal_head(bh); 1853 if (buffer_jbd(bh)) { 1854 jh = bh2jh(bh); 1855 } else { 1856 J_ASSERT_BH(bh, 1857 (atomic_read(&bh->b_count) > 0) || 1858 (bh->b_page && bh->b_page->mapping)); 1859 1860 if (!new_jh) { 1861 jbd_unlock_bh_journal_head(bh); 1862 goto repeat; 1863 } 1864 1865 jh = new_jh; 1866 new_jh = NULL; /* We consumed it */ 1867 set_buffer_jbd(bh); 1868 bh->b_private = jh; 1869 jh->b_bh = bh; 1870 get_bh(bh); 1871 BUFFER_TRACE(bh, "added journal_head"); 1872 } 1873 jh->b_jcount++; 1874 jbd_unlock_bh_journal_head(bh); 1875 if (new_jh) 1876 journal_free_journal_head(new_jh); 1877 return bh->b_private; 1878} 1879 1880/* 1881 * Grab a ref against this buffer_head's journal_head. If it ended up not 1882 * having a journal_head, return NULL 1883 */ 1884struct journal_head *journal_grab_journal_head(struct buffer_head *bh) 1885{ 1886 struct journal_head *jh = NULL; 1887 1888 jbd_lock_bh_journal_head(bh); 1889 if (buffer_jbd(bh)) { 1890 jh = bh2jh(bh); 1891 jh->b_jcount++; 1892 } 1893 jbd_unlock_bh_journal_head(bh); 1894 return jh; 1895} 1896 1897static void __journal_remove_journal_head(struct buffer_head *bh) 1898{ 1899 struct journal_head *jh = bh2jh(bh); 1900 1901 J_ASSERT_JH(jh, jh->b_jcount >= 0); 1902 J_ASSERT_JH(jh, jh->b_transaction == NULL); 1903 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1904 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL); 1905 J_ASSERT_JH(jh, jh->b_jlist == BJ_None); 1906 J_ASSERT_BH(bh, buffer_jbd(bh)); 1907 J_ASSERT_BH(bh, jh2bh(jh) == bh); 1908 BUFFER_TRACE(bh, "remove journal_head"); 1909 if (jh->b_frozen_data) { 1910 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__); 1911 jbd_free(jh->b_frozen_data, bh->b_size); 1912 } 1913 if (jh->b_committed_data) { 1914 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__); 1915 jbd_free(jh->b_committed_data, bh->b_size); 1916 } 1917 bh->b_private = NULL; 1918 jh->b_bh = NULL; /* debug, really */ 1919 clear_buffer_jbd(bh); 1920 journal_free_journal_head(jh); 1921} 1922 1923/* 1924 * Drop a reference on the passed journal_head. If it fell to zero then 1925 * release the journal_head from the buffer_head. 1926 */ 1927void journal_put_journal_head(struct journal_head *jh) 1928{ 1929 struct buffer_head *bh = jh2bh(jh); 1930 1931 jbd_lock_bh_journal_head(bh); 1932 J_ASSERT_JH(jh, jh->b_jcount > 0); 1933 --jh->b_jcount; 1934 if (!jh->b_jcount) { 1935 __journal_remove_journal_head(bh); 1936 jbd_unlock_bh_journal_head(bh); 1937 __brelse(bh); 1938 } else 1939 jbd_unlock_bh_journal_head(bh); 1940} 1941 1942/* 1943 * debugfs tunables 1944 */ 1945#ifdef CONFIG_JBD_DEBUG 1946 1947u8 journal_enable_debug __read_mostly; 1948EXPORT_SYMBOL(journal_enable_debug); 1949 1950static struct dentry *jbd_debugfs_dir; 1951static struct dentry *jbd_debug; 1952 1953static void __init jbd_create_debugfs_entry(void) 1954{ 1955 jbd_debugfs_dir = debugfs_create_dir("jbd", NULL); 1956 if (jbd_debugfs_dir) 1957 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR, 1958 jbd_debugfs_dir, 1959 &journal_enable_debug); 1960} 1961 1962static void __exit jbd_remove_debugfs_entry(void) 1963{ 1964 debugfs_remove(jbd_debug); 1965 debugfs_remove(jbd_debugfs_dir); 1966} 1967 1968#else 1969 1970static inline void jbd_create_debugfs_entry(void) 1971{ 1972} 1973 1974static inline void jbd_remove_debugfs_entry(void) 1975{ 1976} 1977 1978#endif 1979 1980struct kmem_cache *jbd_handle_cache; 1981 1982static int __init journal_init_handle_cache(void) 1983{ 1984 jbd_handle_cache = kmem_cache_create("journal_handle", 1985 sizeof(handle_t), 1986 0, /* offset */ 1987 SLAB_TEMPORARY, /* flags */ 1988 NULL); /* ctor */ 1989 if (jbd_handle_cache == NULL) { 1990 printk(KERN_EMERG "JBD: failed to create handle cache\n"); 1991 return -ENOMEM; 1992 } 1993 return 0; 1994} 1995 1996static void journal_destroy_handle_cache(void) 1997{ 1998 if (jbd_handle_cache) 1999 kmem_cache_destroy(jbd_handle_cache); 2000} 2001 2002/* 2003 * Module startup and shutdown 2004 */ 2005 2006static int __init journal_init_caches(void) 2007{ 2008 int ret; 2009 2010 ret = journal_init_revoke_caches(); 2011 if (ret == 0) 2012 ret = journal_init_journal_head_cache(); 2013 if (ret == 0) 2014 ret = journal_init_handle_cache(); 2015 return ret; 2016} 2017 2018static void journal_destroy_caches(void) 2019{ 2020 journal_destroy_revoke_caches(); 2021 journal_destroy_journal_head_cache(); 2022 journal_destroy_handle_cache(); 2023} 2024 2025static int __init journal_init(void) 2026{ 2027 int ret; 2028 2029 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024); 2030 2031 ret = journal_init_caches(); 2032 if (ret != 0) 2033 journal_destroy_caches(); 2034 jbd_create_debugfs_entry(); 2035 return ret; 2036} 2037 2038static void __exit journal_exit(void) 2039{ 2040#ifdef CONFIG_JBD_DEBUG 2041 int n = atomic_read(&nr_journal_heads); 2042 if (n) 2043 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n); 2044#endif 2045 jbd_remove_debugfs_entry(); 2046 journal_destroy_caches(); 2047} 2048 2049MODULE_LICENSE("GPL"); 2050module_init(journal_init); 2051module_exit(journal_exit); 2052