at v3.19 97 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23#include <linux/rbtree.h> 24#include <linux/socket.h> 25 26#include <linux/atomic.h> 27#include <asm/types.h> 28#include <linux/spinlock.h> 29#include <linux/net.h> 30#include <linux/textsearch.h> 31#include <net/checksum.h> 32#include <linux/rcupdate.h> 33#include <linux/hrtimer.h> 34#include <linux/dma-mapping.h> 35#include <linux/netdev_features.h> 36#include <linux/sched.h> 37#include <net/flow_keys.h> 38 39/* A. Checksumming of received packets by device. 40 * 41 * CHECKSUM_NONE: 42 * 43 * Device failed to checksum this packet e.g. due to lack of capabilities. 44 * The packet contains full (though not verified) checksum in packet but 45 * not in skb->csum. Thus, skb->csum is undefined in this case. 46 * 47 * CHECKSUM_UNNECESSARY: 48 * 49 * The hardware you're dealing with doesn't calculate the full checksum 50 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 51 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 52 * if their checksums are okay. skb->csum is still undefined in this case 53 * though. It is a bad option, but, unfortunately, nowadays most vendors do 54 * this. Apparently with the secret goal to sell you new devices, when you 55 * will add new protocol to your host, f.e. IPv6 8) 56 * 57 * CHECKSUM_UNNECESSARY is applicable to following protocols: 58 * TCP: IPv6 and IPv4. 59 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 60 * zero UDP checksum for either IPv4 or IPv6, the networking stack 61 * may perform further validation in this case. 62 * GRE: only if the checksum is present in the header. 63 * SCTP: indicates the CRC in SCTP header has been validated. 64 * 65 * skb->csum_level indicates the number of consecutive checksums found in 66 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 67 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 68 * and a device is able to verify the checksums for UDP (possibly zero), 69 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 70 * two. If the device were only able to verify the UDP checksum and not 71 * GRE, either because it doesn't support GRE checksum of because GRE 72 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 73 * not considered in this case). 74 * 75 * CHECKSUM_COMPLETE: 76 * 77 * This is the most generic way. The device supplied checksum of the _whole_ 78 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 79 * hardware doesn't need to parse L3/L4 headers to implement this. 80 * 81 * Note: Even if device supports only some protocols, but is able to produce 82 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 83 * 84 * CHECKSUM_PARTIAL: 85 * 86 * This is identical to the case for output below. This may occur on a packet 87 * received directly from another Linux OS, e.g., a virtualized Linux kernel 88 * on the same host. The packet can be treated in the same way as 89 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 90 * checksum must be filled in by the OS or the hardware. 91 * 92 * B. Checksumming on output. 93 * 94 * CHECKSUM_NONE: 95 * 96 * The skb was already checksummed by the protocol, or a checksum is not 97 * required. 98 * 99 * CHECKSUM_PARTIAL: 100 * 101 * The device is required to checksum the packet as seen by hard_start_xmit() 102 * from skb->csum_start up to the end, and to record/write the checksum at 103 * offset skb->csum_start + skb->csum_offset. 104 * 105 * The device must show its capabilities in dev->features, set up at device 106 * setup time, e.g. netdev_features.h: 107 * 108 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 109 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 110 * IPv4. Sigh. Vendors like this way for an unknown reason. 111 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 112 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 113 * NETIF_F_... - Well, you get the picture. 114 * 115 * CHECKSUM_UNNECESSARY: 116 * 117 * Normally, the device will do per protocol specific checksumming. Protocol 118 * implementations that do not want the NIC to perform the checksum 119 * calculation should use this flag in their outgoing skbs. 120 * 121 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 122 * offload. Correspondingly, the FCoE protocol driver 123 * stack should use CHECKSUM_UNNECESSARY. 124 * 125 * Any questions? No questions, good. --ANK 126 */ 127 128/* Don't change this without changing skb_csum_unnecessary! */ 129#define CHECKSUM_NONE 0 130#define CHECKSUM_UNNECESSARY 1 131#define CHECKSUM_COMPLETE 2 132#define CHECKSUM_PARTIAL 3 133 134/* Maximum value in skb->csum_level */ 135#define SKB_MAX_CSUM_LEVEL 3 136 137#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 138#define SKB_WITH_OVERHEAD(X) \ 139 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 140#define SKB_MAX_ORDER(X, ORDER) \ 141 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 142#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 143#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 144 145/* return minimum truesize of one skb containing X bytes of data */ 146#define SKB_TRUESIZE(X) ((X) + \ 147 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 148 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 149 150struct net_device; 151struct scatterlist; 152struct pipe_inode_info; 153struct iov_iter; 154struct napi_struct; 155 156#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 157struct nf_conntrack { 158 atomic_t use; 159}; 160#endif 161 162#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 163struct nf_bridge_info { 164 atomic_t use; 165 unsigned int mask; 166 struct net_device *physindev; 167 struct net_device *physoutdev; 168 unsigned long data[32 / sizeof(unsigned long)]; 169}; 170#endif 171 172struct sk_buff_head { 173 /* These two members must be first. */ 174 struct sk_buff *next; 175 struct sk_buff *prev; 176 177 __u32 qlen; 178 spinlock_t lock; 179}; 180 181struct sk_buff; 182 183/* To allow 64K frame to be packed as single skb without frag_list we 184 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 185 * buffers which do not start on a page boundary. 186 * 187 * Since GRO uses frags we allocate at least 16 regardless of page 188 * size. 189 */ 190#if (65536/PAGE_SIZE + 1) < 16 191#define MAX_SKB_FRAGS 16UL 192#else 193#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 194#endif 195 196typedef struct skb_frag_struct skb_frag_t; 197 198struct skb_frag_struct { 199 struct { 200 struct page *p; 201 } page; 202#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 203 __u32 page_offset; 204 __u32 size; 205#else 206 __u16 page_offset; 207 __u16 size; 208#endif 209}; 210 211static inline unsigned int skb_frag_size(const skb_frag_t *frag) 212{ 213 return frag->size; 214} 215 216static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 217{ 218 frag->size = size; 219} 220 221static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 222{ 223 frag->size += delta; 224} 225 226static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 227{ 228 frag->size -= delta; 229} 230 231#define HAVE_HW_TIME_STAMP 232 233/** 234 * struct skb_shared_hwtstamps - hardware time stamps 235 * @hwtstamp: hardware time stamp transformed into duration 236 * since arbitrary point in time 237 * 238 * Software time stamps generated by ktime_get_real() are stored in 239 * skb->tstamp. 240 * 241 * hwtstamps can only be compared against other hwtstamps from 242 * the same device. 243 * 244 * This structure is attached to packets as part of the 245 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 246 */ 247struct skb_shared_hwtstamps { 248 ktime_t hwtstamp; 249}; 250 251/* Definitions for tx_flags in struct skb_shared_info */ 252enum { 253 /* generate hardware time stamp */ 254 SKBTX_HW_TSTAMP = 1 << 0, 255 256 /* generate software time stamp when queueing packet to NIC */ 257 SKBTX_SW_TSTAMP = 1 << 1, 258 259 /* device driver is going to provide hardware time stamp */ 260 SKBTX_IN_PROGRESS = 1 << 2, 261 262 /* device driver supports TX zero-copy buffers */ 263 SKBTX_DEV_ZEROCOPY = 1 << 3, 264 265 /* generate wifi status information (where possible) */ 266 SKBTX_WIFI_STATUS = 1 << 4, 267 268 /* This indicates at least one fragment might be overwritten 269 * (as in vmsplice(), sendfile() ...) 270 * If we need to compute a TX checksum, we'll need to copy 271 * all frags to avoid possible bad checksum 272 */ 273 SKBTX_SHARED_FRAG = 1 << 5, 274 275 /* generate software time stamp when entering packet scheduling */ 276 SKBTX_SCHED_TSTAMP = 1 << 6, 277 278 /* generate software timestamp on peer data acknowledgment */ 279 SKBTX_ACK_TSTAMP = 1 << 7, 280}; 281 282#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 283 SKBTX_SCHED_TSTAMP | \ 284 SKBTX_ACK_TSTAMP) 285#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 286 287/* 288 * The callback notifies userspace to release buffers when skb DMA is done in 289 * lower device, the skb last reference should be 0 when calling this. 290 * The zerocopy_success argument is true if zero copy transmit occurred, 291 * false on data copy or out of memory error caused by data copy attempt. 292 * The ctx field is used to track device context. 293 * The desc field is used to track userspace buffer index. 294 */ 295struct ubuf_info { 296 void (*callback)(struct ubuf_info *, bool zerocopy_success); 297 void *ctx; 298 unsigned long desc; 299}; 300 301/* This data is invariant across clones and lives at 302 * the end of the header data, ie. at skb->end. 303 */ 304struct skb_shared_info { 305 unsigned char nr_frags; 306 __u8 tx_flags; 307 unsigned short gso_size; 308 /* Warning: this field is not always filled in (UFO)! */ 309 unsigned short gso_segs; 310 unsigned short gso_type; 311 struct sk_buff *frag_list; 312 struct skb_shared_hwtstamps hwtstamps; 313 u32 tskey; 314 __be32 ip6_frag_id; 315 316 /* 317 * Warning : all fields before dataref are cleared in __alloc_skb() 318 */ 319 atomic_t dataref; 320 321 /* Intermediate layers must ensure that destructor_arg 322 * remains valid until skb destructor */ 323 void * destructor_arg; 324 325 /* must be last field, see pskb_expand_head() */ 326 skb_frag_t frags[MAX_SKB_FRAGS]; 327}; 328 329/* We divide dataref into two halves. The higher 16 bits hold references 330 * to the payload part of skb->data. The lower 16 bits hold references to 331 * the entire skb->data. A clone of a headerless skb holds the length of 332 * the header in skb->hdr_len. 333 * 334 * All users must obey the rule that the skb->data reference count must be 335 * greater than or equal to the payload reference count. 336 * 337 * Holding a reference to the payload part means that the user does not 338 * care about modifications to the header part of skb->data. 339 */ 340#define SKB_DATAREF_SHIFT 16 341#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 342 343 344enum { 345 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 346 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 347 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 348}; 349 350enum { 351 SKB_GSO_TCPV4 = 1 << 0, 352 SKB_GSO_UDP = 1 << 1, 353 354 /* This indicates the skb is from an untrusted source. */ 355 SKB_GSO_DODGY = 1 << 2, 356 357 /* This indicates the tcp segment has CWR set. */ 358 SKB_GSO_TCP_ECN = 1 << 3, 359 360 SKB_GSO_TCPV6 = 1 << 4, 361 362 SKB_GSO_FCOE = 1 << 5, 363 364 SKB_GSO_GRE = 1 << 6, 365 366 SKB_GSO_GRE_CSUM = 1 << 7, 367 368 SKB_GSO_IPIP = 1 << 8, 369 370 SKB_GSO_SIT = 1 << 9, 371 372 SKB_GSO_UDP_TUNNEL = 1 << 10, 373 374 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 375 376 SKB_GSO_TUNNEL_REMCSUM = 1 << 12, 377}; 378 379#if BITS_PER_LONG > 32 380#define NET_SKBUFF_DATA_USES_OFFSET 1 381#endif 382 383#ifdef NET_SKBUFF_DATA_USES_OFFSET 384typedef unsigned int sk_buff_data_t; 385#else 386typedef unsigned char *sk_buff_data_t; 387#endif 388 389/** 390 * struct skb_mstamp - multi resolution time stamps 391 * @stamp_us: timestamp in us resolution 392 * @stamp_jiffies: timestamp in jiffies 393 */ 394struct skb_mstamp { 395 union { 396 u64 v64; 397 struct { 398 u32 stamp_us; 399 u32 stamp_jiffies; 400 }; 401 }; 402}; 403 404/** 405 * skb_mstamp_get - get current timestamp 406 * @cl: place to store timestamps 407 */ 408static inline void skb_mstamp_get(struct skb_mstamp *cl) 409{ 410 u64 val = local_clock(); 411 412 do_div(val, NSEC_PER_USEC); 413 cl->stamp_us = (u32)val; 414 cl->stamp_jiffies = (u32)jiffies; 415} 416 417/** 418 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 419 * @t1: pointer to newest sample 420 * @t0: pointer to oldest sample 421 */ 422static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 423 const struct skb_mstamp *t0) 424{ 425 s32 delta_us = t1->stamp_us - t0->stamp_us; 426 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 427 428 /* If delta_us is negative, this might be because interval is too big, 429 * or local_clock() drift is too big : fallback using jiffies. 430 */ 431 if (delta_us <= 0 || 432 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 433 434 delta_us = jiffies_to_usecs(delta_jiffies); 435 436 return delta_us; 437} 438 439 440/** 441 * struct sk_buff - socket buffer 442 * @next: Next buffer in list 443 * @prev: Previous buffer in list 444 * @tstamp: Time we arrived/left 445 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 446 * @sk: Socket we are owned by 447 * @dev: Device we arrived on/are leaving by 448 * @cb: Control buffer. Free for use by every layer. Put private vars here 449 * @_skb_refdst: destination entry (with norefcount bit) 450 * @sp: the security path, used for xfrm 451 * @len: Length of actual data 452 * @data_len: Data length 453 * @mac_len: Length of link layer header 454 * @hdr_len: writable header length of cloned skb 455 * @csum: Checksum (must include start/offset pair) 456 * @csum_start: Offset from skb->head where checksumming should start 457 * @csum_offset: Offset from csum_start where checksum should be stored 458 * @priority: Packet queueing priority 459 * @ignore_df: allow local fragmentation 460 * @cloned: Head may be cloned (check refcnt to be sure) 461 * @ip_summed: Driver fed us an IP checksum 462 * @nohdr: Payload reference only, must not modify header 463 * @nfctinfo: Relationship of this skb to the connection 464 * @pkt_type: Packet class 465 * @fclone: skbuff clone status 466 * @ipvs_property: skbuff is owned by ipvs 467 * @peeked: this packet has been seen already, so stats have been 468 * done for it, don't do them again 469 * @nf_trace: netfilter packet trace flag 470 * @protocol: Packet protocol from driver 471 * @destructor: Destruct function 472 * @nfct: Associated connection, if any 473 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 474 * @skb_iif: ifindex of device we arrived on 475 * @tc_index: Traffic control index 476 * @tc_verd: traffic control verdict 477 * @hash: the packet hash 478 * @queue_mapping: Queue mapping for multiqueue devices 479 * @xmit_more: More SKBs are pending for this queue 480 * @ndisc_nodetype: router type (from link layer) 481 * @ooo_okay: allow the mapping of a socket to a queue to be changed 482 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 483 * ports. 484 * @sw_hash: indicates hash was computed in software stack 485 * @wifi_acked_valid: wifi_acked was set 486 * @wifi_acked: whether frame was acked on wifi or not 487 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 488 * @napi_id: id of the NAPI struct this skb came from 489 * @secmark: security marking 490 * @mark: Generic packet mark 491 * @dropcount: total number of sk_receive_queue overflows 492 * @vlan_proto: vlan encapsulation protocol 493 * @vlan_tci: vlan tag control information 494 * @inner_protocol: Protocol (encapsulation) 495 * @inner_transport_header: Inner transport layer header (encapsulation) 496 * @inner_network_header: Network layer header (encapsulation) 497 * @inner_mac_header: Link layer header (encapsulation) 498 * @transport_header: Transport layer header 499 * @network_header: Network layer header 500 * @mac_header: Link layer header 501 * @tail: Tail pointer 502 * @end: End pointer 503 * @head: Head of buffer 504 * @data: Data head pointer 505 * @truesize: Buffer size 506 * @users: User count - see {datagram,tcp}.c 507 */ 508 509struct sk_buff { 510 union { 511 struct { 512 /* These two members must be first. */ 513 struct sk_buff *next; 514 struct sk_buff *prev; 515 516 union { 517 ktime_t tstamp; 518 struct skb_mstamp skb_mstamp; 519 }; 520 }; 521 struct rb_node rbnode; /* used in netem & tcp stack */ 522 }; 523 struct sock *sk; 524 struct net_device *dev; 525 526 /* 527 * This is the control buffer. It is free to use for every 528 * layer. Please put your private variables there. If you 529 * want to keep them across layers you have to do a skb_clone() 530 * first. This is owned by whoever has the skb queued ATM. 531 */ 532 char cb[48] __aligned(8); 533 534 unsigned long _skb_refdst; 535 void (*destructor)(struct sk_buff *skb); 536#ifdef CONFIG_XFRM 537 struct sec_path *sp; 538#endif 539#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 540 struct nf_conntrack *nfct; 541#endif 542#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 543 struct nf_bridge_info *nf_bridge; 544#endif 545 unsigned int len, 546 data_len; 547 __u16 mac_len, 548 hdr_len; 549 550 /* Following fields are _not_ copied in __copy_skb_header() 551 * Note that queue_mapping is here mostly to fill a hole. 552 */ 553 kmemcheck_bitfield_begin(flags1); 554 __u16 queue_mapping; 555 __u8 cloned:1, 556 nohdr:1, 557 fclone:2, 558 peeked:1, 559 head_frag:1, 560 xmit_more:1; 561 /* one bit hole */ 562 kmemcheck_bitfield_end(flags1); 563 564 /* fields enclosed in headers_start/headers_end are copied 565 * using a single memcpy() in __copy_skb_header() 566 */ 567 /* private: */ 568 __u32 headers_start[0]; 569 /* public: */ 570 571/* if you move pkt_type around you also must adapt those constants */ 572#ifdef __BIG_ENDIAN_BITFIELD 573#define PKT_TYPE_MAX (7 << 5) 574#else 575#define PKT_TYPE_MAX 7 576#endif 577#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 578 579 __u8 __pkt_type_offset[0]; 580 __u8 pkt_type:3; 581 __u8 pfmemalloc:1; 582 __u8 ignore_df:1; 583 __u8 nfctinfo:3; 584 585 __u8 nf_trace:1; 586 __u8 ip_summed:2; 587 __u8 ooo_okay:1; 588 __u8 l4_hash:1; 589 __u8 sw_hash:1; 590 __u8 wifi_acked_valid:1; 591 __u8 wifi_acked:1; 592 593 __u8 no_fcs:1; 594 /* Indicates the inner headers are valid in the skbuff. */ 595 __u8 encapsulation:1; 596 __u8 encap_hdr_csum:1; 597 __u8 csum_valid:1; 598 __u8 csum_complete_sw:1; 599 __u8 csum_level:2; 600 __u8 csum_bad:1; 601 602#ifdef CONFIG_IPV6_NDISC_NODETYPE 603 __u8 ndisc_nodetype:2; 604#endif 605 __u8 ipvs_property:1; 606 __u8 inner_protocol_type:1; 607 __u8 remcsum_offload:1; 608 /* 3 or 5 bit hole */ 609 610#ifdef CONFIG_NET_SCHED 611 __u16 tc_index; /* traffic control index */ 612#ifdef CONFIG_NET_CLS_ACT 613 __u16 tc_verd; /* traffic control verdict */ 614#endif 615#endif 616 617 union { 618 __wsum csum; 619 struct { 620 __u16 csum_start; 621 __u16 csum_offset; 622 }; 623 }; 624 __u32 priority; 625 int skb_iif; 626 __u32 hash; 627 __be16 vlan_proto; 628 __u16 vlan_tci; 629#ifdef CONFIG_NET_RX_BUSY_POLL 630 unsigned int napi_id; 631#endif 632#ifdef CONFIG_NETWORK_SECMARK 633 __u32 secmark; 634#endif 635 union { 636 __u32 mark; 637 __u32 dropcount; 638 __u32 reserved_tailroom; 639 }; 640 641 union { 642 __be16 inner_protocol; 643 __u8 inner_ipproto; 644 }; 645 646 __u16 inner_transport_header; 647 __u16 inner_network_header; 648 __u16 inner_mac_header; 649 650 __be16 protocol; 651 __u16 transport_header; 652 __u16 network_header; 653 __u16 mac_header; 654 655 /* private: */ 656 __u32 headers_end[0]; 657 /* public: */ 658 659 /* These elements must be at the end, see alloc_skb() for details. */ 660 sk_buff_data_t tail; 661 sk_buff_data_t end; 662 unsigned char *head, 663 *data; 664 unsigned int truesize; 665 atomic_t users; 666}; 667 668#ifdef __KERNEL__ 669/* 670 * Handling routines are only of interest to the kernel 671 */ 672#include <linux/slab.h> 673 674 675#define SKB_ALLOC_FCLONE 0x01 676#define SKB_ALLOC_RX 0x02 677#define SKB_ALLOC_NAPI 0x04 678 679/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 680static inline bool skb_pfmemalloc(const struct sk_buff *skb) 681{ 682 return unlikely(skb->pfmemalloc); 683} 684 685/* 686 * skb might have a dst pointer attached, refcounted or not. 687 * _skb_refdst low order bit is set if refcount was _not_ taken 688 */ 689#define SKB_DST_NOREF 1UL 690#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 691 692/** 693 * skb_dst - returns skb dst_entry 694 * @skb: buffer 695 * 696 * Returns skb dst_entry, regardless of reference taken or not. 697 */ 698static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 699{ 700 /* If refdst was not refcounted, check we still are in a 701 * rcu_read_lock section 702 */ 703 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 704 !rcu_read_lock_held() && 705 !rcu_read_lock_bh_held()); 706 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 707} 708 709/** 710 * skb_dst_set - sets skb dst 711 * @skb: buffer 712 * @dst: dst entry 713 * 714 * Sets skb dst, assuming a reference was taken on dst and should 715 * be released by skb_dst_drop() 716 */ 717static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 718{ 719 skb->_skb_refdst = (unsigned long)dst; 720} 721 722/** 723 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 724 * @skb: buffer 725 * @dst: dst entry 726 * 727 * Sets skb dst, assuming a reference was not taken on dst. 728 * If dst entry is cached, we do not take reference and dst_release 729 * will be avoided by refdst_drop. If dst entry is not cached, we take 730 * reference, so that last dst_release can destroy the dst immediately. 731 */ 732static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 733{ 734 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 735 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 736} 737 738/** 739 * skb_dst_is_noref - Test if skb dst isn't refcounted 740 * @skb: buffer 741 */ 742static inline bool skb_dst_is_noref(const struct sk_buff *skb) 743{ 744 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 745} 746 747static inline struct rtable *skb_rtable(const struct sk_buff *skb) 748{ 749 return (struct rtable *)skb_dst(skb); 750} 751 752void kfree_skb(struct sk_buff *skb); 753void kfree_skb_list(struct sk_buff *segs); 754void skb_tx_error(struct sk_buff *skb); 755void consume_skb(struct sk_buff *skb); 756void __kfree_skb(struct sk_buff *skb); 757extern struct kmem_cache *skbuff_head_cache; 758 759void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 760bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 761 bool *fragstolen, int *delta_truesize); 762 763struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 764 int node); 765struct sk_buff *build_skb(void *data, unsigned int frag_size); 766static inline struct sk_buff *alloc_skb(unsigned int size, 767 gfp_t priority) 768{ 769 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 770} 771 772struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 773 unsigned long data_len, 774 int max_page_order, 775 int *errcode, 776 gfp_t gfp_mask); 777 778/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 779struct sk_buff_fclones { 780 struct sk_buff skb1; 781 782 struct sk_buff skb2; 783 784 atomic_t fclone_ref; 785}; 786 787/** 788 * skb_fclone_busy - check if fclone is busy 789 * @skb: buffer 790 * 791 * Returns true is skb is a fast clone, and its clone is not freed. 792 * Some drivers call skb_orphan() in their ndo_start_xmit(), 793 * so we also check that this didnt happen. 794 */ 795static inline bool skb_fclone_busy(const struct sock *sk, 796 const struct sk_buff *skb) 797{ 798 const struct sk_buff_fclones *fclones; 799 800 fclones = container_of(skb, struct sk_buff_fclones, skb1); 801 802 return skb->fclone == SKB_FCLONE_ORIG && 803 atomic_read(&fclones->fclone_ref) > 1 && 804 fclones->skb2.sk == sk; 805} 806 807static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 808 gfp_t priority) 809{ 810 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 811} 812 813struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 814static inline struct sk_buff *alloc_skb_head(gfp_t priority) 815{ 816 return __alloc_skb_head(priority, -1); 817} 818 819struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 820int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 821struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 822struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 823struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 824 gfp_t gfp_mask, bool fclone); 825static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 826 gfp_t gfp_mask) 827{ 828 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 829} 830 831int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 832struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 833 unsigned int headroom); 834struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 835 int newtailroom, gfp_t priority); 836int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 837 int offset, int len); 838int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 839 int len); 840int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 841int skb_pad(struct sk_buff *skb, int pad); 842#define dev_kfree_skb(a) consume_skb(a) 843 844int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 845 int getfrag(void *from, char *to, int offset, 846 int len, int odd, struct sk_buff *skb), 847 void *from, int length); 848 849struct skb_seq_state { 850 __u32 lower_offset; 851 __u32 upper_offset; 852 __u32 frag_idx; 853 __u32 stepped_offset; 854 struct sk_buff *root_skb; 855 struct sk_buff *cur_skb; 856 __u8 *frag_data; 857}; 858 859void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 860 unsigned int to, struct skb_seq_state *st); 861unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 862 struct skb_seq_state *st); 863void skb_abort_seq_read(struct skb_seq_state *st); 864 865unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 866 unsigned int to, struct ts_config *config, 867 struct ts_state *state); 868 869/* 870 * Packet hash types specify the type of hash in skb_set_hash. 871 * 872 * Hash types refer to the protocol layer addresses which are used to 873 * construct a packet's hash. The hashes are used to differentiate or identify 874 * flows of the protocol layer for the hash type. Hash types are either 875 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 876 * 877 * Properties of hashes: 878 * 879 * 1) Two packets in different flows have different hash values 880 * 2) Two packets in the same flow should have the same hash value 881 * 882 * A hash at a higher layer is considered to be more specific. A driver should 883 * set the most specific hash possible. 884 * 885 * A driver cannot indicate a more specific hash than the layer at which a hash 886 * was computed. For instance an L3 hash cannot be set as an L4 hash. 887 * 888 * A driver may indicate a hash level which is less specific than the 889 * actual layer the hash was computed on. For instance, a hash computed 890 * at L4 may be considered an L3 hash. This should only be done if the 891 * driver can't unambiguously determine that the HW computed the hash at 892 * the higher layer. Note that the "should" in the second property above 893 * permits this. 894 */ 895enum pkt_hash_types { 896 PKT_HASH_TYPE_NONE, /* Undefined type */ 897 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 898 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 899 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 900}; 901 902static inline void 903skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 904{ 905 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 906 skb->sw_hash = 0; 907 skb->hash = hash; 908} 909 910void __skb_get_hash(struct sk_buff *skb); 911static inline __u32 skb_get_hash(struct sk_buff *skb) 912{ 913 if (!skb->l4_hash && !skb->sw_hash) 914 __skb_get_hash(skb); 915 916 return skb->hash; 917} 918 919static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 920{ 921 return skb->hash; 922} 923 924static inline void skb_clear_hash(struct sk_buff *skb) 925{ 926 skb->hash = 0; 927 skb->sw_hash = 0; 928 skb->l4_hash = 0; 929} 930 931static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 932{ 933 if (!skb->l4_hash) 934 skb_clear_hash(skb); 935} 936 937static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 938{ 939 to->hash = from->hash; 940 to->sw_hash = from->sw_hash; 941 to->l4_hash = from->l4_hash; 942}; 943 944#ifdef NET_SKBUFF_DATA_USES_OFFSET 945static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 946{ 947 return skb->head + skb->end; 948} 949 950static inline unsigned int skb_end_offset(const struct sk_buff *skb) 951{ 952 return skb->end; 953} 954#else 955static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 956{ 957 return skb->end; 958} 959 960static inline unsigned int skb_end_offset(const struct sk_buff *skb) 961{ 962 return skb->end - skb->head; 963} 964#endif 965 966/* Internal */ 967#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 968 969static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 970{ 971 return &skb_shinfo(skb)->hwtstamps; 972} 973 974/** 975 * skb_queue_empty - check if a queue is empty 976 * @list: queue head 977 * 978 * Returns true if the queue is empty, false otherwise. 979 */ 980static inline int skb_queue_empty(const struct sk_buff_head *list) 981{ 982 return list->next == (const struct sk_buff *) list; 983} 984 985/** 986 * skb_queue_is_last - check if skb is the last entry in the queue 987 * @list: queue head 988 * @skb: buffer 989 * 990 * Returns true if @skb is the last buffer on the list. 991 */ 992static inline bool skb_queue_is_last(const struct sk_buff_head *list, 993 const struct sk_buff *skb) 994{ 995 return skb->next == (const struct sk_buff *) list; 996} 997 998/** 999 * skb_queue_is_first - check if skb is the first entry in the queue 1000 * @list: queue head 1001 * @skb: buffer 1002 * 1003 * Returns true if @skb is the first buffer on the list. 1004 */ 1005static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1006 const struct sk_buff *skb) 1007{ 1008 return skb->prev == (const struct sk_buff *) list; 1009} 1010 1011/** 1012 * skb_queue_next - return the next packet in the queue 1013 * @list: queue head 1014 * @skb: current buffer 1015 * 1016 * Return the next packet in @list after @skb. It is only valid to 1017 * call this if skb_queue_is_last() evaluates to false. 1018 */ 1019static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1020 const struct sk_buff *skb) 1021{ 1022 /* This BUG_ON may seem severe, but if we just return then we 1023 * are going to dereference garbage. 1024 */ 1025 BUG_ON(skb_queue_is_last(list, skb)); 1026 return skb->next; 1027} 1028 1029/** 1030 * skb_queue_prev - return the prev packet in the queue 1031 * @list: queue head 1032 * @skb: current buffer 1033 * 1034 * Return the prev packet in @list before @skb. It is only valid to 1035 * call this if skb_queue_is_first() evaluates to false. 1036 */ 1037static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1038 const struct sk_buff *skb) 1039{ 1040 /* This BUG_ON may seem severe, but if we just return then we 1041 * are going to dereference garbage. 1042 */ 1043 BUG_ON(skb_queue_is_first(list, skb)); 1044 return skb->prev; 1045} 1046 1047/** 1048 * skb_get - reference buffer 1049 * @skb: buffer to reference 1050 * 1051 * Makes another reference to a socket buffer and returns a pointer 1052 * to the buffer. 1053 */ 1054static inline struct sk_buff *skb_get(struct sk_buff *skb) 1055{ 1056 atomic_inc(&skb->users); 1057 return skb; 1058} 1059 1060/* 1061 * If users == 1, we are the only owner and are can avoid redundant 1062 * atomic change. 1063 */ 1064 1065/** 1066 * skb_cloned - is the buffer a clone 1067 * @skb: buffer to check 1068 * 1069 * Returns true if the buffer was generated with skb_clone() and is 1070 * one of multiple shared copies of the buffer. Cloned buffers are 1071 * shared data so must not be written to under normal circumstances. 1072 */ 1073static inline int skb_cloned(const struct sk_buff *skb) 1074{ 1075 return skb->cloned && 1076 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1077} 1078 1079static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1080{ 1081 might_sleep_if(pri & __GFP_WAIT); 1082 1083 if (skb_cloned(skb)) 1084 return pskb_expand_head(skb, 0, 0, pri); 1085 1086 return 0; 1087} 1088 1089/** 1090 * skb_header_cloned - is the header a clone 1091 * @skb: buffer to check 1092 * 1093 * Returns true if modifying the header part of the buffer requires 1094 * the data to be copied. 1095 */ 1096static inline int skb_header_cloned(const struct sk_buff *skb) 1097{ 1098 int dataref; 1099 1100 if (!skb->cloned) 1101 return 0; 1102 1103 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1104 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1105 return dataref != 1; 1106} 1107 1108/** 1109 * skb_header_release - release reference to header 1110 * @skb: buffer to operate on 1111 * 1112 * Drop a reference to the header part of the buffer. This is done 1113 * by acquiring a payload reference. You must not read from the header 1114 * part of skb->data after this. 1115 * Note : Check if you can use __skb_header_release() instead. 1116 */ 1117static inline void skb_header_release(struct sk_buff *skb) 1118{ 1119 BUG_ON(skb->nohdr); 1120 skb->nohdr = 1; 1121 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1122} 1123 1124/** 1125 * __skb_header_release - release reference to header 1126 * @skb: buffer to operate on 1127 * 1128 * Variant of skb_header_release() assuming skb is private to caller. 1129 * We can avoid one atomic operation. 1130 */ 1131static inline void __skb_header_release(struct sk_buff *skb) 1132{ 1133 skb->nohdr = 1; 1134 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1135} 1136 1137 1138/** 1139 * skb_shared - is the buffer shared 1140 * @skb: buffer to check 1141 * 1142 * Returns true if more than one person has a reference to this 1143 * buffer. 1144 */ 1145static inline int skb_shared(const struct sk_buff *skb) 1146{ 1147 return atomic_read(&skb->users) != 1; 1148} 1149 1150/** 1151 * skb_share_check - check if buffer is shared and if so clone it 1152 * @skb: buffer to check 1153 * @pri: priority for memory allocation 1154 * 1155 * If the buffer is shared the buffer is cloned and the old copy 1156 * drops a reference. A new clone with a single reference is returned. 1157 * If the buffer is not shared the original buffer is returned. When 1158 * being called from interrupt status or with spinlocks held pri must 1159 * be GFP_ATOMIC. 1160 * 1161 * NULL is returned on a memory allocation failure. 1162 */ 1163static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1164{ 1165 might_sleep_if(pri & __GFP_WAIT); 1166 if (skb_shared(skb)) { 1167 struct sk_buff *nskb = skb_clone(skb, pri); 1168 1169 if (likely(nskb)) 1170 consume_skb(skb); 1171 else 1172 kfree_skb(skb); 1173 skb = nskb; 1174 } 1175 return skb; 1176} 1177 1178/* 1179 * Copy shared buffers into a new sk_buff. We effectively do COW on 1180 * packets to handle cases where we have a local reader and forward 1181 * and a couple of other messy ones. The normal one is tcpdumping 1182 * a packet thats being forwarded. 1183 */ 1184 1185/** 1186 * skb_unshare - make a copy of a shared buffer 1187 * @skb: buffer to check 1188 * @pri: priority for memory allocation 1189 * 1190 * If the socket buffer is a clone then this function creates a new 1191 * copy of the data, drops a reference count on the old copy and returns 1192 * the new copy with the reference count at 1. If the buffer is not a clone 1193 * the original buffer is returned. When called with a spinlock held or 1194 * from interrupt state @pri must be %GFP_ATOMIC 1195 * 1196 * %NULL is returned on a memory allocation failure. 1197 */ 1198static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1199 gfp_t pri) 1200{ 1201 might_sleep_if(pri & __GFP_WAIT); 1202 if (skb_cloned(skb)) { 1203 struct sk_buff *nskb = skb_copy(skb, pri); 1204 1205 /* Free our shared copy */ 1206 if (likely(nskb)) 1207 consume_skb(skb); 1208 else 1209 kfree_skb(skb); 1210 skb = nskb; 1211 } 1212 return skb; 1213} 1214 1215/** 1216 * skb_peek - peek at the head of an &sk_buff_head 1217 * @list_: list to peek at 1218 * 1219 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1220 * be careful with this one. A peek leaves the buffer on the 1221 * list and someone else may run off with it. You must hold 1222 * the appropriate locks or have a private queue to do this. 1223 * 1224 * Returns %NULL for an empty list or a pointer to the head element. 1225 * The reference count is not incremented and the reference is therefore 1226 * volatile. Use with caution. 1227 */ 1228static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1229{ 1230 struct sk_buff *skb = list_->next; 1231 1232 if (skb == (struct sk_buff *)list_) 1233 skb = NULL; 1234 return skb; 1235} 1236 1237/** 1238 * skb_peek_next - peek skb following the given one from a queue 1239 * @skb: skb to start from 1240 * @list_: list to peek at 1241 * 1242 * Returns %NULL when the end of the list is met or a pointer to the 1243 * next element. The reference count is not incremented and the 1244 * reference is therefore volatile. Use with caution. 1245 */ 1246static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1247 const struct sk_buff_head *list_) 1248{ 1249 struct sk_buff *next = skb->next; 1250 1251 if (next == (struct sk_buff *)list_) 1252 next = NULL; 1253 return next; 1254} 1255 1256/** 1257 * skb_peek_tail - peek at the tail of an &sk_buff_head 1258 * @list_: list to peek at 1259 * 1260 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1261 * be careful with this one. A peek leaves the buffer on the 1262 * list and someone else may run off with it. You must hold 1263 * the appropriate locks or have a private queue to do this. 1264 * 1265 * Returns %NULL for an empty list or a pointer to the tail element. 1266 * The reference count is not incremented and the reference is therefore 1267 * volatile. Use with caution. 1268 */ 1269static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1270{ 1271 struct sk_buff *skb = list_->prev; 1272 1273 if (skb == (struct sk_buff *)list_) 1274 skb = NULL; 1275 return skb; 1276 1277} 1278 1279/** 1280 * skb_queue_len - get queue length 1281 * @list_: list to measure 1282 * 1283 * Return the length of an &sk_buff queue. 1284 */ 1285static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1286{ 1287 return list_->qlen; 1288} 1289 1290/** 1291 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1292 * @list: queue to initialize 1293 * 1294 * This initializes only the list and queue length aspects of 1295 * an sk_buff_head object. This allows to initialize the list 1296 * aspects of an sk_buff_head without reinitializing things like 1297 * the spinlock. It can also be used for on-stack sk_buff_head 1298 * objects where the spinlock is known to not be used. 1299 */ 1300static inline void __skb_queue_head_init(struct sk_buff_head *list) 1301{ 1302 list->prev = list->next = (struct sk_buff *)list; 1303 list->qlen = 0; 1304} 1305 1306/* 1307 * This function creates a split out lock class for each invocation; 1308 * this is needed for now since a whole lot of users of the skb-queue 1309 * infrastructure in drivers have different locking usage (in hardirq) 1310 * than the networking core (in softirq only). In the long run either the 1311 * network layer or drivers should need annotation to consolidate the 1312 * main types of usage into 3 classes. 1313 */ 1314static inline void skb_queue_head_init(struct sk_buff_head *list) 1315{ 1316 spin_lock_init(&list->lock); 1317 __skb_queue_head_init(list); 1318} 1319 1320static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1321 struct lock_class_key *class) 1322{ 1323 skb_queue_head_init(list); 1324 lockdep_set_class(&list->lock, class); 1325} 1326 1327/* 1328 * Insert an sk_buff on a list. 1329 * 1330 * The "__skb_xxxx()" functions are the non-atomic ones that 1331 * can only be called with interrupts disabled. 1332 */ 1333void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1334 struct sk_buff_head *list); 1335static inline void __skb_insert(struct sk_buff *newsk, 1336 struct sk_buff *prev, struct sk_buff *next, 1337 struct sk_buff_head *list) 1338{ 1339 newsk->next = next; 1340 newsk->prev = prev; 1341 next->prev = prev->next = newsk; 1342 list->qlen++; 1343} 1344 1345static inline void __skb_queue_splice(const struct sk_buff_head *list, 1346 struct sk_buff *prev, 1347 struct sk_buff *next) 1348{ 1349 struct sk_buff *first = list->next; 1350 struct sk_buff *last = list->prev; 1351 1352 first->prev = prev; 1353 prev->next = first; 1354 1355 last->next = next; 1356 next->prev = last; 1357} 1358 1359/** 1360 * skb_queue_splice - join two skb lists, this is designed for stacks 1361 * @list: the new list to add 1362 * @head: the place to add it in the first list 1363 */ 1364static inline void skb_queue_splice(const struct sk_buff_head *list, 1365 struct sk_buff_head *head) 1366{ 1367 if (!skb_queue_empty(list)) { 1368 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1369 head->qlen += list->qlen; 1370 } 1371} 1372 1373/** 1374 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1375 * @list: the new list to add 1376 * @head: the place to add it in the first list 1377 * 1378 * The list at @list is reinitialised 1379 */ 1380static inline void skb_queue_splice_init(struct sk_buff_head *list, 1381 struct sk_buff_head *head) 1382{ 1383 if (!skb_queue_empty(list)) { 1384 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1385 head->qlen += list->qlen; 1386 __skb_queue_head_init(list); 1387 } 1388} 1389 1390/** 1391 * skb_queue_splice_tail - join two skb lists, each list being a queue 1392 * @list: the new list to add 1393 * @head: the place to add it in the first list 1394 */ 1395static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1396 struct sk_buff_head *head) 1397{ 1398 if (!skb_queue_empty(list)) { 1399 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1400 head->qlen += list->qlen; 1401 } 1402} 1403 1404/** 1405 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1406 * @list: the new list to add 1407 * @head: the place to add it in the first list 1408 * 1409 * Each of the lists is a queue. 1410 * The list at @list is reinitialised 1411 */ 1412static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1413 struct sk_buff_head *head) 1414{ 1415 if (!skb_queue_empty(list)) { 1416 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1417 head->qlen += list->qlen; 1418 __skb_queue_head_init(list); 1419 } 1420} 1421 1422/** 1423 * __skb_queue_after - queue a buffer at the list head 1424 * @list: list to use 1425 * @prev: place after this buffer 1426 * @newsk: buffer to queue 1427 * 1428 * Queue a buffer int the middle of a list. This function takes no locks 1429 * and you must therefore hold required locks before calling it. 1430 * 1431 * A buffer cannot be placed on two lists at the same time. 1432 */ 1433static inline void __skb_queue_after(struct sk_buff_head *list, 1434 struct sk_buff *prev, 1435 struct sk_buff *newsk) 1436{ 1437 __skb_insert(newsk, prev, prev->next, list); 1438} 1439 1440void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1441 struct sk_buff_head *list); 1442 1443static inline void __skb_queue_before(struct sk_buff_head *list, 1444 struct sk_buff *next, 1445 struct sk_buff *newsk) 1446{ 1447 __skb_insert(newsk, next->prev, next, list); 1448} 1449 1450/** 1451 * __skb_queue_head - queue a buffer at the list head 1452 * @list: list to use 1453 * @newsk: buffer to queue 1454 * 1455 * Queue a buffer at the start of a list. This function takes no locks 1456 * and you must therefore hold required locks before calling it. 1457 * 1458 * A buffer cannot be placed on two lists at the same time. 1459 */ 1460void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1461static inline void __skb_queue_head(struct sk_buff_head *list, 1462 struct sk_buff *newsk) 1463{ 1464 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1465} 1466 1467/** 1468 * __skb_queue_tail - queue a buffer at the list tail 1469 * @list: list to use 1470 * @newsk: buffer to queue 1471 * 1472 * Queue a buffer at the end of a list. This function takes no locks 1473 * and you must therefore hold required locks before calling it. 1474 * 1475 * A buffer cannot be placed on two lists at the same time. 1476 */ 1477void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1478static inline void __skb_queue_tail(struct sk_buff_head *list, 1479 struct sk_buff *newsk) 1480{ 1481 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1482} 1483 1484/* 1485 * remove sk_buff from list. _Must_ be called atomically, and with 1486 * the list known.. 1487 */ 1488void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1489static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1490{ 1491 struct sk_buff *next, *prev; 1492 1493 list->qlen--; 1494 next = skb->next; 1495 prev = skb->prev; 1496 skb->next = skb->prev = NULL; 1497 next->prev = prev; 1498 prev->next = next; 1499} 1500 1501/** 1502 * __skb_dequeue - remove from the head of the queue 1503 * @list: list to dequeue from 1504 * 1505 * Remove the head of the list. This function does not take any locks 1506 * so must be used with appropriate locks held only. The head item is 1507 * returned or %NULL if the list is empty. 1508 */ 1509struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1510static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1511{ 1512 struct sk_buff *skb = skb_peek(list); 1513 if (skb) 1514 __skb_unlink(skb, list); 1515 return skb; 1516} 1517 1518/** 1519 * __skb_dequeue_tail - remove from the tail of the queue 1520 * @list: list to dequeue from 1521 * 1522 * Remove the tail of the list. This function does not take any locks 1523 * so must be used with appropriate locks held only. The tail item is 1524 * returned or %NULL if the list is empty. 1525 */ 1526struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1527static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1528{ 1529 struct sk_buff *skb = skb_peek_tail(list); 1530 if (skb) 1531 __skb_unlink(skb, list); 1532 return skb; 1533} 1534 1535 1536static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1537{ 1538 return skb->data_len; 1539} 1540 1541static inline unsigned int skb_headlen(const struct sk_buff *skb) 1542{ 1543 return skb->len - skb->data_len; 1544} 1545 1546static inline int skb_pagelen(const struct sk_buff *skb) 1547{ 1548 int i, len = 0; 1549 1550 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1551 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1552 return len + skb_headlen(skb); 1553} 1554 1555/** 1556 * __skb_fill_page_desc - initialise a paged fragment in an skb 1557 * @skb: buffer containing fragment to be initialised 1558 * @i: paged fragment index to initialise 1559 * @page: the page to use for this fragment 1560 * @off: the offset to the data with @page 1561 * @size: the length of the data 1562 * 1563 * Initialises the @i'th fragment of @skb to point to &size bytes at 1564 * offset @off within @page. 1565 * 1566 * Does not take any additional reference on the fragment. 1567 */ 1568static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1569 struct page *page, int off, int size) 1570{ 1571 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1572 1573 /* 1574 * Propagate page->pfmemalloc to the skb if we can. The problem is 1575 * that not all callers have unique ownership of the page. If 1576 * pfmemalloc is set, we check the mapping as a mapping implies 1577 * page->index is set (index and pfmemalloc share space). 1578 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1579 * do not lose pfmemalloc information as the pages would not be 1580 * allocated using __GFP_MEMALLOC. 1581 */ 1582 frag->page.p = page; 1583 frag->page_offset = off; 1584 skb_frag_size_set(frag, size); 1585 1586 page = compound_head(page); 1587 if (page->pfmemalloc && !page->mapping) 1588 skb->pfmemalloc = true; 1589} 1590 1591/** 1592 * skb_fill_page_desc - initialise a paged fragment in an skb 1593 * @skb: buffer containing fragment to be initialised 1594 * @i: paged fragment index to initialise 1595 * @page: the page to use for this fragment 1596 * @off: the offset to the data with @page 1597 * @size: the length of the data 1598 * 1599 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1600 * @skb to point to @size bytes at offset @off within @page. In 1601 * addition updates @skb such that @i is the last fragment. 1602 * 1603 * Does not take any additional reference on the fragment. 1604 */ 1605static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1606 struct page *page, int off, int size) 1607{ 1608 __skb_fill_page_desc(skb, i, page, off, size); 1609 skb_shinfo(skb)->nr_frags = i + 1; 1610} 1611 1612void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1613 int size, unsigned int truesize); 1614 1615void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1616 unsigned int truesize); 1617 1618#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1619#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1620#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1621 1622#ifdef NET_SKBUFF_DATA_USES_OFFSET 1623static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1624{ 1625 return skb->head + skb->tail; 1626} 1627 1628static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1629{ 1630 skb->tail = skb->data - skb->head; 1631} 1632 1633static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1634{ 1635 skb_reset_tail_pointer(skb); 1636 skb->tail += offset; 1637} 1638 1639#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1640static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1641{ 1642 return skb->tail; 1643} 1644 1645static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1646{ 1647 skb->tail = skb->data; 1648} 1649 1650static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1651{ 1652 skb->tail = skb->data + offset; 1653} 1654 1655#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1656 1657/* 1658 * Add data to an sk_buff 1659 */ 1660unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1661unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1662static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1663{ 1664 unsigned char *tmp = skb_tail_pointer(skb); 1665 SKB_LINEAR_ASSERT(skb); 1666 skb->tail += len; 1667 skb->len += len; 1668 return tmp; 1669} 1670 1671unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1672static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1673{ 1674 skb->data -= len; 1675 skb->len += len; 1676 return skb->data; 1677} 1678 1679unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1680static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1681{ 1682 skb->len -= len; 1683 BUG_ON(skb->len < skb->data_len); 1684 return skb->data += len; 1685} 1686 1687static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1688{ 1689 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1690} 1691 1692unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1693 1694static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1695{ 1696 if (len > skb_headlen(skb) && 1697 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1698 return NULL; 1699 skb->len -= len; 1700 return skb->data += len; 1701} 1702 1703static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1704{ 1705 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1706} 1707 1708static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1709{ 1710 if (likely(len <= skb_headlen(skb))) 1711 return 1; 1712 if (unlikely(len > skb->len)) 1713 return 0; 1714 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1715} 1716 1717/** 1718 * skb_headroom - bytes at buffer head 1719 * @skb: buffer to check 1720 * 1721 * Return the number of bytes of free space at the head of an &sk_buff. 1722 */ 1723static inline unsigned int skb_headroom(const struct sk_buff *skb) 1724{ 1725 return skb->data - skb->head; 1726} 1727 1728/** 1729 * skb_tailroom - bytes at buffer end 1730 * @skb: buffer to check 1731 * 1732 * Return the number of bytes of free space at the tail of an sk_buff 1733 */ 1734static inline int skb_tailroom(const struct sk_buff *skb) 1735{ 1736 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1737} 1738 1739/** 1740 * skb_availroom - bytes at buffer end 1741 * @skb: buffer to check 1742 * 1743 * Return the number of bytes of free space at the tail of an sk_buff 1744 * allocated by sk_stream_alloc() 1745 */ 1746static inline int skb_availroom(const struct sk_buff *skb) 1747{ 1748 if (skb_is_nonlinear(skb)) 1749 return 0; 1750 1751 return skb->end - skb->tail - skb->reserved_tailroom; 1752} 1753 1754/** 1755 * skb_reserve - adjust headroom 1756 * @skb: buffer to alter 1757 * @len: bytes to move 1758 * 1759 * Increase the headroom of an empty &sk_buff by reducing the tail 1760 * room. This is only allowed for an empty buffer. 1761 */ 1762static inline void skb_reserve(struct sk_buff *skb, int len) 1763{ 1764 skb->data += len; 1765 skb->tail += len; 1766} 1767 1768#define ENCAP_TYPE_ETHER 0 1769#define ENCAP_TYPE_IPPROTO 1 1770 1771static inline void skb_set_inner_protocol(struct sk_buff *skb, 1772 __be16 protocol) 1773{ 1774 skb->inner_protocol = protocol; 1775 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1776} 1777 1778static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1779 __u8 ipproto) 1780{ 1781 skb->inner_ipproto = ipproto; 1782 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1783} 1784 1785static inline void skb_reset_inner_headers(struct sk_buff *skb) 1786{ 1787 skb->inner_mac_header = skb->mac_header; 1788 skb->inner_network_header = skb->network_header; 1789 skb->inner_transport_header = skb->transport_header; 1790} 1791 1792static inline void skb_reset_mac_len(struct sk_buff *skb) 1793{ 1794 skb->mac_len = skb->network_header - skb->mac_header; 1795} 1796 1797static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1798 *skb) 1799{ 1800 return skb->head + skb->inner_transport_header; 1801} 1802 1803static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1804{ 1805 skb->inner_transport_header = skb->data - skb->head; 1806} 1807 1808static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1809 const int offset) 1810{ 1811 skb_reset_inner_transport_header(skb); 1812 skb->inner_transport_header += offset; 1813} 1814 1815static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1816{ 1817 return skb->head + skb->inner_network_header; 1818} 1819 1820static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1821{ 1822 skb->inner_network_header = skb->data - skb->head; 1823} 1824 1825static inline void skb_set_inner_network_header(struct sk_buff *skb, 1826 const int offset) 1827{ 1828 skb_reset_inner_network_header(skb); 1829 skb->inner_network_header += offset; 1830} 1831 1832static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1833{ 1834 return skb->head + skb->inner_mac_header; 1835} 1836 1837static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1838{ 1839 skb->inner_mac_header = skb->data - skb->head; 1840} 1841 1842static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1843 const int offset) 1844{ 1845 skb_reset_inner_mac_header(skb); 1846 skb->inner_mac_header += offset; 1847} 1848static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1849{ 1850 return skb->transport_header != (typeof(skb->transport_header))~0U; 1851} 1852 1853static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1854{ 1855 return skb->head + skb->transport_header; 1856} 1857 1858static inline void skb_reset_transport_header(struct sk_buff *skb) 1859{ 1860 skb->transport_header = skb->data - skb->head; 1861} 1862 1863static inline void skb_set_transport_header(struct sk_buff *skb, 1864 const int offset) 1865{ 1866 skb_reset_transport_header(skb); 1867 skb->transport_header += offset; 1868} 1869 1870static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1871{ 1872 return skb->head + skb->network_header; 1873} 1874 1875static inline void skb_reset_network_header(struct sk_buff *skb) 1876{ 1877 skb->network_header = skb->data - skb->head; 1878} 1879 1880static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1881{ 1882 skb_reset_network_header(skb); 1883 skb->network_header += offset; 1884} 1885 1886static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1887{ 1888 return skb->head + skb->mac_header; 1889} 1890 1891static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1892{ 1893 return skb->mac_header != (typeof(skb->mac_header))~0U; 1894} 1895 1896static inline void skb_reset_mac_header(struct sk_buff *skb) 1897{ 1898 skb->mac_header = skb->data - skb->head; 1899} 1900 1901static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1902{ 1903 skb_reset_mac_header(skb); 1904 skb->mac_header += offset; 1905} 1906 1907static inline void skb_pop_mac_header(struct sk_buff *skb) 1908{ 1909 skb->mac_header = skb->network_header; 1910} 1911 1912static inline void skb_probe_transport_header(struct sk_buff *skb, 1913 const int offset_hint) 1914{ 1915 struct flow_keys keys; 1916 1917 if (skb_transport_header_was_set(skb)) 1918 return; 1919 else if (skb_flow_dissect(skb, &keys)) 1920 skb_set_transport_header(skb, keys.thoff); 1921 else 1922 skb_set_transport_header(skb, offset_hint); 1923} 1924 1925static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1926{ 1927 if (skb_mac_header_was_set(skb)) { 1928 const unsigned char *old_mac = skb_mac_header(skb); 1929 1930 skb_set_mac_header(skb, -skb->mac_len); 1931 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1932 } 1933} 1934 1935static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1936{ 1937 return skb->csum_start - skb_headroom(skb); 1938} 1939 1940static inline int skb_transport_offset(const struct sk_buff *skb) 1941{ 1942 return skb_transport_header(skb) - skb->data; 1943} 1944 1945static inline u32 skb_network_header_len(const struct sk_buff *skb) 1946{ 1947 return skb->transport_header - skb->network_header; 1948} 1949 1950static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1951{ 1952 return skb->inner_transport_header - skb->inner_network_header; 1953} 1954 1955static inline int skb_network_offset(const struct sk_buff *skb) 1956{ 1957 return skb_network_header(skb) - skb->data; 1958} 1959 1960static inline int skb_inner_network_offset(const struct sk_buff *skb) 1961{ 1962 return skb_inner_network_header(skb) - skb->data; 1963} 1964 1965static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1966{ 1967 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1968} 1969 1970/* 1971 * CPUs often take a performance hit when accessing unaligned memory 1972 * locations. The actual performance hit varies, it can be small if the 1973 * hardware handles it or large if we have to take an exception and fix it 1974 * in software. 1975 * 1976 * Since an ethernet header is 14 bytes network drivers often end up with 1977 * the IP header at an unaligned offset. The IP header can be aligned by 1978 * shifting the start of the packet by 2 bytes. Drivers should do this 1979 * with: 1980 * 1981 * skb_reserve(skb, NET_IP_ALIGN); 1982 * 1983 * The downside to this alignment of the IP header is that the DMA is now 1984 * unaligned. On some architectures the cost of an unaligned DMA is high 1985 * and this cost outweighs the gains made by aligning the IP header. 1986 * 1987 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1988 * to be overridden. 1989 */ 1990#ifndef NET_IP_ALIGN 1991#define NET_IP_ALIGN 2 1992#endif 1993 1994/* 1995 * The networking layer reserves some headroom in skb data (via 1996 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1997 * the header has to grow. In the default case, if the header has to grow 1998 * 32 bytes or less we avoid the reallocation. 1999 * 2000 * Unfortunately this headroom changes the DMA alignment of the resulting 2001 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2002 * on some architectures. An architecture can override this value, 2003 * perhaps setting it to a cacheline in size (since that will maintain 2004 * cacheline alignment of the DMA). It must be a power of 2. 2005 * 2006 * Various parts of the networking layer expect at least 32 bytes of 2007 * headroom, you should not reduce this. 2008 * 2009 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2010 * to reduce average number of cache lines per packet. 2011 * get_rps_cpus() for example only access one 64 bytes aligned block : 2012 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2013 */ 2014#ifndef NET_SKB_PAD 2015#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2016#endif 2017 2018int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2019 2020static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2021{ 2022 if (unlikely(skb_is_nonlinear(skb))) { 2023 WARN_ON(1); 2024 return; 2025 } 2026 skb->len = len; 2027 skb_set_tail_pointer(skb, len); 2028} 2029 2030void skb_trim(struct sk_buff *skb, unsigned int len); 2031 2032static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2033{ 2034 if (skb->data_len) 2035 return ___pskb_trim(skb, len); 2036 __skb_trim(skb, len); 2037 return 0; 2038} 2039 2040static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2041{ 2042 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2043} 2044 2045/** 2046 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2047 * @skb: buffer to alter 2048 * @len: new length 2049 * 2050 * This is identical to pskb_trim except that the caller knows that 2051 * the skb is not cloned so we should never get an error due to out- 2052 * of-memory. 2053 */ 2054static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2055{ 2056 int err = pskb_trim(skb, len); 2057 BUG_ON(err); 2058} 2059 2060/** 2061 * skb_orphan - orphan a buffer 2062 * @skb: buffer to orphan 2063 * 2064 * If a buffer currently has an owner then we call the owner's 2065 * destructor function and make the @skb unowned. The buffer continues 2066 * to exist but is no longer charged to its former owner. 2067 */ 2068static inline void skb_orphan(struct sk_buff *skb) 2069{ 2070 if (skb->destructor) { 2071 skb->destructor(skb); 2072 skb->destructor = NULL; 2073 skb->sk = NULL; 2074 } else { 2075 BUG_ON(skb->sk); 2076 } 2077} 2078 2079/** 2080 * skb_orphan_frags - orphan the frags contained in a buffer 2081 * @skb: buffer to orphan frags from 2082 * @gfp_mask: allocation mask for replacement pages 2083 * 2084 * For each frag in the SKB which needs a destructor (i.e. has an 2085 * owner) create a copy of that frag and release the original 2086 * page by calling the destructor. 2087 */ 2088static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2089{ 2090 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2091 return 0; 2092 return skb_copy_ubufs(skb, gfp_mask); 2093} 2094 2095/** 2096 * __skb_queue_purge - empty a list 2097 * @list: list to empty 2098 * 2099 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2100 * the list and one reference dropped. This function does not take the 2101 * list lock and the caller must hold the relevant locks to use it. 2102 */ 2103void skb_queue_purge(struct sk_buff_head *list); 2104static inline void __skb_queue_purge(struct sk_buff_head *list) 2105{ 2106 struct sk_buff *skb; 2107 while ((skb = __skb_dequeue(list)) != NULL) 2108 kfree_skb(skb); 2109} 2110 2111#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2112#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2113#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2114 2115void *netdev_alloc_frag(unsigned int fragsz); 2116 2117struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2118 gfp_t gfp_mask); 2119 2120/** 2121 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2122 * @dev: network device to receive on 2123 * @length: length to allocate 2124 * 2125 * Allocate a new &sk_buff and assign it a usage count of one. The 2126 * buffer has unspecified headroom built in. Users should allocate 2127 * the headroom they think they need without accounting for the 2128 * built in space. The built in space is used for optimisations. 2129 * 2130 * %NULL is returned if there is no free memory. Although this function 2131 * allocates memory it can be called from an interrupt. 2132 */ 2133static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2134 unsigned int length) 2135{ 2136 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2137} 2138 2139/* legacy helper around __netdev_alloc_skb() */ 2140static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2141 gfp_t gfp_mask) 2142{ 2143 return __netdev_alloc_skb(NULL, length, gfp_mask); 2144} 2145 2146/* legacy helper around netdev_alloc_skb() */ 2147static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2148{ 2149 return netdev_alloc_skb(NULL, length); 2150} 2151 2152 2153static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2154 unsigned int length, gfp_t gfp) 2155{ 2156 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2157 2158 if (NET_IP_ALIGN && skb) 2159 skb_reserve(skb, NET_IP_ALIGN); 2160 return skb; 2161} 2162 2163static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2164 unsigned int length) 2165{ 2166 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2167} 2168 2169void *napi_alloc_frag(unsigned int fragsz); 2170struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2171 unsigned int length, gfp_t gfp_mask); 2172static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2173 unsigned int length) 2174{ 2175 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2176} 2177 2178/** 2179 * __dev_alloc_pages - allocate page for network Rx 2180 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2181 * @order: size of the allocation 2182 * 2183 * Allocate a new page. 2184 * 2185 * %NULL is returned if there is no free memory. 2186*/ 2187static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2188 unsigned int order) 2189{ 2190 /* This piece of code contains several assumptions. 2191 * 1. This is for device Rx, therefor a cold page is preferred. 2192 * 2. The expectation is the user wants a compound page. 2193 * 3. If requesting a order 0 page it will not be compound 2194 * due to the check to see if order has a value in prep_new_page 2195 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2196 * code in gfp_to_alloc_flags that should be enforcing this. 2197 */ 2198 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC; 2199 2200 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2201} 2202 2203static inline struct page *dev_alloc_pages(unsigned int order) 2204{ 2205 return __dev_alloc_pages(GFP_ATOMIC, order); 2206} 2207 2208/** 2209 * __dev_alloc_page - allocate a page for network Rx 2210 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2211 * 2212 * Allocate a new page. 2213 * 2214 * %NULL is returned if there is no free memory. 2215 */ 2216static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2217{ 2218 return __dev_alloc_pages(gfp_mask, 0); 2219} 2220 2221static inline struct page *dev_alloc_page(void) 2222{ 2223 return __dev_alloc_page(GFP_ATOMIC); 2224} 2225 2226/** 2227 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2228 * @page: The page that was allocated from skb_alloc_page 2229 * @skb: The skb that may need pfmemalloc set 2230 */ 2231static inline void skb_propagate_pfmemalloc(struct page *page, 2232 struct sk_buff *skb) 2233{ 2234 if (page && page->pfmemalloc) 2235 skb->pfmemalloc = true; 2236} 2237 2238/** 2239 * skb_frag_page - retrieve the page referred to by a paged fragment 2240 * @frag: the paged fragment 2241 * 2242 * Returns the &struct page associated with @frag. 2243 */ 2244static inline struct page *skb_frag_page(const skb_frag_t *frag) 2245{ 2246 return frag->page.p; 2247} 2248 2249/** 2250 * __skb_frag_ref - take an addition reference on a paged fragment. 2251 * @frag: the paged fragment 2252 * 2253 * Takes an additional reference on the paged fragment @frag. 2254 */ 2255static inline void __skb_frag_ref(skb_frag_t *frag) 2256{ 2257 get_page(skb_frag_page(frag)); 2258} 2259 2260/** 2261 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2262 * @skb: the buffer 2263 * @f: the fragment offset. 2264 * 2265 * Takes an additional reference on the @f'th paged fragment of @skb. 2266 */ 2267static inline void skb_frag_ref(struct sk_buff *skb, int f) 2268{ 2269 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2270} 2271 2272/** 2273 * __skb_frag_unref - release a reference on a paged fragment. 2274 * @frag: the paged fragment 2275 * 2276 * Releases a reference on the paged fragment @frag. 2277 */ 2278static inline void __skb_frag_unref(skb_frag_t *frag) 2279{ 2280 put_page(skb_frag_page(frag)); 2281} 2282 2283/** 2284 * skb_frag_unref - release a reference on a paged fragment of an skb. 2285 * @skb: the buffer 2286 * @f: the fragment offset 2287 * 2288 * Releases a reference on the @f'th paged fragment of @skb. 2289 */ 2290static inline void skb_frag_unref(struct sk_buff *skb, int f) 2291{ 2292 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2293} 2294 2295/** 2296 * skb_frag_address - gets the address of the data contained in a paged fragment 2297 * @frag: the paged fragment buffer 2298 * 2299 * Returns the address of the data within @frag. The page must already 2300 * be mapped. 2301 */ 2302static inline void *skb_frag_address(const skb_frag_t *frag) 2303{ 2304 return page_address(skb_frag_page(frag)) + frag->page_offset; 2305} 2306 2307/** 2308 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2309 * @frag: the paged fragment buffer 2310 * 2311 * Returns the address of the data within @frag. Checks that the page 2312 * is mapped and returns %NULL otherwise. 2313 */ 2314static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2315{ 2316 void *ptr = page_address(skb_frag_page(frag)); 2317 if (unlikely(!ptr)) 2318 return NULL; 2319 2320 return ptr + frag->page_offset; 2321} 2322 2323/** 2324 * __skb_frag_set_page - sets the page contained in a paged fragment 2325 * @frag: the paged fragment 2326 * @page: the page to set 2327 * 2328 * Sets the fragment @frag to contain @page. 2329 */ 2330static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2331{ 2332 frag->page.p = page; 2333} 2334 2335/** 2336 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2337 * @skb: the buffer 2338 * @f: the fragment offset 2339 * @page: the page to set 2340 * 2341 * Sets the @f'th fragment of @skb to contain @page. 2342 */ 2343static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2344 struct page *page) 2345{ 2346 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2347} 2348 2349bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2350 2351/** 2352 * skb_frag_dma_map - maps a paged fragment via the DMA API 2353 * @dev: the device to map the fragment to 2354 * @frag: the paged fragment to map 2355 * @offset: the offset within the fragment (starting at the 2356 * fragment's own offset) 2357 * @size: the number of bytes to map 2358 * @dir: the direction of the mapping (%PCI_DMA_*) 2359 * 2360 * Maps the page associated with @frag to @device. 2361 */ 2362static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2363 const skb_frag_t *frag, 2364 size_t offset, size_t size, 2365 enum dma_data_direction dir) 2366{ 2367 return dma_map_page(dev, skb_frag_page(frag), 2368 frag->page_offset + offset, size, dir); 2369} 2370 2371static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2372 gfp_t gfp_mask) 2373{ 2374 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2375} 2376 2377 2378static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2379 gfp_t gfp_mask) 2380{ 2381 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2382} 2383 2384 2385/** 2386 * skb_clone_writable - is the header of a clone writable 2387 * @skb: buffer to check 2388 * @len: length up to which to write 2389 * 2390 * Returns true if modifying the header part of the cloned buffer 2391 * does not requires the data to be copied. 2392 */ 2393static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2394{ 2395 return !skb_header_cloned(skb) && 2396 skb_headroom(skb) + len <= skb->hdr_len; 2397} 2398 2399static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2400 int cloned) 2401{ 2402 int delta = 0; 2403 2404 if (headroom > skb_headroom(skb)) 2405 delta = headroom - skb_headroom(skb); 2406 2407 if (delta || cloned) 2408 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2409 GFP_ATOMIC); 2410 return 0; 2411} 2412 2413/** 2414 * skb_cow - copy header of skb when it is required 2415 * @skb: buffer to cow 2416 * @headroom: needed headroom 2417 * 2418 * If the skb passed lacks sufficient headroom or its data part 2419 * is shared, data is reallocated. If reallocation fails, an error 2420 * is returned and original skb is not changed. 2421 * 2422 * The result is skb with writable area skb->head...skb->tail 2423 * and at least @headroom of space at head. 2424 */ 2425static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2426{ 2427 return __skb_cow(skb, headroom, skb_cloned(skb)); 2428} 2429 2430/** 2431 * skb_cow_head - skb_cow but only making the head writable 2432 * @skb: buffer to cow 2433 * @headroom: needed headroom 2434 * 2435 * This function is identical to skb_cow except that we replace the 2436 * skb_cloned check by skb_header_cloned. It should be used when 2437 * you only need to push on some header and do not need to modify 2438 * the data. 2439 */ 2440static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2441{ 2442 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2443} 2444 2445/** 2446 * skb_padto - pad an skbuff up to a minimal size 2447 * @skb: buffer to pad 2448 * @len: minimal length 2449 * 2450 * Pads up a buffer to ensure the trailing bytes exist and are 2451 * blanked. If the buffer already contains sufficient data it 2452 * is untouched. Otherwise it is extended. Returns zero on 2453 * success. The skb is freed on error. 2454 */ 2455static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2456{ 2457 unsigned int size = skb->len; 2458 if (likely(size >= len)) 2459 return 0; 2460 return skb_pad(skb, len - size); 2461} 2462 2463/** 2464 * skb_put_padto - increase size and pad an skbuff up to a minimal size 2465 * @skb: buffer to pad 2466 * @len: minimal length 2467 * 2468 * Pads up a buffer to ensure the trailing bytes exist and are 2469 * blanked. If the buffer already contains sufficient data it 2470 * is untouched. Otherwise it is extended. Returns zero on 2471 * success. The skb is freed on error. 2472 */ 2473static inline int skb_put_padto(struct sk_buff *skb, unsigned int len) 2474{ 2475 unsigned int size = skb->len; 2476 2477 if (unlikely(size < len)) { 2478 len -= size; 2479 if (skb_pad(skb, len)) 2480 return -ENOMEM; 2481 __skb_put(skb, len); 2482 } 2483 return 0; 2484} 2485 2486static inline int skb_add_data(struct sk_buff *skb, 2487 char __user *from, int copy) 2488{ 2489 const int off = skb->len; 2490 2491 if (skb->ip_summed == CHECKSUM_NONE) { 2492 int err = 0; 2493 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2494 copy, 0, &err); 2495 if (!err) { 2496 skb->csum = csum_block_add(skb->csum, csum, off); 2497 return 0; 2498 } 2499 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2500 return 0; 2501 2502 __skb_trim(skb, off); 2503 return -EFAULT; 2504} 2505 2506static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2507 const struct page *page, int off) 2508{ 2509 if (i) { 2510 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2511 2512 return page == skb_frag_page(frag) && 2513 off == frag->page_offset + skb_frag_size(frag); 2514 } 2515 return false; 2516} 2517 2518static inline int __skb_linearize(struct sk_buff *skb) 2519{ 2520 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2521} 2522 2523/** 2524 * skb_linearize - convert paged skb to linear one 2525 * @skb: buffer to linarize 2526 * 2527 * If there is no free memory -ENOMEM is returned, otherwise zero 2528 * is returned and the old skb data released. 2529 */ 2530static inline int skb_linearize(struct sk_buff *skb) 2531{ 2532 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2533} 2534 2535/** 2536 * skb_has_shared_frag - can any frag be overwritten 2537 * @skb: buffer to test 2538 * 2539 * Return true if the skb has at least one frag that might be modified 2540 * by an external entity (as in vmsplice()/sendfile()) 2541 */ 2542static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2543{ 2544 return skb_is_nonlinear(skb) && 2545 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2546} 2547 2548/** 2549 * skb_linearize_cow - make sure skb is linear and writable 2550 * @skb: buffer to process 2551 * 2552 * If there is no free memory -ENOMEM is returned, otherwise zero 2553 * is returned and the old skb data released. 2554 */ 2555static inline int skb_linearize_cow(struct sk_buff *skb) 2556{ 2557 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2558 __skb_linearize(skb) : 0; 2559} 2560 2561/** 2562 * skb_postpull_rcsum - update checksum for received skb after pull 2563 * @skb: buffer to update 2564 * @start: start of data before pull 2565 * @len: length of data pulled 2566 * 2567 * After doing a pull on a received packet, you need to call this to 2568 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2569 * CHECKSUM_NONE so that it can be recomputed from scratch. 2570 */ 2571 2572static inline void skb_postpull_rcsum(struct sk_buff *skb, 2573 const void *start, unsigned int len) 2574{ 2575 if (skb->ip_summed == CHECKSUM_COMPLETE) 2576 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2577} 2578 2579unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2580 2581/** 2582 * pskb_trim_rcsum - trim received skb and update checksum 2583 * @skb: buffer to trim 2584 * @len: new length 2585 * 2586 * This is exactly the same as pskb_trim except that it ensures the 2587 * checksum of received packets are still valid after the operation. 2588 */ 2589 2590static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2591{ 2592 if (likely(len >= skb->len)) 2593 return 0; 2594 if (skb->ip_summed == CHECKSUM_COMPLETE) 2595 skb->ip_summed = CHECKSUM_NONE; 2596 return __pskb_trim(skb, len); 2597} 2598 2599#define skb_queue_walk(queue, skb) \ 2600 for (skb = (queue)->next; \ 2601 skb != (struct sk_buff *)(queue); \ 2602 skb = skb->next) 2603 2604#define skb_queue_walk_safe(queue, skb, tmp) \ 2605 for (skb = (queue)->next, tmp = skb->next; \ 2606 skb != (struct sk_buff *)(queue); \ 2607 skb = tmp, tmp = skb->next) 2608 2609#define skb_queue_walk_from(queue, skb) \ 2610 for (; skb != (struct sk_buff *)(queue); \ 2611 skb = skb->next) 2612 2613#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2614 for (tmp = skb->next; \ 2615 skb != (struct sk_buff *)(queue); \ 2616 skb = tmp, tmp = skb->next) 2617 2618#define skb_queue_reverse_walk(queue, skb) \ 2619 for (skb = (queue)->prev; \ 2620 skb != (struct sk_buff *)(queue); \ 2621 skb = skb->prev) 2622 2623#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2624 for (skb = (queue)->prev, tmp = skb->prev; \ 2625 skb != (struct sk_buff *)(queue); \ 2626 skb = tmp, tmp = skb->prev) 2627 2628#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2629 for (tmp = skb->prev; \ 2630 skb != (struct sk_buff *)(queue); \ 2631 skb = tmp, tmp = skb->prev) 2632 2633static inline bool skb_has_frag_list(const struct sk_buff *skb) 2634{ 2635 return skb_shinfo(skb)->frag_list != NULL; 2636} 2637 2638static inline void skb_frag_list_init(struct sk_buff *skb) 2639{ 2640 skb_shinfo(skb)->frag_list = NULL; 2641} 2642 2643static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2644{ 2645 frag->next = skb_shinfo(skb)->frag_list; 2646 skb_shinfo(skb)->frag_list = frag; 2647} 2648 2649#define skb_walk_frags(skb, iter) \ 2650 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2651 2652struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2653 int *peeked, int *off, int *err); 2654struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2655 int *err); 2656unsigned int datagram_poll(struct file *file, struct socket *sock, 2657 struct poll_table_struct *wait); 2658int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 2659 struct iov_iter *to, int size); 2660static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 2661 struct msghdr *msg, int size) 2662{ 2663 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 2664} 2665int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 2666 struct msghdr *msg); 2667int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 2668 struct iov_iter *from, int len); 2669int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 2670void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2671void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2672int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2673int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2674int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2675__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2676 int len, __wsum csum); 2677int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2678 struct pipe_inode_info *pipe, unsigned int len, 2679 unsigned int flags); 2680void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2681unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2682int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2683 int len, int hlen); 2684void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2685int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2686void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2687unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2688struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2689struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2690int skb_ensure_writable(struct sk_buff *skb, int write_len); 2691int skb_vlan_pop(struct sk_buff *skb); 2692int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 2693 2694static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 2695{ 2696 /* XXX: stripping const */ 2697 return memcpy_fromiovec(data, (struct iovec *)msg->msg_iter.iov, len); 2698} 2699 2700static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 2701{ 2702 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 2703} 2704 2705struct skb_checksum_ops { 2706 __wsum (*update)(const void *mem, int len, __wsum wsum); 2707 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2708}; 2709 2710__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2711 __wsum csum, const struct skb_checksum_ops *ops); 2712__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2713 __wsum csum); 2714 2715static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2716 int len, void *data, int hlen, void *buffer) 2717{ 2718 if (hlen - offset >= len) 2719 return data + offset; 2720 2721 if (!skb || 2722 skb_copy_bits(skb, offset, buffer, len) < 0) 2723 return NULL; 2724 2725 return buffer; 2726} 2727 2728static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2729 int len, void *buffer) 2730{ 2731 return __skb_header_pointer(skb, offset, len, skb->data, 2732 skb_headlen(skb), buffer); 2733} 2734 2735/** 2736 * skb_needs_linearize - check if we need to linearize a given skb 2737 * depending on the given device features. 2738 * @skb: socket buffer to check 2739 * @features: net device features 2740 * 2741 * Returns true if either: 2742 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2743 * 2. skb is fragmented and the device does not support SG. 2744 */ 2745static inline bool skb_needs_linearize(struct sk_buff *skb, 2746 netdev_features_t features) 2747{ 2748 return skb_is_nonlinear(skb) && 2749 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2750 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2751} 2752 2753static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2754 void *to, 2755 const unsigned int len) 2756{ 2757 memcpy(to, skb->data, len); 2758} 2759 2760static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2761 const int offset, void *to, 2762 const unsigned int len) 2763{ 2764 memcpy(to, skb->data + offset, len); 2765} 2766 2767static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2768 const void *from, 2769 const unsigned int len) 2770{ 2771 memcpy(skb->data, from, len); 2772} 2773 2774static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2775 const int offset, 2776 const void *from, 2777 const unsigned int len) 2778{ 2779 memcpy(skb->data + offset, from, len); 2780} 2781 2782void skb_init(void); 2783 2784static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2785{ 2786 return skb->tstamp; 2787} 2788 2789/** 2790 * skb_get_timestamp - get timestamp from a skb 2791 * @skb: skb to get stamp from 2792 * @stamp: pointer to struct timeval to store stamp in 2793 * 2794 * Timestamps are stored in the skb as offsets to a base timestamp. 2795 * This function converts the offset back to a struct timeval and stores 2796 * it in stamp. 2797 */ 2798static inline void skb_get_timestamp(const struct sk_buff *skb, 2799 struct timeval *stamp) 2800{ 2801 *stamp = ktime_to_timeval(skb->tstamp); 2802} 2803 2804static inline void skb_get_timestampns(const struct sk_buff *skb, 2805 struct timespec *stamp) 2806{ 2807 *stamp = ktime_to_timespec(skb->tstamp); 2808} 2809 2810static inline void __net_timestamp(struct sk_buff *skb) 2811{ 2812 skb->tstamp = ktime_get_real(); 2813} 2814 2815static inline ktime_t net_timedelta(ktime_t t) 2816{ 2817 return ktime_sub(ktime_get_real(), t); 2818} 2819 2820static inline ktime_t net_invalid_timestamp(void) 2821{ 2822 return ktime_set(0, 0); 2823} 2824 2825struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2826 2827#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2828 2829void skb_clone_tx_timestamp(struct sk_buff *skb); 2830bool skb_defer_rx_timestamp(struct sk_buff *skb); 2831 2832#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2833 2834static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2835{ 2836} 2837 2838static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2839{ 2840 return false; 2841} 2842 2843#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2844 2845/** 2846 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2847 * 2848 * PHY drivers may accept clones of transmitted packets for 2849 * timestamping via their phy_driver.txtstamp method. These drivers 2850 * must call this function to return the skb back to the stack, with 2851 * or without a timestamp. 2852 * 2853 * @skb: clone of the the original outgoing packet 2854 * @hwtstamps: hardware time stamps, may be NULL if not available 2855 * 2856 */ 2857void skb_complete_tx_timestamp(struct sk_buff *skb, 2858 struct skb_shared_hwtstamps *hwtstamps); 2859 2860void __skb_tstamp_tx(struct sk_buff *orig_skb, 2861 struct skb_shared_hwtstamps *hwtstamps, 2862 struct sock *sk, int tstype); 2863 2864/** 2865 * skb_tstamp_tx - queue clone of skb with send time stamps 2866 * @orig_skb: the original outgoing packet 2867 * @hwtstamps: hardware time stamps, may be NULL if not available 2868 * 2869 * If the skb has a socket associated, then this function clones the 2870 * skb (thus sharing the actual data and optional structures), stores 2871 * the optional hardware time stamping information (if non NULL) or 2872 * generates a software time stamp (otherwise), then queues the clone 2873 * to the error queue of the socket. Errors are silently ignored. 2874 */ 2875void skb_tstamp_tx(struct sk_buff *orig_skb, 2876 struct skb_shared_hwtstamps *hwtstamps); 2877 2878static inline void sw_tx_timestamp(struct sk_buff *skb) 2879{ 2880 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2881 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2882 skb_tstamp_tx(skb, NULL); 2883} 2884 2885/** 2886 * skb_tx_timestamp() - Driver hook for transmit timestamping 2887 * 2888 * Ethernet MAC Drivers should call this function in their hard_xmit() 2889 * function immediately before giving the sk_buff to the MAC hardware. 2890 * 2891 * Specifically, one should make absolutely sure that this function is 2892 * called before TX completion of this packet can trigger. Otherwise 2893 * the packet could potentially already be freed. 2894 * 2895 * @skb: A socket buffer. 2896 */ 2897static inline void skb_tx_timestamp(struct sk_buff *skb) 2898{ 2899 skb_clone_tx_timestamp(skb); 2900 sw_tx_timestamp(skb); 2901} 2902 2903/** 2904 * skb_complete_wifi_ack - deliver skb with wifi status 2905 * 2906 * @skb: the original outgoing packet 2907 * @acked: ack status 2908 * 2909 */ 2910void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2911 2912__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2913__sum16 __skb_checksum_complete(struct sk_buff *skb); 2914 2915static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2916{ 2917 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid); 2918} 2919 2920/** 2921 * skb_checksum_complete - Calculate checksum of an entire packet 2922 * @skb: packet to process 2923 * 2924 * This function calculates the checksum over the entire packet plus 2925 * the value of skb->csum. The latter can be used to supply the 2926 * checksum of a pseudo header as used by TCP/UDP. It returns the 2927 * checksum. 2928 * 2929 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2930 * this function can be used to verify that checksum on received 2931 * packets. In that case the function should return zero if the 2932 * checksum is correct. In particular, this function will return zero 2933 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2934 * hardware has already verified the correctness of the checksum. 2935 */ 2936static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2937{ 2938 return skb_csum_unnecessary(skb) ? 2939 0 : __skb_checksum_complete(skb); 2940} 2941 2942static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2943{ 2944 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2945 if (skb->csum_level == 0) 2946 skb->ip_summed = CHECKSUM_NONE; 2947 else 2948 skb->csum_level--; 2949 } 2950} 2951 2952static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2953{ 2954 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2955 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2956 skb->csum_level++; 2957 } else if (skb->ip_summed == CHECKSUM_NONE) { 2958 skb->ip_summed = CHECKSUM_UNNECESSARY; 2959 skb->csum_level = 0; 2960 } 2961} 2962 2963static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2964{ 2965 /* Mark current checksum as bad (typically called from GRO 2966 * path). In the case that ip_summed is CHECKSUM_NONE 2967 * this must be the first checksum encountered in the packet. 2968 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2969 * checksum after the last one validated. For UDP, a zero 2970 * checksum can not be marked as bad. 2971 */ 2972 2973 if (skb->ip_summed == CHECKSUM_NONE || 2974 skb->ip_summed == CHECKSUM_UNNECESSARY) 2975 skb->csum_bad = 1; 2976} 2977 2978/* Check if we need to perform checksum complete validation. 2979 * 2980 * Returns true if checksum complete is needed, false otherwise 2981 * (either checksum is unnecessary or zero checksum is allowed). 2982 */ 2983static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2984 bool zero_okay, 2985 __sum16 check) 2986{ 2987 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2988 skb->csum_valid = 1; 2989 __skb_decr_checksum_unnecessary(skb); 2990 return false; 2991 } 2992 2993 return true; 2994} 2995 2996/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 2997 * in checksum_init. 2998 */ 2999#define CHECKSUM_BREAK 76 3000 3001/* Validate (init) checksum based on checksum complete. 3002 * 3003 * Return values: 3004 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 3005 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 3006 * checksum is stored in skb->csum for use in __skb_checksum_complete 3007 * non-zero: value of invalid checksum 3008 * 3009 */ 3010static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 3011 bool complete, 3012 __wsum psum) 3013{ 3014 if (skb->ip_summed == CHECKSUM_COMPLETE) { 3015 if (!csum_fold(csum_add(psum, skb->csum))) { 3016 skb->csum_valid = 1; 3017 return 0; 3018 } 3019 } else if (skb->csum_bad) { 3020 /* ip_summed == CHECKSUM_NONE in this case */ 3021 return 1; 3022 } 3023 3024 skb->csum = psum; 3025 3026 if (complete || skb->len <= CHECKSUM_BREAK) { 3027 __sum16 csum; 3028 3029 csum = __skb_checksum_complete(skb); 3030 skb->csum_valid = !csum; 3031 return csum; 3032 } 3033 3034 return 0; 3035} 3036 3037static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 3038{ 3039 return 0; 3040} 3041 3042/* Perform checksum validate (init). Note that this is a macro since we only 3043 * want to calculate the pseudo header which is an input function if necessary. 3044 * First we try to validate without any computation (checksum unnecessary) and 3045 * then calculate based on checksum complete calling the function to compute 3046 * pseudo header. 3047 * 3048 * Return values: 3049 * 0: checksum is validated or try to in skb_checksum_complete 3050 * non-zero: value of invalid checksum 3051 */ 3052#define __skb_checksum_validate(skb, proto, complete, \ 3053 zero_okay, check, compute_pseudo) \ 3054({ \ 3055 __sum16 __ret = 0; \ 3056 skb->csum_valid = 0; \ 3057 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3058 __ret = __skb_checksum_validate_complete(skb, \ 3059 complete, compute_pseudo(skb, proto)); \ 3060 __ret; \ 3061}) 3062 3063#define skb_checksum_init(skb, proto, compute_pseudo) \ 3064 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3065 3066#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3067 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3068 3069#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3070 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3071 3072#define skb_checksum_validate_zero_check(skb, proto, check, \ 3073 compute_pseudo) \ 3074 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo) 3075 3076#define skb_checksum_simple_validate(skb) \ 3077 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3078 3079static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3080{ 3081 return (skb->ip_summed == CHECKSUM_NONE && 3082 skb->csum_valid && !skb->csum_bad); 3083} 3084 3085static inline void __skb_checksum_convert(struct sk_buff *skb, 3086 __sum16 check, __wsum pseudo) 3087{ 3088 skb->csum = ~pseudo; 3089 skb->ip_summed = CHECKSUM_COMPLETE; 3090} 3091 3092#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3093do { \ 3094 if (__skb_checksum_convert_check(skb)) \ 3095 __skb_checksum_convert(skb, check, \ 3096 compute_pseudo(skb, proto)); \ 3097} while (0) 3098 3099#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3100void nf_conntrack_destroy(struct nf_conntrack *nfct); 3101static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3102{ 3103 if (nfct && atomic_dec_and_test(&nfct->use)) 3104 nf_conntrack_destroy(nfct); 3105} 3106static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3107{ 3108 if (nfct) 3109 atomic_inc(&nfct->use); 3110} 3111#endif 3112#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3113static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3114{ 3115 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3116 kfree(nf_bridge); 3117} 3118static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3119{ 3120 if (nf_bridge) 3121 atomic_inc(&nf_bridge->use); 3122} 3123#endif /* CONFIG_BRIDGE_NETFILTER */ 3124static inline void nf_reset(struct sk_buff *skb) 3125{ 3126#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3127 nf_conntrack_put(skb->nfct); 3128 skb->nfct = NULL; 3129#endif 3130#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3131 nf_bridge_put(skb->nf_bridge); 3132 skb->nf_bridge = NULL; 3133#endif 3134} 3135 3136static inline void nf_reset_trace(struct sk_buff *skb) 3137{ 3138#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3139 skb->nf_trace = 0; 3140#endif 3141} 3142 3143/* Note: This doesn't put any conntrack and bridge info in dst. */ 3144static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3145 bool copy) 3146{ 3147#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3148 dst->nfct = src->nfct; 3149 nf_conntrack_get(src->nfct); 3150 if (copy) 3151 dst->nfctinfo = src->nfctinfo; 3152#endif 3153#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3154 dst->nf_bridge = src->nf_bridge; 3155 nf_bridge_get(src->nf_bridge); 3156#endif 3157#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3158 if (copy) 3159 dst->nf_trace = src->nf_trace; 3160#endif 3161} 3162 3163static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3164{ 3165#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3166 nf_conntrack_put(dst->nfct); 3167#endif 3168#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3169 nf_bridge_put(dst->nf_bridge); 3170#endif 3171 __nf_copy(dst, src, true); 3172} 3173 3174#ifdef CONFIG_NETWORK_SECMARK 3175static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3176{ 3177 to->secmark = from->secmark; 3178} 3179 3180static inline void skb_init_secmark(struct sk_buff *skb) 3181{ 3182 skb->secmark = 0; 3183} 3184#else 3185static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3186{ } 3187 3188static inline void skb_init_secmark(struct sk_buff *skb) 3189{ } 3190#endif 3191 3192static inline bool skb_irq_freeable(const struct sk_buff *skb) 3193{ 3194 return !skb->destructor && 3195#if IS_ENABLED(CONFIG_XFRM) 3196 !skb->sp && 3197#endif 3198#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3199 !skb->nfct && 3200#endif 3201 !skb->_skb_refdst && 3202 !skb_has_frag_list(skb); 3203} 3204 3205static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3206{ 3207 skb->queue_mapping = queue_mapping; 3208} 3209 3210static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3211{ 3212 return skb->queue_mapping; 3213} 3214 3215static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3216{ 3217 to->queue_mapping = from->queue_mapping; 3218} 3219 3220static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3221{ 3222 skb->queue_mapping = rx_queue + 1; 3223} 3224 3225static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3226{ 3227 return skb->queue_mapping - 1; 3228} 3229 3230static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3231{ 3232 return skb->queue_mapping != 0; 3233} 3234 3235u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3236 unsigned int num_tx_queues); 3237 3238static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3239{ 3240#ifdef CONFIG_XFRM 3241 return skb->sp; 3242#else 3243 return NULL; 3244#endif 3245} 3246 3247/* Keeps track of mac header offset relative to skb->head. 3248 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3249 * For non-tunnel skb it points to skb_mac_header() and for 3250 * tunnel skb it points to outer mac header. 3251 * Keeps track of level of encapsulation of network headers. 3252 */ 3253struct skb_gso_cb { 3254 int mac_offset; 3255 int encap_level; 3256 __u16 csum_start; 3257}; 3258#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3259 3260static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3261{ 3262 return (skb_mac_header(inner_skb) - inner_skb->head) - 3263 SKB_GSO_CB(inner_skb)->mac_offset; 3264} 3265 3266static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3267{ 3268 int new_headroom, headroom; 3269 int ret; 3270 3271 headroom = skb_headroom(skb); 3272 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3273 if (ret) 3274 return ret; 3275 3276 new_headroom = skb_headroom(skb); 3277 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3278 return 0; 3279} 3280 3281/* Compute the checksum for a gso segment. First compute the checksum value 3282 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3283 * then add in skb->csum (checksum from csum_start to end of packet). 3284 * skb->csum and csum_start are then updated to reflect the checksum of the 3285 * resultant packet starting from the transport header-- the resultant checksum 3286 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3287 * header. 3288 */ 3289static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3290{ 3291 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3292 skb_transport_offset(skb); 3293 __u16 csum; 3294 3295 csum = csum_fold(csum_partial(skb_transport_header(skb), 3296 plen, skb->csum)); 3297 skb->csum = res; 3298 SKB_GSO_CB(skb)->csum_start -= plen; 3299 3300 return csum; 3301} 3302 3303static inline bool skb_is_gso(const struct sk_buff *skb) 3304{ 3305 return skb_shinfo(skb)->gso_size; 3306} 3307 3308/* Note: Should be called only if skb_is_gso(skb) is true */ 3309static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3310{ 3311 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3312} 3313 3314void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3315 3316static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3317{ 3318 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3319 * wanted then gso_type will be set. */ 3320 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3321 3322 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3323 unlikely(shinfo->gso_type == 0)) { 3324 __skb_warn_lro_forwarding(skb); 3325 return true; 3326 } 3327 return false; 3328} 3329 3330static inline void skb_forward_csum(struct sk_buff *skb) 3331{ 3332 /* Unfortunately we don't support this one. Any brave souls? */ 3333 if (skb->ip_summed == CHECKSUM_COMPLETE) 3334 skb->ip_summed = CHECKSUM_NONE; 3335} 3336 3337/** 3338 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3339 * @skb: skb to check 3340 * 3341 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3342 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3343 * use this helper, to document places where we make this assertion. 3344 */ 3345static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3346{ 3347#ifdef DEBUG 3348 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3349#endif 3350} 3351 3352bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3353 3354int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3355 3356u32 skb_get_poff(const struct sk_buff *skb); 3357u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3358 const struct flow_keys *keys, int hlen); 3359 3360/** 3361 * skb_head_is_locked - Determine if the skb->head is locked down 3362 * @skb: skb to check 3363 * 3364 * The head on skbs build around a head frag can be removed if they are 3365 * not cloned. This function returns true if the skb head is locked down 3366 * due to either being allocated via kmalloc, or by being a clone with 3367 * multiple references to the head. 3368 */ 3369static inline bool skb_head_is_locked(const struct sk_buff *skb) 3370{ 3371 return !skb->head_frag || skb_cloned(skb); 3372} 3373 3374/** 3375 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3376 * 3377 * @skb: GSO skb 3378 * 3379 * skb_gso_network_seglen is used to determine the real size of the 3380 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3381 * 3382 * The MAC/L2 header is not accounted for. 3383 */ 3384static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3385{ 3386 unsigned int hdr_len = skb_transport_header(skb) - 3387 skb_network_header(skb); 3388 return hdr_len + skb_gso_transport_seglen(skb); 3389} 3390#endif /* __KERNEL__ */ 3391#endif /* _LINUX_SKBUFF_H */