at v3.19 43 kB view raw
1/* 2 * Read-Copy Update mechanism for mutual exclusion 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, you can access it online at 16 * http://www.gnu.org/licenses/gpl-2.0.html. 17 * 18 * Copyright IBM Corporation, 2001 19 * 20 * Author: Dipankar Sarma <dipankar@in.ibm.com> 21 * 22 * Based on the original work by Paul McKenney <paulmck@us.ibm.com> 23 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 24 * Papers: 25 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 26 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 27 * 28 * For detailed explanation of Read-Copy Update mechanism see - 29 * http://lse.sourceforge.net/locking/rcupdate.html 30 * 31 */ 32 33#ifndef __LINUX_RCUPDATE_H 34#define __LINUX_RCUPDATE_H 35 36#include <linux/types.h> 37#include <linux/cache.h> 38#include <linux/spinlock.h> 39#include <linux/threads.h> 40#include <linux/cpumask.h> 41#include <linux/seqlock.h> 42#include <linux/lockdep.h> 43#include <linux/completion.h> 44#include <linux/debugobjects.h> 45#include <linux/bug.h> 46#include <linux/compiler.h> 47#include <asm/barrier.h> 48 49extern int rcu_expedited; /* for sysctl */ 50 51enum rcutorture_type { 52 RCU_FLAVOR, 53 RCU_BH_FLAVOR, 54 RCU_SCHED_FLAVOR, 55 RCU_TASKS_FLAVOR, 56 SRCU_FLAVOR, 57 INVALID_RCU_FLAVOR 58}; 59 60#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 61void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags, 62 unsigned long *gpnum, unsigned long *completed); 63void rcutorture_record_test_transition(void); 64void rcutorture_record_progress(unsigned long vernum); 65void do_trace_rcu_torture_read(const char *rcutorturename, 66 struct rcu_head *rhp, 67 unsigned long secs, 68 unsigned long c_old, 69 unsigned long c); 70#else 71static inline void rcutorture_get_gp_data(enum rcutorture_type test_type, 72 int *flags, 73 unsigned long *gpnum, 74 unsigned long *completed) 75{ 76 *flags = 0; 77 *gpnum = 0; 78 *completed = 0; 79} 80static inline void rcutorture_record_test_transition(void) 81{ 82} 83static inline void rcutorture_record_progress(unsigned long vernum) 84{ 85} 86#ifdef CONFIG_RCU_TRACE 87void do_trace_rcu_torture_read(const char *rcutorturename, 88 struct rcu_head *rhp, 89 unsigned long secs, 90 unsigned long c_old, 91 unsigned long c); 92#else 93#define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ 94 do { } while (0) 95#endif 96#endif 97 98#define UINT_CMP_GE(a, b) (UINT_MAX / 2 >= (a) - (b)) 99#define UINT_CMP_LT(a, b) (UINT_MAX / 2 < (a) - (b)) 100#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 101#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 102#define ulong2long(a) (*(long *)(&(a))) 103 104/* Exported common interfaces */ 105 106#ifdef CONFIG_PREEMPT_RCU 107 108/** 109 * call_rcu() - Queue an RCU callback for invocation after a grace period. 110 * @head: structure to be used for queueing the RCU updates. 111 * @func: actual callback function to be invoked after the grace period 112 * 113 * The callback function will be invoked some time after a full grace 114 * period elapses, in other words after all pre-existing RCU read-side 115 * critical sections have completed. However, the callback function 116 * might well execute concurrently with RCU read-side critical sections 117 * that started after call_rcu() was invoked. RCU read-side critical 118 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), 119 * and may be nested. 120 * 121 * Note that all CPUs must agree that the grace period extended beyond 122 * all pre-existing RCU read-side critical section. On systems with more 123 * than one CPU, this means that when "func()" is invoked, each CPU is 124 * guaranteed to have executed a full memory barrier since the end of its 125 * last RCU read-side critical section whose beginning preceded the call 126 * to call_rcu(). It also means that each CPU executing an RCU read-side 127 * critical section that continues beyond the start of "func()" must have 128 * executed a memory barrier after the call_rcu() but before the beginning 129 * of that RCU read-side critical section. Note that these guarantees 130 * include CPUs that are offline, idle, or executing in user mode, as 131 * well as CPUs that are executing in the kernel. 132 * 133 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the 134 * resulting RCU callback function "func()", then both CPU A and CPU B are 135 * guaranteed to execute a full memory barrier during the time interval 136 * between the call to call_rcu() and the invocation of "func()" -- even 137 * if CPU A and CPU B are the same CPU (but again only if the system has 138 * more than one CPU). 139 */ 140void call_rcu(struct rcu_head *head, 141 void (*func)(struct rcu_head *head)); 142 143#else /* #ifdef CONFIG_PREEMPT_RCU */ 144 145/* In classic RCU, call_rcu() is just call_rcu_sched(). */ 146#define call_rcu call_rcu_sched 147 148#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 149 150/** 151 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period. 152 * @head: structure to be used for queueing the RCU updates. 153 * @func: actual callback function to be invoked after the grace period 154 * 155 * The callback function will be invoked some time after a full grace 156 * period elapses, in other words after all currently executing RCU 157 * read-side critical sections have completed. call_rcu_bh() assumes 158 * that the read-side critical sections end on completion of a softirq 159 * handler. This means that read-side critical sections in process 160 * context must not be interrupted by softirqs. This interface is to be 161 * used when most of the read-side critical sections are in softirq context. 162 * RCU read-side critical sections are delimited by : 163 * - rcu_read_lock() and rcu_read_unlock(), if in interrupt context. 164 * OR 165 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context. 166 * These may be nested. 167 * 168 * See the description of call_rcu() for more detailed information on 169 * memory ordering guarantees. 170 */ 171void call_rcu_bh(struct rcu_head *head, 172 void (*func)(struct rcu_head *head)); 173 174/** 175 * call_rcu_sched() - Queue an RCU for invocation after sched grace period. 176 * @head: structure to be used for queueing the RCU updates. 177 * @func: actual callback function to be invoked after the grace period 178 * 179 * The callback function will be invoked some time after a full grace 180 * period elapses, in other words after all currently executing RCU 181 * read-side critical sections have completed. call_rcu_sched() assumes 182 * that the read-side critical sections end on enabling of preemption 183 * or on voluntary preemption. 184 * RCU read-side critical sections are delimited by : 185 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), 186 * OR 187 * anything that disables preemption. 188 * These may be nested. 189 * 190 * See the description of call_rcu() for more detailed information on 191 * memory ordering guarantees. 192 */ 193void call_rcu_sched(struct rcu_head *head, 194 void (*func)(struct rcu_head *rcu)); 195 196void synchronize_sched(void); 197 198/** 199 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period 200 * @head: structure to be used for queueing the RCU updates. 201 * @func: actual callback function to be invoked after the grace period 202 * 203 * The callback function will be invoked some time after a full grace 204 * period elapses, in other words after all currently executing RCU 205 * read-side critical sections have completed. call_rcu_tasks() assumes 206 * that the read-side critical sections end at a voluntary context 207 * switch (not a preemption!), entry into idle, or transition to usermode 208 * execution. As such, there are no read-side primitives analogous to 209 * rcu_read_lock() and rcu_read_unlock() because this primitive is intended 210 * to determine that all tasks have passed through a safe state, not so 211 * much for data-strcuture synchronization. 212 * 213 * See the description of call_rcu() for more detailed information on 214 * memory ordering guarantees. 215 */ 216void call_rcu_tasks(struct rcu_head *head, void (*func)(struct rcu_head *head)); 217void synchronize_rcu_tasks(void); 218void rcu_barrier_tasks(void); 219 220#ifdef CONFIG_PREEMPT_RCU 221 222void __rcu_read_lock(void); 223void __rcu_read_unlock(void); 224void rcu_read_unlock_special(struct task_struct *t); 225void synchronize_rcu(void); 226 227/* 228 * Defined as a macro as it is a very low level header included from 229 * areas that don't even know about current. This gives the rcu_read_lock() 230 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 231 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 232 */ 233#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 234 235#else /* #ifdef CONFIG_PREEMPT_RCU */ 236 237static inline void __rcu_read_lock(void) 238{ 239 preempt_disable(); 240} 241 242static inline void __rcu_read_unlock(void) 243{ 244 preempt_enable(); 245} 246 247static inline void synchronize_rcu(void) 248{ 249 synchronize_sched(); 250} 251 252static inline int rcu_preempt_depth(void) 253{ 254 return 0; 255} 256 257#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 258 259/* Internal to kernel */ 260void rcu_init(void); 261void rcu_sched_qs(void); 262void rcu_bh_qs(void); 263void rcu_check_callbacks(int user); 264struct notifier_block; 265void rcu_idle_enter(void); 266void rcu_idle_exit(void); 267void rcu_irq_enter(void); 268void rcu_irq_exit(void); 269 270#ifdef CONFIG_RCU_STALL_COMMON 271void rcu_sysrq_start(void); 272void rcu_sysrq_end(void); 273#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 274static inline void rcu_sysrq_start(void) 275{ 276} 277static inline void rcu_sysrq_end(void) 278{ 279} 280#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 281 282#ifdef CONFIG_RCU_USER_QS 283void rcu_user_enter(void); 284void rcu_user_exit(void); 285#else 286static inline void rcu_user_enter(void) { } 287static inline void rcu_user_exit(void) { } 288static inline void rcu_user_hooks_switch(struct task_struct *prev, 289 struct task_struct *next) { } 290#endif /* CONFIG_RCU_USER_QS */ 291 292#ifdef CONFIG_RCU_NOCB_CPU 293void rcu_init_nohz(void); 294#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 295static inline void rcu_init_nohz(void) 296{ 297} 298#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 299 300/** 301 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 302 * @a: Code that RCU needs to pay attention to. 303 * 304 * RCU, RCU-bh, and RCU-sched read-side critical sections are forbidden 305 * in the inner idle loop, that is, between the rcu_idle_enter() and 306 * the rcu_idle_exit() -- RCU will happily ignore any such read-side 307 * critical sections. However, things like powertop need tracepoints 308 * in the inner idle loop. 309 * 310 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 311 * will tell RCU that it needs to pay attending, invoke its argument 312 * (in this example, a call to the do_something_with_RCU() function), 313 * and then tell RCU to go back to ignoring this CPU. It is permissible 314 * to nest RCU_NONIDLE() wrappers, but the nesting level is currently 315 * quite limited. If deeper nesting is required, it will be necessary 316 * to adjust DYNTICK_TASK_NESTING_VALUE accordingly. 317 */ 318#define RCU_NONIDLE(a) \ 319 do { \ 320 rcu_irq_enter(); \ 321 do { a; } while (0); \ 322 rcu_irq_exit(); \ 323 } while (0) 324 325/* 326 * Note a voluntary context switch for RCU-tasks benefit. This is a 327 * macro rather than an inline function to avoid #include hell. 328 */ 329#ifdef CONFIG_TASKS_RCU 330#define TASKS_RCU(x) x 331extern struct srcu_struct tasks_rcu_exit_srcu; 332#define rcu_note_voluntary_context_switch(t) \ 333 do { \ 334 if (ACCESS_ONCE((t)->rcu_tasks_holdout)) \ 335 ACCESS_ONCE((t)->rcu_tasks_holdout) = false; \ 336 } while (0) 337#else /* #ifdef CONFIG_TASKS_RCU */ 338#define TASKS_RCU(x) do { } while (0) 339#define rcu_note_voluntary_context_switch(t) do { } while (0) 340#endif /* #else #ifdef CONFIG_TASKS_RCU */ 341 342/** 343 * cond_resched_rcu_qs - Report potential quiescent states to RCU 344 * 345 * This macro resembles cond_resched(), except that it is defined to 346 * report potential quiescent states to RCU-tasks even if the cond_resched() 347 * machinery were to be shut off, as some advocate for PREEMPT kernels. 348 */ 349#define cond_resched_rcu_qs() \ 350do { \ 351 if (!cond_resched()) \ 352 rcu_note_voluntary_context_switch(current); \ 353} while (0) 354 355#if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) 356bool __rcu_is_watching(void); 357#endif /* #if defined(CONFIG_DEBUG_LOCK_ALLOC) || defined(CONFIG_RCU_TRACE) || defined(CONFIG_SMP) */ 358 359/* 360 * Infrastructure to implement the synchronize_() primitives in 361 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 362 */ 363 364typedef void call_rcu_func_t(struct rcu_head *head, 365 void (*func)(struct rcu_head *head)); 366void wait_rcu_gp(call_rcu_func_t crf); 367 368#if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) 369#include <linux/rcutree.h> 370#elif defined(CONFIG_TINY_RCU) 371#include <linux/rcutiny.h> 372#else 373#error "Unknown RCU implementation specified to kernel configuration" 374#endif 375 376/* 377 * init_rcu_head_on_stack()/destroy_rcu_head_on_stack() are needed for dynamic 378 * initialization and destruction of rcu_head on the stack. rcu_head structures 379 * allocated dynamically in the heap or defined statically don't need any 380 * initialization. 381 */ 382#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 383void init_rcu_head(struct rcu_head *head); 384void destroy_rcu_head(struct rcu_head *head); 385void init_rcu_head_on_stack(struct rcu_head *head); 386void destroy_rcu_head_on_stack(struct rcu_head *head); 387#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 388static inline void init_rcu_head(struct rcu_head *head) 389{ 390} 391 392static inline void destroy_rcu_head(struct rcu_head *head) 393{ 394} 395 396static inline void init_rcu_head_on_stack(struct rcu_head *head) 397{ 398} 399 400static inline void destroy_rcu_head_on_stack(struct rcu_head *head) 401{ 402} 403#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 404 405#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 406bool rcu_lockdep_current_cpu_online(void); 407#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 408static inline bool rcu_lockdep_current_cpu_online(void) 409{ 410 return true; 411} 412#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 413 414#ifdef CONFIG_DEBUG_LOCK_ALLOC 415 416static inline void rcu_lock_acquire(struct lockdep_map *map) 417{ 418 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 419} 420 421static inline void rcu_lock_release(struct lockdep_map *map) 422{ 423 lock_release(map, 1, _THIS_IP_); 424} 425 426extern struct lockdep_map rcu_lock_map; 427extern struct lockdep_map rcu_bh_lock_map; 428extern struct lockdep_map rcu_sched_lock_map; 429extern struct lockdep_map rcu_callback_map; 430int debug_lockdep_rcu_enabled(void); 431 432int rcu_read_lock_held(void); 433int rcu_read_lock_bh_held(void); 434 435/** 436 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section? 437 * 438 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an 439 * RCU-sched read-side critical section. In absence of 440 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side 441 * critical section unless it can prove otherwise. Note that disabling 442 * of preemption (including disabling irqs) counts as an RCU-sched 443 * read-side critical section. This is useful for debug checks in functions 444 * that required that they be called within an RCU-sched read-side 445 * critical section. 446 * 447 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot 448 * and while lockdep is disabled. 449 * 450 * Note that if the CPU is in the idle loop from an RCU point of 451 * view (ie: that we are in the section between rcu_idle_enter() and 452 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU 453 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs 454 * that are in such a section, considering these as in extended quiescent 455 * state, so such a CPU is effectively never in an RCU read-side critical 456 * section regardless of what RCU primitives it invokes. This state of 457 * affairs is required --- we need to keep an RCU-free window in idle 458 * where the CPU may possibly enter into low power mode. This way we can 459 * notice an extended quiescent state to other CPUs that started a grace 460 * period. Otherwise we would delay any grace period as long as we run in 461 * the idle task. 462 * 463 * Similarly, we avoid claiming an SRCU read lock held if the current 464 * CPU is offline. 465 */ 466#ifdef CONFIG_PREEMPT_COUNT 467static inline int rcu_read_lock_sched_held(void) 468{ 469 int lockdep_opinion = 0; 470 471 if (!debug_lockdep_rcu_enabled()) 472 return 1; 473 if (!rcu_is_watching()) 474 return 0; 475 if (!rcu_lockdep_current_cpu_online()) 476 return 0; 477 if (debug_locks) 478 lockdep_opinion = lock_is_held(&rcu_sched_lock_map); 479 return lockdep_opinion || preempt_count() != 0 || irqs_disabled(); 480} 481#else /* #ifdef CONFIG_PREEMPT_COUNT */ 482static inline int rcu_read_lock_sched_held(void) 483{ 484 return 1; 485} 486#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 487 488#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 489 490# define rcu_lock_acquire(a) do { } while (0) 491# define rcu_lock_release(a) do { } while (0) 492 493static inline int rcu_read_lock_held(void) 494{ 495 return 1; 496} 497 498static inline int rcu_read_lock_bh_held(void) 499{ 500 return 1; 501} 502 503#ifdef CONFIG_PREEMPT_COUNT 504static inline int rcu_read_lock_sched_held(void) 505{ 506 return preempt_count() != 0 || irqs_disabled(); 507} 508#else /* #ifdef CONFIG_PREEMPT_COUNT */ 509static inline int rcu_read_lock_sched_held(void) 510{ 511 return 1; 512} 513#endif /* #else #ifdef CONFIG_PREEMPT_COUNT */ 514 515#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 516 517#ifdef CONFIG_PROVE_RCU 518 519/** 520 * rcu_lockdep_assert - emit lockdep splat if specified condition not met 521 * @c: condition to check 522 * @s: informative message 523 */ 524#define rcu_lockdep_assert(c, s) \ 525 do { \ 526 static bool __section(.data.unlikely) __warned; \ 527 if (debug_lockdep_rcu_enabled() && !__warned && !(c)) { \ 528 __warned = true; \ 529 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 530 } \ 531 } while (0) 532 533#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 534static inline void rcu_preempt_sleep_check(void) 535{ 536 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map), 537 "Illegal context switch in RCU read-side critical section"); 538} 539#else /* #ifdef CONFIG_PROVE_RCU */ 540static inline void rcu_preempt_sleep_check(void) 541{ 542} 543#endif /* #else #ifdef CONFIG_PROVE_RCU */ 544 545#define rcu_sleep_check() \ 546 do { \ 547 rcu_preempt_sleep_check(); \ 548 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map), \ 549 "Illegal context switch in RCU-bh read-side critical section"); \ 550 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map), \ 551 "Illegal context switch in RCU-sched read-side critical section"); \ 552 } while (0) 553 554#else /* #ifdef CONFIG_PROVE_RCU */ 555 556#define rcu_lockdep_assert(c, s) do { } while (0) 557#define rcu_sleep_check() do { } while (0) 558 559#endif /* #else #ifdef CONFIG_PROVE_RCU */ 560 561/* 562 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 563 * and rcu_assign_pointer(). Some of these could be folded into their 564 * callers, but they are left separate in order to ease introduction of 565 * multiple flavors of pointers to match the multiple flavors of RCU 566 * (e.g., __rcu_bh, * __rcu_sched, and __srcu), should this make sense in 567 * the future. 568 */ 569 570#ifdef __CHECKER__ 571#define rcu_dereference_sparse(p, space) \ 572 ((void)(((typeof(*p) space *)p) == p)) 573#else /* #ifdef __CHECKER__ */ 574#define rcu_dereference_sparse(p, space) 575#endif /* #else #ifdef __CHECKER__ */ 576 577#define __rcu_access_pointer(p, space) \ 578({ \ 579 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \ 580 rcu_dereference_sparse(p, space); \ 581 ((typeof(*p) __force __kernel *)(_________p1)); \ 582}) 583#define __rcu_dereference_check(p, c, space) \ 584({ \ 585 typeof(*p) *_________p1 = (typeof(*p) *__force)ACCESS_ONCE(p); \ 586 rcu_lockdep_assert(c, "suspicious rcu_dereference_check() usage"); \ 587 rcu_dereference_sparse(p, space); \ 588 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 589 ((typeof(*p) __force __kernel *)(_________p1)); \ 590}) 591#define __rcu_dereference_protected(p, c, space) \ 592({ \ 593 rcu_lockdep_assert(c, "suspicious rcu_dereference_protected() usage"); \ 594 rcu_dereference_sparse(p, space); \ 595 ((typeof(*p) __force __kernel *)(p)); \ 596}) 597 598#define __rcu_access_index(p, space) \ 599({ \ 600 typeof(p) _________p1 = ACCESS_ONCE(p); \ 601 rcu_dereference_sparse(p, space); \ 602 (_________p1); \ 603}) 604#define __rcu_dereference_index_check(p, c) \ 605({ \ 606 typeof(p) _________p1 = ACCESS_ONCE(p); \ 607 rcu_lockdep_assert(c, \ 608 "suspicious rcu_dereference_index_check() usage"); \ 609 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 610 (_________p1); \ 611}) 612 613/** 614 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 615 * @v: The value to statically initialize with. 616 */ 617#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 618 619/** 620 * lockless_dereference() - safely load a pointer for later dereference 621 * @p: The pointer to load 622 * 623 * Similar to rcu_dereference(), but for situations where the pointed-to 624 * object's lifetime is managed by something other than RCU. That 625 * "something other" might be reference counting or simple immortality. 626 */ 627#define lockless_dereference(p) \ 628({ \ 629 typeof(p) _________p1 = ACCESS_ONCE(p); \ 630 smp_read_barrier_depends(); /* Dependency order vs. p above. */ \ 631 (_________p1); \ 632}) 633 634/** 635 * rcu_assign_pointer() - assign to RCU-protected pointer 636 * @p: pointer to assign to 637 * @v: value to assign (publish) 638 * 639 * Assigns the specified value to the specified RCU-protected 640 * pointer, ensuring that any concurrent RCU readers will see 641 * any prior initialization. 642 * 643 * Inserts memory barriers on architectures that require them 644 * (which is most of them), and also prevents the compiler from 645 * reordering the code that initializes the structure after the pointer 646 * assignment. More importantly, this call documents which pointers 647 * will be dereferenced by RCU read-side code. 648 * 649 * In some special cases, you may use RCU_INIT_POINTER() instead 650 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 651 * to the fact that it does not constrain either the CPU or the compiler. 652 * That said, using RCU_INIT_POINTER() when you should have used 653 * rcu_assign_pointer() is a very bad thing that results in 654 * impossible-to-diagnose memory corruption. So please be careful. 655 * See the RCU_INIT_POINTER() comment header for details. 656 * 657 * Note that rcu_assign_pointer() evaluates each of its arguments only 658 * once, appearances notwithstanding. One of the "extra" evaluations 659 * is in typeof() and the other visible only to sparse (__CHECKER__), 660 * neither of which actually execute the argument. As with most cpp 661 * macros, this execute-arguments-only-once property is important, so 662 * please be careful when making changes to rcu_assign_pointer() and the 663 * other macros that it invokes. 664 */ 665#define rcu_assign_pointer(p, v) smp_store_release(&p, RCU_INITIALIZER(v)) 666 667/** 668 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 669 * @p: The pointer to read 670 * 671 * Return the value of the specified RCU-protected pointer, but omit the 672 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 673 * when the value of this pointer is accessed, but the pointer is not 674 * dereferenced, for example, when testing an RCU-protected pointer against 675 * NULL. Although rcu_access_pointer() may also be used in cases where 676 * update-side locks prevent the value of the pointer from changing, you 677 * should instead use rcu_dereference_protected() for this use case. 678 * 679 * It is also permissible to use rcu_access_pointer() when read-side 680 * access to the pointer was removed at least one grace period ago, as 681 * is the case in the context of the RCU callback that is freeing up 682 * the data, or after a synchronize_rcu() returns. This can be useful 683 * when tearing down multi-linked structures after a grace period 684 * has elapsed. 685 */ 686#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 687 688/** 689 * rcu_dereference_check() - rcu_dereference with debug checking 690 * @p: The pointer to read, prior to dereferencing 691 * @c: The conditions under which the dereference will take place 692 * 693 * Do an rcu_dereference(), but check that the conditions under which the 694 * dereference will take place are correct. Typically the conditions 695 * indicate the various locking conditions that should be held at that 696 * point. The check should return true if the conditions are satisfied. 697 * An implicit check for being in an RCU read-side critical section 698 * (rcu_read_lock()) is included. 699 * 700 * For example: 701 * 702 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 703 * 704 * could be used to indicate to lockdep that foo->bar may only be dereferenced 705 * if either rcu_read_lock() is held, or that the lock required to replace 706 * the bar struct at foo->bar is held. 707 * 708 * Note that the list of conditions may also include indications of when a lock 709 * need not be held, for example during initialisation or destruction of the 710 * target struct: 711 * 712 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 713 * atomic_read(&foo->usage) == 0); 714 * 715 * Inserts memory barriers on architectures that require them 716 * (currently only the Alpha), prevents the compiler from refetching 717 * (and from merging fetches), and, more importantly, documents exactly 718 * which pointers are protected by RCU and checks that the pointer is 719 * annotated as __rcu. 720 */ 721#define rcu_dereference_check(p, c) \ 722 __rcu_dereference_check((p), rcu_read_lock_held() || (c), __rcu) 723 724/** 725 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 726 * @p: The pointer to read, prior to dereferencing 727 * @c: The conditions under which the dereference will take place 728 * 729 * This is the RCU-bh counterpart to rcu_dereference_check(). 730 */ 731#define rcu_dereference_bh_check(p, c) \ 732 __rcu_dereference_check((p), rcu_read_lock_bh_held() || (c), __rcu) 733 734/** 735 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 736 * @p: The pointer to read, prior to dereferencing 737 * @c: The conditions under which the dereference will take place 738 * 739 * This is the RCU-sched counterpart to rcu_dereference_check(). 740 */ 741#define rcu_dereference_sched_check(p, c) \ 742 __rcu_dereference_check((p), rcu_read_lock_sched_held() || (c), \ 743 __rcu) 744 745#define rcu_dereference_raw(p) rcu_dereference_check(p, 1) /*@@@ needed? @@@*/ 746 747/* 748 * The tracing infrastructure traces RCU (we want that), but unfortunately 749 * some of the RCU checks causes tracing to lock up the system. 750 * 751 * The tracing version of rcu_dereference_raw() must not call 752 * rcu_read_lock_held(). 753 */ 754#define rcu_dereference_raw_notrace(p) __rcu_dereference_check((p), 1, __rcu) 755 756/** 757 * rcu_access_index() - fetch RCU index with no dereferencing 758 * @p: The index to read 759 * 760 * Return the value of the specified RCU-protected index, but omit the 761 * smp_read_barrier_depends() and keep the ACCESS_ONCE(). This is useful 762 * when the value of this index is accessed, but the index is not 763 * dereferenced, for example, when testing an RCU-protected index against 764 * -1. Although rcu_access_index() may also be used in cases where 765 * update-side locks prevent the value of the index from changing, you 766 * should instead use rcu_dereference_index_protected() for this use case. 767 */ 768#define rcu_access_index(p) __rcu_access_index((p), __rcu) 769 770/** 771 * rcu_dereference_index_check() - rcu_dereference for indices with debug checking 772 * @p: The pointer to read, prior to dereferencing 773 * @c: The conditions under which the dereference will take place 774 * 775 * Similar to rcu_dereference_check(), but omits the sparse checking. 776 * This allows rcu_dereference_index_check() to be used on integers, 777 * which can then be used as array indices. Attempting to use 778 * rcu_dereference_check() on an integer will give compiler warnings 779 * because the sparse address-space mechanism relies on dereferencing 780 * the RCU-protected pointer. Dereferencing integers is not something 781 * that even gcc will put up with. 782 * 783 * Note that this function does not implicitly check for RCU read-side 784 * critical sections. If this function gains lots of uses, it might 785 * make sense to provide versions for each flavor of RCU, but it does 786 * not make sense as of early 2010. 787 */ 788#define rcu_dereference_index_check(p, c) \ 789 __rcu_dereference_index_check((p), (c)) 790 791/** 792 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 793 * @p: The pointer to read, prior to dereferencing 794 * @c: The conditions under which the dereference will take place 795 * 796 * Return the value of the specified RCU-protected pointer, but omit 797 * both the smp_read_barrier_depends() and the ACCESS_ONCE(). This 798 * is useful in cases where update-side locks prevent the value of the 799 * pointer from changing. Please note that this primitive does -not- 800 * prevent the compiler from repeating this reference or combining it 801 * with other references, so it should not be used without protection 802 * of appropriate locks. 803 * 804 * This function is only for update-side use. Using this function 805 * when protected only by rcu_read_lock() will result in infrequent 806 * but very ugly failures. 807 */ 808#define rcu_dereference_protected(p, c) \ 809 __rcu_dereference_protected((p), (c), __rcu) 810 811 812/** 813 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 814 * @p: The pointer to read, prior to dereferencing 815 * 816 * This is a simple wrapper around rcu_dereference_check(). 817 */ 818#define rcu_dereference(p) rcu_dereference_check(p, 0) 819 820/** 821 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 822 * @p: The pointer to read, prior to dereferencing 823 * 824 * Makes rcu_dereference_check() do the dirty work. 825 */ 826#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 827 828/** 829 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 830 * @p: The pointer to read, prior to dereferencing 831 * 832 * Makes rcu_dereference_check() do the dirty work. 833 */ 834#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 835 836/** 837 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 838 * 839 * When synchronize_rcu() is invoked on one CPU while other CPUs 840 * are within RCU read-side critical sections, then the 841 * synchronize_rcu() is guaranteed to block until after all the other 842 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 843 * on one CPU while other CPUs are within RCU read-side critical 844 * sections, invocation of the corresponding RCU callback is deferred 845 * until after the all the other CPUs exit their critical sections. 846 * 847 * Note, however, that RCU callbacks are permitted to run concurrently 848 * with new RCU read-side critical sections. One way that this can happen 849 * is via the following sequence of events: (1) CPU 0 enters an RCU 850 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 851 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 852 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 853 * callback is invoked. This is legal, because the RCU read-side critical 854 * section that was running concurrently with the call_rcu() (and which 855 * therefore might be referencing something that the corresponding RCU 856 * callback would free up) has completed before the corresponding 857 * RCU callback is invoked. 858 * 859 * RCU read-side critical sections may be nested. Any deferred actions 860 * will be deferred until the outermost RCU read-side critical section 861 * completes. 862 * 863 * You can avoid reading and understanding the next paragraph by 864 * following this rule: don't put anything in an rcu_read_lock() RCU 865 * read-side critical section that would block in a !PREEMPT kernel. 866 * But if you want the full story, read on! 867 * 868 * In non-preemptible RCU implementations (TREE_RCU and TINY_RCU), 869 * it is illegal to block while in an RCU read-side critical section. 870 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPT 871 * kernel builds, RCU read-side critical sections may be preempted, 872 * but explicit blocking is illegal. Finally, in preemptible RCU 873 * implementations in real-time (with -rt patchset) kernel builds, RCU 874 * read-side critical sections may be preempted and they may also block, but 875 * only when acquiring spinlocks that are subject to priority inheritance. 876 */ 877static inline void rcu_read_lock(void) 878{ 879 __rcu_read_lock(); 880 __acquire(RCU); 881 rcu_lock_acquire(&rcu_lock_map); 882 rcu_lockdep_assert(rcu_is_watching(), 883 "rcu_read_lock() used illegally while idle"); 884} 885 886/* 887 * So where is rcu_write_lock()? It does not exist, as there is no 888 * way for writers to lock out RCU readers. This is a feature, not 889 * a bug -- this property is what provides RCU's performance benefits. 890 * Of course, writers must coordinate with each other. The normal 891 * spinlock primitives work well for this, but any other technique may be 892 * used as well. RCU does not care how the writers keep out of each 893 * others' way, as long as they do so. 894 */ 895 896/** 897 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 898 * 899 * In most situations, rcu_read_unlock() is immune from deadlock. 900 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 901 * is responsible for deboosting, which it does via rt_mutex_unlock(). 902 * Unfortunately, this function acquires the scheduler's runqueue and 903 * priority-inheritance spinlocks. This means that deadlock could result 904 * if the caller of rcu_read_unlock() already holds one of these locks or 905 * any lock that is ever acquired while holding them; or any lock which 906 * can be taken from interrupt context because rcu_boost()->rt_mutex_lock() 907 * does not disable irqs while taking ->wait_lock. 908 * 909 * That said, RCU readers are never priority boosted unless they were 910 * preempted. Therefore, one way to avoid deadlock is to make sure 911 * that preemption never happens within any RCU read-side critical 912 * section whose outermost rcu_read_unlock() is called with one of 913 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 914 * a number of ways, for example, by invoking preempt_disable() before 915 * critical section's outermost rcu_read_lock(). 916 * 917 * Given that the set of locks acquired by rt_mutex_unlock() might change 918 * at any time, a somewhat more future-proofed approach is to make sure 919 * that that preemption never happens within any RCU read-side critical 920 * section whose outermost rcu_read_unlock() is called with irqs disabled. 921 * This approach relies on the fact that rt_mutex_unlock() currently only 922 * acquires irq-disabled locks. 923 * 924 * The second of these two approaches is best in most situations, 925 * however, the first approach can also be useful, at least to those 926 * developers willing to keep abreast of the set of locks acquired by 927 * rt_mutex_unlock(). 928 * 929 * See rcu_read_lock() for more information. 930 */ 931static inline void rcu_read_unlock(void) 932{ 933 rcu_lockdep_assert(rcu_is_watching(), 934 "rcu_read_unlock() used illegally while idle"); 935 rcu_lock_release(&rcu_lock_map); 936 __release(RCU); 937 __rcu_read_unlock(); 938} 939 940/** 941 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 942 * 943 * This is equivalent of rcu_read_lock(), but to be used when updates 944 * are being done using call_rcu_bh() or synchronize_rcu_bh(). Since 945 * both call_rcu_bh() and synchronize_rcu_bh() consider completion of a 946 * softirq handler to be a quiescent state, a process in RCU read-side 947 * critical section must be protected by disabling softirqs. Read-side 948 * critical sections in interrupt context can use just rcu_read_lock(), 949 * though this should at least be commented to avoid confusing people 950 * reading the code. 951 * 952 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 953 * must occur in the same context, for example, it is illegal to invoke 954 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 955 * was invoked from some other task. 956 */ 957static inline void rcu_read_lock_bh(void) 958{ 959 local_bh_disable(); 960 __acquire(RCU_BH); 961 rcu_lock_acquire(&rcu_bh_lock_map); 962 rcu_lockdep_assert(rcu_is_watching(), 963 "rcu_read_lock_bh() used illegally while idle"); 964} 965 966/* 967 * rcu_read_unlock_bh - marks the end of a softirq-only RCU critical section 968 * 969 * See rcu_read_lock_bh() for more information. 970 */ 971static inline void rcu_read_unlock_bh(void) 972{ 973 rcu_lockdep_assert(rcu_is_watching(), 974 "rcu_read_unlock_bh() used illegally while idle"); 975 rcu_lock_release(&rcu_bh_lock_map); 976 __release(RCU_BH); 977 local_bh_enable(); 978} 979 980/** 981 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 982 * 983 * This is equivalent of rcu_read_lock(), but to be used when updates 984 * are being done using call_rcu_sched() or synchronize_rcu_sched(). 985 * Read-side critical sections can also be introduced by anything that 986 * disables preemption, including local_irq_disable() and friends. 987 * 988 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 989 * must occur in the same context, for example, it is illegal to invoke 990 * rcu_read_unlock_sched() from process context if the matching 991 * rcu_read_lock_sched() was invoked from an NMI handler. 992 */ 993static inline void rcu_read_lock_sched(void) 994{ 995 preempt_disable(); 996 __acquire(RCU_SCHED); 997 rcu_lock_acquire(&rcu_sched_lock_map); 998 rcu_lockdep_assert(rcu_is_watching(), 999 "rcu_read_lock_sched() used illegally while idle"); 1000} 1001 1002/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 1003static inline notrace void rcu_read_lock_sched_notrace(void) 1004{ 1005 preempt_disable_notrace(); 1006 __acquire(RCU_SCHED); 1007} 1008 1009/* 1010 * rcu_read_unlock_sched - marks the end of a RCU-classic critical section 1011 * 1012 * See rcu_read_lock_sched for more information. 1013 */ 1014static inline void rcu_read_unlock_sched(void) 1015{ 1016 rcu_lockdep_assert(rcu_is_watching(), 1017 "rcu_read_unlock_sched() used illegally while idle"); 1018 rcu_lock_release(&rcu_sched_lock_map); 1019 __release(RCU_SCHED); 1020 preempt_enable(); 1021} 1022 1023/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 1024static inline notrace void rcu_read_unlock_sched_notrace(void) 1025{ 1026 __release(RCU_SCHED); 1027 preempt_enable_notrace(); 1028} 1029 1030/** 1031 * RCU_INIT_POINTER() - initialize an RCU protected pointer 1032 * 1033 * Initialize an RCU-protected pointer in special cases where readers 1034 * do not need ordering constraints on the CPU or the compiler. These 1035 * special cases are: 1036 * 1037 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer -or- 1038 * 2. The caller has taken whatever steps are required to prevent 1039 * RCU readers from concurrently accessing this pointer -or- 1040 * 3. The referenced data structure has already been exposed to 1041 * readers either at compile time or via rcu_assign_pointer() -and- 1042 * a. You have not made -any- reader-visible changes to 1043 * this structure since then -or- 1044 * b. It is OK for readers accessing this structure from its 1045 * new location to see the old state of the structure. (For 1046 * example, the changes were to statistical counters or to 1047 * other state where exact synchronization is not required.) 1048 * 1049 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 1050 * result in impossible-to-diagnose memory corruption. As in the structures 1051 * will look OK in crash dumps, but any concurrent RCU readers might 1052 * see pre-initialized values of the referenced data structure. So 1053 * please be very careful how you use RCU_INIT_POINTER()!!! 1054 * 1055 * If you are creating an RCU-protected linked structure that is accessed 1056 * by a single external-to-structure RCU-protected pointer, then you may 1057 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 1058 * pointers, but you must use rcu_assign_pointer() to initialize the 1059 * external-to-structure pointer -after- you have completely initialized 1060 * the reader-accessible portions of the linked structure. 1061 * 1062 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 1063 * ordering guarantees for either the CPU or the compiler. 1064 */ 1065#define RCU_INIT_POINTER(p, v) \ 1066 do { \ 1067 rcu_dereference_sparse(p, __rcu); \ 1068 p = RCU_INITIALIZER(v); \ 1069 } while (0) 1070 1071/** 1072 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 1073 * 1074 * GCC-style initialization for an RCU-protected pointer in a structure field. 1075 */ 1076#define RCU_POINTER_INITIALIZER(p, v) \ 1077 .p = RCU_INITIALIZER(v) 1078 1079/* 1080 * Does the specified offset indicate that the corresponding rcu_head 1081 * structure can be handled by kfree_rcu()? 1082 */ 1083#define __is_kfree_rcu_offset(offset) ((offset) < 4096) 1084 1085/* 1086 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain. 1087 */ 1088#define __kfree_rcu(head, offset) \ 1089 do { \ 1090 BUILD_BUG_ON(!__is_kfree_rcu_offset(offset)); \ 1091 kfree_call_rcu(head, (void (*)(struct rcu_head *))(unsigned long)(offset)); \ 1092 } while (0) 1093 1094/** 1095 * kfree_rcu() - kfree an object after a grace period. 1096 * @ptr: pointer to kfree 1097 * @rcu_head: the name of the struct rcu_head within the type of @ptr. 1098 * 1099 * Many rcu callbacks functions just call kfree() on the base structure. 1100 * These functions are trivial, but their size adds up, and furthermore 1101 * when they are used in a kernel module, that module must invoke the 1102 * high-latency rcu_barrier() function at module-unload time. 1103 * 1104 * The kfree_rcu() function handles this issue. Rather than encoding a 1105 * function address in the embedded rcu_head structure, kfree_rcu() instead 1106 * encodes the offset of the rcu_head structure within the base structure. 1107 * Because the functions are not allowed in the low-order 4096 bytes of 1108 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 1109 * If the offset is larger than 4095 bytes, a compile-time error will 1110 * be generated in __kfree_rcu(). If this error is triggered, you can 1111 * either fall back to use of call_rcu() or rearrange the structure to 1112 * position the rcu_head structure into the first 4096 bytes. 1113 * 1114 * Note that the allowable offset might decrease in the future, for example, 1115 * to allow something like kmem_cache_free_rcu(). 1116 * 1117 * The BUILD_BUG_ON check must not involve any function calls, hence the 1118 * checks are done in macros here. 1119 */ 1120#define kfree_rcu(ptr, rcu_head) \ 1121 __kfree_rcu(&((ptr)->rcu_head), offsetof(typeof(*(ptr)), rcu_head)) 1122 1123#if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) 1124static inline int rcu_needs_cpu(unsigned long *delta_jiffies) 1125{ 1126 *delta_jiffies = ULONG_MAX; 1127 return 0; 1128} 1129#endif /* #if defined(CONFIG_TINY_RCU) || defined(CONFIG_RCU_NOCB_CPU_ALL) */ 1130 1131#if defined(CONFIG_RCU_NOCB_CPU_ALL) 1132static inline bool rcu_is_nocb_cpu(int cpu) { return true; } 1133#elif defined(CONFIG_RCU_NOCB_CPU) 1134bool rcu_is_nocb_cpu(int cpu); 1135#else 1136static inline bool rcu_is_nocb_cpu(int cpu) { return false; } 1137#endif 1138 1139 1140/* Only for use by adaptive-ticks code. */ 1141#ifdef CONFIG_NO_HZ_FULL_SYSIDLE 1142bool rcu_sys_is_idle(void); 1143void rcu_sysidle_force_exit(void); 1144#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1145 1146static inline bool rcu_sys_is_idle(void) 1147{ 1148 return false; 1149} 1150 1151static inline void rcu_sysidle_force_exit(void) 1152{ 1153} 1154 1155#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */ 1156 1157 1158#endif /* __LINUX_RCUPDATE_H */