at v3.19 17 kB view raw
1/* 2 * Macros for manipulating and testing page->flags 3 */ 4 5#ifndef PAGE_FLAGS_H 6#define PAGE_FLAGS_H 7 8#include <linux/types.h> 9#include <linux/bug.h> 10#include <linux/mmdebug.h> 11#ifndef __GENERATING_BOUNDS_H 12#include <linux/mm_types.h> 13#include <generated/bounds.h> 14#endif /* !__GENERATING_BOUNDS_H */ 15 16/* 17 * Various page->flags bits: 18 * 19 * PG_reserved is set for special pages, which can never be swapped out. Some 20 * of them might not even exist (eg empty_bad_page)... 21 * 22 * The PG_private bitflag is set on pagecache pages if they contain filesystem 23 * specific data (which is normally at page->private). It can be used by 24 * private allocations for its own usage. 25 * 26 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 27 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 28 * is set before writeback starts and cleared when it finishes. 29 * 30 * PG_locked also pins a page in pagecache, and blocks truncation of the file 31 * while it is held. 32 * 33 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 34 * to become unlocked. 35 * 36 * PG_uptodate tells whether the page's contents is valid. When a read 37 * completes, the page becomes uptodate, unless a disk I/O error happened. 38 * 39 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 40 * file-backed pagecache (see mm/vmscan.c). 41 * 42 * PG_error is set to indicate that an I/O error occurred on this page. 43 * 44 * PG_arch_1 is an architecture specific page state bit. The generic code 45 * guarantees that this bit is cleared for a page when it first is entered into 46 * the page cache. 47 * 48 * PG_highmem pages are not permanently mapped into the kernel virtual address 49 * space, they need to be kmapped separately for doing IO on the pages. The 50 * struct page (these bits with information) are always mapped into kernel 51 * address space... 52 * 53 * PG_hwpoison indicates that a page got corrupted in hardware and contains 54 * data with incorrect ECC bits that triggered a machine check. Accessing is 55 * not safe since it may cause another machine check. Don't touch! 56 */ 57 58/* 59 * Don't use the *_dontuse flags. Use the macros. Otherwise you'll break 60 * locked- and dirty-page accounting. 61 * 62 * The page flags field is split into two parts, the main flags area 63 * which extends from the low bits upwards, and the fields area which 64 * extends from the high bits downwards. 65 * 66 * | FIELD | ... | FLAGS | 67 * N-1 ^ 0 68 * (NR_PAGEFLAGS) 69 * 70 * The fields area is reserved for fields mapping zone, node (for NUMA) and 71 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 72 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 73 */ 74enum pageflags { 75 PG_locked, /* Page is locked. Don't touch. */ 76 PG_error, 77 PG_referenced, 78 PG_uptodate, 79 PG_dirty, 80 PG_lru, 81 PG_active, 82 PG_slab, 83 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 84 PG_arch_1, 85 PG_reserved, 86 PG_private, /* If pagecache, has fs-private data */ 87 PG_private_2, /* If pagecache, has fs aux data */ 88 PG_writeback, /* Page is under writeback */ 89#ifdef CONFIG_PAGEFLAGS_EXTENDED 90 PG_head, /* A head page */ 91 PG_tail, /* A tail page */ 92#else 93 PG_compound, /* A compound page */ 94#endif 95 PG_swapcache, /* Swap page: swp_entry_t in private */ 96 PG_mappedtodisk, /* Has blocks allocated on-disk */ 97 PG_reclaim, /* To be reclaimed asap */ 98 PG_swapbacked, /* Page is backed by RAM/swap */ 99 PG_unevictable, /* Page is "unevictable" */ 100#ifdef CONFIG_MMU 101 PG_mlocked, /* Page is vma mlocked */ 102#endif 103#ifdef CONFIG_ARCH_USES_PG_UNCACHED 104 PG_uncached, /* Page has been mapped as uncached */ 105#endif 106#ifdef CONFIG_MEMORY_FAILURE 107 PG_hwpoison, /* hardware poisoned page. Don't touch */ 108#endif 109#ifdef CONFIG_TRANSPARENT_HUGEPAGE 110 PG_compound_lock, 111#endif 112 __NR_PAGEFLAGS, 113 114 /* Filesystems */ 115 PG_checked = PG_owner_priv_1, 116 117 /* Two page bits are conscripted by FS-Cache to maintain local caching 118 * state. These bits are set on pages belonging to the netfs's inodes 119 * when those inodes are being locally cached. 120 */ 121 PG_fscache = PG_private_2, /* page backed by cache */ 122 123 /* XEN */ 124 PG_pinned = PG_owner_priv_1, 125 PG_savepinned = PG_dirty, 126 127 /* SLOB */ 128 PG_slob_free = PG_private, 129}; 130 131#ifndef __GENERATING_BOUNDS_H 132 133/* 134 * Macros to create function definitions for page flags 135 */ 136#define TESTPAGEFLAG(uname, lname) \ 137static inline int Page##uname(const struct page *page) \ 138 { return test_bit(PG_##lname, &page->flags); } 139 140#define SETPAGEFLAG(uname, lname) \ 141static inline void SetPage##uname(struct page *page) \ 142 { set_bit(PG_##lname, &page->flags); } 143 144#define CLEARPAGEFLAG(uname, lname) \ 145static inline void ClearPage##uname(struct page *page) \ 146 { clear_bit(PG_##lname, &page->flags); } 147 148#define __SETPAGEFLAG(uname, lname) \ 149static inline void __SetPage##uname(struct page *page) \ 150 { __set_bit(PG_##lname, &page->flags); } 151 152#define __CLEARPAGEFLAG(uname, lname) \ 153static inline void __ClearPage##uname(struct page *page) \ 154 { __clear_bit(PG_##lname, &page->flags); } 155 156#define TESTSETFLAG(uname, lname) \ 157static inline int TestSetPage##uname(struct page *page) \ 158 { return test_and_set_bit(PG_##lname, &page->flags); } 159 160#define TESTCLEARFLAG(uname, lname) \ 161static inline int TestClearPage##uname(struct page *page) \ 162 { return test_and_clear_bit(PG_##lname, &page->flags); } 163 164#define __TESTCLEARFLAG(uname, lname) \ 165static inline int __TestClearPage##uname(struct page *page) \ 166 { return __test_and_clear_bit(PG_##lname, &page->flags); } 167 168#define PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 169 SETPAGEFLAG(uname, lname) CLEARPAGEFLAG(uname, lname) 170 171#define __PAGEFLAG(uname, lname) TESTPAGEFLAG(uname, lname) \ 172 __SETPAGEFLAG(uname, lname) __CLEARPAGEFLAG(uname, lname) 173 174#define TESTSCFLAG(uname, lname) \ 175 TESTSETFLAG(uname, lname) TESTCLEARFLAG(uname, lname) 176 177#define TESTPAGEFLAG_FALSE(uname) \ 178static inline int Page##uname(const struct page *page) { return 0; } 179 180#define SETPAGEFLAG_NOOP(uname) \ 181static inline void SetPage##uname(struct page *page) { } 182 183#define CLEARPAGEFLAG_NOOP(uname) \ 184static inline void ClearPage##uname(struct page *page) { } 185 186#define __CLEARPAGEFLAG_NOOP(uname) \ 187static inline void __ClearPage##uname(struct page *page) { } 188 189#define TESTSETFLAG_FALSE(uname) \ 190static inline int TestSetPage##uname(struct page *page) { return 0; } 191 192#define TESTCLEARFLAG_FALSE(uname) \ 193static inline int TestClearPage##uname(struct page *page) { return 0; } 194 195#define __TESTCLEARFLAG_FALSE(uname) \ 196static inline int __TestClearPage##uname(struct page *page) { return 0; } 197 198#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \ 199 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname) 200 201#define TESTSCFLAG_FALSE(uname) \ 202 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname) 203 204struct page; /* forward declaration */ 205 206TESTPAGEFLAG(Locked, locked) 207PAGEFLAG(Error, error) TESTCLEARFLAG(Error, error) 208PAGEFLAG(Referenced, referenced) TESTCLEARFLAG(Referenced, referenced) 209 __SETPAGEFLAG(Referenced, referenced) 210PAGEFLAG(Dirty, dirty) TESTSCFLAG(Dirty, dirty) __CLEARPAGEFLAG(Dirty, dirty) 211PAGEFLAG(LRU, lru) __CLEARPAGEFLAG(LRU, lru) 212PAGEFLAG(Active, active) __CLEARPAGEFLAG(Active, active) 213 TESTCLEARFLAG(Active, active) 214__PAGEFLAG(Slab, slab) 215PAGEFLAG(Checked, checked) /* Used by some filesystems */ 216PAGEFLAG(Pinned, pinned) TESTSCFLAG(Pinned, pinned) /* Xen */ 217PAGEFLAG(SavePinned, savepinned); /* Xen */ 218PAGEFLAG(Reserved, reserved) __CLEARPAGEFLAG(Reserved, reserved) 219PAGEFLAG(SwapBacked, swapbacked) __CLEARPAGEFLAG(SwapBacked, swapbacked) 220 __SETPAGEFLAG(SwapBacked, swapbacked) 221 222__PAGEFLAG(SlobFree, slob_free) 223 224/* 225 * Private page markings that may be used by the filesystem that owns the page 226 * for its own purposes. 227 * - PG_private and PG_private_2 cause releasepage() and co to be invoked 228 */ 229PAGEFLAG(Private, private) __SETPAGEFLAG(Private, private) 230 __CLEARPAGEFLAG(Private, private) 231PAGEFLAG(Private2, private_2) TESTSCFLAG(Private2, private_2) 232PAGEFLAG(OwnerPriv1, owner_priv_1) TESTCLEARFLAG(OwnerPriv1, owner_priv_1) 233 234/* 235 * Only test-and-set exist for PG_writeback. The unconditional operators are 236 * risky: they bypass page accounting. 237 */ 238TESTPAGEFLAG(Writeback, writeback) TESTSCFLAG(Writeback, writeback) 239PAGEFLAG(MappedToDisk, mappedtodisk) 240 241/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 242PAGEFLAG(Reclaim, reclaim) TESTCLEARFLAG(Reclaim, reclaim) 243PAGEFLAG(Readahead, reclaim) TESTCLEARFLAG(Readahead, reclaim) 244 245#ifdef CONFIG_HIGHMEM 246/* 247 * Must use a macro here due to header dependency issues. page_zone() is not 248 * available at this point. 249 */ 250#define PageHighMem(__p) is_highmem(page_zone(__p)) 251#else 252PAGEFLAG_FALSE(HighMem) 253#endif 254 255#ifdef CONFIG_SWAP 256PAGEFLAG(SwapCache, swapcache) 257#else 258PAGEFLAG_FALSE(SwapCache) 259#endif 260 261PAGEFLAG(Unevictable, unevictable) __CLEARPAGEFLAG(Unevictable, unevictable) 262 TESTCLEARFLAG(Unevictable, unevictable) 263 264#ifdef CONFIG_MMU 265PAGEFLAG(Mlocked, mlocked) __CLEARPAGEFLAG(Mlocked, mlocked) 266 TESTSCFLAG(Mlocked, mlocked) __TESTCLEARFLAG(Mlocked, mlocked) 267#else 268PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked) 269 TESTSCFLAG_FALSE(Mlocked) __TESTCLEARFLAG_FALSE(Mlocked) 270#endif 271 272#ifdef CONFIG_ARCH_USES_PG_UNCACHED 273PAGEFLAG(Uncached, uncached) 274#else 275PAGEFLAG_FALSE(Uncached) 276#endif 277 278#ifdef CONFIG_MEMORY_FAILURE 279PAGEFLAG(HWPoison, hwpoison) 280TESTSCFLAG(HWPoison, hwpoison) 281#define __PG_HWPOISON (1UL << PG_hwpoison) 282#else 283PAGEFLAG_FALSE(HWPoison) 284#define __PG_HWPOISON 0 285#endif 286 287u64 stable_page_flags(struct page *page); 288 289static inline int PageUptodate(struct page *page) 290{ 291 int ret = test_bit(PG_uptodate, &(page)->flags); 292 293 /* 294 * Must ensure that the data we read out of the page is loaded 295 * _after_ we've loaded page->flags to check for PageUptodate. 296 * We can skip the barrier if the page is not uptodate, because 297 * we wouldn't be reading anything from it. 298 * 299 * See SetPageUptodate() for the other side of the story. 300 */ 301 if (ret) 302 smp_rmb(); 303 304 return ret; 305} 306 307static inline void __SetPageUptodate(struct page *page) 308{ 309 smp_wmb(); 310 __set_bit(PG_uptodate, &(page)->flags); 311} 312 313static inline void SetPageUptodate(struct page *page) 314{ 315 /* 316 * Memory barrier must be issued before setting the PG_uptodate bit, 317 * so that all previous stores issued in order to bring the page 318 * uptodate are actually visible before PageUptodate becomes true. 319 */ 320 smp_wmb(); 321 set_bit(PG_uptodate, &(page)->flags); 322} 323 324CLEARPAGEFLAG(Uptodate, uptodate) 325 326extern void cancel_dirty_page(struct page *page, unsigned int account_size); 327 328int test_clear_page_writeback(struct page *page); 329int __test_set_page_writeback(struct page *page, bool keep_write); 330 331#define test_set_page_writeback(page) \ 332 __test_set_page_writeback(page, false) 333#define test_set_page_writeback_keepwrite(page) \ 334 __test_set_page_writeback(page, true) 335 336static inline void set_page_writeback(struct page *page) 337{ 338 test_set_page_writeback(page); 339} 340 341static inline void set_page_writeback_keepwrite(struct page *page) 342{ 343 test_set_page_writeback_keepwrite(page); 344} 345 346#ifdef CONFIG_PAGEFLAGS_EXTENDED 347/* 348 * System with lots of page flags available. This allows separate 349 * flags for PageHead() and PageTail() checks of compound pages so that bit 350 * tests can be used in performance sensitive paths. PageCompound is 351 * generally not used in hot code paths except arch/powerpc/mm/init_64.c 352 * and arch/powerpc/kvm/book3s_64_vio_hv.c which use it to detect huge pages 353 * and avoid handling those in real mode. 354 */ 355__PAGEFLAG(Head, head) CLEARPAGEFLAG(Head, head) 356__PAGEFLAG(Tail, tail) 357 358static inline int PageCompound(struct page *page) 359{ 360 return page->flags & ((1L << PG_head) | (1L << PG_tail)); 361 362} 363#ifdef CONFIG_TRANSPARENT_HUGEPAGE 364static inline void ClearPageCompound(struct page *page) 365{ 366 BUG_ON(!PageHead(page)); 367 ClearPageHead(page); 368} 369#endif 370 371#define PG_head_mask ((1L << PG_head)) 372 373#else 374/* 375 * Reduce page flag use as much as possible by overlapping 376 * compound page flags with the flags used for page cache pages. Possible 377 * because PageCompound is always set for compound pages and not for 378 * pages on the LRU and/or pagecache. 379 */ 380TESTPAGEFLAG(Compound, compound) 381__SETPAGEFLAG(Head, compound) __CLEARPAGEFLAG(Head, compound) 382 383/* 384 * PG_reclaim is used in combination with PG_compound to mark the 385 * head and tail of a compound page. This saves one page flag 386 * but makes it impossible to use compound pages for the page cache. 387 * The PG_reclaim bit would have to be used for reclaim or readahead 388 * if compound pages enter the page cache. 389 * 390 * PG_compound & PG_reclaim => Tail page 391 * PG_compound & ~PG_reclaim => Head page 392 */ 393#define PG_head_mask ((1L << PG_compound)) 394#define PG_head_tail_mask ((1L << PG_compound) | (1L << PG_reclaim)) 395 396static inline int PageHead(struct page *page) 397{ 398 return ((page->flags & PG_head_tail_mask) == PG_head_mask); 399} 400 401static inline int PageTail(struct page *page) 402{ 403 return ((page->flags & PG_head_tail_mask) == PG_head_tail_mask); 404} 405 406static inline void __SetPageTail(struct page *page) 407{ 408 page->flags |= PG_head_tail_mask; 409} 410 411static inline void __ClearPageTail(struct page *page) 412{ 413 page->flags &= ~PG_head_tail_mask; 414} 415 416#ifdef CONFIG_TRANSPARENT_HUGEPAGE 417static inline void ClearPageCompound(struct page *page) 418{ 419 BUG_ON((page->flags & PG_head_tail_mask) != (1 << PG_compound)); 420 clear_bit(PG_compound, &page->flags); 421} 422#endif 423 424#endif /* !PAGEFLAGS_EXTENDED */ 425 426#ifdef CONFIG_TRANSPARENT_HUGEPAGE 427/* 428 * PageHuge() only returns true for hugetlbfs pages, but not for 429 * normal or transparent huge pages. 430 * 431 * PageTransHuge() returns true for both transparent huge and 432 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 433 * called only in the core VM paths where hugetlbfs pages can't exist. 434 */ 435static inline int PageTransHuge(struct page *page) 436{ 437 VM_BUG_ON_PAGE(PageTail(page), page); 438 return PageHead(page); 439} 440 441/* 442 * PageTransCompound returns true for both transparent huge pages 443 * and hugetlbfs pages, so it should only be called when it's known 444 * that hugetlbfs pages aren't involved. 445 */ 446static inline int PageTransCompound(struct page *page) 447{ 448 return PageCompound(page); 449} 450 451/* 452 * PageTransTail returns true for both transparent huge pages 453 * and hugetlbfs pages, so it should only be called when it's known 454 * that hugetlbfs pages aren't involved. 455 */ 456static inline int PageTransTail(struct page *page) 457{ 458 return PageTail(page); 459} 460 461#else 462 463static inline int PageTransHuge(struct page *page) 464{ 465 return 0; 466} 467 468static inline int PageTransCompound(struct page *page) 469{ 470 return 0; 471} 472 473static inline int PageTransTail(struct page *page) 474{ 475 return 0; 476} 477#endif 478 479/* 480 * If network-based swap is enabled, sl*b must keep track of whether pages 481 * were allocated from pfmemalloc reserves. 482 */ 483static inline int PageSlabPfmemalloc(struct page *page) 484{ 485 VM_BUG_ON_PAGE(!PageSlab(page), page); 486 return PageActive(page); 487} 488 489static inline void SetPageSlabPfmemalloc(struct page *page) 490{ 491 VM_BUG_ON_PAGE(!PageSlab(page), page); 492 SetPageActive(page); 493} 494 495static inline void __ClearPageSlabPfmemalloc(struct page *page) 496{ 497 VM_BUG_ON_PAGE(!PageSlab(page), page); 498 __ClearPageActive(page); 499} 500 501static inline void ClearPageSlabPfmemalloc(struct page *page) 502{ 503 VM_BUG_ON_PAGE(!PageSlab(page), page); 504 ClearPageActive(page); 505} 506 507#ifdef CONFIG_MMU 508#define __PG_MLOCKED (1 << PG_mlocked) 509#else 510#define __PG_MLOCKED 0 511#endif 512 513#ifdef CONFIG_TRANSPARENT_HUGEPAGE 514#define __PG_COMPOUND_LOCK (1 << PG_compound_lock) 515#else 516#define __PG_COMPOUND_LOCK 0 517#endif 518 519/* 520 * Flags checked when a page is freed. Pages being freed should not have 521 * these flags set. It they are, there is a problem. 522 */ 523#define PAGE_FLAGS_CHECK_AT_FREE \ 524 (1 << PG_lru | 1 << PG_locked | \ 525 1 << PG_private | 1 << PG_private_2 | \ 526 1 << PG_writeback | 1 << PG_reserved | \ 527 1 << PG_slab | 1 << PG_swapcache | 1 << PG_active | \ 528 1 << PG_unevictable | __PG_MLOCKED | __PG_HWPOISON | \ 529 __PG_COMPOUND_LOCK) 530 531/* 532 * Flags checked when a page is prepped for return by the page allocator. 533 * Pages being prepped should not have any flags set. It they are set, 534 * there has been a kernel bug or struct page corruption. 535 */ 536#define PAGE_FLAGS_CHECK_AT_PREP ((1 << NR_PAGEFLAGS) - 1) 537 538#define PAGE_FLAGS_PRIVATE \ 539 (1 << PG_private | 1 << PG_private_2) 540/** 541 * page_has_private - Determine if page has private stuff 542 * @page: The page to be checked 543 * 544 * Determine if a page has private stuff, indicating that release routines 545 * should be invoked upon it. 546 */ 547static inline int page_has_private(struct page *page) 548{ 549 return !!(page->flags & PAGE_FLAGS_PRIVATE); 550} 551 552#endif /* !__GENERATING_BOUNDS_H */ 553 554#endif /* PAGE_FLAGS_H */