at v3.19 71 kB view raw
1#ifndef _LINUX_MM_H 2#define _LINUX_MM_H 3 4#include <linux/errno.h> 5 6#ifdef __KERNEL__ 7 8#include <linux/mmdebug.h> 9#include <linux/gfp.h> 10#include <linux/bug.h> 11#include <linux/list.h> 12#include <linux/mmzone.h> 13#include <linux/rbtree.h> 14#include <linux/atomic.h> 15#include <linux/debug_locks.h> 16#include <linux/mm_types.h> 17#include <linux/range.h> 18#include <linux/pfn.h> 19#include <linux/bit_spinlock.h> 20#include <linux/shrinker.h> 21#include <linux/resource.h> 22#include <linux/page_ext.h> 23 24struct mempolicy; 25struct anon_vma; 26struct anon_vma_chain; 27struct file_ra_state; 28struct user_struct; 29struct writeback_control; 30 31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 32extern unsigned long max_mapnr; 33 34static inline void set_max_mapnr(unsigned long limit) 35{ 36 max_mapnr = limit; 37} 38#else 39static inline void set_max_mapnr(unsigned long limit) { } 40#endif 41 42extern unsigned long totalram_pages; 43extern void * high_memory; 44extern int page_cluster; 45 46#ifdef CONFIG_SYSCTL 47extern int sysctl_legacy_va_layout; 48#else 49#define sysctl_legacy_va_layout 0 50#endif 51 52#include <asm/page.h> 53#include <asm/pgtable.h> 54#include <asm/processor.h> 55 56#ifndef __pa_symbol 57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 58#endif 59 60/* 61 * To prevent common memory management code establishing 62 * a zero page mapping on a read fault. 63 * This macro should be defined within <asm/pgtable.h>. 64 * s390 does this to prevent multiplexing of hardware bits 65 * related to the physical page in case of virtualization. 66 */ 67#ifndef mm_forbids_zeropage 68#define mm_forbids_zeropage(X) (0) 69#endif 70 71extern unsigned long sysctl_user_reserve_kbytes; 72extern unsigned long sysctl_admin_reserve_kbytes; 73 74extern int sysctl_overcommit_memory; 75extern int sysctl_overcommit_ratio; 76extern unsigned long sysctl_overcommit_kbytes; 77 78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 79 size_t *, loff_t *); 80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82 83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 84 85/* to align the pointer to the (next) page boundary */ 86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 87 88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 90 91/* 92 * Linux kernel virtual memory manager primitives. 93 * The idea being to have a "virtual" mm in the same way 94 * we have a virtual fs - giving a cleaner interface to the 95 * mm details, and allowing different kinds of memory mappings 96 * (from shared memory to executable loading to arbitrary 97 * mmap() functions). 98 */ 99 100extern struct kmem_cache *vm_area_cachep; 101 102#ifndef CONFIG_MMU 103extern struct rb_root nommu_region_tree; 104extern struct rw_semaphore nommu_region_sem; 105 106extern unsigned int kobjsize(const void *objp); 107#endif 108 109/* 110 * vm_flags in vm_area_struct, see mm_types.h. 111 */ 112#define VM_NONE 0x00000000 113 114#define VM_READ 0x00000001 /* currently active flags */ 115#define VM_WRITE 0x00000002 116#define VM_EXEC 0x00000004 117#define VM_SHARED 0x00000008 118 119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 121#define VM_MAYWRITE 0x00000020 122#define VM_MAYEXEC 0x00000040 123#define VM_MAYSHARE 0x00000080 124 125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 128 129#define VM_LOCKED 0x00002000 130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 131 132 /* Used by sys_madvise() */ 133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 135 136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 141#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 143#define VM_ARCH_2 0x02000000 144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 145 146#ifdef CONFIG_MEM_SOFT_DIRTY 147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 148#else 149# define VM_SOFTDIRTY 0 150#endif 151 152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 156 157#if defined(CONFIG_X86) 158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 159#elif defined(CONFIG_PPC) 160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 161#elif defined(CONFIG_PARISC) 162# define VM_GROWSUP VM_ARCH_1 163#elif defined(CONFIG_METAG) 164# define VM_GROWSUP VM_ARCH_1 165#elif defined(CONFIG_IA64) 166# define VM_GROWSUP VM_ARCH_1 167#elif !defined(CONFIG_MMU) 168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 169#endif 170 171#if defined(CONFIG_X86) 172/* MPX specific bounds table or bounds directory */ 173# define VM_MPX VM_ARCH_2 174#endif 175 176#ifndef VM_GROWSUP 177# define VM_GROWSUP VM_NONE 178#endif 179 180/* Bits set in the VMA until the stack is in its final location */ 181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 182 183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 185#endif 186 187#ifdef CONFIG_STACK_GROWSUP 188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 189#else 190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 191#endif 192 193/* 194 * Special vmas that are non-mergable, non-mlock()able. 195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 196 */ 197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 198 199/* This mask defines which mm->def_flags a process can inherit its parent */ 200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 201 202/* 203 * mapping from the currently active vm_flags protection bits (the 204 * low four bits) to a page protection mask.. 205 */ 206extern pgprot_t protection_map[16]; 207 208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 209#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 210#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 211#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 212#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 213#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 214#define FAULT_FLAG_TRIED 0x40 /* second try */ 215#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 216 217/* 218 * vm_fault is filled by the the pagefault handler and passed to the vma's 219 * ->fault function. The vma's ->fault is responsible for returning a bitmask 220 * of VM_FAULT_xxx flags that give details about how the fault was handled. 221 * 222 * pgoff should be used in favour of virtual_address, if possible. If pgoff 223 * is used, one may implement ->remap_pages to get nonlinear mapping support. 224 */ 225struct vm_fault { 226 unsigned int flags; /* FAULT_FLAG_xxx flags */ 227 pgoff_t pgoff; /* Logical page offset based on vma */ 228 void __user *virtual_address; /* Faulting virtual address */ 229 230 struct page *page; /* ->fault handlers should return a 231 * page here, unless VM_FAULT_NOPAGE 232 * is set (which is also implied by 233 * VM_FAULT_ERROR). 234 */ 235 /* for ->map_pages() only */ 236 pgoff_t max_pgoff; /* map pages for offset from pgoff till 237 * max_pgoff inclusive */ 238 pte_t *pte; /* pte entry associated with ->pgoff */ 239}; 240 241/* 242 * These are the virtual MM functions - opening of an area, closing and 243 * unmapping it (needed to keep files on disk up-to-date etc), pointer 244 * to the functions called when a no-page or a wp-page exception occurs. 245 */ 246struct vm_operations_struct { 247 void (*open)(struct vm_area_struct * area); 248 void (*close)(struct vm_area_struct * area); 249 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 250 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 251 252 /* notification that a previously read-only page is about to become 253 * writable, if an error is returned it will cause a SIGBUS */ 254 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 255 256 /* called by access_process_vm when get_user_pages() fails, typically 257 * for use by special VMAs that can switch between memory and hardware 258 */ 259 int (*access)(struct vm_area_struct *vma, unsigned long addr, 260 void *buf, int len, int write); 261 262 /* Called by the /proc/PID/maps code to ask the vma whether it 263 * has a special name. Returning non-NULL will also cause this 264 * vma to be dumped unconditionally. */ 265 const char *(*name)(struct vm_area_struct *vma); 266 267#ifdef CONFIG_NUMA 268 /* 269 * set_policy() op must add a reference to any non-NULL @new mempolicy 270 * to hold the policy upon return. Caller should pass NULL @new to 271 * remove a policy and fall back to surrounding context--i.e. do not 272 * install a MPOL_DEFAULT policy, nor the task or system default 273 * mempolicy. 274 */ 275 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 276 277 /* 278 * get_policy() op must add reference [mpol_get()] to any policy at 279 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 280 * in mm/mempolicy.c will do this automatically. 281 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 282 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 283 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 284 * must return NULL--i.e., do not "fallback" to task or system default 285 * policy. 286 */ 287 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 288 unsigned long addr); 289#endif 290 /* called by sys_remap_file_pages() to populate non-linear mapping */ 291 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 292 unsigned long size, pgoff_t pgoff); 293}; 294 295struct mmu_gather; 296struct inode; 297 298#define page_private(page) ((page)->private) 299#define set_page_private(page, v) ((page)->private = (v)) 300 301/* It's valid only if the page is free path or free_list */ 302static inline void set_freepage_migratetype(struct page *page, int migratetype) 303{ 304 page->index = migratetype; 305} 306 307/* It's valid only if the page is free path or free_list */ 308static inline int get_freepage_migratetype(struct page *page) 309{ 310 return page->index; 311} 312 313/* 314 * FIXME: take this include out, include page-flags.h in 315 * files which need it (119 of them) 316 */ 317#include <linux/page-flags.h> 318#include <linux/huge_mm.h> 319 320/* 321 * Methods to modify the page usage count. 322 * 323 * What counts for a page usage: 324 * - cache mapping (page->mapping) 325 * - private data (page->private) 326 * - page mapped in a task's page tables, each mapping 327 * is counted separately 328 * 329 * Also, many kernel routines increase the page count before a critical 330 * routine so they can be sure the page doesn't go away from under them. 331 */ 332 333/* 334 * Drop a ref, return true if the refcount fell to zero (the page has no users) 335 */ 336static inline int put_page_testzero(struct page *page) 337{ 338 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 339 return atomic_dec_and_test(&page->_count); 340} 341 342/* 343 * Try to grab a ref unless the page has a refcount of zero, return false if 344 * that is the case. 345 * This can be called when MMU is off so it must not access 346 * any of the virtual mappings. 347 */ 348static inline int get_page_unless_zero(struct page *page) 349{ 350 return atomic_inc_not_zero(&page->_count); 351} 352 353/* 354 * Try to drop a ref unless the page has a refcount of one, return false if 355 * that is the case. 356 * This is to make sure that the refcount won't become zero after this drop. 357 * This can be called when MMU is off so it must not access 358 * any of the virtual mappings. 359 */ 360static inline int put_page_unless_one(struct page *page) 361{ 362 return atomic_add_unless(&page->_count, -1, 1); 363} 364 365extern int page_is_ram(unsigned long pfn); 366extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 367 368/* Support for virtually mapped pages */ 369struct page *vmalloc_to_page(const void *addr); 370unsigned long vmalloc_to_pfn(const void *addr); 371 372/* 373 * Determine if an address is within the vmalloc range 374 * 375 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 376 * is no special casing required. 377 */ 378static inline int is_vmalloc_addr(const void *x) 379{ 380#ifdef CONFIG_MMU 381 unsigned long addr = (unsigned long)x; 382 383 return addr >= VMALLOC_START && addr < VMALLOC_END; 384#else 385 return 0; 386#endif 387} 388#ifdef CONFIG_MMU 389extern int is_vmalloc_or_module_addr(const void *x); 390#else 391static inline int is_vmalloc_or_module_addr(const void *x) 392{ 393 return 0; 394} 395#endif 396 397extern void kvfree(const void *addr); 398 399static inline void compound_lock(struct page *page) 400{ 401#ifdef CONFIG_TRANSPARENT_HUGEPAGE 402 VM_BUG_ON_PAGE(PageSlab(page), page); 403 bit_spin_lock(PG_compound_lock, &page->flags); 404#endif 405} 406 407static inline void compound_unlock(struct page *page) 408{ 409#ifdef CONFIG_TRANSPARENT_HUGEPAGE 410 VM_BUG_ON_PAGE(PageSlab(page), page); 411 bit_spin_unlock(PG_compound_lock, &page->flags); 412#endif 413} 414 415static inline unsigned long compound_lock_irqsave(struct page *page) 416{ 417 unsigned long uninitialized_var(flags); 418#ifdef CONFIG_TRANSPARENT_HUGEPAGE 419 local_irq_save(flags); 420 compound_lock(page); 421#endif 422 return flags; 423} 424 425static inline void compound_unlock_irqrestore(struct page *page, 426 unsigned long flags) 427{ 428#ifdef CONFIG_TRANSPARENT_HUGEPAGE 429 compound_unlock(page); 430 local_irq_restore(flags); 431#endif 432} 433 434static inline struct page *compound_head_by_tail(struct page *tail) 435{ 436 struct page *head = tail->first_page; 437 438 /* 439 * page->first_page may be a dangling pointer to an old 440 * compound page, so recheck that it is still a tail 441 * page before returning. 442 */ 443 smp_rmb(); 444 if (likely(PageTail(tail))) 445 return head; 446 return tail; 447} 448 449static inline struct page *compound_head(struct page *page) 450{ 451 if (unlikely(PageTail(page))) 452 return compound_head_by_tail(page); 453 return page; 454} 455 456/* 457 * The atomic page->_mapcount, starts from -1: so that transitions 458 * both from it and to it can be tracked, using atomic_inc_and_test 459 * and atomic_add_negative(-1). 460 */ 461static inline void page_mapcount_reset(struct page *page) 462{ 463 atomic_set(&(page)->_mapcount, -1); 464} 465 466static inline int page_mapcount(struct page *page) 467{ 468 return atomic_read(&(page)->_mapcount) + 1; 469} 470 471static inline int page_count(struct page *page) 472{ 473 return atomic_read(&compound_head(page)->_count); 474} 475 476#ifdef CONFIG_HUGETLB_PAGE 477extern int PageHeadHuge(struct page *page_head); 478#else /* CONFIG_HUGETLB_PAGE */ 479static inline int PageHeadHuge(struct page *page_head) 480{ 481 return 0; 482} 483#endif /* CONFIG_HUGETLB_PAGE */ 484 485static inline bool __compound_tail_refcounted(struct page *page) 486{ 487 return !PageSlab(page) && !PageHeadHuge(page); 488} 489 490/* 491 * This takes a head page as parameter and tells if the 492 * tail page reference counting can be skipped. 493 * 494 * For this to be safe, PageSlab and PageHeadHuge must remain true on 495 * any given page where they return true here, until all tail pins 496 * have been released. 497 */ 498static inline bool compound_tail_refcounted(struct page *page) 499{ 500 VM_BUG_ON_PAGE(!PageHead(page), page); 501 return __compound_tail_refcounted(page); 502} 503 504static inline void get_huge_page_tail(struct page *page) 505{ 506 /* 507 * __split_huge_page_refcount() cannot run from under us. 508 */ 509 VM_BUG_ON_PAGE(!PageTail(page), page); 510 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 511 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 512 if (compound_tail_refcounted(page->first_page)) 513 atomic_inc(&page->_mapcount); 514} 515 516extern bool __get_page_tail(struct page *page); 517 518static inline void get_page(struct page *page) 519{ 520 if (unlikely(PageTail(page))) 521 if (likely(__get_page_tail(page))) 522 return; 523 /* 524 * Getting a normal page or the head of a compound page 525 * requires to already have an elevated page->_count. 526 */ 527 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 528 atomic_inc(&page->_count); 529} 530 531static inline struct page *virt_to_head_page(const void *x) 532{ 533 struct page *page = virt_to_page(x); 534 return compound_head(page); 535} 536 537/* 538 * Setup the page count before being freed into the page allocator for 539 * the first time (boot or memory hotplug) 540 */ 541static inline void init_page_count(struct page *page) 542{ 543 atomic_set(&page->_count, 1); 544} 545 546/* 547 * PageBuddy() indicate that the page is free and in the buddy system 548 * (see mm/page_alloc.c). 549 * 550 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 551 * -2 so that an underflow of the page_mapcount() won't be mistaken 552 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 553 * efficiently by most CPU architectures. 554 */ 555#define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 556 557static inline int PageBuddy(struct page *page) 558{ 559 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 560} 561 562static inline void __SetPageBuddy(struct page *page) 563{ 564 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 565 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 566} 567 568static inline void __ClearPageBuddy(struct page *page) 569{ 570 VM_BUG_ON_PAGE(!PageBuddy(page), page); 571 atomic_set(&page->_mapcount, -1); 572} 573 574#define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 575 576static inline int PageBalloon(struct page *page) 577{ 578 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 579} 580 581static inline void __SetPageBalloon(struct page *page) 582{ 583 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 584 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 585} 586 587static inline void __ClearPageBalloon(struct page *page) 588{ 589 VM_BUG_ON_PAGE(!PageBalloon(page), page); 590 atomic_set(&page->_mapcount, -1); 591} 592 593void put_page(struct page *page); 594void put_pages_list(struct list_head *pages); 595 596void split_page(struct page *page, unsigned int order); 597int split_free_page(struct page *page); 598 599/* 600 * Compound pages have a destructor function. Provide a 601 * prototype for that function and accessor functions. 602 * These are _only_ valid on the head of a PG_compound page. 603 */ 604typedef void compound_page_dtor(struct page *); 605 606static inline void set_compound_page_dtor(struct page *page, 607 compound_page_dtor *dtor) 608{ 609 page[1].lru.next = (void *)dtor; 610} 611 612static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 613{ 614 return (compound_page_dtor *)page[1].lru.next; 615} 616 617static inline int compound_order(struct page *page) 618{ 619 if (!PageHead(page)) 620 return 0; 621 return (unsigned long)page[1].lru.prev; 622} 623 624static inline void set_compound_order(struct page *page, unsigned long order) 625{ 626 page[1].lru.prev = (void *)order; 627} 628 629#ifdef CONFIG_MMU 630/* 631 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 632 * servicing faults for write access. In the normal case, do always want 633 * pte_mkwrite. But get_user_pages can cause write faults for mappings 634 * that do not have writing enabled, when used by access_process_vm. 635 */ 636static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 637{ 638 if (likely(vma->vm_flags & VM_WRITE)) 639 pte = pte_mkwrite(pte); 640 return pte; 641} 642 643void do_set_pte(struct vm_area_struct *vma, unsigned long address, 644 struct page *page, pte_t *pte, bool write, bool anon); 645#endif 646 647/* 648 * Multiple processes may "see" the same page. E.g. for untouched 649 * mappings of /dev/null, all processes see the same page full of 650 * zeroes, and text pages of executables and shared libraries have 651 * only one copy in memory, at most, normally. 652 * 653 * For the non-reserved pages, page_count(page) denotes a reference count. 654 * page_count() == 0 means the page is free. page->lru is then used for 655 * freelist management in the buddy allocator. 656 * page_count() > 0 means the page has been allocated. 657 * 658 * Pages are allocated by the slab allocator in order to provide memory 659 * to kmalloc and kmem_cache_alloc. In this case, the management of the 660 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 661 * unless a particular usage is carefully commented. (the responsibility of 662 * freeing the kmalloc memory is the caller's, of course). 663 * 664 * A page may be used by anyone else who does a __get_free_page(). 665 * In this case, page_count still tracks the references, and should only 666 * be used through the normal accessor functions. The top bits of page->flags 667 * and page->virtual store page management information, but all other fields 668 * are unused and could be used privately, carefully. The management of this 669 * page is the responsibility of the one who allocated it, and those who have 670 * subsequently been given references to it. 671 * 672 * The other pages (we may call them "pagecache pages") are completely 673 * managed by the Linux memory manager: I/O, buffers, swapping etc. 674 * The following discussion applies only to them. 675 * 676 * A pagecache page contains an opaque `private' member, which belongs to the 677 * page's address_space. Usually, this is the address of a circular list of 678 * the page's disk buffers. PG_private must be set to tell the VM to call 679 * into the filesystem to release these pages. 680 * 681 * A page may belong to an inode's memory mapping. In this case, page->mapping 682 * is the pointer to the inode, and page->index is the file offset of the page, 683 * in units of PAGE_CACHE_SIZE. 684 * 685 * If pagecache pages are not associated with an inode, they are said to be 686 * anonymous pages. These may become associated with the swapcache, and in that 687 * case PG_swapcache is set, and page->private is an offset into the swapcache. 688 * 689 * In either case (swapcache or inode backed), the pagecache itself holds one 690 * reference to the page. Setting PG_private should also increment the 691 * refcount. The each user mapping also has a reference to the page. 692 * 693 * The pagecache pages are stored in a per-mapping radix tree, which is 694 * rooted at mapping->page_tree, and indexed by offset. 695 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 696 * lists, we instead now tag pages as dirty/writeback in the radix tree. 697 * 698 * All pagecache pages may be subject to I/O: 699 * - inode pages may need to be read from disk, 700 * - inode pages which have been modified and are MAP_SHARED may need 701 * to be written back to the inode on disk, 702 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 703 * modified may need to be swapped out to swap space and (later) to be read 704 * back into memory. 705 */ 706 707/* 708 * The zone field is never updated after free_area_init_core() 709 * sets it, so none of the operations on it need to be atomic. 710 */ 711 712/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 713#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 714#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 715#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 716#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 717 718/* 719 * Define the bit shifts to access each section. For non-existent 720 * sections we define the shift as 0; that plus a 0 mask ensures 721 * the compiler will optimise away reference to them. 722 */ 723#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 724#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 725#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 726#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 727 728/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 729#ifdef NODE_NOT_IN_PAGE_FLAGS 730#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 731#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 732 SECTIONS_PGOFF : ZONES_PGOFF) 733#else 734#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 735#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 736 NODES_PGOFF : ZONES_PGOFF) 737#endif 738 739#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 740 741#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 742#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 743#endif 744 745#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 746#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 747#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 748#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 749#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 750 751static inline enum zone_type page_zonenum(const struct page *page) 752{ 753 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 754} 755 756#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 757#define SECTION_IN_PAGE_FLAGS 758#endif 759 760/* 761 * The identification function is mainly used by the buddy allocator for 762 * determining if two pages could be buddies. We are not really identifying 763 * the zone since we could be using the section number id if we do not have 764 * node id available in page flags. 765 * We only guarantee that it will return the same value for two combinable 766 * pages in a zone. 767 */ 768static inline int page_zone_id(struct page *page) 769{ 770 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 771} 772 773static inline int zone_to_nid(struct zone *zone) 774{ 775#ifdef CONFIG_NUMA 776 return zone->node; 777#else 778 return 0; 779#endif 780} 781 782#ifdef NODE_NOT_IN_PAGE_FLAGS 783extern int page_to_nid(const struct page *page); 784#else 785static inline int page_to_nid(const struct page *page) 786{ 787 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 788} 789#endif 790 791#ifdef CONFIG_NUMA_BALANCING 792static inline int cpu_pid_to_cpupid(int cpu, int pid) 793{ 794 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 795} 796 797static inline int cpupid_to_pid(int cpupid) 798{ 799 return cpupid & LAST__PID_MASK; 800} 801 802static inline int cpupid_to_cpu(int cpupid) 803{ 804 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 805} 806 807static inline int cpupid_to_nid(int cpupid) 808{ 809 return cpu_to_node(cpupid_to_cpu(cpupid)); 810} 811 812static inline bool cpupid_pid_unset(int cpupid) 813{ 814 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 815} 816 817static inline bool cpupid_cpu_unset(int cpupid) 818{ 819 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 820} 821 822static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 823{ 824 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 825} 826 827#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 828#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 829static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 830{ 831 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 832} 833 834static inline int page_cpupid_last(struct page *page) 835{ 836 return page->_last_cpupid; 837} 838static inline void page_cpupid_reset_last(struct page *page) 839{ 840 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 841} 842#else 843static inline int page_cpupid_last(struct page *page) 844{ 845 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 846} 847 848extern int page_cpupid_xchg_last(struct page *page, int cpupid); 849 850static inline void page_cpupid_reset_last(struct page *page) 851{ 852 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 853 854 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 855 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 856} 857#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 858#else /* !CONFIG_NUMA_BALANCING */ 859static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 860{ 861 return page_to_nid(page); /* XXX */ 862} 863 864static inline int page_cpupid_last(struct page *page) 865{ 866 return page_to_nid(page); /* XXX */ 867} 868 869static inline int cpupid_to_nid(int cpupid) 870{ 871 return -1; 872} 873 874static inline int cpupid_to_pid(int cpupid) 875{ 876 return -1; 877} 878 879static inline int cpupid_to_cpu(int cpupid) 880{ 881 return -1; 882} 883 884static inline int cpu_pid_to_cpupid(int nid, int pid) 885{ 886 return -1; 887} 888 889static inline bool cpupid_pid_unset(int cpupid) 890{ 891 return 1; 892} 893 894static inline void page_cpupid_reset_last(struct page *page) 895{ 896} 897 898static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 899{ 900 return false; 901} 902#endif /* CONFIG_NUMA_BALANCING */ 903 904static inline struct zone *page_zone(const struct page *page) 905{ 906 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 907} 908 909#ifdef SECTION_IN_PAGE_FLAGS 910static inline void set_page_section(struct page *page, unsigned long section) 911{ 912 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 913 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 914} 915 916static inline unsigned long page_to_section(const struct page *page) 917{ 918 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 919} 920#endif 921 922static inline void set_page_zone(struct page *page, enum zone_type zone) 923{ 924 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 925 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 926} 927 928static inline void set_page_node(struct page *page, unsigned long node) 929{ 930 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 931 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 932} 933 934static inline void set_page_links(struct page *page, enum zone_type zone, 935 unsigned long node, unsigned long pfn) 936{ 937 set_page_zone(page, zone); 938 set_page_node(page, node); 939#ifdef SECTION_IN_PAGE_FLAGS 940 set_page_section(page, pfn_to_section_nr(pfn)); 941#endif 942} 943 944/* 945 * Some inline functions in vmstat.h depend on page_zone() 946 */ 947#include <linux/vmstat.h> 948 949static __always_inline void *lowmem_page_address(const struct page *page) 950{ 951 return __va(PFN_PHYS(page_to_pfn(page))); 952} 953 954#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 955#define HASHED_PAGE_VIRTUAL 956#endif 957 958#if defined(WANT_PAGE_VIRTUAL) 959static inline void *page_address(const struct page *page) 960{ 961 return page->virtual; 962} 963static inline void set_page_address(struct page *page, void *address) 964{ 965 page->virtual = address; 966} 967#define page_address_init() do { } while(0) 968#endif 969 970#if defined(HASHED_PAGE_VIRTUAL) 971void *page_address(const struct page *page); 972void set_page_address(struct page *page, void *virtual); 973void page_address_init(void); 974#endif 975 976#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 977#define page_address(page) lowmem_page_address(page) 978#define set_page_address(page, address) do { } while(0) 979#define page_address_init() do { } while(0) 980#endif 981 982/* 983 * On an anonymous page mapped into a user virtual memory area, 984 * page->mapping points to its anon_vma, not to a struct address_space; 985 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 986 * 987 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 988 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 989 * and then page->mapping points, not to an anon_vma, but to a private 990 * structure which KSM associates with that merged page. See ksm.h. 991 * 992 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 993 * 994 * Please note that, confusingly, "page_mapping" refers to the inode 995 * address_space which maps the page from disk; whereas "page_mapped" 996 * refers to user virtual address space into which the page is mapped. 997 */ 998#define PAGE_MAPPING_ANON 1 999#define PAGE_MAPPING_KSM 2 1000#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 1001 1002extern struct address_space *page_mapping(struct page *page); 1003 1004/* Neutral page->mapping pointer to address_space or anon_vma or other */ 1005static inline void *page_rmapping(struct page *page) 1006{ 1007 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 1008} 1009 1010extern struct address_space *__page_file_mapping(struct page *); 1011 1012static inline 1013struct address_space *page_file_mapping(struct page *page) 1014{ 1015 if (unlikely(PageSwapCache(page))) 1016 return __page_file_mapping(page); 1017 1018 return page->mapping; 1019} 1020 1021static inline int PageAnon(struct page *page) 1022{ 1023 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 1024} 1025 1026/* 1027 * Return the pagecache index of the passed page. Regular pagecache pages 1028 * use ->index whereas swapcache pages use ->private 1029 */ 1030static inline pgoff_t page_index(struct page *page) 1031{ 1032 if (unlikely(PageSwapCache(page))) 1033 return page_private(page); 1034 return page->index; 1035} 1036 1037extern pgoff_t __page_file_index(struct page *page); 1038 1039/* 1040 * Return the file index of the page. Regular pagecache pages use ->index 1041 * whereas swapcache pages use swp_offset(->private) 1042 */ 1043static inline pgoff_t page_file_index(struct page *page) 1044{ 1045 if (unlikely(PageSwapCache(page))) 1046 return __page_file_index(page); 1047 1048 return page->index; 1049} 1050 1051/* 1052 * Return true if this page is mapped into pagetables. 1053 */ 1054static inline int page_mapped(struct page *page) 1055{ 1056 return atomic_read(&(page)->_mapcount) >= 0; 1057} 1058 1059/* 1060 * Different kinds of faults, as returned by handle_mm_fault(). 1061 * Used to decide whether a process gets delivered SIGBUS or 1062 * just gets major/minor fault counters bumped up. 1063 */ 1064 1065#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1066 1067#define VM_FAULT_OOM 0x0001 1068#define VM_FAULT_SIGBUS 0x0002 1069#define VM_FAULT_MAJOR 0x0004 1070#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1071#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1072#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1073#define VM_FAULT_SIGSEGV 0x0040 1074 1075#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1076#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1077#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1078#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1079 1080#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1081 1082#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1083 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1084 VM_FAULT_FALLBACK) 1085 1086/* Encode hstate index for a hwpoisoned large page */ 1087#define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1088#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1089 1090/* 1091 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1092 */ 1093extern void pagefault_out_of_memory(void); 1094 1095#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1096 1097/* 1098 * Flags passed to show_mem() and show_free_areas() to suppress output in 1099 * various contexts. 1100 */ 1101#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1102 1103extern void show_free_areas(unsigned int flags); 1104extern bool skip_free_areas_node(unsigned int flags, int nid); 1105 1106int shmem_zero_setup(struct vm_area_struct *); 1107#ifdef CONFIG_SHMEM 1108bool shmem_mapping(struct address_space *mapping); 1109#else 1110static inline bool shmem_mapping(struct address_space *mapping) 1111{ 1112 return false; 1113} 1114#endif 1115 1116extern int can_do_mlock(void); 1117extern int user_shm_lock(size_t, struct user_struct *); 1118extern void user_shm_unlock(size_t, struct user_struct *); 1119 1120/* 1121 * Parameter block passed down to zap_pte_range in exceptional cases. 1122 */ 1123struct zap_details { 1124 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1125 struct address_space *check_mapping; /* Check page->mapping if set */ 1126 pgoff_t first_index; /* Lowest page->index to unmap */ 1127 pgoff_t last_index; /* Highest page->index to unmap */ 1128}; 1129 1130struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1131 pte_t pte); 1132 1133int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1134 unsigned long size); 1135void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1136 unsigned long size, struct zap_details *); 1137void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1138 unsigned long start, unsigned long end); 1139 1140/** 1141 * mm_walk - callbacks for walk_page_range 1142 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1143 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1144 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1145 * this handler is required to be able to handle 1146 * pmd_trans_huge() pmds. They may simply choose to 1147 * split_huge_page() instead of handling it explicitly. 1148 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1149 * @pte_hole: if set, called for each hole at all levels 1150 * @hugetlb_entry: if set, called for each hugetlb entry 1151 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1152 * is used. 1153 * 1154 * (see walk_page_range for more details) 1155 */ 1156struct mm_walk { 1157 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1158 unsigned long next, struct mm_walk *walk); 1159 int (*pud_entry)(pud_t *pud, unsigned long addr, 1160 unsigned long next, struct mm_walk *walk); 1161 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1162 unsigned long next, struct mm_walk *walk); 1163 int (*pte_entry)(pte_t *pte, unsigned long addr, 1164 unsigned long next, struct mm_walk *walk); 1165 int (*pte_hole)(unsigned long addr, unsigned long next, 1166 struct mm_walk *walk); 1167 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1168 unsigned long addr, unsigned long next, 1169 struct mm_walk *walk); 1170 struct mm_struct *mm; 1171 void *private; 1172}; 1173 1174int walk_page_range(unsigned long addr, unsigned long end, 1175 struct mm_walk *walk); 1176void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1177 unsigned long end, unsigned long floor, unsigned long ceiling); 1178int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1179 struct vm_area_struct *vma); 1180void unmap_mapping_range(struct address_space *mapping, 1181 loff_t const holebegin, loff_t const holelen, int even_cows); 1182int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1183 unsigned long *pfn); 1184int follow_phys(struct vm_area_struct *vma, unsigned long address, 1185 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1186int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1187 void *buf, int len, int write); 1188 1189static inline void unmap_shared_mapping_range(struct address_space *mapping, 1190 loff_t const holebegin, loff_t const holelen) 1191{ 1192 unmap_mapping_range(mapping, holebegin, holelen, 0); 1193} 1194 1195extern void truncate_pagecache(struct inode *inode, loff_t new); 1196extern void truncate_setsize(struct inode *inode, loff_t newsize); 1197void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1198void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1199int truncate_inode_page(struct address_space *mapping, struct page *page); 1200int generic_error_remove_page(struct address_space *mapping, struct page *page); 1201int invalidate_inode_page(struct page *page); 1202 1203#ifdef CONFIG_MMU 1204extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1205 unsigned long address, unsigned int flags); 1206extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1207 unsigned long address, unsigned int fault_flags); 1208#else 1209static inline int handle_mm_fault(struct mm_struct *mm, 1210 struct vm_area_struct *vma, unsigned long address, 1211 unsigned int flags) 1212{ 1213 /* should never happen if there's no MMU */ 1214 BUG(); 1215 return VM_FAULT_SIGBUS; 1216} 1217static inline int fixup_user_fault(struct task_struct *tsk, 1218 struct mm_struct *mm, unsigned long address, 1219 unsigned int fault_flags) 1220{ 1221 /* should never happen if there's no MMU */ 1222 BUG(); 1223 return -EFAULT; 1224} 1225#endif 1226 1227extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1228extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1229 void *buf, int len, int write); 1230 1231long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1232 unsigned long start, unsigned long nr_pages, 1233 unsigned int foll_flags, struct page **pages, 1234 struct vm_area_struct **vmas, int *nonblocking); 1235long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1236 unsigned long start, unsigned long nr_pages, 1237 int write, int force, struct page **pages, 1238 struct vm_area_struct **vmas); 1239int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1240 struct page **pages); 1241struct kvec; 1242int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1243 struct page **pages); 1244int get_kernel_page(unsigned long start, int write, struct page **pages); 1245struct page *get_dump_page(unsigned long addr); 1246 1247extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1248extern void do_invalidatepage(struct page *page, unsigned int offset, 1249 unsigned int length); 1250 1251int __set_page_dirty_nobuffers(struct page *page); 1252int __set_page_dirty_no_writeback(struct page *page); 1253int redirty_page_for_writepage(struct writeback_control *wbc, 1254 struct page *page); 1255void account_page_dirtied(struct page *page, struct address_space *mapping); 1256int set_page_dirty(struct page *page); 1257int set_page_dirty_lock(struct page *page); 1258int clear_page_dirty_for_io(struct page *page); 1259int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1260 1261/* Is the vma a continuation of the stack vma above it? */ 1262static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1263{ 1264 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1265} 1266 1267static inline int stack_guard_page_start(struct vm_area_struct *vma, 1268 unsigned long addr) 1269{ 1270 return (vma->vm_flags & VM_GROWSDOWN) && 1271 (vma->vm_start == addr) && 1272 !vma_growsdown(vma->vm_prev, addr); 1273} 1274 1275/* Is the vma a continuation of the stack vma below it? */ 1276static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1277{ 1278 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1279} 1280 1281static inline int stack_guard_page_end(struct vm_area_struct *vma, 1282 unsigned long addr) 1283{ 1284 return (vma->vm_flags & VM_GROWSUP) && 1285 (vma->vm_end == addr) && 1286 !vma_growsup(vma->vm_next, addr); 1287} 1288 1289extern struct task_struct *task_of_stack(struct task_struct *task, 1290 struct vm_area_struct *vma, bool in_group); 1291 1292extern unsigned long move_page_tables(struct vm_area_struct *vma, 1293 unsigned long old_addr, struct vm_area_struct *new_vma, 1294 unsigned long new_addr, unsigned long len, 1295 bool need_rmap_locks); 1296extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1297 unsigned long end, pgprot_t newprot, 1298 int dirty_accountable, int prot_numa); 1299extern int mprotect_fixup(struct vm_area_struct *vma, 1300 struct vm_area_struct **pprev, unsigned long start, 1301 unsigned long end, unsigned long newflags); 1302 1303/* 1304 * doesn't attempt to fault and will return short. 1305 */ 1306int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1307 struct page **pages); 1308/* 1309 * per-process(per-mm_struct) statistics. 1310 */ 1311static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1312{ 1313 long val = atomic_long_read(&mm->rss_stat.count[member]); 1314 1315#ifdef SPLIT_RSS_COUNTING 1316 /* 1317 * counter is updated in asynchronous manner and may go to minus. 1318 * But it's never be expected number for users. 1319 */ 1320 if (val < 0) 1321 val = 0; 1322#endif 1323 return (unsigned long)val; 1324} 1325 1326static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1327{ 1328 atomic_long_add(value, &mm->rss_stat.count[member]); 1329} 1330 1331static inline void inc_mm_counter(struct mm_struct *mm, int member) 1332{ 1333 atomic_long_inc(&mm->rss_stat.count[member]); 1334} 1335 1336static inline void dec_mm_counter(struct mm_struct *mm, int member) 1337{ 1338 atomic_long_dec(&mm->rss_stat.count[member]); 1339} 1340 1341static inline unsigned long get_mm_rss(struct mm_struct *mm) 1342{ 1343 return get_mm_counter(mm, MM_FILEPAGES) + 1344 get_mm_counter(mm, MM_ANONPAGES); 1345} 1346 1347static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1348{ 1349 return max(mm->hiwater_rss, get_mm_rss(mm)); 1350} 1351 1352static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1353{ 1354 return max(mm->hiwater_vm, mm->total_vm); 1355} 1356 1357static inline void update_hiwater_rss(struct mm_struct *mm) 1358{ 1359 unsigned long _rss = get_mm_rss(mm); 1360 1361 if ((mm)->hiwater_rss < _rss) 1362 (mm)->hiwater_rss = _rss; 1363} 1364 1365static inline void update_hiwater_vm(struct mm_struct *mm) 1366{ 1367 if (mm->hiwater_vm < mm->total_vm) 1368 mm->hiwater_vm = mm->total_vm; 1369} 1370 1371static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1372 struct mm_struct *mm) 1373{ 1374 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1375 1376 if (*maxrss < hiwater_rss) 1377 *maxrss = hiwater_rss; 1378} 1379 1380#if defined(SPLIT_RSS_COUNTING) 1381void sync_mm_rss(struct mm_struct *mm); 1382#else 1383static inline void sync_mm_rss(struct mm_struct *mm) 1384{ 1385} 1386#endif 1387 1388int vma_wants_writenotify(struct vm_area_struct *vma); 1389 1390extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1391 spinlock_t **ptl); 1392static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1393 spinlock_t **ptl) 1394{ 1395 pte_t *ptep; 1396 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1397 return ptep; 1398} 1399 1400#ifdef __PAGETABLE_PUD_FOLDED 1401static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1402 unsigned long address) 1403{ 1404 return 0; 1405} 1406#else 1407int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1408#endif 1409 1410#ifdef __PAGETABLE_PMD_FOLDED 1411static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1412 unsigned long address) 1413{ 1414 return 0; 1415} 1416#else 1417int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1418#endif 1419 1420int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1421 pmd_t *pmd, unsigned long address); 1422int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1423 1424/* 1425 * The following ifdef needed to get the 4level-fixup.h header to work. 1426 * Remove it when 4level-fixup.h has been removed. 1427 */ 1428#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1429static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1430{ 1431 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1432 NULL: pud_offset(pgd, address); 1433} 1434 1435static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1436{ 1437 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1438 NULL: pmd_offset(pud, address); 1439} 1440#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1441 1442#if USE_SPLIT_PTE_PTLOCKS 1443#if ALLOC_SPLIT_PTLOCKS 1444void __init ptlock_cache_init(void); 1445extern bool ptlock_alloc(struct page *page); 1446extern void ptlock_free(struct page *page); 1447 1448static inline spinlock_t *ptlock_ptr(struct page *page) 1449{ 1450 return page->ptl; 1451} 1452#else /* ALLOC_SPLIT_PTLOCKS */ 1453static inline void ptlock_cache_init(void) 1454{ 1455} 1456 1457static inline bool ptlock_alloc(struct page *page) 1458{ 1459 return true; 1460} 1461 1462static inline void ptlock_free(struct page *page) 1463{ 1464} 1465 1466static inline spinlock_t *ptlock_ptr(struct page *page) 1467{ 1468 return &page->ptl; 1469} 1470#endif /* ALLOC_SPLIT_PTLOCKS */ 1471 1472static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1473{ 1474 return ptlock_ptr(pmd_page(*pmd)); 1475} 1476 1477static inline bool ptlock_init(struct page *page) 1478{ 1479 /* 1480 * prep_new_page() initialize page->private (and therefore page->ptl) 1481 * with 0. Make sure nobody took it in use in between. 1482 * 1483 * It can happen if arch try to use slab for page table allocation: 1484 * slab code uses page->slab_cache and page->first_page (for tail 1485 * pages), which share storage with page->ptl. 1486 */ 1487 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1488 if (!ptlock_alloc(page)) 1489 return false; 1490 spin_lock_init(ptlock_ptr(page)); 1491 return true; 1492} 1493 1494/* Reset page->mapping so free_pages_check won't complain. */ 1495static inline void pte_lock_deinit(struct page *page) 1496{ 1497 page->mapping = NULL; 1498 ptlock_free(page); 1499} 1500 1501#else /* !USE_SPLIT_PTE_PTLOCKS */ 1502/* 1503 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1504 */ 1505static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1506{ 1507 return &mm->page_table_lock; 1508} 1509static inline void ptlock_cache_init(void) {} 1510static inline bool ptlock_init(struct page *page) { return true; } 1511static inline void pte_lock_deinit(struct page *page) {} 1512#endif /* USE_SPLIT_PTE_PTLOCKS */ 1513 1514static inline void pgtable_init(void) 1515{ 1516 ptlock_cache_init(); 1517 pgtable_cache_init(); 1518} 1519 1520static inline bool pgtable_page_ctor(struct page *page) 1521{ 1522 inc_zone_page_state(page, NR_PAGETABLE); 1523 return ptlock_init(page); 1524} 1525 1526static inline void pgtable_page_dtor(struct page *page) 1527{ 1528 pte_lock_deinit(page); 1529 dec_zone_page_state(page, NR_PAGETABLE); 1530} 1531 1532#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1533({ \ 1534 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1535 pte_t *__pte = pte_offset_map(pmd, address); \ 1536 *(ptlp) = __ptl; \ 1537 spin_lock(__ptl); \ 1538 __pte; \ 1539}) 1540 1541#define pte_unmap_unlock(pte, ptl) do { \ 1542 spin_unlock(ptl); \ 1543 pte_unmap(pte); \ 1544} while (0) 1545 1546#define pte_alloc_map(mm, vma, pmd, address) \ 1547 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1548 pmd, address))? \ 1549 NULL: pte_offset_map(pmd, address)) 1550 1551#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1552 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1553 pmd, address))? \ 1554 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1555 1556#define pte_alloc_kernel(pmd, address) \ 1557 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1558 NULL: pte_offset_kernel(pmd, address)) 1559 1560#if USE_SPLIT_PMD_PTLOCKS 1561 1562static struct page *pmd_to_page(pmd_t *pmd) 1563{ 1564 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1565 return virt_to_page((void *)((unsigned long) pmd & mask)); 1566} 1567 1568static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1569{ 1570 return ptlock_ptr(pmd_to_page(pmd)); 1571} 1572 1573static inline bool pgtable_pmd_page_ctor(struct page *page) 1574{ 1575#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1576 page->pmd_huge_pte = NULL; 1577#endif 1578 return ptlock_init(page); 1579} 1580 1581static inline void pgtable_pmd_page_dtor(struct page *page) 1582{ 1583#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1584 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1585#endif 1586 ptlock_free(page); 1587} 1588 1589#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1590 1591#else 1592 1593static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1594{ 1595 return &mm->page_table_lock; 1596} 1597 1598static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1599static inline void pgtable_pmd_page_dtor(struct page *page) {} 1600 1601#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1602 1603#endif 1604 1605static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1606{ 1607 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1608 spin_lock(ptl); 1609 return ptl; 1610} 1611 1612extern void free_area_init(unsigned long * zones_size); 1613extern void free_area_init_node(int nid, unsigned long * zones_size, 1614 unsigned long zone_start_pfn, unsigned long *zholes_size); 1615extern void free_initmem(void); 1616 1617/* 1618 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1619 * into the buddy system. The freed pages will be poisoned with pattern 1620 * "poison" if it's within range [0, UCHAR_MAX]. 1621 * Return pages freed into the buddy system. 1622 */ 1623extern unsigned long free_reserved_area(void *start, void *end, 1624 int poison, char *s); 1625 1626#ifdef CONFIG_HIGHMEM 1627/* 1628 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1629 * and totalram_pages. 1630 */ 1631extern void free_highmem_page(struct page *page); 1632#endif 1633 1634extern void adjust_managed_page_count(struct page *page, long count); 1635extern void mem_init_print_info(const char *str); 1636 1637/* Free the reserved page into the buddy system, so it gets managed. */ 1638static inline void __free_reserved_page(struct page *page) 1639{ 1640 ClearPageReserved(page); 1641 init_page_count(page); 1642 __free_page(page); 1643} 1644 1645static inline void free_reserved_page(struct page *page) 1646{ 1647 __free_reserved_page(page); 1648 adjust_managed_page_count(page, 1); 1649} 1650 1651static inline void mark_page_reserved(struct page *page) 1652{ 1653 SetPageReserved(page); 1654 adjust_managed_page_count(page, -1); 1655} 1656 1657/* 1658 * Default method to free all the __init memory into the buddy system. 1659 * The freed pages will be poisoned with pattern "poison" if it's within 1660 * range [0, UCHAR_MAX]. 1661 * Return pages freed into the buddy system. 1662 */ 1663static inline unsigned long free_initmem_default(int poison) 1664{ 1665 extern char __init_begin[], __init_end[]; 1666 1667 return free_reserved_area(&__init_begin, &__init_end, 1668 poison, "unused kernel"); 1669} 1670 1671static inline unsigned long get_num_physpages(void) 1672{ 1673 int nid; 1674 unsigned long phys_pages = 0; 1675 1676 for_each_online_node(nid) 1677 phys_pages += node_present_pages(nid); 1678 1679 return phys_pages; 1680} 1681 1682#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1683/* 1684 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1685 * zones, allocate the backing mem_map and account for memory holes in a more 1686 * architecture independent manner. This is a substitute for creating the 1687 * zone_sizes[] and zholes_size[] arrays and passing them to 1688 * free_area_init_node() 1689 * 1690 * An architecture is expected to register range of page frames backed by 1691 * physical memory with memblock_add[_node]() before calling 1692 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1693 * usage, an architecture is expected to do something like 1694 * 1695 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1696 * max_highmem_pfn}; 1697 * for_each_valid_physical_page_range() 1698 * memblock_add_node(base, size, nid) 1699 * free_area_init_nodes(max_zone_pfns); 1700 * 1701 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1702 * registered physical page range. Similarly 1703 * sparse_memory_present_with_active_regions() calls memory_present() for 1704 * each range when SPARSEMEM is enabled. 1705 * 1706 * See mm/page_alloc.c for more information on each function exposed by 1707 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1708 */ 1709extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1710unsigned long node_map_pfn_alignment(void); 1711unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1712 unsigned long end_pfn); 1713extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1714 unsigned long end_pfn); 1715extern void get_pfn_range_for_nid(unsigned int nid, 1716 unsigned long *start_pfn, unsigned long *end_pfn); 1717extern unsigned long find_min_pfn_with_active_regions(void); 1718extern void free_bootmem_with_active_regions(int nid, 1719 unsigned long max_low_pfn); 1720extern void sparse_memory_present_with_active_regions(int nid); 1721 1722#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1723 1724#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1725 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1726static inline int __early_pfn_to_nid(unsigned long pfn) 1727{ 1728 return 0; 1729} 1730#else 1731/* please see mm/page_alloc.c */ 1732extern int __meminit early_pfn_to_nid(unsigned long pfn); 1733/* there is a per-arch backend function. */ 1734extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1735#endif 1736 1737extern void set_dma_reserve(unsigned long new_dma_reserve); 1738extern void memmap_init_zone(unsigned long, int, unsigned long, 1739 unsigned long, enum memmap_context); 1740extern void setup_per_zone_wmarks(void); 1741extern int __meminit init_per_zone_wmark_min(void); 1742extern void mem_init(void); 1743extern void __init mmap_init(void); 1744extern void show_mem(unsigned int flags); 1745extern void si_meminfo(struct sysinfo * val); 1746extern void si_meminfo_node(struct sysinfo *val, int nid); 1747 1748extern __printf(3, 4) 1749void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1750 1751extern void setup_per_cpu_pageset(void); 1752 1753extern void zone_pcp_update(struct zone *zone); 1754extern void zone_pcp_reset(struct zone *zone); 1755 1756/* page_alloc.c */ 1757extern int min_free_kbytes; 1758 1759/* nommu.c */ 1760extern atomic_long_t mmap_pages_allocated; 1761extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1762 1763/* interval_tree.c */ 1764void vma_interval_tree_insert(struct vm_area_struct *node, 1765 struct rb_root *root); 1766void vma_interval_tree_insert_after(struct vm_area_struct *node, 1767 struct vm_area_struct *prev, 1768 struct rb_root *root); 1769void vma_interval_tree_remove(struct vm_area_struct *node, 1770 struct rb_root *root); 1771struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1772 unsigned long start, unsigned long last); 1773struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1774 unsigned long start, unsigned long last); 1775 1776#define vma_interval_tree_foreach(vma, root, start, last) \ 1777 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1778 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1779 1780static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1781 struct list_head *list) 1782{ 1783 list_add_tail(&vma->shared.nonlinear, list); 1784} 1785 1786void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1787 struct rb_root *root); 1788void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1789 struct rb_root *root); 1790struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1791 struct rb_root *root, unsigned long start, unsigned long last); 1792struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1793 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1794#ifdef CONFIG_DEBUG_VM_RB 1795void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1796#endif 1797 1798#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1799 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1800 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1801 1802/* mmap.c */ 1803extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1804extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1805 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1806extern struct vm_area_struct *vma_merge(struct mm_struct *, 1807 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1808 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1809 struct mempolicy *); 1810extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1811extern int split_vma(struct mm_struct *, 1812 struct vm_area_struct *, unsigned long addr, int new_below); 1813extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1814extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1815 struct rb_node **, struct rb_node *); 1816extern void unlink_file_vma(struct vm_area_struct *); 1817extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1818 unsigned long addr, unsigned long len, pgoff_t pgoff, 1819 bool *need_rmap_locks); 1820extern void exit_mmap(struct mm_struct *); 1821 1822static inline int check_data_rlimit(unsigned long rlim, 1823 unsigned long new, 1824 unsigned long start, 1825 unsigned long end_data, 1826 unsigned long start_data) 1827{ 1828 if (rlim < RLIM_INFINITY) { 1829 if (((new - start) + (end_data - start_data)) > rlim) 1830 return -ENOSPC; 1831 } 1832 1833 return 0; 1834} 1835 1836extern int mm_take_all_locks(struct mm_struct *mm); 1837extern void mm_drop_all_locks(struct mm_struct *mm); 1838 1839extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1840extern struct file *get_mm_exe_file(struct mm_struct *mm); 1841 1842extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1843extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1844 unsigned long addr, unsigned long len, 1845 unsigned long flags, 1846 const struct vm_special_mapping *spec); 1847/* This is an obsolete alternative to _install_special_mapping. */ 1848extern int install_special_mapping(struct mm_struct *mm, 1849 unsigned long addr, unsigned long len, 1850 unsigned long flags, struct page **pages); 1851 1852extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1853 1854extern unsigned long mmap_region(struct file *file, unsigned long addr, 1855 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1856extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1857 unsigned long len, unsigned long prot, unsigned long flags, 1858 unsigned long pgoff, unsigned long *populate); 1859extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1860 1861#ifdef CONFIG_MMU 1862extern int __mm_populate(unsigned long addr, unsigned long len, 1863 int ignore_errors); 1864static inline void mm_populate(unsigned long addr, unsigned long len) 1865{ 1866 /* Ignore errors */ 1867 (void) __mm_populate(addr, len, 1); 1868} 1869#else 1870static inline void mm_populate(unsigned long addr, unsigned long len) {} 1871#endif 1872 1873/* These take the mm semaphore themselves */ 1874extern unsigned long vm_brk(unsigned long, unsigned long); 1875extern int vm_munmap(unsigned long, size_t); 1876extern unsigned long vm_mmap(struct file *, unsigned long, 1877 unsigned long, unsigned long, 1878 unsigned long, unsigned long); 1879 1880struct vm_unmapped_area_info { 1881#define VM_UNMAPPED_AREA_TOPDOWN 1 1882 unsigned long flags; 1883 unsigned long length; 1884 unsigned long low_limit; 1885 unsigned long high_limit; 1886 unsigned long align_mask; 1887 unsigned long align_offset; 1888}; 1889 1890extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1891extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1892 1893/* 1894 * Search for an unmapped address range. 1895 * 1896 * We are looking for a range that: 1897 * - does not intersect with any VMA; 1898 * - is contained within the [low_limit, high_limit) interval; 1899 * - is at least the desired size. 1900 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1901 */ 1902static inline unsigned long 1903vm_unmapped_area(struct vm_unmapped_area_info *info) 1904{ 1905 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1906 return unmapped_area(info); 1907 else 1908 return unmapped_area_topdown(info); 1909} 1910 1911/* truncate.c */ 1912extern void truncate_inode_pages(struct address_space *, loff_t); 1913extern void truncate_inode_pages_range(struct address_space *, 1914 loff_t lstart, loff_t lend); 1915extern void truncate_inode_pages_final(struct address_space *); 1916 1917/* generic vm_area_ops exported for stackable file systems */ 1918extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1919extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1920extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1921 1922/* mm/page-writeback.c */ 1923int write_one_page(struct page *page, int wait); 1924void task_dirty_inc(struct task_struct *tsk); 1925 1926/* readahead.c */ 1927#define VM_MAX_READAHEAD 128 /* kbytes */ 1928#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1929 1930int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1931 pgoff_t offset, unsigned long nr_to_read); 1932 1933void page_cache_sync_readahead(struct address_space *mapping, 1934 struct file_ra_state *ra, 1935 struct file *filp, 1936 pgoff_t offset, 1937 unsigned long size); 1938 1939void page_cache_async_readahead(struct address_space *mapping, 1940 struct file_ra_state *ra, 1941 struct file *filp, 1942 struct page *pg, 1943 pgoff_t offset, 1944 unsigned long size); 1945 1946unsigned long max_sane_readahead(unsigned long nr); 1947 1948/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1949extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1950 1951/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1952extern int expand_downwards(struct vm_area_struct *vma, 1953 unsigned long address); 1954#if VM_GROWSUP 1955extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1956#else 1957 #define expand_upwards(vma, address) (0) 1958#endif 1959 1960/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1961extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1962extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1963 struct vm_area_struct **pprev); 1964 1965/* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1966 NULL if none. Assume start_addr < end_addr. */ 1967static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1968{ 1969 struct vm_area_struct * vma = find_vma(mm,start_addr); 1970 1971 if (vma && end_addr <= vma->vm_start) 1972 vma = NULL; 1973 return vma; 1974} 1975 1976static inline unsigned long vma_pages(struct vm_area_struct *vma) 1977{ 1978 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1979} 1980 1981/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1982static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1983 unsigned long vm_start, unsigned long vm_end) 1984{ 1985 struct vm_area_struct *vma = find_vma(mm, vm_start); 1986 1987 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1988 vma = NULL; 1989 1990 return vma; 1991} 1992 1993#ifdef CONFIG_MMU 1994pgprot_t vm_get_page_prot(unsigned long vm_flags); 1995void vma_set_page_prot(struct vm_area_struct *vma); 1996#else 1997static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1998{ 1999 return __pgprot(0); 2000} 2001static inline void vma_set_page_prot(struct vm_area_struct *vma) 2002{ 2003 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2004} 2005#endif 2006 2007#ifdef CONFIG_NUMA_BALANCING 2008unsigned long change_prot_numa(struct vm_area_struct *vma, 2009 unsigned long start, unsigned long end); 2010#endif 2011 2012struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2013int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2014 unsigned long pfn, unsigned long size, pgprot_t); 2015int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2016int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2017 unsigned long pfn); 2018int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2019 unsigned long pfn); 2020int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2021 2022 2023struct page *follow_page_mask(struct vm_area_struct *vma, 2024 unsigned long address, unsigned int foll_flags, 2025 unsigned int *page_mask); 2026 2027static inline struct page *follow_page(struct vm_area_struct *vma, 2028 unsigned long address, unsigned int foll_flags) 2029{ 2030 unsigned int unused_page_mask; 2031 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2032} 2033 2034#define FOLL_WRITE 0x01 /* check pte is writable */ 2035#define FOLL_TOUCH 0x02 /* mark page accessed */ 2036#define FOLL_GET 0x04 /* do get_page on page */ 2037#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2038#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2039#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2040 * and return without waiting upon it */ 2041#define FOLL_MLOCK 0x40 /* mark page as mlocked */ 2042#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2043#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2044#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2045#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2046#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2047 2048typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2049 void *data); 2050extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2051 unsigned long size, pte_fn_t fn, void *data); 2052 2053#ifdef CONFIG_PROC_FS 2054void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2055#else 2056static inline void vm_stat_account(struct mm_struct *mm, 2057 unsigned long flags, struct file *file, long pages) 2058{ 2059 mm->total_vm += pages; 2060} 2061#endif /* CONFIG_PROC_FS */ 2062 2063#ifdef CONFIG_DEBUG_PAGEALLOC 2064extern bool _debug_pagealloc_enabled; 2065extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2066 2067static inline bool debug_pagealloc_enabled(void) 2068{ 2069 return _debug_pagealloc_enabled; 2070} 2071 2072static inline void 2073kernel_map_pages(struct page *page, int numpages, int enable) 2074{ 2075 if (!debug_pagealloc_enabled()) 2076 return; 2077 2078 __kernel_map_pages(page, numpages, enable); 2079} 2080#ifdef CONFIG_HIBERNATION 2081extern bool kernel_page_present(struct page *page); 2082#endif /* CONFIG_HIBERNATION */ 2083#else 2084static inline void 2085kernel_map_pages(struct page *page, int numpages, int enable) {} 2086#ifdef CONFIG_HIBERNATION 2087static inline bool kernel_page_present(struct page *page) { return true; } 2088#endif /* CONFIG_HIBERNATION */ 2089#endif 2090 2091#ifdef __HAVE_ARCH_GATE_AREA 2092extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2093extern int in_gate_area_no_mm(unsigned long addr); 2094extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2095#else 2096static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2097{ 2098 return NULL; 2099} 2100static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2101static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2102{ 2103 return 0; 2104} 2105#endif /* __HAVE_ARCH_GATE_AREA */ 2106 2107#ifdef CONFIG_SYSCTL 2108extern int sysctl_drop_caches; 2109int drop_caches_sysctl_handler(struct ctl_table *, int, 2110 void __user *, size_t *, loff_t *); 2111#endif 2112 2113unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid, 2114 unsigned long nr_scanned, 2115 unsigned long nr_eligible); 2116 2117#ifndef CONFIG_MMU 2118#define randomize_va_space 0 2119#else 2120extern int randomize_va_space; 2121#endif 2122 2123const char * arch_vma_name(struct vm_area_struct *vma); 2124void print_vma_addr(char *prefix, unsigned long rip); 2125 2126void sparse_mem_maps_populate_node(struct page **map_map, 2127 unsigned long pnum_begin, 2128 unsigned long pnum_end, 2129 unsigned long map_count, 2130 int nodeid); 2131 2132struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2133pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2134pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2135pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2136pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2137void *vmemmap_alloc_block(unsigned long size, int node); 2138void *vmemmap_alloc_block_buf(unsigned long size, int node); 2139void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2140int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2141 int node); 2142int vmemmap_populate(unsigned long start, unsigned long end, int node); 2143void vmemmap_populate_print_last(void); 2144#ifdef CONFIG_MEMORY_HOTPLUG 2145void vmemmap_free(unsigned long start, unsigned long end); 2146#endif 2147void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2148 unsigned long size); 2149 2150enum mf_flags { 2151 MF_COUNT_INCREASED = 1 << 0, 2152 MF_ACTION_REQUIRED = 1 << 1, 2153 MF_MUST_KILL = 1 << 2, 2154 MF_SOFT_OFFLINE = 1 << 3, 2155}; 2156extern int memory_failure(unsigned long pfn, int trapno, int flags); 2157extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2158extern int unpoison_memory(unsigned long pfn); 2159extern int sysctl_memory_failure_early_kill; 2160extern int sysctl_memory_failure_recovery; 2161extern void shake_page(struct page *p, int access); 2162extern atomic_long_t num_poisoned_pages; 2163extern int soft_offline_page(struct page *page, int flags); 2164 2165#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2166extern void clear_huge_page(struct page *page, 2167 unsigned long addr, 2168 unsigned int pages_per_huge_page); 2169extern void copy_user_huge_page(struct page *dst, struct page *src, 2170 unsigned long addr, struct vm_area_struct *vma, 2171 unsigned int pages_per_huge_page); 2172#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2173 2174extern struct page_ext_operations debug_guardpage_ops; 2175extern struct page_ext_operations page_poisoning_ops; 2176 2177#ifdef CONFIG_DEBUG_PAGEALLOC 2178extern unsigned int _debug_guardpage_minorder; 2179extern bool _debug_guardpage_enabled; 2180 2181static inline unsigned int debug_guardpage_minorder(void) 2182{ 2183 return _debug_guardpage_minorder; 2184} 2185 2186static inline bool debug_guardpage_enabled(void) 2187{ 2188 return _debug_guardpage_enabled; 2189} 2190 2191static inline bool page_is_guard(struct page *page) 2192{ 2193 struct page_ext *page_ext; 2194 2195 if (!debug_guardpage_enabled()) 2196 return false; 2197 2198 page_ext = lookup_page_ext(page); 2199 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2200} 2201#else 2202static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2203static inline bool debug_guardpage_enabled(void) { return false; } 2204static inline bool page_is_guard(struct page *page) { return false; } 2205#endif /* CONFIG_DEBUG_PAGEALLOC */ 2206 2207#if MAX_NUMNODES > 1 2208void __init setup_nr_node_ids(void); 2209#else 2210static inline void setup_nr_node_ids(void) {} 2211#endif 2212 2213#endif /* __KERNEL__ */ 2214#endif /* _LINUX_MM_H */