at v3.19 14 kB view raw
1/* memcontrol.h - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 */ 19 20#ifndef _LINUX_MEMCONTROL_H 21#define _LINUX_MEMCONTROL_H 22#include <linux/cgroup.h> 23#include <linux/vm_event_item.h> 24#include <linux/hardirq.h> 25#include <linux/jump_label.h> 26 27struct mem_cgroup; 28struct page; 29struct mm_struct; 30struct kmem_cache; 31 32/* 33 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c, 34 * These two lists should keep in accord with each other. 35 */ 36enum mem_cgroup_stat_index { 37 /* 38 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss. 39 */ 40 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */ 41 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */ 42 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */ 43 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */ 44 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */ 45 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */ 46 MEM_CGROUP_STAT_NSTATS, 47}; 48 49struct mem_cgroup_reclaim_cookie { 50 struct zone *zone; 51 int priority; 52 unsigned int generation; 53}; 54 55#ifdef CONFIG_MEMCG 56int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 57 gfp_t gfp_mask, struct mem_cgroup **memcgp); 58void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, 59 bool lrucare); 60void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg); 61void mem_cgroup_uncharge(struct page *page); 62void mem_cgroup_uncharge_list(struct list_head *page_list); 63 64void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, 65 bool lrucare); 66 67struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *); 68struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *); 69 70bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 71 struct mem_cgroup *root); 72bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg); 73 74extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page); 75extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 76 77extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg); 78extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css); 79 80static inline bool mm_match_cgroup(struct mm_struct *mm, 81 struct mem_cgroup *memcg) 82{ 83 struct mem_cgroup *task_memcg; 84 bool match = false; 85 86 rcu_read_lock(); 87 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 88 if (task_memcg) 89 match = mem_cgroup_is_descendant(task_memcg, memcg); 90 rcu_read_unlock(); 91 return match; 92} 93 94extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg); 95 96struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 97 struct mem_cgroup *, 98 struct mem_cgroup_reclaim_cookie *); 99void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 100 101/* 102 * For memory reclaim. 103 */ 104int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec); 105int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 106unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list); 107void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int); 108extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, 109 struct task_struct *p); 110 111static inline void mem_cgroup_oom_enable(void) 112{ 113 WARN_ON(current->memcg_oom.may_oom); 114 current->memcg_oom.may_oom = 1; 115} 116 117static inline void mem_cgroup_oom_disable(void) 118{ 119 WARN_ON(!current->memcg_oom.may_oom); 120 current->memcg_oom.may_oom = 0; 121} 122 123static inline bool task_in_memcg_oom(struct task_struct *p) 124{ 125 return p->memcg_oom.memcg; 126} 127 128bool mem_cgroup_oom_synchronize(bool wait); 129 130#ifdef CONFIG_MEMCG_SWAP 131extern int do_swap_account; 132#endif 133 134static inline bool mem_cgroup_disabled(void) 135{ 136 if (memory_cgrp_subsys.disabled) 137 return true; 138 return false; 139} 140 141struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, bool *locked, 142 unsigned long *flags); 143void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked, 144 unsigned long *flags); 145void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, 146 enum mem_cgroup_stat_index idx, int val); 147 148static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 149 enum mem_cgroup_stat_index idx) 150{ 151 mem_cgroup_update_page_stat(memcg, idx, 1); 152} 153 154static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 155 enum mem_cgroup_stat_index idx) 156{ 157 mem_cgroup_update_page_stat(memcg, idx, -1); 158} 159 160unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 161 gfp_t gfp_mask, 162 unsigned long *total_scanned); 163 164void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx); 165static inline void mem_cgroup_count_vm_event(struct mm_struct *mm, 166 enum vm_event_item idx) 167{ 168 if (mem_cgroup_disabled()) 169 return; 170 __mem_cgroup_count_vm_event(mm, idx); 171} 172#ifdef CONFIG_TRANSPARENT_HUGEPAGE 173void mem_cgroup_split_huge_fixup(struct page *head); 174#endif 175 176#else /* CONFIG_MEMCG */ 177struct mem_cgroup; 178 179static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, 180 gfp_t gfp_mask, 181 struct mem_cgroup **memcgp) 182{ 183 *memcgp = NULL; 184 return 0; 185} 186 187static inline void mem_cgroup_commit_charge(struct page *page, 188 struct mem_cgroup *memcg, 189 bool lrucare) 190{ 191} 192 193static inline void mem_cgroup_cancel_charge(struct page *page, 194 struct mem_cgroup *memcg) 195{ 196} 197 198static inline void mem_cgroup_uncharge(struct page *page) 199{ 200} 201 202static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 203{ 204} 205 206static inline void mem_cgroup_migrate(struct page *oldpage, 207 struct page *newpage, 208 bool lrucare) 209{ 210} 211 212static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 213 struct mem_cgroup *memcg) 214{ 215 return &zone->lruvec; 216} 217 218static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page, 219 struct zone *zone) 220{ 221 return &zone->lruvec; 222} 223 224static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 225{ 226 return NULL; 227} 228 229static inline bool mm_match_cgroup(struct mm_struct *mm, 230 struct mem_cgroup *memcg) 231{ 232 return true; 233} 234 235static inline bool task_in_mem_cgroup(struct task_struct *task, 236 const struct mem_cgroup *memcg) 237{ 238 return true; 239} 240 241static inline struct cgroup_subsys_state 242 *mem_cgroup_css(struct mem_cgroup *memcg) 243{ 244 return NULL; 245} 246 247static inline struct mem_cgroup * 248mem_cgroup_iter(struct mem_cgroup *root, 249 struct mem_cgroup *prev, 250 struct mem_cgroup_reclaim_cookie *reclaim) 251{ 252 return NULL; 253} 254 255static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 256 struct mem_cgroup *prev) 257{ 258} 259 260static inline bool mem_cgroup_disabled(void) 261{ 262 return true; 263} 264 265static inline int 266mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 267{ 268 return 1; 269} 270 271static inline unsigned long 272mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 273{ 274 return 0; 275} 276 277static inline void 278mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 279 int increment) 280{ 281} 282 283static inline void 284mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 285{ 286} 287 288static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, 289 bool *locked, unsigned long *flags) 290{ 291 return NULL; 292} 293 294static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, 295 bool *locked, unsigned long *flags) 296{ 297} 298 299static inline void mem_cgroup_oom_enable(void) 300{ 301} 302 303static inline void mem_cgroup_oom_disable(void) 304{ 305} 306 307static inline bool task_in_memcg_oom(struct task_struct *p) 308{ 309 return false; 310} 311 312static inline bool mem_cgroup_oom_synchronize(bool wait) 313{ 314 return false; 315} 316 317static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg, 318 enum mem_cgroup_stat_index idx) 319{ 320} 321 322static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg, 323 enum mem_cgroup_stat_index idx) 324{ 325} 326 327static inline 328unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 329 gfp_t gfp_mask, 330 unsigned long *total_scanned) 331{ 332 return 0; 333} 334 335static inline void mem_cgroup_split_huge_fixup(struct page *head) 336{ 337} 338 339static inline 340void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 341{ 342} 343#endif /* CONFIG_MEMCG */ 344 345enum { 346 UNDER_LIMIT, 347 SOFT_LIMIT, 348 OVER_LIMIT, 349}; 350 351struct sock; 352#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 353void sock_update_memcg(struct sock *sk); 354void sock_release_memcg(struct sock *sk); 355#else 356static inline void sock_update_memcg(struct sock *sk) 357{ 358} 359static inline void sock_release_memcg(struct sock *sk) 360{ 361} 362#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */ 363 364#ifdef CONFIG_MEMCG_KMEM 365extern struct static_key memcg_kmem_enabled_key; 366 367extern int memcg_limited_groups_array_size; 368 369/* 370 * Helper macro to loop through all memcg-specific caches. Callers must still 371 * check if the cache is valid (it is either valid or NULL). 372 * the slab_mutex must be held when looping through those caches 373 */ 374#define for_each_memcg_cache_index(_idx) \ 375 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++) 376 377static inline bool memcg_kmem_enabled(void) 378{ 379 return static_key_false(&memcg_kmem_enabled_key); 380} 381 382/* 383 * In general, we'll do everything in our power to not incur in any overhead 384 * for non-memcg users for the kmem functions. Not even a function call, if we 385 * can avoid it. 386 * 387 * Therefore, we'll inline all those functions so that in the best case, we'll 388 * see that kmemcg is off for everybody and proceed quickly. If it is on, 389 * we'll still do most of the flag checking inline. We check a lot of 390 * conditions, but because they are pretty simple, they are expected to be 391 * fast. 392 */ 393bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, 394 int order); 395void __memcg_kmem_commit_charge(struct page *page, 396 struct mem_cgroup *memcg, int order); 397void __memcg_kmem_uncharge_pages(struct page *page, int order); 398 399int memcg_cache_id(struct mem_cgroup *memcg); 400 401void memcg_update_array_size(int num_groups); 402 403struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep); 404void __memcg_kmem_put_cache(struct kmem_cache *cachep); 405 406int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order); 407void __memcg_uncharge_slab(struct kmem_cache *cachep, int order); 408 409int __memcg_cleanup_cache_params(struct kmem_cache *s); 410 411/** 412 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed. 413 * @gfp: the gfp allocation flags. 414 * @memcg: a pointer to the memcg this was charged against. 415 * @order: allocation order. 416 * 417 * returns true if the memcg where the current task belongs can hold this 418 * allocation. 419 * 420 * We return true automatically if this allocation is not to be accounted to 421 * any memcg. 422 */ 423static inline bool 424memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 425{ 426 if (!memcg_kmem_enabled()) 427 return true; 428 429 /* 430 * __GFP_NOFAIL allocations will move on even if charging is not 431 * possible. Therefore we don't even try, and have this allocation 432 * unaccounted. We could in theory charge it forcibly, but we hope 433 * those allocations are rare, and won't be worth the trouble. 434 */ 435 if (gfp & __GFP_NOFAIL) 436 return true; 437 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 438 return true; 439 440 /* If the test is dying, just let it go. */ 441 if (unlikely(fatal_signal_pending(current))) 442 return true; 443 444 return __memcg_kmem_newpage_charge(gfp, memcg, order); 445} 446 447/** 448 * memcg_kmem_uncharge_pages: uncharge pages from memcg 449 * @page: pointer to struct page being freed 450 * @order: allocation order. 451 */ 452static inline void 453memcg_kmem_uncharge_pages(struct page *page, int order) 454{ 455 if (memcg_kmem_enabled()) 456 __memcg_kmem_uncharge_pages(page, order); 457} 458 459/** 460 * memcg_kmem_commit_charge: embeds correct memcg in a page 461 * @page: pointer to struct page recently allocated 462 * @memcg: the memcg structure we charged against 463 * @order: allocation order. 464 * 465 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or 466 * failure of the allocation. if @page is NULL, this function will revert the 467 * charges. Otherwise, it will commit @page to @memcg. 468 */ 469static inline void 470memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 471{ 472 if (memcg_kmem_enabled() && memcg) 473 __memcg_kmem_commit_charge(page, memcg, order); 474} 475 476/** 477 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation 478 * @cachep: the original global kmem cache 479 * @gfp: allocation flags. 480 * 481 * All memory allocated from a per-memcg cache is charged to the owner memcg. 482 */ 483static __always_inline struct kmem_cache * 484memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 485{ 486 if (!memcg_kmem_enabled()) 487 return cachep; 488 if (gfp & __GFP_NOFAIL) 489 return cachep; 490 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD)) 491 return cachep; 492 if (unlikely(fatal_signal_pending(current))) 493 return cachep; 494 495 return __memcg_kmem_get_cache(cachep); 496} 497 498static __always_inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 499{ 500 if (memcg_kmem_enabled()) 501 __memcg_kmem_put_cache(cachep); 502} 503#else 504#define for_each_memcg_cache_index(_idx) \ 505 for (; NULL; ) 506 507static inline bool memcg_kmem_enabled(void) 508{ 509 return false; 510} 511 512static inline bool 513memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order) 514{ 515 return true; 516} 517 518static inline void memcg_kmem_uncharge_pages(struct page *page, int order) 519{ 520} 521 522static inline void 523memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order) 524{ 525} 526 527static inline int memcg_cache_id(struct mem_cgroup *memcg) 528{ 529 return -1; 530} 531 532static inline struct kmem_cache * 533memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp) 534{ 535 return cachep; 536} 537 538static inline void memcg_kmem_put_cache(struct kmem_cache *cachep) 539{ 540} 541#endif /* CONFIG_MEMCG_KMEM */ 542#endif /* _LINUX_MEMCONTROL_H */ 543