at v3.19 38 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/err.h> 26#include <linux/uio.h> 27#include <linux/bug.h> 28#include <linux/scatterlist.h> 29#include <linux/bitmap.h> 30#include <linux/types.h> 31#include <asm/page.h> 32 33/** 34 * typedef dma_cookie_t - an opaque DMA cookie 35 * 36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 37 */ 38typedef s32 dma_cookie_t; 39#define DMA_MIN_COOKIE 1 40 41static inline int dma_submit_error(dma_cookie_t cookie) 42{ 43 return cookie < 0 ? cookie : 0; 44} 45 46/** 47 * enum dma_status - DMA transaction status 48 * @DMA_COMPLETE: transaction completed 49 * @DMA_IN_PROGRESS: transaction not yet processed 50 * @DMA_PAUSED: transaction is paused 51 * @DMA_ERROR: transaction failed 52 */ 53enum dma_status { 54 DMA_COMPLETE, 55 DMA_IN_PROGRESS, 56 DMA_PAUSED, 57 DMA_ERROR, 58}; 59 60/** 61 * enum dma_transaction_type - DMA transaction types/indexes 62 * 63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 64 * automatically set as dma devices are registered. 65 */ 66enum dma_transaction_type { 67 DMA_MEMCPY, 68 DMA_XOR, 69 DMA_PQ, 70 DMA_XOR_VAL, 71 DMA_PQ_VAL, 72 DMA_INTERRUPT, 73 DMA_SG, 74 DMA_PRIVATE, 75 DMA_ASYNC_TX, 76 DMA_SLAVE, 77 DMA_CYCLIC, 78 DMA_INTERLEAVE, 79/* last transaction type for creation of the capabilities mask */ 80 DMA_TX_TYPE_END, 81}; 82 83/** 84 * enum dma_transfer_direction - dma transfer mode and direction indicator 85 * @DMA_MEM_TO_MEM: Async/Memcpy mode 86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 89 */ 90enum dma_transfer_direction { 91 DMA_MEM_TO_MEM, 92 DMA_MEM_TO_DEV, 93 DMA_DEV_TO_MEM, 94 DMA_DEV_TO_DEV, 95 DMA_TRANS_NONE, 96}; 97 98/** 99 * Interleaved Transfer Request 100 * ---------------------------- 101 * A chunk is collection of contiguous bytes to be transfered. 102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 103 * ICGs may or maynot change between chunks. 104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 105 * that when repeated an integral number of times, specifies the transfer. 106 * A transfer template is specification of a Frame, the number of times 107 * it is to be repeated and other per-transfer attributes. 108 * 109 * Practically, a client driver would have ready a template for each 110 * type of transfer it is going to need during its lifetime and 111 * set only 'src_start' and 'dst_start' before submitting the requests. 112 * 113 * 114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 116 * 117 * == Chunk size 118 * ... ICG 119 */ 120 121/** 122 * struct data_chunk - Element of scatter-gather list that makes a frame. 123 * @size: Number of bytes to read from source. 124 * size_dst := fn(op, size_src), so doesn't mean much for destination. 125 * @icg: Number of bytes to jump after last src/dst address of this 126 * chunk and before first src/dst address for next chunk. 127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 129 */ 130struct data_chunk { 131 size_t size; 132 size_t icg; 133}; 134 135/** 136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 137 * and attributes. 138 * @src_start: Bus address of source for the first chunk. 139 * @dst_start: Bus address of destination for the first chunk. 140 * @dir: Specifies the type of Source and Destination. 141 * @src_inc: If the source address increments after reading from it. 142 * @dst_inc: If the destination address increments after writing to it. 143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 144 * Otherwise, source is read contiguously (icg ignored). 145 * Ignored if src_inc is false. 146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 147 * Otherwise, destination is filled contiguously (icg ignored). 148 * Ignored if dst_inc is false. 149 * @numf: Number of frames in this template. 150 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 151 * @sgl: Array of {chunk,icg} pairs that make up a frame. 152 */ 153struct dma_interleaved_template { 154 dma_addr_t src_start; 155 dma_addr_t dst_start; 156 enum dma_transfer_direction dir; 157 bool src_inc; 158 bool dst_inc; 159 bool src_sgl; 160 bool dst_sgl; 161 size_t numf; 162 size_t frame_size; 163 struct data_chunk sgl[0]; 164}; 165 166/** 167 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 168 * control completion, and communicate status. 169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 170 * this transaction 171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 172 * acknowledges receipt, i.e. has has a chance to establish any dependency 173 * chains 174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 177 * sources that were the result of a previous operation, in the case of a PQ 178 * operation it continues the calculation with new sources 179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 180 * on the result of this operation 181 */ 182enum dma_ctrl_flags { 183 DMA_PREP_INTERRUPT = (1 << 0), 184 DMA_CTRL_ACK = (1 << 1), 185 DMA_PREP_PQ_DISABLE_P = (1 << 2), 186 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 187 DMA_PREP_CONTINUE = (1 << 4), 188 DMA_PREP_FENCE = (1 << 5), 189}; 190 191/** 192 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 193 * on a running channel. 194 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 195 * @DMA_PAUSE: pause ongoing transfers 196 * @DMA_RESUME: resume paused transfer 197 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 198 * that need to runtime reconfigure the slave channels (as opposed to passing 199 * configuration data in statically from the platform). An additional 200 * argument of struct dma_slave_config must be passed in with this 201 * command. 202 */ 203enum dma_ctrl_cmd { 204 DMA_TERMINATE_ALL, 205 DMA_PAUSE, 206 DMA_RESUME, 207 DMA_SLAVE_CONFIG, 208}; 209 210/** 211 * enum sum_check_bits - bit position of pq_check_flags 212 */ 213enum sum_check_bits { 214 SUM_CHECK_P = 0, 215 SUM_CHECK_Q = 1, 216}; 217 218/** 219 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 220 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 221 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 222 */ 223enum sum_check_flags { 224 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 225 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 226}; 227 228 229/** 230 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 231 * See linux/cpumask.h 232 */ 233typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 234 235/** 236 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 237 * @memcpy_count: transaction counter 238 * @bytes_transferred: byte counter 239 */ 240 241struct dma_chan_percpu { 242 /* stats */ 243 unsigned long memcpy_count; 244 unsigned long bytes_transferred; 245}; 246 247/** 248 * struct dma_chan - devices supply DMA channels, clients use them 249 * @device: ptr to the dma device who supplies this channel, always !%NULL 250 * @cookie: last cookie value returned to client 251 * @completed_cookie: last completed cookie for this channel 252 * @chan_id: channel ID for sysfs 253 * @dev: class device for sysfs 254 * @device_node: used to add this to the device chan list 255 * @local: per-cpu pointer to a struct dma_chan_percpu 256 * @client_count: how many clients are using this channel 257 * @table_count: number of appearances in the mem-to-mem allocation table 258 * @private: private data for certain client-channel associations 259 */ 260struct dma_chan { 261 struct dma_device *device; 262 dma_cookie_t cookie; 263 dma_cookie_t completed_cookie; 264 265 /* sysfs */ 266 int chan_id; 267 struct dma_chan_dev *dev; 268 269 struct list_head device_node; 270 struct dma_chan_percpu __percpu *local; 271 int client_count; 272 int table_count; 273 void *private; 274}; 275 276/** 277 * struct dma_chan_dev - relate sysfs device node to backing channel device 278 * @chan: driver channel device 279 * @device: sysfs device 280 * @dev_id: parent dma_device dev_id 281 * @idr_ref: reference count to gate release of dma_device dev_id 282 */ 283struct dma_chan_dev { 284 struct dma_chan *chan; 285 struct device device; 286 int dev_id; 287 atomic_t *idr_ref; 288}; 289 290/** 291 * enum dma_slave_buswidth - defines bus width of the DMA slave 292 * device, source or target buses 293 */ 294enum dma_slave_buswidth { 295 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 296 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 297 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 298 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 299 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 300 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 301}; 302 303/** 304 * struct dma_slave_config - dma slave channel runtime config 305 * @direction: whether the data shall go in or out on this slave 306 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 307 * legal values. DEPRECATED, drivers should use the direction argument 308 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 309 * the dir field in the dma_interleaved_template structure. 310 * @src_addr: this is the physical address where DMA slave data 311 * should be read (RX), if the source is memory this argument is 312 * ignored. 313 * @dst_addr: this is the physical address where DMA slave data 314 * should be written (TX), if the source is memory this argument 315 * is ignored. 316 * @src_addr_width: this is the width in bytes of the source (RX) 317 * register where DMA data shall be read. If the source 318 * is memory this may be ignored depending on architecture. 319 * Legal values: 1, 2, 4, 8. 320 * @dst_addr_width: same as src_addr_width but for destination 321 * target (TX) mutatis mutandis. 322 * @src_maxburst: the maximum number of words (note: words, as in 323 * units of the src_addr_width member, not bytes) that can be sent 324 * in one burst to the device. Typically something like half the 325 * FIFO depth on I/O peripherals so you don't overflow it. This 326 * may or may not be applicable on memory sources. 327 * @dst_maxburst: same as src_maxburst but for destination target 328 * mutatis mutandis. 329 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 330 * with 'true' if peripheral should be flow controller. Direction will be 331 * selected at Runtime. 332 * @slave_id: Slave requester id. Only valid for slave channels. The dma 333 * slave peripheral will have unique id as dma requester which need to be 334 * pass as slave config. 335 * 336 * This struct is passed in as configuration data to a DMA engine 337 * in order to set up a certain channel for DMA transport at runtime. 338 * The DMA device/engine has to provide support for an additional 339 * command in the channel config interface, DMA_SLAVE_CONFIG 340 * and this struct will then be passed in as an argument to the 341 * DMA engine device_control() function. 342 * 343 * The rationale for adding configuration information to this struct is as 344 * follows: if it is likely that more than one DMA slave controllers in 345 * the world will support the configuration option, then make it generic. 346 * If not: if it is fixed so that it be sent in static from the platform 347 * data, then prefer to do that. 348 */ 349struct dma_slave_config { 350 enum dma_transfer_direction direction; 351 dma_addr_t src_addr; 352 dma_addr_t dst_addr; 353 enum dma_slave_buswidth src_addr_width; 354 enum dma_slave_buswidth dst_addr_width; 355 u32 src_maxburst; 356 u32 dst_maxburst; 357 bool device_fc; 358 unsigned int slave_id; 359}; 360 361/** 362 * enum dma_residue_granularity - Granularity of the reported transfer residue 363 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 364 * DMA channel is only able to tell whether a descriptor has been completed or 365 * not, which means residue reporting is not supported by this channel. The 366 * residue field of the dma_tx_state field will always be 0. 367 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 368 * completed segment of the transfer (For cyclic transfers this is after each 369 * period). This is typically implemented by having the hardware generate an 370 * interrupt after each transferred segment and then the drivers updates the 371 * outstanding residue by the size of the segment. Another possibility is if 372 * the hardware supports scatter-gather and the segment descriptor has a field 373 * which gets set after the segment has been completed. The driver then counts 374 * the number of segments without the flag set to compute the residue. 375 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 376 * burst. This is typically only supported if the hardware has a progress 377 * register of some sort (E.g. a register with the current read/write address 378 * or a register with the amount of bursts/beats/bytes that have been 379 * transferred or still need to be transferred). 380 */ 381enum dma_residue_granularity { 382 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 383 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 384 DMA_RESIDUE_GRANULARITY_BURST = 2, 385}; 386 387/* struct dma_slave_caps - expose capabilities of a slave channel only 388 * 389 * @src_addr_widths: bit mask of src addr widths the channel supports 390 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports 391 * @directions: bit mask of slave direction the channel supported 392 * since the enum dma_transfer_direction is not defined as bits for each 393 * type of direction, the dma controller should fill (1 << <TYPE>) and same 394 * should be checked by controller as well 395 * @cmd_pause: true, if pause and thereby resume is supported 396 * @cmd_terminate: true, if terminate cmd is supported 397 * @residue_granularity: granularity of the reported transfer residue 398 */ 399struct dma_slave_caps { 400 u32 src_addr_widths; 401 u32 dstn_addr_widths; 402 u32 directions; 403 bool cmd_pause; 404 bool cmd_terminate; 405 enum dma_residue_granularity residue_granularity; 406}; 407 408static inline const char *dma_chan_name(struct dma_chan *chan) 409{ 410 return dev_name(&chan->dev->device); 411} 412 413void dma_chan_cleanup(struct kref *kref); 414 415/** 416 * typedef dma_filter_fn - callback filter for dma_request_channel 417 * @chan: channel to be reviewed 418 * @filter_param: opaque parameter passed through dma_request_channel 419 * 420 * When this optional parameter is specified in a call to dma_request_channel a 421 * suitable channel is passed to this routine for further dispositioning before 422 * being returned. Where 'suitable' indicates a non-busy channel that 423 * satisfies the given capability mask. It returns 'true' to indicate that the 424 * channel is suitable. 425 */ 426typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 427 428typedef void (*dma_async_tx_callback)(void *dma_async_param); 429 430struct dmaengine_unmap_data { 431 u8 map_cnt; 432 u8 to_cnt; 433 u8 from_cnt; 434 u8 bidi_cnt; 435 struct device *dev; 436 struct kref kref; 437 size_t len; 438 dma_addr_t addr[0]; 439}; 440 441/** 442 * struct dma_async_tx_descriptor - async transaction descriptor 443 * ---dma generic offload fields--- 444 * @cookie: tracking cookie for this transaction, set to -EBUSY if 445 * this tx is sitting on a dependency list 446 * @flags: flags to augment operation preparation, control completion, and 447 * communicate status 448 * @phys: physical address of the descriptor 449 * @chan: target channel for this operation 450 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 451 * descriptor pending. To be pushed on .issue_pending() call 452 * @callback: routine to call after this operation is complete 453 * @callback_param: general parameter to pass to the callback routine 454 * ---async_tx api specific fields--- 455 * @next: at completion submit this descriptor 456 * @parent: pointer to the next level up in the dependency chain 457 * @lock: protect the parent and next pointers 458 */ 459struct dma_async_tx_descriptor { 460 dma_cookie_t cookie; 461 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 462 dma_addr_t phys; 463 struct dma_chan *chan; 464 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 465 dma_async_tx_callback callback; 466 void *callback_param; 467 struct dmaengine_unmap_data *unmap; 468#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 469 struct dma_async_tx_descriptor *next; 470 struct dma_async_tx_descriptor *parent; 471 spinlock_t lock; 472#endif 473}; 474 475#ifdef CONFIG_DMA_ENGINE 476static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 477 struct dmaengine_unmap_data *unmap) 478{ 479 kref_get(&unmap->kref); 480 tx->unmap = unmap; 481} 482 483struct dmaengine_unmap_data * 484dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 485void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 486#else 487static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 488 struct dmaengine_unmap_data *unmap) 489{ 490} 491static inline struct dmaengine_unmap_data * 492dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 493{ 494 return NULL; 495} 496static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 497{ 498} 499#endif 500 501static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 502{ 503 if (tx->unmap) { 504 dmaengine_unmap_put(tx->unmap); 505 tx->unmap = NULL; 506 } 507} 508 509#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 510static inline void txd_lock(struct dma_async_tx_descriptor *txd) 511{ 512} 513static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 514{ 515} 516static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 517{ 518 BUG(); 519} 520static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 521{ 522} 523static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 524{ 525} 526static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 527{ 528 return NULL; 529} 530static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 531{ 532 return NULL; 533} 534 535#else 536static inline void txd_lock(struct dma_async_tx_descriptor *txd) 537{ 538 spin_lock_bh(&txd->lock); 539} 540static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 541{ 542 spin_unlock_bh(&txd->lock); 543} 544static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 545{ 546 txd->next = next; 547 next->parent = txd; 548} 549static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 550{ 551 txd->parent = NULL; 552} 553static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 554{ 555 txd->next = NULL; 556} 557static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 558{ 559 return txd->parent; 560} 561static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 562{ 563 return txd->next; 564} 565#endif 566 567/** 568 * struct dma_tx_state - filled in to report the status of 569 * a transfer. 570 * @last: last completed DMA cookie 571 * @used: last issued DMA cookie (i.e. the one in progress) 572 * @residue: the remaining number of bytes left to transmit 573 * on the selected transfer for states DMA_IN_PROGRESS and 574 * DMA_PAUSED if this is implemented in the driver, else 0 575 */ 576struct dma_tx_state { 577 dma_cookie_t last; 578 dma_cookie_t used; 579 u32 residue; 580}; 581 582/** 583 * struct dma_device - info on the entity supplying DMA services 584 * @chancnt: how many DMA channels are supported 585 * @privatecnt: how many DMA channels are requested by dma_request_channel 586 * @channels: the list of struct dma_chan 587 * @global_node: list_head for global dma_device_list 588 * @cap_mask: one or more dma_capability flags 589 * @max_xor: maximum number of xor sources, 0 if no capability 590 * @max_pq: maximum number of PQ sources and PQ-continue capability 591 * @copy_align: alignment shift for memcpy operations 592 * @xor_align: alignment shift for xor operations 593 * @pq_align: alignment shift for pq operations 594 * @fill_align: alignment shift for memset operations 595 * @dev_id: unique device ID 596 * @dev: struct device reference for dma mapping api 597 * @device_alloc_chan_resources: allocate resources and return the 598 * number of allocated descriptors 599 * @device_free_chan_resources: release DMA channel's resources 600 * @device_prep_dma_memcpy: prepares a memcpy operation 601 * @device_prep_dma_xor: prepares a xor operation 602 * @device_prep_dma_xor_val: prepares a xor validation operation 603 * @device_prep_dma_pq: prepares a pq operation 604 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 605 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 606 * @device_prep_slave_sg: prepares a slave dma operation 607 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 608 * The function takes a buffer of size buf_len. The callback function will 609 * be called after period_len bytes have been transferred. 610 * @device_prep_interleaved_dma: Transfer expression in a generic way. 611 * @device_control: manipulate all pending operations on a channel, returns 612 * zero or error code 613 * @device_tx_status: poll for transaction completion, the optional 614 * txstate parameter can be supplied with a pointer to get a 615 * struct with auxiliary transfer status information, otherwise the call 616 * will just return a simple status code 617 * @device_issue_pending: push pending transactions to hardware 618 * @device_slave_caps: return the slave channel capabilities 619 */ 620struct dma_device { 621 622 unsigned int chancnt; 623 unsigned int privatecnt; 624 struct list_head channels; 625 struct list_head global_node; 626 dma_cap_mask_t cap_mask; 627 unsigned short max_xor; 628 unsigned short max_pq; 629 u8 copy_align; 630 u8 xor_align; 631 u8 pq_align; 632 u8 fill_align; 633 #define DMA_HAS_PQ_CONTINUE (1 << 15) 634 635 int dev_id; 636 struct device *dev; 637 638 int (*device_alloc_chan_resources)(struct dma_chan *chan); 639 void (*device_free_chan_resources)(struct dma_chan *chan); 640 641 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 642 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 643 size_t len, unsigned long flags); 644 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 645 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 646 unsigned int src_cnt, size_t len, unsigned long flags); 647 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 648 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 649 size_t len, enum sum_check_flags *result, unsigned long flags); 650 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 651 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 652 unsigned int src_cnt, const unsigned char *scf, 653 size_t len, unsigned long flags); 654 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 655 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 656 unsigned int src_cnt, const unsigned char *scf, size_t len, 657 enum sum_check_flags *pqres, unsigned long flags); 658 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 659 struct dma_chan *chan, unsigned long flags); 660 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 661 struct dma_chan *chan, 662 struct scatterlist *dst_sg, unsigned int dst_nents, 663 struct scatterlist *src_sg, unsigned int src_nents, 664 unsigned long flags); 665 666 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 667 struct dma_chan *chan, struct scatterlist *sgl, 668 unsigned int sg_len, enum dma_transfer_direction direction, 669 unsigned long flags, void *context); 670 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 671 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 672 size_t period_len, enum dma_transfer_direction direction, 673 unsigned long flags); 674 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 675 struct dma_chan *chan, struct dma_interleaved_template *xt, 676 unsigned long flags); 677 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 678 unsigned long arg); 679 680 enum dma_status (*device_tx_status)(struct dma_chan *chan, 681 dma_cookie_t cookie, 682 struct dma_tx_state *txstate); 683 void (*device_issue_pending)(struct dma_chan *chan); 684 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 685}; 686 687static inline int dmaengine_device_control(struct dma_chan *chan, 688 enum dma_ctrl_cmd cmd, 689 unsigned long arg) 690{ 691 if (chan->device->device_control) 692 return chan->device->device_control(chan, cmd, arg); 693 694 return -ENOSYS; 695} 696 697static inline int dmaengine_slave_config(struct dma_chan *chan, 698 struct dma_slave_config *config) 699{ 700 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 701 (unsigned long)config); 702} 703 704static inline bool is_slave_direction(enum dma_transfer_direction direction) 705{ 706 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 707} 708 709static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 710 struct dma_chan *chan, dma_addr_t buf, size_t len, 711 enum dma_transfer_direction dir, unsigned long flags) 712{ 713 struct scatterlist sg; 714 sg_init_table(&sg, 1); 715 sg_dma_address(&sg) = buf; 716 sg_dma_len(&sg) = len; 717 718 return chan->device->device_prep_slave_sg(chan, &sg, 1, 719 dir, flags, NULL); 720} 721 722static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 723 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 724 enum dma_transfer_direction dir, unsigned long flags) 725{ 726 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 727 dir, flags, NULL); 728} 729 730#ifdef CONFIG_RAPIDIO_DMA_ENGINE 731struct rio_dma_ext; 732static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 733 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 734 enum dma_transfer_direction dir, unsigned long flags, 735 struct rio_dma_ext *rio_ext) 736{ 737 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 738 dir, flags, rio_ext); 739} 740#endif 741 742static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 743 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 744 size_t period_len, enum dma_transfer_direction dir, 745 unsigned long flags) 746{ 747 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 748 period_len, dir, flags); 749} 750 751static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 752 struct dma_chan *chan, struct dma_interleaved_template *xt, 753 unsigned long flags) 754{ 755 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 756} 757 758static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg( 759 struct dma_chan *chan, 760 struct scatterlist *dst_sg, unsigned int dst_nents, 761 struct scatterlist *src_sg, unsigned int src_nents, 762 unsigned long flags) 763{ 764 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents, 765 src_sg, src_nents, flags); 766} 767 768static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 769{ 770 if (!chan || !caps) 771 return -EINVAL; 772 773 /* check if the channel supports slave transactions */ 774 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits)) 775 return -ENXIO; 776 777 if (chan->device->device_slave_caps) 778 return chan->device->device_slave_caps(chan, caps); 779 780 return -ENXIO; 781} 782 783static inline int dmaengine_terminate_all(struct dma_chan *chan) 784{ 785 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 786} 787 788static inline int dmaengine_pause(struct dma_chan *chan) 789{ 790 return dmaengine_device_control(chan, DMA_PAUSE, 0); 791} 792 793static inline int dmaengine_resume(struct dma_chan *chan) 794{ 795 return dmaengine_device_control(chan, DMA_RESUME, 0); 796} 797 798static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 799 dma_cookie_t cookie, struct dma_tx_state *state) 800{ 801 return chan->device->device_tx_status(chan, cookie, state); 802} 803 804static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 805{ 806 return desc->tx_submit(desc); 807} 808 809static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 810{ 811 size_t mask; 812 813 if (!align) 814 return true; 815 mask = (1 << align) - 1; 816 if (mask & (off1 | off2 | len)) 817 return false; 818 return true; 819} 820 821static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 822 size_t off2, size_t len) 823{ 824 return dmaengine_check_align(dev->copy_align, off1, off2, len); 825} 826 827static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 828 size_t off2, size_t len) 829{ 830 return dmaengine_check_align(dev->xor_align, off1, off2, len); 831} 832 833static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 834 size_t off2, size_t len) 835{ 836 return dmaengine_check_align(dev->pq_align, off1, off2, len); 837} 838 839static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 840 size_t off2, size_t len) 841{ 842 return dmaengine_check_align(dev->fill_align, off1, off2, len); 843} 844 845static inline void 846dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 847{ 848 dma->max_pq = maxpq; 849 if (has_pq_continue) 850 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 851} 852 853static inline bool dmaf_continue(enum dma_ctrl_flags flags) 854{ 855 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 856} 857 858static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 859{ 860 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 861 862 return (flags & mask) == mask; 863} 864 865static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 866{ 867 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 868} 869 870static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 871{ 872 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 873} 874 875/* dma_maxpq - reduce maxpq in the face of continued operations 876 * @dma - dma device with PQ capability 877 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 878 * 879 * When an engine does not support native continuation we need 3 extra 880 * source slots to reuse P and Q with the following coefficients: 881 * 1/ {00} * P : remove P from Q', but use it as a source for P' 882 * 2/ {01} * Q : use Q to continue Q' calculation 883 * 3/ {00} * Q : subtract Q from P' to cancel (2) 884 * 885 * In the case where P is disabled we only need 1 extra source: 886 * 1/ {01} * Q : use Q to continue Q' calculation 887 */ 888static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 889{ 890 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 891 return dma_dev_to_maxpq(dma); 892 else if (dmaf_p_disabled_continue(flags)) 893 return dma_dev_to_maxpq(dma) - 1; 894 else if (dmaf_continue(flags)) 895 return dma_dev_to_maxpq(dma) - 3; 896 BUG(); 897} 898 899/* --- public DMA engine API --- */ 900 901#ifdef CONFIG_DMA_ENGINE 902void dmaengine_get(void); 903void dmaengine_put(void); 904#else 905static inline void dmaengine_get(void) 906{ 907} 908static inline void dmaengine_put(void) 909{ 910} 911#endif 912 913#ifdef CONFIG_ASYNC_TX_DMA 914#define async_dmaengine_get() dmaengine_get() 915#define async_dmaengine_put() dmaengine_put() 916#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 917#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 918#else 919#define async_dma_find_channel(type) dma_find_channel(type) 920#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 921#else 922static inline void async_dmaengine_get(void) 923{ 924} 925static inline void async_dmaengine_put(void) 926{ 927} 928static inline struct dma_chan * 929async_dma_find_channel(enum dma_transaction_type type) 930{ 931 return NULL; 932} 933#endif /* CONFIG_ASYNC_TX_DMA */ 934void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 935 struct dma_chan *chan); 936 937static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 938{ 939 tx->flags |= DMA_CTRL_ACK; 940} 941 942static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 943{ 944 tx->flags &= ~DMA_CTRL_ACK; 945} 946 947static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 948{ 949 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 950} 951 952#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 953static inline void 954__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 955{ 956 set_bit(tx_type, dstp->bits); 957} 958 959#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 960static inline void 961__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 962{ 963 clear_bit(tx_type, dstp->bits); 964} 965 966#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 967static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 968{ 969 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 970} 971 972#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 973static inline int 974__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 975{ 976 return test_bit(tx_type, srcp->bits); 977} 978 979#define for_each_dma_cap_mask(cap, mask) \ 980 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 981 982/** 983 * dma_async_issue_pending - flush pending transactions to HW 984 * @chan: target DMA channel 985 * 986 * This allows drivers to push copies to HW in batches, 987 * reducing MMIO writes where possible. 988 */ 989static inline void dma_async_issue_pending(struct dma_chan *chan) 990{ 991 chan->device->device_issue_pending(chan); 992} 993 994/** 995 * dma_async_is_tx_complete - poll for transaction completion 996 * @chan: DMA channel 997 * @cookie: transaction identifier to check status of 998 * @last: returns last completed cookie, can be NULL 999 * @used: returns last issued cookie, can be NULL 1000 * 1001 * If @last and @used are passed in, upon return they reflect the driver 1002 * internal state and can be used with dma_async_is_complete() to check 1003 * the status of multiple cookies without re-checking hardware state. 1004 */ 1005static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1006 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1007{ 1008 struct dma_tx_state state; 1009 enum dma_status status; 1010 1011 status = chan->device->device_tx_status(chan, cookie, &state); 1012 if (last) 1013 *last = state.last; 1014 if (used) 1015 *used = state.used; 1016 return status; 1017} 1018 1019/** 1020 * dma_async_is_complete - test a cookie against chan state 1021 * @cookie: transaction identifier to test status of 1022 * @last_complete: last know completed transaction 1023 * @last_used: last cookie value handed out 1024 * 1025 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1026 * the test logic is separated for lightweight testing of multiple cookies 1027 */ 1028static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1029 dma_cookie_t last_complete, dma_cookie_t last_used) 1030{ 1031 if (last_complete <= last_used) { 1032 if ((cookie <= last_complete) || (cookie > last_used)) 1033 return DMA_COMPLETE; 1034 } else { 1035 if ((cookie <= last_complete) && (cookie > last_used)) 1036 return DMA_COMPLETE; 1037 } 1038 return DMA_IN_PROGRESS; 1039} 1040 1041static inline void 1042dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1043{ 1044 if (st) { 1045 st->last = last; 1046 st->used = used; 1047 st->residue = residue; 1048 } 1049} 1050 1051#ifdef CONFIG_DMA_ENGINE 1052struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1053enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1054enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1055void dma_issue_pending_all(void); 1056struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1057 dma_filter_fn fn, void *fn_param); 1058struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 1059 const char *name); 1060struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1061void dma_release_channel(struct dma_chan *chan); 1062#else 1063static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1064{ 1065 return NULL; 1066} 1067static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1068{ 1069 return DMA_COMPLETE; 1070} 1071static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1072{ 1073 return DMA_COMPLETE; 1074} 1075static inline void dma_issue_pending_all(void) 1076{ 1077} 1078static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1079 dma_filter_fn fn, void *fn_param) 1080{ 1081 return NULL; 1082} 1083static inline struct dma_chan *dma_request_slave_channel_reason( 1084 struct device *dev, const char *name) 1085{ 1086 return ERR_PTR(-ENODEV); 1087} 1088static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1089 const char *name) 1090{ 1091 return NULL; 1092} 1093static inline void dma_release_channel(struct dma_chan *chan) 1094{ 1095} 1096#endif 1097 1098/* --- DMA device --- */ 1099 1100int dma_async_device_register(struct dma_device *device); 1101void dma_async_device_unregister(struct dma_device *device); 1102void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1103struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1104struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1105struct dma_chan *net_dma_find_channel(void); 1106#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1107#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1108 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1109 1110static inline struct dma_chan 1111*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1112 dma_filter_fn fn, void *fn_param, 1113 struct device *dev, char *name) 1114{ 1115 struct dma_chan *chan; 1116 1117 chan = dma_request_slave_channel(dev, name); 1118 if (chan) 1119 return chan; 1120 1121 return __dma_request_channel(mask, fn, fn_param); 1122} 1123 1124/* --- Helper iov-locking functions --- */ 1125 1126struct dma_page_list { 1127 char __user *base_address; 1128 int nr_pages; 1129 struct page **pages; 1130}; 1131 1132struct dma_pinned_list { 1133 int nr_iovecs; 1134 struct dma_page_list page_list[0]; 1135}; 1136 1137struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1138void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1139 1140dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1141 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1142dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1143 struct dma_pinned_list *pinned_list, struct page *page, 1144 unsigned int offset, size_t len); 1145 1146#endif /* DMAENGINE_H */