at v3.19 14 kB view raw
1#ifndef __LINUX_COMPILER_H 2#define __LINUX_COMPILER_H 3 4#ifndef __ASSEMBLY__ 5 6#ifdef __CHECKER__ 7# define __user __attribute__((noderef, address_space(1))) 8# define __kernel __attribute__((address_space(0))) 9# define __safe __attribute__((safe)) 10# define __force __attribute__((force)) 11# define __nocast __attribute__((nocast)) 12# define __iomem __attribute__((noderef, address_space(2))) 13# define __must_hold(x) __attribute__((context(x,1,1))) 14# define __acquires(x) __attribute__((context(x,0,1))) 15# define __releases(x) __attribute__((context(x,1,0))) 16# define __acquire(x) __context__(x,1) 17# define __release(x) __context__(x,-1) 18# define __cond_lock(x,c) ((c) ? ({ __acquire(x); 1; }) : 0) 19# define __percpu __attribute__((noderef, address_space(3))) 20#ifdef CONFIG_SPARSE_RCU_POINTER 21# define __rcu __attribute__((noderef, address_space(4))) 22#else 23# define __rcu 24#endif 25extern void __chk_user_ptr(const volatile void __user *); 26extern void __chk_io_ptr(const volatile void __iomem *); 27#else 28# define __user 29# define __kernel 30# define __safe 31# define __force 32# define __nocast 33# define __iomem 34# define __chk_user_ptr(x) (void)0 35# define __chk_io_ptr(x) (void)0 36# define __builtin_warning(x, y...) (1) 37# define __must_hold(x) 38# define __acquires(x) 39# define __releases(x) 40# define __acquire(x) (void)0 41# define __release(x) (void)0 42# define __cond_lock(x,c) (c) 43# define __percpu 44# define __rcu 45#endif 46 47/* Indirect macros required for expanded argument pasting, eg. __LINE__. */ 48#define ___PASTE(a,b) a##b 49#define __PASTE(a,b) ___PASTE(a,b) 50 51#ifdef __KERNEL__ 52 53#ifdef __GNUC__ 54#include <linux/compiler-gcc.h> 55#endif 56 57#define notrace __attribute__((no_instrument_function)) 58 59/* Intel compiler defines __GNUC__. So we will overwrite implementations 60 * coming from above header files here 61 */ 62#ifdef __INTEL_COMPILER 63# include <linux/compiler-intel.h> 64#endif 65 66/* Clang compiler defines __GNUC__. So we will overwrite implementations 67 * coming from above header files here 68 */ 69#ifdef __clang__ 70#include <linux/compiler-clang.h> 71#endif 72 73/* 74 * Generic compiler-dependent macros required for kernel 75 * build go below this comment. Actual compiler/compiler version 76 * specific implementations come from the above header files 77 */ 78 79struct ftrace_branch_data { 80 const char *func; 81 const char *file; 82 unsigned line; 83 union { 84 struct { 85 unsigned long correct; 86 unsigned long incorrect; 87 }; 88 struct { 89 unsigned long miss; 90 unsigned long hit; 91 }; 92 unsigned long miss_hit[2]; 93 }; 94}; 95 96/* 97 * Note: DISABLE_BRANCH_PROFILING can be used by special lowlevel code 98 * to disable branch tracing on a per file basis. 99 */ 100#if defined(CONFIG_TRACE_BRANCH_PROFILING) \ 101 && !defined(DISABLE_BRANCH_PROFILING) && !defined(__CHECKER__) 102void ftrace_likely_update(struct ftrace_branch_data *f, int val, int expect); 103 104#define likely_notrace(x) __builtin_expect(!!(x), 1) 105#define unlikely_notrace(x) __builtin_expect(!!(x), 0) 106 107#define __branch_check__(x, expect) ({ \ 108 int ______r; \ 109 static struct ftrace_branch_data \ 110 __attribute__((__aligned__(4))) \ 111 __attribute__((section("_ftrace_annotated_branch"))) \ 112 ______f = { \ 113 .func = __func__, \ 114 .file = __FILE__, \ 115 .line = __LINE__, \ 116 }; \ 117 ______r = likely_notrace(x); \ 118 ftrace_likely_update(&______f, ______r, expect); \ 119 ______r; \ 120 }) 121 122/* 123 * Using __builtin_constant_p(x) to ignore cases where the return 124 * value is always the same. This idea is taken from a similar patch 125 * written by Daniel Walker. 126 */ 127# ifndef likely 128# define likely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 1)) 129# endif 130# ifndef unlikely 131# define unlikely(x) (__builtin_constant_p(x) ? !!(x) : __branch_check__(x, 0)) 132# endif 133 134#ifdef CONFIG_PROFILE_ALL_BRANCHES 135/* 136 * "Define 'is'", Bill Clinton 137 * "Define 'if'", Steven Rostedt 138 */ 139#define if(cond, ...) __trace_if( (cond , ## __VA_ARGS__) ) 140#define __trace_if(cond) \ 141 if (__builtin_constant_p((cond)) ? !!(cond) : \ 142 ({ \ 143 int ______r; \ 144 static struct ftrace_branch_data \ 145 __attribute__((__aligned__(4))) \ 146 __attribute__((section("_ftrace_branch"))) \ 147 ______f = { \ 148 .func = __func__, \ 149 .file = __FILE__, \ 150 .line = __LINE__, \ 151 }; \ 152 ______r = !!(cond); \ 153 ______f.miss_hit[______r]++; \ 154 ______r; \ 155 })) 156#endif /* CONFIG_PROFILE_ALL_BRANCHES */ 157 158#else 159# define likely(x) __builtin_expect(!!(x), 1) 160# define unlikely(x) __builtin_expect(!!(x), 0) 161#endif 162 163/* Optimization barrier */ 164#ifndef barrier 165# define barrier() __memory_barrier() 166#endif 167 168/* Unreachable code */ 169#ifndef unreachable 170# define unreachable() do { } while (1) 171#endif 172 173#ifndef RELOC_HIDE 174# define RELOC_HIDE(ptr, off) \ 175 ({ unsigned long __ptr; \ 176 __ptr = (unsigned long) (ptr); \ 177 (typeof(ptr)) (__ptr + (off)); }) 178#endif 179 180#ifndef OPTIMIZER_HIDE_VAR 181#define OPTIMIZER_HIDE_VAR(var) barrier() 182#endif 183 184/* Not-quite-unique ID. */ 185#ifndef __UNIQUE_ID 186# define __UNIQUE_ID(prefix) __PASTE(__PASTE(__UNIQUE_ID_, prefix), __LINE__) 187#endif 188 189#include <uapi/linux/types.h> 190 191static __always_inline void data_access_exceeds_word_size(void) 192#ifdef __compiletime_warning 193__compiletime_warning("data access exceeds word size and won't be atomic") 194#endif 195; 196 197static __always_inline void data_access_exceeds_word_size(void) 198{ 199} 200 201static __always_inline void __read_once_size(volatile void *p, void *res, int size) 202{ 203 switch (size) { 204 case 1: *(__u8 *)res = *(volatile __u8 *)p; break; 205 case 2: *(__u16 *)res = *(volatile __u16 *)p; break; 206 case 4: *(__u32 *)res = *(volatile __u32 *)p; break; 207#ifdef CONFIG_64BIT 208 case 8: *(__u64 *)res = *(volatile __u64 *)p; break; 209#endif 210 default: 211 barrier(); 212 __builtin_memcpy((void *)res, (const void *)p, size); 213 data_access_exceeds_word_size(); 214 barrier(); 215 } 216} 217 218static __always_inline void __write_once_size(volatile void *p, void *res, int size) 219{ 220 switch (size) { 221 case 1: *(volatile __u8 *)p = *(__u8 *)res; break; 222 case 2: *(volatile __u16 *)p = *(__u16 *)res; break; 223 case 4: *(volatile __u32 *)p = *(__u32 *)res; break; 224#ifdef CONFIG_64BIT 225 case 8: *(volatile __u64 *)p = *(__u64 *)res; break; 226#endif 227 default: 228 barrier(); 229 __builtin_memcpy((void *)p, (const void *)res, size); 230 data_access_exceeds_word_size(); 231 barrier(); 232 } 233} 234 235/* 236 * Prevent the compiler from merging or refetching reads or writes. The 237 * compiler is also forbidden from reordering successive instances of 238 * READ_ONCE, WRITE_ONCE and ACCESS_ONCE (see below), but only when the 239 * compiler is aware of some particular ordering. One way to make the 240 * compiler aware of ordering is to put the two invocations of READ_ONCE, 241 * WRITE_ONCE or ACCESS_ONCE() in different C statements. 242 * 243 * In contrast to ACCESS_ONCE these two macros will also work on aggregate 244 * data types like structs or unions. If the size of the accessed data 245 * type exceeds the word size of the machine (e.g., 32 bits or 64 bits) 246 * READ_ONCE() and WRITE_ONCE() will fall back to memcpy and print a 247 * compile-time warning. 248 * 249 * Their two major use cases are: (1) Mediating communication between 250 * process-level code and irq/NMI handlers, all running on the same CPU, 251 * and (2) Ensuring that the compiler does not fold, spindle, or otherwise 252 * mutilate accesses that either do not require ordering or that interact 253 * with an explicit memory barrier or atomic instruction that provides the 254 * required ordering. 255 */ 256 257#define READ_ONCE(x) \ 258 ({ typeof(x) __val; __read_once_size(&x, &__val, sizeof(__val)); __val; }) 259 260#define WRITE_ONCE(x, val) \ 261 ({ typeof(x) __val; __val = val; __write_once_size(&x, &__val, sizeof(__val)); __val; }) 262 263#endif /* __KERNEL__ */ 264 265#endif /* __ASSEMBLY__ */ 266 267#ifdef __KERNEL__ 268/* 269 * Allow us to mark functions as 'deprecated' and have gcc emit a nice 270 * warning for each use, in hopes of speeding the functions removal. 271 * Usage is: 272 * int __deprecated foo(void) 273 */ 274#ifndef __deprecated 275# define __deprecated /* unimplemented */ 276#endif 277 278#ifdef MODULE 279#define __deprecated_for_modules __deprecated 280#else 281#define __deprecated_for_modules 282#endif 283 284#ifndef __must_check 285#define __must_check 286#endif 287 288#ifndef CONFIG_ENABLE_MUST_CHECK 289#undef __must_check 290#define __must_check 291#endif 292#ifndef CONFIG_ENABLE_WARN_DEPRECATED 293#undef __deprecated 294#undef __deprecated_for_modules 295#define __deprecated 296#define __deprecated_for_modules 297#endif 298 299/* 300 * Allow us to avoid 'defined but not used' warnings on functions and data, 301 * as well as force them to be emitted to the assembly file. 302 * 303 * As of gcc 3.4, static functions that are not marked with attribute((used)) 304 * may be elided from the assembly file. As of gcc 3.4, static data not so 305 * marked will not be elided, but this may change in a future gcc version. 306 * 307 * NOTE: Because distributions shipped with a backported unit-at-a-time 308 * compiler in gcc 3.3, we must define __used to be __attribute__((used)) 309 * for gcc >=3.3 instead of 3.4. 310 * 311 * In prior versions of gcc, such functions and data would be emitted, but 312 * would be warned about except with attribute((unused)). 313 * 314 * Mark functions that are referenced only in inline assembly as __used so 315 * the code is emitted even though it appears to be unreferenced. 316 */ 317#ifndef __used 318# define __used /* unimplemented */ 319#endif 320 321#ifndef __maybe_unused 322# define __maybe_unused /* unimplemented */ 323#endif 324 325#ifndef __always_unused 326# define __always_unused /* unimplemented */ 327#endif 328 329#ifndef noinline 330#define noinline 331#endif 332 333/* 334 * Rather then using noinline to prevent stack consumption, use 335 * noinline_for_stack instead. For documentation reasons. 336 */ 337#define noinline_for_stack noinline 338 339#ifndef __always_inline 340#define __always_inline inline 341#endif 342 343#endif /* __KERNEL__ */ 344 345/* 346 * From the GCC manual: 347 * 348 * Many functions do not examine any values except their arguments, 349 * and have no effects except the return value. Basically this is 350 * just slightly more strict class than the `pure' attribute above, 351 * since function is not allowed to read global memory. 352 * 353 * Note that a function that has pointer arguments and examines the 354 * data pointed to must _not_ be declared `const'. Likewise, a 355 * function that calls a non-`const' function usually must not be 356 * `const'. It does not make sense for a `const' function to return 357 * `void'. 358 */ 359#ifndef __attribute_const__ 360# define __attribute_const__ /* unimplemented */ 361#endif 362 363/* 364 * Tell gcc if a function is cold. The compiler will assume any path 365 * directly leading to the call is unlikely. 366 */ 367 368#ifndef __cold 369#define __cold 370#endif 371 372/* Simple shorthand for a section definition */ 373#ifndef __section 374# define __section(S) __attribute__ ((__section__(#S))) 375#endif 376 377#ifndef __visible 378#define __visible 379#endif 380 381/* Are two types/vars the same type (ignoring qualifiers)? */ 382#ifndef __same_type 383# define __same_type(a, b) __builtin_types_compatible_p(typeof(a), typeof(b)) 384#endif 385 386/* Is this type a native word size -- useful for atomic operations */ 387#ifndef __native_word 388# define __native_word(t) (sizeof(t) == sizeof(int) || sizeof(t) == sizeof(long)) 389#endif 390 391/* Compile time object size, -1 for unknown */ 392#ifndef __compiletime_object_size 393# define __compiletime_object_size(obj) -1 394#endif 395#ifndef __compiletime_warning 396# define __compiletime_warning(message) 397#endif 398#ifndef __compiletime_error 399# define __compiletime_error(message) 400/* 401 * Sparse complains of variable sized arrays due to the temporary variable in 402 * __compiletime_assert. Unfortunately we can't just expand it out to make 403 * sparse see a constant array size without breaking compiletime_assert on old 404 * versions of GCC (e.g. 4.2.4), so hide the array from sparse altogether. 405 */ 406# ifndef __CHECKER__ 407# define __compiletime_error_fallback(condition) \ 408 do { ((void)sizeof(char[1 - 2 * condition])); } while (0) 409# endif 410#endif 411#ifndef __compiletime_error_fallback 412# define __compiletime_error_fallback(condition) do { } while (0) 413#endif 414 415#define __compiletime_assert(condition, msg, prefix, suffix) \ 416 do { \ 417 bool __cond = !(condition); \ 418 extern void prefix ## suffix(void) __compiletime_error(msg); \ 419 if (__cond) \ 420 prefix ## suffix(); \ 421 __compiletime_error_fallback(__cond); \ 422 } while (0) 423 424#define _compiletime_assert(condition, msg, prefix, suffix) \ 425 __compiletime_assert(condition, msg, prefix, suffix) 426 427/** 428 * compiletime_assert - break build and emit msg if condition is false 429 * @condition: a compile-time constant condition to check 430 * @msg: a message to emit if condition is false 431 * 432 * In tradition of POSIX assert, this macro will break the build if the 433 * supplied condition is *false*, emitting the supplied error message if the 434 * compiler has support to do so. 435 */ 436#define compiletime_assert(condition, msg) \ 437 _compiletime_assert(condition, msg, __compiletime_assert_, __LINE__) 438 439#define compiletime_assert_atomic_type(t) \ 440 compiletime_assert(__native_word(t), \ 441 "Need native word sized stores/loads for atomicity.") 442 443/* 444 * Prevent the compiler from merging or refetching accesses. The compiler 445 * is also forbidden from reordering successive instances of ACCESS_ONCE(), 446 * but only when the compiler is aware of some particular ordering. One way 447 * to make the compiler aware of ordering is to put the two invocations of 448 * ACCESS_ONCE() in different C statements. 449 * 450 * This macro does absolutely -nothing- to prevent the CPU from reordering, 451 * merging, or refetching absolutely anything at any time. Its main intended 452 * use is to mediate communication between process-level code and irq/NMI 453 * handlers, all running on the same CPU. 454 */ 455#define ACCESS_ONCE(x) (*(volatile typeof(x) *)&(x)) 456 457/* Ignore/forbid kprobes attach on very low level functions marked by this attribute: */ 458#ifdef CONFIG_KPROBES 459# define __kprobes __attribute__((__section__(".kprobes.text"))) 460# define nokprobe_inline __always_inline 461#else 462# define __kprobes 463# define nokprobe_inline inline 464#endif 465#endif /* __LINUX_COMPILER_H */