at v3.19 11 kB view raw
1/* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11/* start node id of a node block dedicated to the given node id */ 12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14/* node block offset on the NAT area dedicated to the given start node id */ 15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17/* # of pages to perform readahead before building free nids */ 18#define FREE_NID_PAGES 4 19 20/* maximum readahead size for node during getting data blocks */ 21#define MAX_RA_NODE 128 22 23/* control the memory footprint threshold (10MB per 1GB ram) */ 24#define DEF_RAM_THRESHOLD 10 25 26/* vector size for gang look-up from nat cache that consists of radix tree */ 27#define NATVEC_SIZE 64 28 29/* return value for read_node_page */ 30#define LOCKED_PAGE 1 31 32/* 33 * For node information 34 */ 35struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40}; 41 42enum { 43 IS_CHECKPOINTED, /* is it checkpointed before? */ 44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */ 45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */ 46 IS_DIRTY, /* this nat entry is dirty? */ 47}; 48 49struct nat_entry { 50 struct list_head list; /* for clean or dirty nat list */ 51 unsigned char flag; /* for node information bits */ 52 struct node_info ni; /* in-memory node information */ 53}; 54 55#define nat_get_nid(nat) (nat->ni.nid) 56#define nat_set_nid(nat, n) (nat->ni.nid = n) 57#define nat_get_blkaddr(nat) (nat->ni.blk_addr) 58#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 59#define nat_get_ino(nat) (nat->ni.ino) 60#define nat_set_ino(nat, i) (nat->ni.ino = i) 61#define nat_get_version(nat) (nat->ni.version) 62#define nat_set_version(nat, v) (nat->ni.version = v) 63 64#define inc_node_version(version) (++version) 65 66static inline void set_nat_flag(struct nat_entry *ne, 67 unsigned int type, bool set) 68{ 69 unsigned char mask = 0x01 << type; 70 if (set) 71 ne->flag |= mask; 72 else 73 ne->flag &= ~mask; 74} 75 76static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type) 77{ 78 unsigned char mask = 0x01 << type; 79 return ne->flag & mask; 80} 81 82static inline void nat_reset_flag(struct nat_entry *ne) 83{ 84 /* these states can be set only after checkpoint was done */ 85 set_nat_flag(ne, IS_CHECKPOINTED, true); 86 set_nat_flag(ne, HAS_FSYNCED_INODE, false); 87 set_nat_flag(ne, HAS_LAST_FSYNC, true); 88} 89 90static inline void node_info_from_raw_nat(struct node_info *ni, 91 struct f2fs_nat_entry *raw_ne) 92{ 93 ni->ino = le32_to_cpu(raw_ne->ino); 94 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 95 ni->version = raw_ne->version; 96} 97 98static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 99 struct node_info *ni) 100{ 101 raw_ne->ino = cpu_to_le32(ni->ino); 102 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 103 raw_ne->version = ni->version; 104} 105 106enum mem_type { 107 FREE_NIDS, /* indicates the free nid list */ 108 NAT_ENTRIES, /* indicates the cached nat entry */ 109 DIRTY_DENTS, /* indicates dirty dentry pages */ 110 INO_ENTRIES, /* indicates inode entries */ 111}; 112 113struct nat_entry_set { 114 struct list_head set_list; /* link with other nat sets */ 115 struct list_head entry_list; /* link with dirty nat entries */ 116 nid_t set; /* set number*/ 117 unsigned int entry_cnt; /* the # of nat entries in set */ 118}; 119 120/* 121 * For free nid mangement 122 */ 123enum nid_state { 124 NID_NEW, /* newly added to free nid list */ 125 NID_ALLOC /* it is allocated */ 126}; 127 128struct free_nid { 129 struct list_head list; /* for free node id list */ 130 nid_t nid; /* node id */ 131 int state; /* in use or not: NID_NEW or NID_ALLOC */ 132}; 133 134static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 135{ 136 struct f2fs_nm_info *nm_i = NM_I(sbi); 137 struct free_nid *fnid; 138 139 spin_lock(&nm_i->free_nid_list_lock); 140 if (nm_i->fcnt <= 0) { 141 spin_unlock(&nm_i->free_nid_list_lock); 142 return; 143 } 144 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 145 *nid = fnid->nid; 146 spin_unlock(&nm_i->free_nid_list_lock); 147} 148 149/* 150 * inline functions 151 */ 152static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 153{ 154 struct f2fs_nm_info *nm_i = NM_I(sbi); 155 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 156} 157 158static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 159{ 160 struct f2fs_nm_info *nm_i = NM_I(sbi); 161 pgoff_t block_off; 162 pgoff_t block_addr; 163 int seg_off; 164 165 block_off = NAT_BLOCK_OFFSET(start); 166 seg_off = block_off >> sbi->log_blocks_per_seg; 167 168 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 169 (seg_off << sbi->log_blocks_per_seg << 1) + 170 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 171 172 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 173 block_addr += sbi->blocks_per_seg; 174 175 return block_addr; 176} 177 178static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 179 pgoff_t block_addr) 180{ 181 struct f2fs_nm_info *nm_i = NM_I(sbi); 182 183 block_addr -= nm_i->nat_blkaddr; 184 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 185 block_addr -= sbi->blocks_per_seg; 186 else 187 block_addr += sbi->blocks_per_seg; 188 189 return block_addr + nm_i->nat_blkaddr; 190} 191 192static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 193{ 194 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 195 196 f2fs_change_bit(block_off, nm_i->nat_bitmap); 197} 198 199static inline void fill_node_footer(struct page *page, nid_t nid, 200 nid_t ino, unsigned int ofs, bool reset) 201{ 202 struct f2fs_node *rn = F2FS_NODE(page); 203 if (reset) 204 memset(rn, 0, sizeof(*rn)); 205 rn->footer.nid = cpu_to_le32(nid); 206 rn->footer.ino = cpu_to_le32(ino); 207 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 208} 209 210static inline void copy_node_footer(struct page *dst, struct page *src) 211{ 212 struct f2fs_node *src_rn = F2FS_NODE(src); 213 struct f2fs_node *dst_rn = F2FS_NODE(dst); 214 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 215} 216 217static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 218{ 219 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page)); 220 struct f2fs_node *rn = F2FS_NODE(page); 221 222 rn->footer.cp_ver = ckpt->checkpoint_ver; 223 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 224} 225 226static inline nid_t ino_of_node(struct page *node_page) 227{ 228 struct f2fs_node *rn = F2FS_NODE(node_page); 229 return le32_to_cpu(rn->footer.ino); 230} 231 232static inline nid_t nid_of_node(struct page *node_page) 233{ 234 struct f2fs_node *rn = F2FS_NODE(node_page); 235 return le32_to_cpu(rn->footer.nid); 236} 237 238static inline unsigned int ofs_of_node(struct page *node_page) 239{ 240 struct f2fs_node *rn = F2FS_NODE(node_page); 241 unsigned flag = le32_to_cpu(rn->footer.flag); 242 return flag >> OFFSET_BIT_SHIFT; 243} 244 245static inline unsigned long long cpver_of_node(struct page *node_page) 246{ 247 struct f2fs_node *rn = F2FS_NODE(node_page); 248 return le64_to_cpu(rn->footer.cp_ver); 249} 250 251static inline block_t next_blkaddr_of_node(struct page *node_page) 252{ 253 struct f2fs_node *rn = F2FS_NODE(node_page); 254 return le32_to_cpu(rn->footer.next_blkaddr); 255} 256 257/* 258 * f2fs assigns the following node offsets described as (num). 259 * N = NIDS_PER_BLOCK 260 * 261 * Inode block (0) 262 * |- direct node (1) 263 * |- direct node (2) 264 * |- indirect node (3) 265 * | `- direct node (4 => 4 + N - 1) 266 * |- indirect node (4 + N) 267 * | `- direct node (5 + N => 5 + 2N - 1) 268 * `- double indirect node (5 + 2N) 269 * `- indirect node (6 + 2N) 270 * `- direct node 271 * ...... 272 * `- indirect node ((6 + 2N) + x(N + 1)) 273 * `- direct node 274 * ...... 275 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 276 * `- direct node 277 */ 278static inline bool IS_DNODE(struct page *node_page) 279{ 280 unsigned int ofs = ofs_of_node(node_page); 281 282 if (f2fs_has_xattr_block(ofs)) 283 return false; 284 285 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 286 ofs == 5 + 2 * NIDS_PER_BLOCK) 287 return false; 288 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 289 ofs -= 6 + 2 * NIDS_PER_BLOCK; 290 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 291 return false; 292 } 293 return true; 294} 295 296static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 297{ 298 struct f2fs_node *rn = F2FS_NODE(p); 299 300 f2fs_wait_on_page_writeback(p, NODE); 301 302 if (i) 303 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 304 else 305 rn->in.nid[off] = cpu_to_le32(nid); 306 set_page_dirty(p); 307} 308 309static inline nid_t get_nid(struct page *p, int off, bool i) 310{ 311 struct f2fs_node *rn = F2FS_NODE(p); 312 313 if (i) 314 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 315 return le32_to_cpu(rn->in.nid[off]); 316} 317 318/* 319 * Coldness identification: 320 * - Mark cold files in f2fs_inode_info 321 * - Mark cold node blocks in their node footer 322 * - Mark cold data pages in page cache 323 */ 324static inline int is_file(struct inode *inode, int type) 325{ 326 return F2FS_I(inode)->i_advise & type; 327} 328 329static inline void set_file(struct inode *inode, int type) 330{ 331 F2FS_I(inode)->i_advise |= type; 332} 333 334static inline void clear_file(struct inode *inode, int type) 335{ 336 F2FS_I(inode)->i_advise &= ~type; 337} 338 339#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 340#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 341#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 342#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 343#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 344#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 345 346static inline int is_cold_data(struct page *page) 347{ 348 return PageChecked(page); 349} 350 351static inline void set_cold_data(struct page *page) 352{ 353 SetPageChecked(page); 354} 355 356static inline void clear_cold_data(struct page *page) 357{ 358 ClearPageChecked(page); 359} 360 361static inline int is_node(struct page *page, int type) 362{ 363 struct f2fs_node *rn = F2FS_NODE(page); 364 return le32_to_cpu(rn->footer.flag) & (1 << type); 365} 366 367#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 368#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 369#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 370 371static inline void set_cold_node(struct inode *inode, struct page *page) 372{ 373 struct f2fs_node *rn = F2FS_NODE(page); 374 unsigned int flag = le32_to_cpu(rn->footer.flag); 375 376 if (S_ISDIR(inode->i_mode)) 377 flag &= ~(0x1 << COLD_BIT_SHIFT); 378 else 379 flag |= (0x1 << COLD_BIT_SHIFT); 380 rn->footer.flag = cpu_to_le32(flag); 381} 382 383static inline void set_mark(struct page *page, int mark, int type) 384{ 385 struct f2fs_node *rn = F2FS_NODE(page); 386 unsigned int flag = le32_to_cpu(rn->footer.flag); 387 if (mark) 388 flag |= (0x1 << type); 389 else 390 flag &= ~(0x1 << type); 391 rn->footer.flag = cpu_to_le32(flag); 392} 393#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 394#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)