at v3.19 45 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/magic.h> 20#include <linux/buffer_head.h> 21#include <linux/swap.h> 22#include <linux/pagevec.h> 23#include <linux/writeback.h> 24#include <linux/mpage.h> 25#include <linux/mount.h> 26#include <linux/uio.h> 27#include <linux/namei.h> 28#include <linux/log2.h> 29#include <linux/cleancache.h> 30#include <linux/aio.h> 31#include <asm/uaccess.h> 32#include "internal.h" 33 34struct bdev_inode { 35 struct block_device bdev; 36 struct inode vfs_inode; 37}; 38 39static const struct address_space_operations def_blk_aops; 40 41static inline struct bdev_inode *BDEV_I(struct inode *inode) 42{ 43 return container_of(inode, struct bdev_inode, vfs_inode); 44} 45 46inline struct block_device *I_BDEV(struct inode *inode) 47{ 48 return &BDEV_I(inode)->bdev; 49} 50EXPORT_SYMBOL(I_BDEV); 51 52/* 53 * Move the inode from its current bdi to a new bdi. Make sure the inode 54 * is clean before moving so that it doesn't linger on the old bdi. 55 */ 56static void bdev_inode_switch_bdi(struct inode *inode, 57 struct backing_dev_info *dst) 58{ 59 while (true) { 60 spin_lock(&inode->i_lock); 61 if (!(inode->i_state & I_DIRTY)) { 62 inode->i_data.backing_dev_info = dst; 63 spin_unlock(&inode->i_lock); 64 return; 65 } 66 spin_unlock(&inode->i_lock); 67 WARN_ON_ONCE(write_inode_now(inode, true)); 68 } 69} 70 71/* Kill _all_ buffers and pagecache , dirty or not.. */ 72void kill_bdev(struct block_device *bdev) 73{ 74 struct address_space *mapping = bdev->bd_inode->i_mapping; 75 76 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 77 return; 78 79 invalidate_bh_lrus(); 80 truncate_inode_pages(mapping, 0); 81} 82EXPORT_SYMBOL(kill_bdev); 83 84/* Invalidate clean unused buffers and pagecache. */ 85void invalidate_bdev(struct block_device *bdev) 86{ 87 struct address_space *mapping = bdev->bd_inode->i_mapping; 88 89 if (mapping->nrpages == 0) 90 return; 91 92 invalidate_bh_lrus(); 93 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 94 invalidate_mapping_pages(mapping, 0, -1); 95 /* 99% of the time, we don't need to flush the cleancache on the bdev. 96 * But, for the strange corners, lets be cautious 97 */ 98 cleancache_invalidate_inode(mapping); 99} 100EXPORT_SYMBOL(invalidate_bdev); 101 102int set_blocksize(struct block_device *bdev, int size) 103{ 104 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 105 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 106 return -EINVAL; 107 108 /* Size cannot be smaller than the size supported by the device */ 109 if (size < bdev_logical_block_size(bdev)) 110 return -EINVAL; 111 112 /* Don't change the size if it is same as current */ 113 if (bdev->bd_block_size != size) { 114 sync_blockdev(bdev); 115 bdev->bd_block_size = size; 116 bdev->bd_inode->i_blkbits = blksize_bits(size); 117 kill_bdev(bdev); 118 } 119 return 0; 120} 121 122EXPORT_SYMBOL(set_blocksize); 123 124int sb_set_blocksize(struct super_block *sb, int size) 125{ 126 if (set_blocksize(sb->s_bdev, size)) 127 return 0; 128 /* If we get here, we know size is power of two 129 * and it's value is between 512 and PAGE_SIZE */ 130 sb->s_blocksize = size; 131 sb->s_blocksize_bits = blksize_bits(size); 132 return sb->s_blocksize; 133} 134 135EXPORT_SYMBOL(sb_set_blocksize); 136 137int sb_min_blocksize(struct super_block *sb, int size) 138{ 139 int minsize = bdev_logical_block_size(sb->s_bdev); 140 if (size < minsize) 141 size = minsize; 142 return sb_set_blocksize(sb, size); 143} 144 145EXPORT_SYMBOL(sb_min_blocksize); 146 147static int 148blkdev_get_block(struct inode *inode, sector_t iblock, 149 struct buffer_head *bh, int create) 150{ 151 bh->b_bdev = I_BDEV(inode); 152 bh->b_blocknr = iblock; 153 set_buffer_mapped(bh); 154 return 0; 155} 156 157static ssize_t 158blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, 159 loff_t offset) 160{ 161 struct file *file = iocb->ki_filp; 162 struct inode *inode = file->f_mapping->host; 163 164 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter, 165 offset, blkdev_get_block, 166 NULL, NULL, 0); 167} 168 169int __sync_blockdev(struct block_device *bdev, int wait) 170{ 171 if (!bdev) 172 return 0; 173 if (!wait) 174 return filemap_flush(bdev->bd_inode->i_mapping); 175 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 176} 177 178/* 179 * Write out and wait upon all the dirty data associated with a block 180 * device via its mapping. Does not take the superblock lock. 181 */ 182int sync_blockdev(struct block_device *bdev) 183{ 184 return __sync_blockdev(bdev, 1); 185} 186EXPORT_SYMBOL(sync_blockdev); 187 188/* 189 * Write out and wait upon all dirty data associated with this 190 * device. Filesystem data as well as the underlying block 191 * device. Takes the superblock lock. 192 */ 193int fsync_bdev(struct block_device *bdev) 194{ 195 struct super_block *sb = get_super(bdev); 196 if (sb) { 197 int res = sync_filesystem(sb); 198 drop_super(sb); 199 return res; 200 } 201 return sync_blockdev(bdev); 202} 203EXPORT_SYMBOL(fsync_bdev); 204 205/** 206 * freeze_bdev -- lock a filesystem and force it into a consistent state 207 * @bdev: blockdevice to lock 208 * 209 * If a superblock is found on this device, we take the s_umount semaphore 210 * on it to make sure nobody unmounts until the snapshot creation is done. 211 * The reference counter (bd_fsfreeze_count) guarantees that only the last 212 * unfreeze process can unfreeze the frozen filesystem actually when multiple 213 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 214 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 215 * actually. 216 */ 217struct super_block *freeze_bdev(struct block_device *bdev) 218{ 219 struct super_block *sb; 220 int error = 0; 221 222 mutex_lock(&bdev->bd_fsfreeze_mutex); 223 if (++bdev->bd_fsfreeze_count > 1) { 224 /* 225 * We don't even need to grab a reference - the first call 226 * to freeze_bdev grab an active reference and only the last 227 * thaw_bdev drops it. 228 */ 229 sb = get_super(bdev); 230 drop_super(sb); 231 mutex_unlock(&bdev->bd_fsfreeze_mutex); 232 return sb; 233 } 234 235 sb = get_active_super(bdev); 236 if (!sb) 237 goto out; 238 if (sb->s_op->freeze_super) 239 error = sb->s_op->freeze_super(sb); 240 else 241 error = freeze_super(sb); 242 if (error) { 243 deactivate_super(sb); 244 bdev->bd_fsfreeze_count--; 245 mutex_unlock(&bdev->bd_fsfreeze_mutex); 246 return ERR_PTR(error); 247 } 248 deactivate_super(sb); 249 out: 250 sync_blockdev(bdev); 251 mutex_unlock(&bdev->bd_fsfreeze_mutex); 252 return sb; /* thaw_bdev releases s->s_umount */ 253} 254EXPORT_SYMBOL(freeze_bdev); 255 256/** 257 * thaw_bdev -- unlock filesystem 258 * @bdev: blockdevice to unlock 259 * @sb: associated superblock 260 * 261 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 262 */ 263int thaw_bdev(struct block_device *bdev, struct super_block *sb) 264{ 265 int error = -EINVAL; 266 267 mutex_lock(&bdev->bd_fsfreeze_mutex); 268 if (!bdev->bd_fsfreeze_count) 269 goto out; 270 271 error = 0; 272 if (--bdev->bd_fsfreeze_count > 0) 273 goto out; 274 275 if (!sb) 276 goto out; 277 278 if (sb->s_op->thaw_super) 279 error = sb->s_op->thaw_super(sb); 280 else 281 error = thaw_super(sb); 282 if (error) { 283 bdev->bd_fsfreeze_count++; 284 mutex_unlock(&bdev->bd_fsfreeze_mutex); 285 return error; 286 } 287out: 288 mutex_unlock(&bdev->bd_fsfreeze_mutex); 289 return 0; 290} 291EXPORT_SYMBOL(thaw_bdev); 292 293static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 294{ 295 return block_write_full_page(page, blkdev_get_block, wbc); 296} 297 298static int blkdev_readpage(struct file * file, struct page * page) 299{ 300 return block_read_full_page(page, blkdev_get_block); 301} 302 303static int blkdev_readpages(struct file *file, struct address_space *mapping, 304 struct list_head *pages, unsigned nr_pages) 305{ 306 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 307} 308 309static int blkdev_write_begin(struct file *file, struct address_space *mapping, 310 loff_t pos, unsigned len, unsigned flags, 311 struct page **pagep, void **fsdata) 312{ 313 return block_write_begin(mapping, pos, len, flags, pagep, 314 blkdev_get_block); 315} 316 317static int blkdev_write_end(struct file *file, struct address_space *mapping, 318 loff_t pos, unsigned len, unsigned copied, 319 struct page *page, void *fsdata) 320{ 321 int ret; 322 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 323 324 unlock_page(page); 325 page_cache_release(page); 326 327 return ret; 328} 329 330/* 331 * private llseek: 332 * for a block special file file_inode(file)->i_size is zero 333 * so we compute the size by hand (just as in block_read/write above) 334 */ 335static loff_t block_llseek(struct file *file, loff_t offset, int whence) 336{ 337 struct inode *bd_inode = file->f_mapping->host; 338 loff_t retval; 339 340 mutex_lock(&bd_inode->i_mutex); 341 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 342 mutex_unlock(&bd_inode->i_mutex); 343 return retval; 344} 345 346int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 347{ 348 struct inode *bd_inode = filp->f_mapping->host; 349 struct block_device *bdev = I_BDEV(bd_inode); 350 int error; 351 352 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 353 if (error) 354 return error; 355 356 /* 357 * There is no need to serialise calls to blkdev_issue_flush with 358 * i_mutex and doing so causes performance issues with concurrent 359 * O_SYNC writers to a block device. 360 */ 361 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 362 if (error == -EOPNOTSUPP) 363 error = 0; 364 365 return error; 366} 367EXPORT_SYMBOL(blkdev_fsync); 368 369/** 370 * bdev_read_page() - Start reading a page from a block device 371 * @bdev: The device to read the page from 372 * @sector: The offset on the device to read the page to (need not be aligned) 373 * @page: The page to read 374 * 375 * On entry, the page should be locked. It will be unlocked when the page 376 * has been read. If the block driver implements rw_page synchronously, 377 * that will be true on exit from this function, but it need not be. 378 * 379 * Errors returned by this function are usually "soft", eg out of memory, or 380 * queue full; callers should try a different route to read this page rather 381 * than propagate an error back up the stack. 382 * 383 * Return: negative errno if an error occurs, 0 if submission was successful. 384 */ 385int bdev_read_page(struct block_device *bdev, sector_t sector, 386 struct page *page) 387{ 388 const struct block_device_operations *ops = bdev->bd_disk->fops; 389 if (!ops->rw_page) 390 return -EOPNOTSUPP; 391 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 392} 393EXPORT_SYMBOL_GPL(bdev_read_page); 394 395/** 396 * bdev_write_page() - Start writing a page to a block device 397 * @bdev: The device to write the page to 398 * @sector: The offset on the device to write the page to (need not be aligned) 399 * @page: The page to write 400 * @wbc: The writeback_control for the write 401 * 402 * On entry, the page should be locked and not currently under writeback. 403 * On exit, if the write started successfully, the page will be unlocked and 404 * under writeback. If the write failed already (eg the driver failed to 405 * queue the page to the device), the page will still be locked. If the 406 * caller is a ->writepage implementation, it will need to unlock the page. 407 * 408 * Errors returned by this function are usually "soft", eg out of memory, or 409 * queue full; callers should try a different route to write this page rather 410 * than propagate an error back up the stack. 411 * 412 * Return: negative errno if an error occurs, 0 if submission was successful. 413 */ 414int bdev_write_page(struct block_device *bdev, sector_t sector, 415 struct page *page, struct writeback_control *wbc) 416{ 417 int result; 418 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 419 const struct block_device_operations *ops = bdev->bd_disk->fops; 420 if (!ops->rw_page) 421 return -EOPNOTSUPP; 422 set_page_writeback(page); 423 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 424 if (result) 425 end_page_writeback(page); 426 else 427 unlock_page(page); 428 return result; 429} 430EXPORT_SYMBOL_GPL(bdev_write_page); 431 432/* 433 * pseudo-fs 434 */ 435 436static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 437static struct kmem_cache * bdev_cachep __read_mostly; 438 439static struct inode *bdev_alloc_inode(struct super_block *sb) 440{ 441 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 442 if (!ei) 443 return NULL; 444 return &ei->vfs_inode; 445} 446 447static void bdev_i_callback(struct rcu_head *head) 448{ 449 struct inode *inode = container_of(head, struct inode, i_rcu); 450 struct bdev_inode *bdi = BDEV_I(inode); 451 452 kmem_cache_free(bdev_cachep, bdi); 453} 454 455static void bdev_destroy_inode(struct inode *inode) 456{ 457 call_rcu(&inode->i_rcu, bdev_i_callback); 458} 459 460static void init_once(void *foo) 461{ 462 struct bdev_inode *ei = (struct bdev_inode *) foo; 463 struct block_device *bdev = &ei->bdev; 464 465 memset(bdev, 0, sizeof(*bdev)); 466 mutex_init(&bdev->bd_mutex); 467 INIT_LIST_HEAD(&bdev->bd_inodes); 468 INIT_LIST_HEAD(&bdev->bd_list); 469#ifdef CONFIG_SYSFS 470 INIT_LIST_HEAD(&bdev->bd_holder_disks); 471#endif 472 inode_init_once(&ei->vfs_inode); 473 /* Initialize mutex for freeze. */ 474 mutex_init(&bdev->bd_fsfreeze_mutex); 475} 476 477static inline void __bd_forget(struct inode *inode) 478{ 479 list_del_init(&inode->i_devices); 480 inode->i_bdev = NULL; 481 inode->i_mapping = &inode->i_data; 482} 483 484static void bdev_evict_inode(struct inode *inode) 485{ 486 struct block_device *bdev = &BDEV_I(inode)->bdev; 487 struct list_head *p; 488 truncate_inode_pages_final(&inode->i_data); 489 invalidate_inode_buffers(inode); /* is it needed here? */ 490 clear_inode(inode); 491 spin_lock(&bdev_lock); 492 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 493 __bd_forget(list_entry(p, struct inode, i_devices)); 494 } 495 list_del_init(&bdev->bd_list); 496 spin_unlock(&bdev_lock); 497} 498 499static const struct super_operations bdev_sops = { 500 .statfs = simple_statfs, 501 .alloc_inode = bdev_alloc_inode, 502 .destroy_inode = bdev_destroy_inode, 503 .drop_inode = generic_delete_inode, 504 .evict_inode = bdev_evict_inode, 505}; 506 507static struct dentry *bd_mount(struct file_system_type *fs_type, 508 int flags, const char *dev_name, void *data) 509{ 510 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 511} 512 513static struct file_system_type bd_type = { 514 .name = "bdev", 515 .mount = bd_mount, 516 .kill_sb = kill_anon_super, 517}; 518 519static struct super_block *blockdev_superblock __read_mostly; 520 521void __init bdev_cache_init(void) 522{ 523 int err; 524 static struct vfsmount *bd_mnt; 525 526 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 527 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 528 SLAB_MEM_SPREAD|SLAB_PANIC), 529 init_once); 530 err = register_filesystem(&bd_type); 531 if (err) 532 panic("Cannot register bdev pseudo-fs"); 533 bd_mnt = kern_mount(&bd_type); 534 if (IS_ERR(bd_mnt)) 535 panic("Cannot create bdev pseudo-fs"); 536 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 537} 538 539/* 540 * Most likely _very_ bad one - but then it's hardly critical for small 541 * /dev and can be fixed when somebody will need really large one. 542 * Keep in mind that it will be fed through icache hash function too. 543 */ 544static inline unsigned long hash(dev_t dev) 545{ 546 return MAJOR(dev)+MINOR(dev); 547} 548 549static int bdev_test(struct inode *inode, void *data) 550{ 551 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 552} 553 554static int bdev_set(struct inode *inode, void *data) 555{ 556 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 557 return 0; 558} 559 560static LIST_HEAD(all_bdevs); 561 562struct block_device *bdget(dev_t dev) 563{ 564 struct block_device *bdev; 565 struct inode *inode; 566 567 inode = iget5_locked(blockdev_superblock, hash(dev), 568 bdev_test, bdev_set, &dev); 569 570 if (!inode) 571 return NULL; 572 573 bdev = &BDEV_I(inode)->bdev; 574 575 if (inode->i_state & I_NEW) { 576 bdev->bd_contains = NULL; 577 bdev->bd_super = NULL; 578 bdev->bd_inode = inode; 579 bdev->bd_block_size = (1 << inode->i_blkbits); 580 bdev->bd_part_count = 0; 581 bdev->bd_invalidated = 0; 582 inode->i_mode = S_IFBLK; 583 inode->i_rdev = dev; 584 inode->i_bdev = bdev; 585 inode->i_data.a_ops = &def_blk_aops; 586 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 587 inode->i_data.backing_dev_info = &default_backing_dev_info; 588 spin_lock(&bdev_lock); 589 list_add(&bdev->bd_list, &all_bdevs); 590 spin_unlock(&bdev_lock); 591 unlock_new_inode(inode); 592 } 593 return bdev; 594} 595 596EXPORT_SYMBOL(bdget); 597 598/** 599 * bdgrab -- Grab a reference to an already referenced block device 600 * @bdev: Block device to grab a reference to. 601 */ 602struct block_device *bdgrab(struct block_device *bdev) 603{ 604 ihold(bdev->bd_inode); 605 return bdev; 606} 607EXPORT_SYMBOL(bdgrab); 608 609long nr_blockdev_pages(void) 610{ 611 struct block_device *bdev; 612 long ret = 0; 613 spin_lock(&bdev_lock); 614 list_for_each_entry(bdev, &all_bdevs, bd_list) { 615 ret += bdev->bd_inode->i_mapping->nrpages; 616 } 617 spin_unlock(&bdev_lock); 618 return ret; 619} 620 621void bdput(struct block_device *bdev) 622{ 623 iput(bdev->bd_inode); 624} 625 626EXPORT_SYMBOL(bdput); 627 628static struct block_device *bd_acquire(struct inode *inode) 629{ 630 struct block_device *bdev; 631 632 spin_lock(&bdev_lock); 633 bdev = inode->i_bdev; 634 if (bdev) { 635 ihold(bdev->bd_inode); 636 spin_unlock(&bdev_lock); 637 return bdev; 638 } 639 spin_unlock(&bdev_lock); 640 641 bdev = bdget(inode->i_rdev); 642 if (bdev) { 643 spin_lock(&bdev_lock); 644 if (!inode->i_bdev) { 645 /* 646 * We take an additional reference to bd_inode, 647 * and it's released in clear_inode() of inode. 648 * So, we can access it via ->i_mapping always 649 * without igrab(). 650 */ 651 ihold(bdev->bd_inode); 652 inode->i_bdev = bdev; 653 inode->i_mapping = bdev->bd_inode->i_mapping; 654 list_add(&inode->i_devices, &bdev->bd_inodes); 655 } 656 spin_unlock(&bdev_lock); 657 } 658 return bdev; 659} 660 661int sb_is_blkdev_sb(struct super_block *sb) 662{ 663 return sb == blockdev_superblock; 664} 665 666/* Call when you free inode */ 667 668void bd_forget(struct inode *inode) 669{ 670 struct block_device *bdev = NULL; 671 672 spin_lock(&bdev_lock); 673 if (!sb_is_blkdev_sb(inode->i_sb)) 674 bdev = inode->i_bdev; 675 __bd_forget(inode); 676 spin_unlock(&bdev_lock); 677 678 if (bdev) 679 iput(bdev->bd_inode); 680} 681 682/** 683 * bd_may_claim - test whether a block device can be claimed 684 * @bdev: block device of interest 685 * @whole: whole block device containing @bdev, may equal @bdev 686 * @holder: holder trying to claim @bdev 687 * 688 * Test whether @bdev can be claimed by @holder. 689 * 690 * CONTEXT: 691 * spin_lock(&bdev_lock). 692 * 693 * RETURNS: 694 * %true if @bdev can be claimed, %false otherwise. 695 */ 696static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 697 void *holder) 698{ 699 if (bdev->bd_holder == holder) 700 return true; /* already a holder */ 701 else if (bdev->bd_holder != NULL) 702 return false; /* held by someone else */ 703 else if (bdev->bd_contains == bdev) 704 return true; /* is a whole device which isn't held */ 705 706 else if (whole->bd_holder == bd_may_claim) 707 return true; /* is a partition of a device that is being partitioned */ 708 else if (whole->bd_holder != NULL) 709 return false; /* is a partition of a held device */ 710 else 711 return true; /* is a partition of an un-held device */ 712} 713 714/** 715 * bd_prepare_to_claim - prepare to claim a block device 716 * @bdev: block device of interest 717 * @whole: the whole device containing @bdev, may equal @bdev 718 * @holder: holder trying to claim @bdev 719 * 720 * Prepare to claim @bdev. This function fails if @bdev is already 721 * claimed by another holder and waits if another claiming is in 722 * progress. This function doesn't actually claim. On successful 723 * return, the caller has ownership of bd_claiming and bd_holder[s]. 724 * 725 * CONTEXT: 726 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 727 * it multiple times. 728 * 729 * RETURNS: 730 * 0 if @bdev can be claimed, -EBUSY otherwise. 731 */ 732static int bd_prepare_to_claim(struct block_device *bdev, 733 struct block_device *whole, void *holder) 734{ 735retry: 736 /* if someone else claimed, fail */ 737 if (!bd_may_claim(bdev, whole, holder)) 738 return -EBUSY; 739 740 /* if claiming is already in progress, wait for it to finish */ 741 if (whole->bd_claiming) { 742 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 743 DEFINE_WAIT(wait); 744 745 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 746 spin_unlock(&bdev_lock); 747 schedule(); 748 finish_wait(wq, &wait); 749 spin_lock(&bdev_lock); 750 goto retry; 751 } 752 753 /* yay, all mine */ 754 return 0; 755} 756 757/** 758 * bd_start_claiming - start claiming a block device 759 * @bdev: block device of interest 760 * @holder: holder trying to claim @bdev 761 * 762 * @bdev is about to be opened exclusively. Check @bdev can be opened 763 * exclusively and mark that an exclusive open is in progress. Each 764 * successful call to this function must be matched with a call to 765 * either bd_finish_claiming() or bd_abort_claiming() (which do not 766 * fail). 767 * 768 * This function is used to gain exclusive access to the block device 769 * without actually causing other exclusive open attempts to fail. It 770 * should be used when the open sequence itself requires exclusive 771 * access but may subsequently fail. 772 * 773 * CONTEXT: 774 * Might sleep. 775 * 776 * RETURNS: 777 * Pointer to the block device containing @bdev on success, ERR_PTR() 778 * value on failure. 779 */ 780static struct block_device *bd_start_claiming(struct block_device *bdev, 781 void *holder) 782{ 783 struct gendisk *disk; 784 struct block_device *whole; 785 int partno, err; 786 787 might_sleep(); 788 789 /* 790 * @bdev might not have been initialized properly yet, look up 791 * and grab the outer block device the hard way. 792 */ 793 disk = get_gendisk(bdev->bd_dev, &partno); 794 if (!disk) 795 return ERR_PTR(-ENXIO); 796 797 /* 798 * Normally, @bdev should equal what's returned from bdget_disk() 799 * if partno is 0; however, some drivers (floppy) use multiple 800 * bdev's for the same physical device and @bdev may be one of the 801 * aliases. Keep @bdev if partno is 0. This means claimer 802 * tracking is broken for those devices but it has always been that 803 * way. 804 */ 805 if (partno) 806 whole = bdget_disk(disk, 0); 807 else 808 whole = bdgrab(bdev); 809 810 module_put(disk->fops->owner); 811 put_disk(disk); 812 if (!whole) 813 return ERR_PTR(-ENOMEM); 814 815 /* prepare to claim, if successful, mark claiming in progress */ 816 spin_lock(&bdev_lock); 817 818 err = bd_prepare_to_claim(bdev, whole, holder); 819 if (err == 0) { 820 whole->bd_claiming = holder; 821 spin_unlock(&bdev_lock); 822 return whole; 823 } else { 824 spin_unlock(&bdev_lock); 825 bdput(whole); 826 return ERR_PTR(err); 827 } 828} 829 830#ifdef CONFIG_SYSFS 831struct bd_holder_disk { 832 struct list_head list; 833 struct gendisk *disk; 834 int refcnt; 835}; 836 837static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 838 struct gendisk *disk) 839{ 840 struct bd_holder_disk *holder; 841 842 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 843 if (holder->disk == disk) 844 return holder; 845 return NULL; 846} 847 848static int add_symlink(struct kobject *from, struct kobject *to) 849{ 850 return sysfs_create_link(from, to, kobject_name(to)); 851} 852 853static void del_symlink(struct kobject *from, struct kobject *to) 854{ 855 sysfs_remove_link(from, kobject_name(to)); 856} 857 858/** 859 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 860 * @bdev: the claimed slave bdev 861 * @disk: the holding disk 862 * 863 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 864 * 865 * This functions creates the following sysfs symlinks. 866 * 867 * - from "slaves" directory of the holder @disk to the claimed @bdev 868 * - from "holders" directory of the @bdev to the holder @disk 869 * 870 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 871 * passed to bd_link_disk_holder(), then: 872 * 873 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 874 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 875 * 876 * The caller must have claimed @bdev before calling this function and 877 * ensure that both @bdev and @disk are valid during the creation and 878 * lifetime of these symlinks. 879 * 880 * CONTEXT: 881 * Might sleep. 882 * 883 * RETURNS: 884 * 0 on success, -errno on failure. 885 */ 886int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 887{ 888 struct bd_holder_disk *holder; 889 int ret = 0; 890 891 mutex_lock(&bdev->bd_mutex); 892 893 WARN_ON_ONCE(!bdev->bd_holder); 894 895 /* FIXME: remove the following once add_disk() handles errors */ 896 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 897 goto out_unlock; 898 899 holder = bd_find_holder_disk(bdev, disk); 900 if (holder) { 901 holder->refcnt++; 902 goto out_unlock; 903 } 904 905 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 906 if (!holder) { 907 ret = -ENOMEM; 908 goto out_unlock; 909 } 910 911 INIT_LIST_HEAD(&holder->list); 912 holder->disk = disk; 913 holder->refcnt = 1; 914 915 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 916 if (ret) 917 goto out_free; 918 919 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 920 if (ret) 921 goto out_del; 922 /* 923 * bdev could be deleted beneath us which would implicitly destroy 924 * the holder directory. Hold on to it. 925 */ 926 kobject_get(bdev->bd_part->holder_dir); 927 928 list_add(&holder->list, &bdev->bd_holder_disks); 929 goto out_unlock; 930 931out_del: 932 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 933out_free: 934 kfree(holder); 935out_unlock: 936 mutex_unlock(&bdev->bd_mutex); 937 return ret; 938} 939EXPORT_SYMBOL_GPL(bd_link_disk_holder); 940 941/** 942 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 943 * @bdev: the calimed slave bdev 944 * @disk: the holding disk 945 * 946 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 947 * 948 * CONTEXT: 949 * Might sleep. 950 */ 951void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 952{ 953 struct bd_holder_disk *holder; 954 955 mutex_lock(&bdev->bd_mutex); 956 957 holder = bd_find_holder_disk(bdev, disk); 958 959 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 960 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 961 del_symlink(bdev->bd_part->holder_dir, 962 &disk_to_dev(disk)->kobj); 963 kobject_put(bdev->bd_part->holder_dir); 964 list_del_init(&holder->list); 965 kfree(holder); 966 } 967 968 mutex_unlock(&bdev->bd_mutex); 969} 970EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 971#endif 972 973/** 974 * flush_disk - invalidates all buffer-cache entries on a disk 975 * 976 * @bdev: struct block device to be flushed 977 * @kill_dirty: flag to guide handling of dirty inodes 978 * 979 * Invalidates all buffer-cache entries on a disk. It should be called 980 * when a disk has been changed -- either by a media change or online 981 * resize. 982 */ 983static void flush_disk(struct block_device *bdev, bool kill_dirty) 984{ 985 if (__invalidate_device(bdev, kill_dirty)) { 986 char name[BDEVNAME_SIZE] = ""; 987 988 if (bdev->bd_disk) 989 disk_name(bdev->bd_disk, 0, name); 990 printk(KERN_WARNING "VFS: busy inodes on changed media or " 991 "resized disk %s\n", name); 992 } 993 994 if (!bdev->bd_disk) 995 return; 996 if (disk_part_scan_enabled(bdev->bd_disk)) 997 bdev->bd_invalidated = 1; 998} 999 1000/** 1001 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1002 * @disk: struct gendisk to check 1003 * @bdev: struct bdev to adjust. 1004 * 1005 * This routine checks to see if the bdev size does not match the disk size 1006 * and adjusts it if it differs. 1007 */ 1008void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1009{ 1010 loff_t disk_size, bdev_size; 1011 1012 disk_size = (loff_t)get_capacity(disk) << 9; 1013 bdev_size = i_size_read(bdev->bd_inode); 1014 if (disk_size != bdev_size) { 1015 char name[BDEVNAME_SIZE]; 1016 1017 disk_name(disk, 0, name); 1018 printk(KERN_INFO 1019 "%s: detected capacity change from %lld to %lld\n", 1020 name, bdev_size, disk_size); 1021 i_size_write(bdev->bd_inode, disk_size); 1022 flush_disk(bdev, false); 1023 } 1024} 1025EXPORT_SYMBOL(check_disk_size_change); 1026 1027/** 1028 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1029 * @disk: struct gendisk to be revalidated 1030 * 1031 * This routine is a wrapper for lower-level driver's revalidate_disk 1032 * call-backs. It is used to do common pre and post operations needed 1033 * for all revalidate_disk operations. 1034 */ 1035int revalidate_disk(struct gendisk *disk) 1036{ 1037 struct block_device *bdev; 1038 int ret = 0; 1039 1040 if (disk->fops->revalidate_disk) 1041 ret = disk->fops->revalidate_disk(disk); 1042 1043 bdev = bdget_disk(disk, 0); 1044 if (!bdev) 1045 return ret; 1046 1047 mutex_lock(&bdev->bd_mutex); 1048 check_disk_size_change(disk, bdev); 1049 bdev->bd_invalidated = 0; 1050 mutex_unlock(&bdev->bd_mutex); 1051 bdput(bdev); 1052 return ret; 1053} 1054EXPORT_SYMBOL(revalidate_disk); 1055 1056/* 1057 * This routine checks whether a removable media has been changed, 1058 * and invalidates all buffer-cache-entries in that case. This 1059 * is a relatively slow routine, so we have to try to minimize using 1060 * it. Thus it is called only upon a 'mount' or 'open'. This 1061 * is the best way of combining speed and utility, I think. 1062 * People changing diskettes in the middle of an operation deserve 1063 * to lose :-) 1064 */ 1065int check_disk_change(struct block_device *bdev) 1066{ 1067 struct gendisk *disk = bdev->bd_disk; 1068 const struct block_device_operations *bdops = disk->fops; 1069 unsigned int events; 1070 1071 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1072 DISK_EVENT_EJECT_REQUEST); 1073 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1074 return 0; 1075 1076 flush_disk(bdev, true); 1077 if (bdops->revalidate_disk) 1078 bdops->revalidate_disk(bdev->bd_disk); 1079 return 1; 1080} 1081 1082EXPORT_SYMBOL(check_disk_change); 1083 1084void bd_set_size(struct block_device *bdev, loff_t size) 1085{ 1086 unsigned bsize = bdev_logical_block_size(bdev); 1087 1088 mutex_lock(&bdev->bd_inode->i_mutex); 1089 i_size_write(bdev->bd_inode, size); 1090 mutex_unlock(&bdev->bd_inode->i_mutex); 1091 while (bsize < PAGE_CACHE_SIZE) { 1092 if (size & bsize) 1093 break; 1094 bsize <<= 1; 1095 } 1096 bdev->bd_block_size = bsize; 1097 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1098} 1099EXPORT_SYMBOL(bd_set_size); 1100 1101static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1102 1103/* 1104 * bd_mutex locking: 1105 * 1106 * mutex_lock(part->bd_mutex) 1107 * mutex_lock_nested(whole->bd_mutex, 1) 1108 */ 1109 1110static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1111{ 1112 struct gendisk *disk; 1113 struct module *owner; 1114 int ret; 1115 int partno; 1116 int perm = 0; 1117 1118 if (mode & FMODE_READ) 1119 perm |= MAY_READ; 1120 if (mode & FMODE_WRITE) 1121 perm |= MAY_WRITE; 1122 /* 1123 * hooks: /n/, see "layering violations". 1124 */ 1125 if (!for_part) { 1126 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1127 if (ret != 0) { 1128 bdput(bdev); 1129 return ret; 1130 } 1131 } 1132 1133 restart: 1134 1135 ret = -ENXIO; 1136 disk = get_gendisk(bdev->bd_dev, &partno); 1137 if (!disk) 1138 goto out; 1139 owner = disk->fops->owner; 1140 1141 disk_block_events(disk); 1142 mutex_lock_nested(&bdev->bd_mutex, for_part); 1143 if (!bdev->bd_openers) { 1144 bdev->bd_disk = disk; 1145 bdev->bd_queue = disk->queue; 1146 bdev->bd_contains = bdev; 1147 if (!partno) { 1148 struct backing_dev_info *bdi; 1149 1150 ret = -ENXIO; 1151 bdev->bd_part = disk_get_part(disk, partno); 1152 if (!bdev->bd_part) 1153 goto out_clear; 1154 1155 ret = 0; 1156 if (disk->fops->open) { 1157 ret = disk->fops->open(bdev, mode); 1158 if (ret == -ERESTARTSYS) { 1159 /* Lost a race with 'disk' being 1160 * deleted, try again. 1161 * See md.c 1162 */ 1163 disk_put_part(bdev->bd_part); 1164 bdev->bd_part = NULL; 1165 bdev->bd_disk = NULL; 1166 bdev->bd_queue = NULL; 1167 mutex_unlock(&bdev->bd_mutex); 1168 disk_unblock_events(disk); 1169 put_disk(disk); 1170 module_put(owner); 1171 goto restart; 1172 } 1173 } 1174 1175 if (!ret) { 1176 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1177 bdi = blk_get_backing_dev_info(bdev); 1178 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1179 } 1180 1181 /* 1182 * If the device is invalidated, rescan partition 1183 * if open succeeded or failed with -ENOMEDIUM. 1184 * The latter is necessary to prevent ghost 1185 * partitions on a removed medium. 1186 */ 1187 if (bdev->bd_invalidated) { 1188 if (!ret) 1189 rescan_partitions(disk, bdev); 1190 else if (ret == -ENOMEDIUM) 1191 invalidate_partitions(disk, bdev); 1192 } 1193 if (ret) 1194 goto out_clear; 1195 } else { 1196 struct block_device *whole; 1197 whole = bdget_disk(disk, 0); 1198 ret = -ENOMEM; 1199 if (!whole) 1200 goto out_clear; 1201 BUG_ON(for_part); 1202 ret = __blkdev_get(whole, mode, 1); 1203 if (ret) 1204 goto out_clear; 1205 bdev->bd_contains = whole; 1206 bdev_inode_switch_bdi(bdev->bd_inode, 1207 whole->bd_inode->i_data.backing_dev_info); 1208 bdev->bd_part = disk_get_part(disk, partno); 1209 if (!(disk->flags & GENHD_FL_UP) || 1210 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1211 ret = -ENXIO; 1212 goto out_clear; 1213 } 1214 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1215 } 1216 } else { 1217 if (bdev->bd_contains == bdev) { 1218 ret = 0; 1219 if (bdev->bd_disk->fops->open) 1220 ret = bdev->bd_disk->fops->open(bdev, mode); 1221 /* the same as first opener case, read comment there */ 1222 if (bdev->bd_invalidated) { 1223 if (!ret) 1224 rescan_partitions(bdev->bd_disk, bdev); 1225 else if (ret == -ENOMEDIUM) 1226 invalidate_partitions(bdev->bd_disk, bdev); 1227 } 1228 if (ret) 1229 goto out_unlock_bdev; 1230 } 1231 /* only one opener holds refs to the module and disk */ 1232 put_disk(disk); 1233 module_put(owner); 1234 } 1235 bdev->bd_openers++; 1236 if (for_part) 1237 bdev->bd_part_count++; 1238 mutex_unlock(&bdev->bd_mutex); 1239 disk_unblock_events(disk); 1240 return 0; 1241 1242 out_clear: 1243 disk_put_part(bdev->bd_part); 1244 bdev->bd_disk = NULL; 1245 bdev->bd_part = NULL; 1246 bdev->bd_queue = NULL; 1247 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1248 if (bdev != bdev->bd_contains) 1249 __blkdev_put(bdev->bd_contains, mode, 1); 1250 bdev->bd_contains = NULL; 1251 out_unlock_bdev: 1252 mutex_unlock(&bdev->bd_mutex); 1253 disk_unblock_events(disk); 1254 put_disk(disk); 1255 module_put(owner); 1256 out: 1257 bdput(bdev); 1258 1259 return ret; 1260} 1261 1262/** 1263 * blkdev_get - open a block device 1264 * @bdev: block_device to open 1265 * @mode: FMODE_* mask 1266 * @holder: exclusive holder identifier 1267 * 1268 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1269 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1270 * @holder is invalid. Exclusive opens may nest for the same @holder. 1271 * 1272 * On success, the reference count of @bdev is unchanged. On failure, 1273 * @bdev is put. 1274 * 1275 * CONTEXT: 1276 * Might sleep. 1277 * 1278 * RETURNS: 1279 * 0 on success, -errno on failure. 1280 */ 1281int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1282{ 1283 struct block_device *whole = NULL; 1284 int res; 1285 1286 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1287 1288 if ((mode & FMODE_EXCL) && holder) { 1289 whole = bd_start_claiming(bdev, holder); 1290 if (IS_ERR(whole)) { 1291 bdput(bdev); 1292 return PTR_ERR(whole); 1293 } 1294 } 1295 1296 res = __blkdev_get(bdev, mode, 0); 1297 1298 if (whole) { 1299 struct gendisk *disk = whole->bd_disk; 1300 1301 /* finish claiming */ 1302 mutex_lock(&bdev->bd_mutex); 1303 spin_lock(&bdev_lock); 1304 1305 if (!res) { 1306 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1307 /* 1308 * Note that for a whole device bd_holders 1309 * will be incremented twice, and bd_holder 1310 * will be set to bd_may_claim before being 1311 * set to holder 1312 */ 1313 whole->bd_holders++; 1314 whole->bd_holder = bd_may_claim; 1315 bdev->bd_holders++; 1316 bdev->bd_holder = holder; 1317 } 1318 1319 /* tell others that we're done */ 1320 BUG_ON(whole->bd_claiming != holder); 1321 whole->bd_claiming = NULL; 1322 wake_up_bit(&whole->bd_claiming, 0); 1323 1324 spin_unlock(&bdev_lock); 1325 1326 /* 1327 * Block event polling for write claims if requested. Any 1328 * write holder makes the write_holder state stick until 1329 * all are released. This is good enough and tracking 1330 * individual writeable reference is too fragile given the 1331 * way @mode is used in blkdev_get/put(). 1332 */ 1333 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1334 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1335 bdev->bd_write_holder = true; 1336 disk_block_events(disk); 1337 } 1338 1339 mutex_unlock(&bdev->bd_mutex); 1340 bdput(whole); 1341 } 1342 1343 return res; 1344} 1345EXPORT_SYMBOL(blkdev_get); 1346 1347/** 1348 * blkdev_get_by_path - open a block device by name 1349 * @path: path to the block device to open 1350 * @mode: FMODE_* mask 1351 * @holder: exclusive holder identifier 1352 * 1353 * Open the blockdevice described by the device file at @path. @mode 1354 * and @holder are identical to blkdev_get(). 1355 * 1356 * On success, the returned block_device has reference count of one. 1357 * 1358 * CONTEXT: 1359 * Might sleep. 1360 * 1361 * RETURNS: 1362 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1363 */ 1364struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1365 void *holder) 1366{ 1367 struct block_device *bdev; 1368 int err; 1369 1370 bdev = lookup_bdev(path); 1371 if (IS_ERR(bdev)) 1372 return bdev; 1373 1374 err = blkdev_get(bdev, mode, holder); 1375 if (err) 1376 return ERR_PTR(err); 1377 1378 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1379 blkdev_put(bdev, mode); 1380 return ERR_PTR(-EACCES); 1381 } 1382 1383 return bdev; 1384} 1385EXPORT_SYMBOL(blkdev_get_by_path); 1386 1387/** 1388 * blkdev_get_by_dev - open a block device by device number 1389 * @dev: device number of block device to open 1390 * @mode: FMODE_* mask 1391 * @holder: exclusive holder identifier 1392 * 1393 * Open the blockdevice described by device number @dev. @mode and 1394 * @holder are identical to blkdev_get(). 1395 * 1396 * Use it ONLY if you really do not have anything better - i.e. when 1397 * you are behind a truly sucky interface and all you are given is a 1398 * device number. _Never_ to be used for internal purposes. If you 1399 * ever need it - reconsider your API. 1400 * 1401 * On success, the returned block_device has reference count of one. 1402 * 1403 * CONTEXT: 1404 * Might sleep. 1405 * 1406 * RETURNS: 1407 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1408 */ 1409struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1410{ 1411 struct block_device *bdev; 1412 int err; 1413 1414 bdev = bdget(dev); 1415 if (!bdev) 1416 return ERR_PTR(-ENOMEM); 1417 1418 err = blkdev_get(bdev, mode, holder); 1419 if (err) 1420 return ERR_PTR(err); 1421 1422 return bdev; 1423} 1424EXPORT_SYMBOL(blkdev_get_by_dev); 1425 1426static int blkdev_open(struct inode * inode, struct file * filp) 1427{ 1428 struct block_device *bdev; 1429 1430 /* 1431 * Preserve backwards compatibility and allow large file access 1432 * even if userspace doesn't ask for it explicitly. Some mkfs 1433 * binary needs it. We might want to drop this workaround 1434 * during an unstable branch. 1435 */ 1436 filp->f_flags |= O_LARGEFILE; 1437 1438 if (filp->f_flags & O_NDELAY) 1439 filp->f_mode |= FMODE_NDELAY; 1440 if (filp->f_flags & O_EXCL) 1441 filp->f_mode |= FMODE_EXCL; 1442 if ((filp->f_flags & O_ACCMODE) == 3) 1443 filp->f_mode |= FMODE_WRITE_IOCTL; 1444 1445 bdev = bd_acquire(inode); 1446 if (bdev == NULL) 1447 return -ENOMEM; 1448 1449 filp->f_mapping = bdev->bd_inode->i_mapping; 1450 1451 return blkdev_get(bdev, filp->f_mode, filp); 1452} 1453 1454static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1455{ 1456 struct gendisk *disk = bdev->bd_disk; 1457 struct block_device *victim = NULL; 1458 1459 mutex_lock_nested(&bdev->bd_mutex, for_part); 1460 if (for_part) 1461 bdev->bd_part_count--; 1462 1463 if (!--bdev->bd_openers) { 1464 WARN_ON_ONCE(bdev->bd_holders); 1465 sync_blockdev(bdev); 1466 kill_bdev(bdev); 1467 /* ->release can cause the old bdi to disappear, 1468 * so must switch it out first 1469 */ 1470 bdev_inode_switch_bdi(bdev->bd_inode, 1471 &default_backing_dev_info); 1472 } 1473 if (bdev->bd_contains == bdev) { 1474 if (disk->fops->release) 1475 disk->fops->release(disk, mode); 1476 } 1477 if (!bdev->bd_openers) { 1478 struct module *owner = disk->fops->owner; 1479 1480 disk_put_part(bdev->bd_part); 1481 bdev->bd_part = NULL; 1482 bdev->bd_disk = NULL; 1483 if (bdev != bdev->bd_contains) 1484 victim = bdev->bd_contains; 1485 bdev->bd_contains = NULL; 1486 1487 put_disk(disk); 1488 module_put(owner); 1489 } 1490 mutex_unlock(&bdev->bd_mutex); 1491 bdput(bdev); 1492 if (victim) 1493 __blkdev_put(victim, mode, 1); 1494} 1495 1496void blkdev_put(struct block_device *bdev, fmode_t mode) 1497{ 1498 mutex_lock(&bdev->bd_mutex); 1499 1500 if (mode & FMODE_EXCL) { 1501 bool bdev_free; 1502 1503 /* 1504 * Release a claim on the device. The holder fields 1505 * are protected with bdev_lock. bd_mutex is to 1506 * synchronize disk_holder unlinking. 1507 */ 1508 spin_lock(&bdev_lock); 1509 1510 WARN_ON_ONCE(--bdev->bd_holders < 0); 1511 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1512 1513 /* bd_contains might point to self, check in a separate step */ 1514 if ((bdev_free = !bdev->bd_holders)) 1515 bdev->bd_holder = NULL; 1516 if (!bdev->bd_contains->bd_holders) 1517 bdev->bd_contains->bd_holder = NULL; 1518 1519 spin_unlock(&bdev_lock); 1520 1521 /* 1522 * If this was the last claim, remove holder link and 1523 * unblock evpoll if it was a write holder. 1524 */ 1525 if (bdev_free && bdev->bd_write_holder) { 1526 disk_unblock_events(bdev->bd_disk); 1527 bdev->bd_write_holder = false; 1528 } 1529 } 1530 1531 /* 1532 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1533 * event. This is to ensure detection of media removal commanded 1534 * from userland - e.g. eject(1). 1535 */ 1536 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1537 1538 mutex_unlock(&bdev->bd_mutex); 1539 1540 __blkdev_put(bdev, mode, 0); 1541} 1542EXPORT_SYMBOL(blkdev_put); 1543 1544static int blkdev_close(struct inode * inode, struct file * filp) 1545{ 1546 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1547 blkdev_put(bdev, filp->f_mode); 1548 return 0; 1549} 1550 1551static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1552{ 1553 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1554 fmode_t mode = file->f_mode; 1555 1556 /* 1557 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1558 * to updated it before every ioctl. 1559 */ 1560 if (file->f_flags & O_NDELAY) 1561 mode |= FMODE_NDELAY; 1562 else 1563 mode &= ~FMODE_NDELAY; 1564 1565 return blkdev_ioctl(bdev, mode, cmd, arg); 1566} 1567 1568/* 1569 * Write data to the block device. Only intended for the block device itself 1570 * and the raw driver which basically is a fake block device. 1571 * 1572 * Does not take i_mutex for the write and thus is not for general purpose 1573 * use. 1574 */ 1575ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1576{ 1577 struct file *file = iocb->ki_filp; 1578 struct blk_plug plug; 1579 ssize_t ret; 1580 1581 blk_start_plug(&plug); 1582 ret = __generic_file_write_iter(iocb, from); 1583 if (ret > 0) { 1584 ssize_t err; 1585 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1586 if (err < 0) 1587 ret = err; 1588 } 1589 blk_finish_plug(&plug); 1590 return ret; 1591} 1592EXPORT_SYMBOL_GPL(blkdev_write_iter); 1593 1594ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1595{ 1596 struct file *file = iocb->ki_filp; 1597 struct inode *bd_inode = file->f_mapping->host; 1598 loff_t size = i_size_read(bd_inode); 1599 loff_t pos = iocb->ki_pos; 1600 1601 if (pos >= size) 1602 return 0; 1603 1604 size -= pos; 1605 iov_iter_truncate(to, size); 1606 return generic_file_read_iter(iocb, to); 1607} 1608EXPORT_SYMBOL_GPL(blkdev_read_iter); 1609 1610/* 1611 * Try to release a page associated with block device when the system 1612 * is under memory pressure. 1613 */ 1614static int blkdev_releasepage(struct page *page, gfp_t wait) 1615{ 1616 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1617 1618 if (super && super->s_op->bdev_try_to_free_page) 1619 return super->s_op->bdev_try_to_free_page(super, page, wait); 1620 1621 return try_to_free_buffers(page); 1622} 1623 1624static const struct address_space_operations def_blk_aops = { 1625 .readpage = blkdev_readpage, 1626 .readpages = blkdev_readpages, 1627 .writepage = blkdev_writepage, 1628 .write_begin = blkdev_write_begin, 1629 .write_end = blkdev_write_end, 1630 .writepages = generic_writepages, 1631 .releasepage = blkdev_releasepage, 1632 .direct_IO = blkdev_direct_IO, 1633 .is_dirty_writeback = buffer_check_dirty_writeback, 1634}; 1635 1636const struct file_operations def_blk_fops = { 1637 .open = blkdev_open, 1638 .release = blkdev_close, 1639 .llseek = block_llseek, 1640 .read = new_sync_read, 1641 .write = new_sync_write, 1642 .read_iter = blkdev_read_iter, 1643 .write_iter = blkdev_write_iter, 1644 .mmap = generic_file_mmap, 1645 .fsync = blkdev_fsync, 1646 .unlocked_ioctl = block_ioctl, 1647#ifdef CONFIG_COMPAT 1648 .compat_ioctl = compat_blkdev_ioctl, 1649#endif 1650 .splice_read = generic_file_splice_read, 1651 .splice_write = iter_file_splice_write, 1652}; 1653 1654int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1655{ 1656 int res; 1657 mm_segment_t old_fs = get_fs(); 1658 set_fs(KERNEL_DS); 1659 res = blkdev_ioctl(bdev, 0, cmd, arg); 1660 set_fs(old_fs); 1661 return res; 1662} 1663 1664EXPORT_SYMBOL(ioctl_by_bdev); 1665 1666/** 1667 * lookup_bdev - lookup a struct block_device by name 1668 * @pathname: special file representing the block device 1669 * 1670 * Get a reference to the blockdevice at @pathname in the current 1671 * namespace if possible and return it. Return ERR_PTR(error) 1672 * otherwise. 1673 */ 1674struct block_device *lookup_bdev(const char *pathname) 1675{ 1676 struct block_device *bdev; 1677 struct inode *inode; 1678 struct path path; 1679 int error; 1680 1681 if (!pathname || !*pathname) 1682 return ERR_PTR(-EINVAL); 1683 1684 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1685 if (error) 1686 return ERR_PTR(error); 1687 1688 inode = path.dentry->d_inode; 1689 error = -ENOTBLK; 1690 if (!S_ISBLK(inode->i_mode)) 1691 goto fail; 1692 error = -EACCES; 1693 if (path.mnt->mnt_flags & MNT_NODEV) 1694 goto fail; 1695 error = -ENOMEM; 1696 bdev = bd_acquire(inode); 1697 if (!bdev) 1698 goto fail; 1699out: 1700 path_put(&path); 1701 return bdev; 1702fail: 1703 bdev = ERR_PTR(error); 1704 goto out; 1705} 1706EXPORT_SYMBOL(lookup_bdev); 1707 1708int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1709{ 1710 struct super_block *sb = get_super(bdev); 1711 int res = 0; 1712 1713 if (sb) { 1714 /* 1715 * no need to lock the super, get_super holds the 1716 * read mutex so the filesystem cannot go away 1717 * under us (->put_super runs with the write lock 1718 * hold). 1719 */ 1720 shrink_dcache_sb(sb); 1721 res = invalidate_inodes(sb, kill_dirty); 1722 drop_super(sb); 1723 } 1724 invalidate_bdev(bdev); 1725 return res; 1726} 1727EXPORT_SYMBOL(__invalidate_device); 1728 1729void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1730{ 1731 struct inode *inode, *old_inode = NULL; 1732 1733 spin_lock(&inode_sb_list_lock); 1734 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1735 struct address_space *mapping = inode->i_mapping; 1736 1737 spin_lock(&inode->i_lock); 1738 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1739 mapping->nrpages == 0) { 1740 spin_unlock(&inode->i_lock); 1741 continue; 1742 } 1743 __iget(inode); 1744 spin_unlock(&inode->i_lock); 1745 spin_unlock(&inode_sb_list_lock); 1746 /* 1747 * We hold a reference to 'inode' so it couldn't have been 1748 * removed from s_inodes list while we dropped the 1749 * inode_sb_list_lock. We cannot iput the inode now as we can 1750 * be holding the last reference and we cannot iput it under 1751 * inode_sb_list_lock. So we keep the reference and iput it 1752 * later. 1753 */ 1754 iput(old_inode); 1755 old_inode = inode; 1756 1757 func(I_BDEV(inode), arg); 1758 1759 spin_lock(&inode_sb_list_lock); 1760 } 1761 spin_unlock(&inode_sb_list_lock); 1762 iput(old_inode); 1763}