at v3.19 27 kB view raw
1/* 2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix 3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics 4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the version 2 of the GNU General Public License 8 * as published by the Free Software Foundation 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19#include <linux/module.h> 20#include <linux/kernel.h> 21#include <linux/slab.h> 22#include <linux/netdevice.h> 23#include <linux/if_arp.h> 24#include <linux/can.h> 25#include <linux/can/dev.h> 26#include <linux/can/skb.h> 27#include <linux/can/netlink.h> 28#include <linux/can/led.h> 29#include <net/rtnetlink.h> 30 31#define MOD_DESC "CAN device driver interface" 32 33MODULE_DESCRIPTION(MOD_DESC); 34MODULE_LICENSE("GPL v2"); 35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>"); 36 37/* CAN DLC to real data length conversion helpers */ 38 39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7, 40 8, 12, 16, 20, 24, 32, 48, 64}; 41 42/* get data length from can_dlc with sanitized can_dlc */ 43u8 can_dlc2len(u8 can_dlc) 44{ 45 return dlc2len[can_dlc & 0x0F]; 46} 47EXPORT_SYMBOL_GPL(can_dlc2len); 48 49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, /* 0 - 8 */ 50 9, 9, 9, 9, /* 9 - 12 */ 51 10, 10, 10, 10, /* 13 - 16 */ 52 11, 11, 11, 11, /* 17 - 20 */ 53 12, 12, 12, 12, /* 21 - 24 */ 54 13, 13, 13, 13, 13, 13, 13, 13, /* 25 - 32 */ 55 14, 14, 14, 14, 14, 14, 14, 14, /* 33 - 40 */ 56 14, 14, 14, 14, 14, 14, 14, 14, /* 41 - 48 */ 57 15, 15, 15, 15, 15, 15, 15, 15, /* 49 - 56 */ 58 15, 15, 15, 15, 15, 15, 15, 15}; /* 57 - 64 */ 59 60/* map the sanitized data length to an appropriate data length code */ 61u8 can_len2dlc(u8 len) 62{ 63 if (unlikely(len > 64)) 64 return 0xF; 65 66 return len2dlc[len]; 67} 68EXPORT_SYMBOL_GPL(can_len2dlc); 69 70#ifdef CONFIG_CAN_CALC_BITTIMING 71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */ 72 73/* 74 * Bit-timing calculation derived from: 75 * 76 * Code based on LinCAN sources and H8S2638 project 77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz 78 * Copyright 2005 Stanislav Marek 79 * email: pisa@cmp.felk.cvut.cz 80 * 81 * Calculates proper bit-timing parameters for a specified bit-rate 82 * and sample-point, which can then be used to set the bit-timing 83 * registers of the CAN controller. You can find more information 84 * in the header file linux/can/netlink.h. 85 */ 86static int can_update_spt(const struct can_bittiming_const *btc, 87 int sampl_pt, int tseg, int *tseg1, int *tseg2) 88{ 89 *tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000; 90 if (*tseg2 < btc->tseg2_min) 91 *tseg2 = btc->tseg2_min; 92 if (*tseg2 > btc->tseg2_max) 93 *tseg2 = btc->tseg2_max; 94 *tseg1 = tseg - *tseg2; 95 if (*tseg1 > btc->tseg1_max) { 96 *tseg1 = btc->tseg1_max; 97 *tseg2 = tseg - *tseg1; 98 } 99 return 1000 * (tseg + 1 - *tseg2) / (tseg + 1); 100} 101 102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 103 const struct can_bittiming_const *btc) 104{ 105 struct can_priv *priv = netdev_priv(dev); 106 long best_error = 1000000000, error = 0; 107 int best_tseg = 0, best_brp = 0, brp = 0; 108 int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0; 109 int spt_error = 1000, spt = 0, sampl_pt; 110 long rate; 111 u64 v64; 112 113 /* Use CiA recommended sample points */ 114 if (bt->sample_point) { 115 sampl_pt = bt->sample_point; 116 } else { 117 if (bt->bitrate > 800000) 118 sampl_pt = 750; 119 else if (bt->bitrate > 500000) 120 sampl_pt = 800; 121 else 122 sampl_pt = 875; 123 } 124 125 /* tseg even = round down, odd = round up */ 126 for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1; 127 tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) { 128 tsegall = 1 + tseg / 2; 129 /* Compute all possible tseg choices (tseg=tseg1+tseg2) */ 130 brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2; 131 /* chose brp step which is possible in system */ 132 brp = (brp / btc->brp_inc) * btc->brp_inc; 133 if ((brp < btc->brp_min) || (brp > btc->brp_max)) 134 continue; 135 rate = priv->clock.freq / (brp * tsegall); 136 error = bt->bitrate - rate; 137 /* tseg brp biterror */ 138 if (error < 0) 139 error = -error; 140 if (error > best_error) 141 continue; 142 best_error = error; 143 if (error == 0) { 144 spt = can_update_spt(btc, sampl_pt, tseg / 2, 145 &tseg1, &tseg2); 146 error = sampl_pt - spt; 147 if (error < 0) 148 error = -error; 149 if (error > spt_error) 150 continue; 151 spt_error = error; 152 } 153 best_tseg = tseg / 2; 154 best_brp = brp; 155 if (error == 0) 156 break; 157 } 158 159 if (best_error) { 160 /* Error in one-tenth of a percent */ 161 error = (best_error * 1000) / bt->bitrate; 162 if (error > CAN_CALC_MAX_ERROR) { 163 netdev_err(dev, 164 "bitrate error %ld.%ld%% too high\n", 165 error / 10, error % 10); 166 return -EDOM; 167 } else { 168 netdev_warn(dev, "bitrate error %ld.%ld%%\n", 169 error / 10, error % 10); 170 } 171 } 172 173 /* real sample point */ 174 bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg, 175 &tseg1, &tseg2); 176 177 v64 = (u64)best_brp * 1000000000UL; 178 do_div(v64, priv->clock.freq); 179 bt->tq = (u32)v64; 180 bt->prop_seg = tseg1 / 2; 181 bt->phase_seg1 = tseg1 - bt->prop_seg; 182 bt->phase_seg2 = tseg2; 183 184 /* check for sjw user settings */ 185 if (!bt->sjw || !btc->sjw_max) 186 bt->sjw = 1; 187 else { 188 /* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */ 189 if (bt->sjw > btc->sjw_max) 190 bt->sjw = btc->sjw_max; 191 /* bt->sjw must not be higher than tseg2 */ 192 if (tseg2 < bt->sjw) 193 bt->sjw = tseg2; 194 } 195 196 bt->brp = best_brp; 197 /* real bit-rate */ 198 bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1)); 199 200 return 0; 201} 202#else /* !CONFIG_CAN_CALC_BITTIMING */ 203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt, 204 const struct can_bittiming_const *btc) 205{ 206 netdev_err(dev, "bit-timing calculation not available\n"); 207 return -EINVAL; 208} 209#endif /* CONFIG_CAN_CALC_BITTIMING */ 210 211/* 212 * Checks the validity of the specified bit-timing parameters prop_seg, 213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate 214 * prescaler value brp. You can find more information in the header 215 * file linux/can/netlink.h. 216 */ 217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt, 218 const struct can_bittiming_const *btc) 219{ 220 struct can_priv *priv = netdev_priv(dev); 221 int tseg1, alltseg; 222 u64 brp64; 223 224 tseg1 = bt->prop_seg + bt->phase_seg1; 225 if (!bt->sjw) 226 bt->sjw = 1; 227 if (bt->sjw > btc->sjw_max || 228 tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max || 229 bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max) 230 return -ERANGE; 231 232 brp64 = (u64)priv->clock.freq * (u64)bt->tq; 233 if (btc->brp_inc > 1) 234 do_div(brp64, btc->brp_inc); 235 brp64 += 500000000UL - 1; 236 do_div(brp64, 1000000000UL); /* the practicable BRP */ 237 if (btc->brp_inc > 1) 238 brp64 *= btc->brp_inc; 239 bt->brp = (u32)brp64; 240 241 if (bt->brp < btc->brp_min || bt->brp > btc->brp_max) 242 return -EINVAL; 243 244 alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1; 245 bt->bitrate = priv->clock.freq / (bt->brp * alltseg); 246 bt->sample_point = ((tseg1 + 1) * 1000) / alltseg; 247 248 return 0; 249} 250 251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt, 252 const struct can_bittiming_const *btc) 253{ 254 int err; 255 256 /* Check if the CAN device has bit-timing parameters */ 257 if (!btc) 258 return -EOPNOTSUPP; 259 260 /* 261 * Depending on the given can_bittiming parameter structure the CAN 262 * timing parameters are calculated based on the provided bitrate OR 263 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are 264 * provided directly which are then checked and fixed up. 265 */ 266 if (!bt->tq && bt->bitrate) 267 err = can_calc_bittiming(dev, bt, btc); 268 else if (bt->tq && !bt->bitrate) 269 err = can_fixup_bittiming(dev, bt, btc); 270 else 271 err = -EINVAL; 272 273 return err; 274} 275 276static void can_update_state_error_stats(struct net_device *dev, 277 enum can_state new_state) 278{ 279 struct can_priv *priv = netdev_priv(dev); 280 281 if (new_state <= priv->state) 282 return; 283 284 switch (new_state) { 285 case CAN_STATE_ERROR_WARNING: 286 priv->can_stats.error_warning++; 287 break; 288 case CAN_STATE_ERROR_PASSIVE: 289 priv->can_stats.error_passive++; 290 break; 291 case CAN_STATE_BUS_OFF: 292 default: 293 break; 294 }; 295} 296 297static int can_tx_state_to_frame(struct net_device *dev, enum can_state state) 298{ 299 switch (state) { 300 case CAN_STATE_ERROR_ACTIVE: 301 return CAN_ERR_CRTL_ACTIVE; 302 case CAN_STATE_ERROR_WARNING: 303 return CAN_ERR_CRTL_TX_WARNING; 304 case CAN_STATE_ERROR_PASSIVE: 305 return CAN_ERR_CRTL_TX_PASSIVE; 306 default: 307 return 0; 308 } 309} 310 311static int can_rx_state_to_frame(struct net_device *dev, enum can_state state) 312{ 313 switch (state) { 314 case CAN_STATE_ERROR_ACTIVE: 315 return CAN_ERR_CRTL_ACTIVE; 316 case CAN_STATE_ERROR_WARNING: 317 return CAN_ERR_CRTL_RX_WARNING; 318 case CAN_STATE_ERROR_PASSIVE: 319 return CAN_ERR_CRTL_RX_PASSIVE; 320 default: 321 return 0; 322 } 323} 324 325void can_change_state(struct net_device *dev, struct can_frame *cf, 326 enum can_state tx_state, enum can_state rx_state) 327{ 328 struct can_priv *priv = netdev_priv(dev); 329 enum can_state new_state = max(tx_state, rx_state); 330 331 if (unlikely(new_state == priv->state)) { 332 netdev_warn(dev, "%s: oops, state did not change", __func__); 333 return; 334 } 335 336 netdev_dbg(dev, "New error state: %d\n", new_state); 337 338 can_update_state_error_stats(dev, new_state); 339 priv->state = new_state; 340 341 if (unlikely(new_state == CAN_STATE_BUS_OFF)) { 342 cf->can_id |= CAN_ERR_BUSOFF; 343 return; 344 } 345 346 cf->can_id |= CAN_ERR_CRTL; 347 cf->data[1] |= tx_state >= rx_state ? 348 can_tx_state_to_frame(dev, tx_state) : 0; 349 cf->data[1] |= tx_state <= rx_state ? 350 can_rx_state_to_frame(dev, rx_state) : 0; 351} 352EXPORT_SYMBOL_GPL(can_change_state); 353 354/* 355 * Local echo of CAN messages 356 * 357 * CAN network devices *should* support a local echo functionality 358 * (see Documentation/networking/can.txt). To test the handling of CAN 359 * interfaces that do not support the local echo both driver types are 360 * implemented. In the case that the driver does not support the echo 361 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core 362 * to perform the echo as a fallback solution. 363 */ 364static void can_flush_echo_skb(struct net_device *dev) 365{ 366 struct can_priv *priv = netdev_priv(dev); 367 struct net_device_stats *stats = &dev->stats; 368 int i; 369 370 for (i = 0; i < priv->echo_skb_max; i++) { 371 if (priv->echo_skb[i]) { 372 kfree_skb(priv->echo_skb[i]); 373 priv->echo_skb[i] = NULL; 374 stats->tx_dropped++; 375 stats->tx_aborted_errors++; 376 } 377 } 378} 379 380/* 381 * Put the skb on the stack to be looped backed locally lateron 382 * 383 * The function is typically called in the start_xmit function 384 * of the device driver. The driver must protect access to 385 * priv->echo_skb, if necessary. 386 */ 387void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev, 388 unsigned int idx) 389{ 390 struct can_priv *priv = netdev_priv(dev); 391 392 BUG_ON(idx >= priv->echo_skb_max); 393 394 /* check flag whether this packet has to be looped back */ 395 if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK || 396 (skb->protocol != htons(ETH_P_CAN) && 397 skb->protocol != htons(ETH_P_CANFD))) { 398 kfree_skb(skb); 399 return; 400 } 401 402 if (!priv->echo_skb[idx]) { 403 404 skb = can_create_echo_skb(skb); 405 if (!skb) 406 return; 407 408 /* make settings for echo to reduce code in irq context */ 409 skb->pkt_type = PACKET_BROADCAST; 410 skb->ip_summed = CHECKSUM_UNNECESSARY; 411 skb->dev = dev; 412 413 /* save this skb for tx interrupt echo handling */ 414 priv->echo_skb[idx] = skb; 415 } else { 416 /* locking problem with netif_stop_queue() ?? */ 417 netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__); 418 kfree_skb(skb); 419 } 420} 421EXPORT_SYMBOL_GPL(can_put_echo_skb); 422 423/* 424 * Get the skb from the stack and loop it back locally 425 * 426 * The function is typically called when the TX done interrupt 427 * is handled in the device driver. The driver must protect 428 * access to priv->echo_skb, if necessary. 429 */ 430unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx) 431{ 432 struct can_priv *priv = netdev_priv(dev); 433 434 BUG_ON(idx >= priv->echo_skb_max); 435 436 if (priv->echo_skb[idx]) { 437 struct sk_buff *skb = priv->echo_skb[idx]; 438 struct can_frame *cf = (struct can_frame *)skb->data; 439 u8 dlc = cf->can_dlc; 440 441 netif_rx(priv->echo_skb[idx]); 442 priv->echo_skb[idx] = NULL; 443 444 return dlc; 445 } 446 447 return 0; 448} 449EXPORT_SYMBOL_GPL(can_get_echo_skb); 450 451/* 452 * Remove the skb from the stack and free it. 453 * 454 * The function is typically called when TX failed. 455 */ 456void can_free_echo_skb(struct net_device *dev, unsigned int idx) 457{ 458 struct can_priv *priv = netdev_priv(dev); 459 460 BUG_ON(idx >= priv->echo_skb_max); 461 462 if (priv->echo_skb[idx]) { 463 dev_kfree_skb_any(priv->echo_skb[idx]); 464 priv->echo_skb[idx] = NULL; 465 } 466} 467EXPORT_SYMBOL_GPL(can_free_echo_skb); 468 469/* 470 * CAN device restart for bus-off recovery 471 */ 472static void can_restart(unsigned long data) 473{ 474 struct net_device *dev = (struct net_device *)data; 475 struct can_priv *priv = netdev_priv(dev); 476 struct net_device_stats *stats = &dev->stats; 477 struct sk_buff *skb; 478 struct can_frame *cf; 479 int err; 480 481 BUG_ON(netif_carrier_ok(dev)); 482 483 /* 484 * No synchronization needed because the device is bus-off and 485 * no messages can come in or go out. 486 */ 487 can_flush_echo_skb(dev); 488 489 /* send restart message upstream */ 490 skb = alloc_can_err_skb(dev, &cf); 491 if (skb == NULL) { 492 err = -ENOMEM; 493 goto restart; 494 } 495 cf->can_id |= CAN_ERR_RESTARTED; 496 497 netif_rx(skb); 498 499 stats->rx_packets++; 500 stats->rx_bytes += cf->can_dlc; 501 502restart: 503 netdev_dbg(dev, "restarted\n"); 504 priv->can_stats.restarts++; 505 506 /* Now restart the device */ 507 err = priv->do_set_mode(dev, CAN_MODE_START); 508 509 netif_carrier_on(dev); 510 if (err) 511 netdev_err(dev, "Error %d during restart", err); 512} 513 514int can_restart_now(struct net_device *dev) 515{ 516 struct can_priv *priv = netdev_priv(dev); 517 518 /* 519 * A manual restart is only permitted if automatic restart is 520 * disabled and the device is in the bus-off state 521 */ 522 if (priv->restart_ms) 523 return -EINVAL; 524 if (priv->state != CAN_STATE_BUS_OFF) 525 return -EBUSY; 526 527 /* Runs as soon as possible in the timer context */ 528 mod_timer(&priv->restart_timer, jiffies); 529 530 return 0; 531} 532 533/* 534 * CAN bus-off 535 * 536 * This functions should be called when the device goes bus-off to 537 * tell the netif layer that no more packets can be sent or received. 538 * If enabled, a timer is started to trigger bus-off recovery. 539 */ 540void can_bus_off(struct net_device *dev) 541{ 542 struct can_priv *priv = netdev_priv(dev); 543 544 netdev_dbg(dev, "bus-off\n"); 545 546 netif_carrier_off(dev); 547 priv->can_stats.bus_off++; 548 549 if (priv->restart_ms) 550 mod_timer(&priv->restart_timer, 551 jiffies + (priv->restart_ms * HZ) / 1000); 552} 553EXPORT_SYMBOL_GPL(can_bus_off); 554 555static void can_setup(struct net_device *dev) 556{ 557 dev->type = ARPHRD_CAN; 558 dev->mtu = CAN_MTU; 559 dev->hard_header_len = 0; 560 dev->addr_len = 0; 561 dev->tx_queue_len = 10; 562 563 /* New-style flags. */ 564 dev->flags = IFF_NOARP; 565 dev->features = NETIF_F_HW_CSUM; 566} 567 568struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf) 569{ 570 struct sk_buff *skb; 571 572 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 573 sizeof(struct can_frame)); 574 if (unlikely(!skb)) 575 return NULL; 576 577 skb->protocol = htons(ETH_P_CAN); 578 skb->pkt_type = PACKET_BROADCAST; 579 skb->ip_summed = CHECKSUM_UNNECESSARY; 580 581 can_skb_reserve(skb); 582 can_skb_prv(skb)->ifindex = dev->ifindex; 583 584 *cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame)); 585 memset(*cf, 0, sizeof(struct can_frame)); 586 587 return skb; 588} 589EXPORT_SYMBOL_GPL(alloc_can_skb); 590 591struct sk_buff *alloc_canfd_skb(struct net_device *dev, 592 struct canfd_frame **cfd) 593{ 594 struct sk_buff *skb; 595 596 skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) + 597 sizeof(struct canfd_frame)); 598 if (unlikely(!skb)) 599 return NULL; 600 601 skb->protocol = htons(ETH_P_CANFD); 602 skb->pkt_type = PACKET_BROADCAST; 603 skb->ip_summed = CHECKSUM_UNNECESSARY; 604 605 can_skb_reserve(skb); 606 can_skb_prv(skb)->ifindex = dev->ifindex; 607 608 *cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame)); 609 memset(*cfd, 0, sizeof(struct canfd_frame)); 610 611 return skb; 612} 613EXPORT_SYMBOL_GPL(alloc_canfd_skb); 614 615struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf) 616{ 617 struct sk_buff *skb; 618 619 skb = alloc_can_skb(dev, cf); 620 if (unlikely(!skb)) 621 return NULL; 622 623 (*cf)->can_id = CAN_ERR_FLAG; 624 (*cf)->can_dlc = CAN_ERR_DLC; 625 626 return skb; 627} 628EXPORT_SYMBOL_GPL(alloc_can_err_skb); 629 630/* 631 * Allocate and setup space for the CAN network device 632 */ 633struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max) 634{ 635 struct net_device *dev; 636 struct can_priv *priv; 637 int size; 638 639 if (echo_skb_max) 640 size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) + 641 echo_skb_max * sizeof(struct sk_buff *); 642 else 643 size = sizeof_priv; 644 645 dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup); 646 if (!dev) 647 return NULL; 648 649 priv = netdev_priv(dev); 650 651 if (echo_skb_max) { 652 priv->echo_skb_max = echo_skb_max; 653 priv->echo_skb = (void *)priv + 654 ALIGN(sizeof_priv, sizeof(struct sk_buff *)); 655 } 656 657 priv->state = CAN_STATE_STOPPED; 658 659 init_timer(&priv->restart_timer); 660 661 return dev; 662} 663EXPORT_SYMBOL_GPL(alloc_candev); 664 665/* 666 * Free space of the CAN network device 667 */ 668void free_candev(struct net_device *dev) 669{ 670 free_netdev(dev); 671} 672EXPORT_SYMBOL_GPL(free_candev); 673 674/* 675 * changing MTU and control mode for CAN/CANFD devices 676 */ 677int can_change_mtu(struct net_device *dev, int new_mtu) 678{ 679 struct can_priv *priv = netdev_priv(dev); 680 681 /* Do not allow changing the MTU while running */ 682 if (dev->flags & IFF_UP) 683 return -EBUSY; 684 685 /* allow change of MTU according to the CANFD ability of the device */ 686 switch (new_mtu) { 687 case CAN_MTU: 688 priv->ctrlmode &= ~CAN_CTRLMODE_FD; 689 break; 690 691 case CANFD_MTU: 692 if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD)) 693 return -EINVAL; 694 695 priv->ctrlmode |= CAN_CTRLMODE_FD; 696 break; 697 698 default: 699 return -EINVAL; 700 } 701 702 dev->mtu = new_mtu; 703 return 0; 704} 705EXPORT_SYMBOL_GPL(can_change_mtu); 706 707/* 708 * Common open function when the device gets opened. 709 * 710 * This function should be called in the open function of the device 711 * driver. 712 */ 713int open_candev(struct net_device *dev) 714{ 715 struct can_priv *priv = netdev_priv(dev); 716 717 if (!priv->bittiming.bitrate) { 718 netdev_err(dev, "bit-timing not yet defined\n"); 719 return -EINVAL; 720 } 721 722 /* For CAN FD the data bitrate has to be >= the arbitration bitrate */ 723 if ((priv->ctrlmode & CAN_CTRLMODE_FD) && 724 (!priv->data_bittiming.bitrate || 725 (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) { 726 netdev_err(dev, "incorrect/missing data bit-timing\n"); 727 return -EINVAL; 728 } 729 730 /* Switch carrier on if device was stopped while in bus-off state */ 731 if (!netif_carrier_ok(dev)) 732 netif_carrier_on(dev); 733 734 setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev); 735 736 return 0; 737} 738EXPORT_SYMBOL_GPL(open_candev); 739 740/* 741 * Common close function for cleanup before the device gets closed. 742 * 743 * This function should be called in the close function of the device 744 * driver. 745 */ 746void close_candev(struct net_device *dev) 747{ 748 struct can_priv *priv = netdev_priv(dev); 749 750 del_timer_sync(&priv->restart_timer); 751 can_flush_echo_skb(dev); 752} 753EXPORT_SYMBOL_GPL(close_candev); 754 755/* 756 * CAN netlink interface 757 */ 758static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = { 759 [IFLA_CAN_STATE] = { .type = NLA_U32 }, 760 [IFLA_CAN_CTRLMODE] = { .len = sizeof(struct can_ctrlmode) }, 761 [IFLA_CAN_RESTART_MS] = { .type = NLA_U32 }, 762 [IFLA_CAN_RESTART] = { .type = NLA_U32 }, 763 [IFLA_CAN_BITTIMING] = { .len = sizeof(struct can_bittiming) }, 764 [IFLA_CAN_BITTIMING_CONST] 765 = { .len = sizeof(struct can_bittiming_const) }, 766 [IFLA_CAN_CLOCK] = { .len = sizeof(struct can_clock) }, 767 [IFLA_CAN_BERR_COUNTER] = { .len = sizeof(struct can_berr_counter) }, 768 [IFLA_CAN_DATA_BITTIMING] 769 = { .len = sizeof(struct can_bittiming) }, 770 [IFLA_CAN_DATA_BITTIMING_CONST] 771 = { .len = sizeof(struct can_bittiming_const) }, 772}; 773 774static int can_changelink(struct net_device *dev, 775 struct nlattr *tb[], struct nlattr *data[]) 776{ 777 struct can_priv *priv = netdev_priv(dev); 778 int err; 779 780 /* We need synchronization with dev->stop() */ 781 ASSERT_RTNL(); 782 783 if (data[IFLA_CAN_BITTIMING]) { 784 struct can_bittiming bt; 785 786 /* Do not allow changing bittiming while running */ 787 if (dev->flags & IFF_UP) 788 return -EBUSY; 789 memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt)); 790 err = can_get_bittiming(dev, &bt, priv->bittiming_const); 791 if (err) 792 return err; 793 memcpy(&priv->bittiming, &bt, sizeof(bt)); 794 795 if (priv->do_set_bittiming) { 796 /* Finally, set the bit-timing registers */ 797 err = priv->do_set_bittiming(dev); 798 if (err) 799 return err; 800 } 801 } 802 803 if (data[IFLA_CAN_CTRLMODE]) { 804 struct can_ctrlmode *cm; 805 806 /* Do not allow changing controller mode while running */ 807 if (dev->flags & IFF_UP) 808 return -EBUSY; 809 cm = nla_data(data[IFLA_CAN_CTRLMODE]); 810 811 /* check whether changed bits are allowed to be modified */ 812 if (cm->mask & ~priv->ctrlmode_supported) 813 return -EOPNOTSUPP; 814 815 /* clear bits to be modified and copy the flag values */ 816 priv->ctrlmode &= ~cm->mask; 817 priv->ctrlmode |= (cm->flags & cm->mask); 818 819 /* CAN_CTRLMODE_FD can only be set when driver supports FD */ 820 if (priv->ctrlmode & CAN_CTRLMODE_FD) 821 dev->mtu = CANFD_MTU; 822 else 823 dev->mtu = CAN_MTU; 824 } 825 826 if (data[IFLA_CAN_RESTART_MS]) { 827 /* Do not allow changing restart delay while running */ 828 if (dev->flags & IFF_UP) 829 return -EBUSY; 830 priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]); 831 } 832 833 if (data[IFLA_CAN_RESTART]) { 834 /* Do not allow a restart while not running */ 835 if (!(dev->flags & IFF_UP)) 836 return -EINVAL; 837 err = can_restart_now(dev); 838 if (err) 839 return err; 840 } 841 842 if (data[IFLA_CAN_DATA_BITTIMING]) { 843 struct can_bittiming dbt; 844 845 /* Do not allow changing bittiming while running */ 846 if (dev->flags & IFF_UP) 847 return -EBUSY; 848 memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]), 849 sizeof(dbt)); 850 err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const); 851 if (err) 852 return err; 853 memcpy(&priv->data_bittiming, &dbt, sizeof(dbt)); 854 855 if (priv->do_set_data_bittiming) { 856 /* Finally, set the bit-timing registers */ 857 err = priv->do_set_data_bittiming(dev); 858 if (err) 859 return err; 860 } 861 } 862 863 return 0; 864} 865 866static size_t can_get_size(const struct net_device *dev) 867{ 868 struct can_priv *priv = netdev_priv(dev); 869 size_t size = 0; 870 871 if (priv->bittiming.bitrate) /* IFLA_CAN_BITTIMING */ 872 size += nla_total_size(sizeof(struct can_bittiming)); 873 if (priv->bittiming_const) /* IFLA_CAN_BITTIMING_CONST */ 874 size += nla_total_size(sizeof(struct can_bittiming_const)); 875 size += nla_total_size(sizeof(struct can_clock)); /* IFLA_CAN_CLOCK */ 876 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_STATE */ 877 size += nla_total_size(sizeof(struct can_ctrlmode)); /* IFLA_CAN_CTRLMODE */ 878 size += nla_total_size(sizeof(u32)); /* IFLA_CAN_RESTART_MS */ 879 if (priv->do_get_berr_counter) /* IFLA_CAN_BERR_COUNTER */ 880 size += nla_total_size(sizeof(struct can_berr_counter)); 881 if (priv->data_bittiming.bitrate) /* IFLA_CAN_DATA_BITTIMING */ 882 size += nla_total_size(sizeof(struct can_bittiming)); 883 if (priv->data_bittiming_const) /* IFLA_CAN_DATA_BITTIMING_CONST */ 884 size += nla_total_size(sizeof(struct can_bittiming_const)); 885 886 return size; 887} 888 889static int can_fill_info(struct sk_buff *skb, const struct net_device *dev) 890{ 891 struct can_priv *priv = netdev_priv(dev); 892 struct can_ctrlmode cm = {.flags = priv->ctrlmode}; 893 struct can_berr_counter bec; 894 enum can_state state = priv->state; 895 896 if (priv->do_get_state) 897 priv->do_get_state(dev, &state); 898 899 if ((priv->bittiming.bitrate && 900 nla_put(skb, IFLA_CAN_BITTIMING, 901 sizeof(priv->bittiming), &priv->bittiming)) || 902 903 (priv->bittiming_const && 904 nla_put(skb, IFLA_CAN_BITTIMING_CONST, 905 sizeof(*priv->bittiming_const), priv->bittiming_const)) || 906 907 nla_put(skb, IFLA_CAN_CLOCK, sizeof(cm), &priv->clock) || 908 nla_put_u32(skb, IFLA_CAN_STATE, state) || 909 nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) || 910 nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) || 911 912 (priv->do_get_berr_counter && 913 !priv->do_get_berr_counter(dev, &bec) && 914 nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) || 915 916 (priv->data_bittiming.bitrate && 917 nla_put(skb, IFLA_CAN_DATA_BITTIMING, 918 sizeof(priv->data_bittiming), &priv->data_bittiming)) || 919 920 (priv->data_bittiming_const && 921 nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST, 922 sizeof(*priv->data_bittiming_const), 923 priv->data_bittiming_const))) 924 return -EMSGSIZE; 925 926 return 0; 927} 928 929static size_t can_get_xstats_size(const struct net_device *dev) 930{ 931 return sizeof(struct can_device_stats); 932} 933 934static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev) 935{ 936 struct can_priv *priv = netdev_priv(dev); 937 938 if (nla_put(skb, IFLA_INFO_XSTATS, 939 sizeof(priv->can_stats), &priv->can_stats)) 940 goto nla_put_failure; 941 return 0; 942 943nla_put_failure: 944 return -EMSGSIZE; 945} 946 947static int can_newlink(struct net *src_net, struct net_device *dev, 948 struct nlattr *tb[], struct nlattr *data[]) 949{ 950 return -EOPNOTSUPP; 951} 952 953static struct rtnl_link_ops can_link_ops __read_mostly = { 954 .kind = "can", 955 .maxtype = IFLA_CAN_MAX, 956 .policy = can_policy, 957 .setup = can_setup, 958 .newlink = can_newlink, 959 .changelink = can_changelink, 960 .get_size = can_get_size, 961 .fill_info = can_fill_info, 962 .get_xstats_size = can_get_xstats_size, 963 .fill_xstats = can_fill_xstats, 964}; 965 966/* 967 * Register the CAN network device 968 */ 969int register_candev(struct net_device *dev) 970{ 971 dev->rtnl_link_ops = &can_link_ops; 972 return register_netdev(dev); 973} 974EXPORT_SYMBOL_GPL(register_candev); 975 976/* 977 * Unregister the CAN network device 978 */ 979void unregister_candev(struct net_device *dev) 980{ 981 unregister_netdev(dev); 982} 983EXPORT_SYMBOL_GPL(unregister_candev); 984 985/* 986 * Test if a network device is a candev based device 987 * and return the can_priv* if so. 988 */ 989struct can_priv *safe_candev_priv(struct net_device *dev) 990{ 991 if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops)) 992 return NULL; 993 994 return netdev_priv(dev); 995} 996EXPORT_SYMBOL_GPL(safe_candev_priv); 997 998static __init int can_dev_init(void) 999{ 1000 int err; 1001 1002 can_led_notifier_init(); 1003 1004 err = rtnl_link_register(&can_link_ops); 1005 if (!err) 1006 printk(KERN_INFO MOD_DESC "\n"); 1007 1008 return err; 1009} 1010module_init(can_dev_init); 1011 1012static __exit void can_dev_exit(void) 1013{ 1014 rtnl_link_unregister(&can_link_ops); 1015 1016 can_led_notifier_exit(); 1017} 1018module_exit(can_dev_exit); 1019 1020MODULE_ALIAS_RTNL_LINK("can");