Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
14/*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29#ifndef __ASSEMBLY__
30#include <linux/sched.h>
31#include <linux/mm_types.h>
32#include <linux/page-flags.h>
33#include <linux/radix-tree.h>
34#include <asm/bug.h>
35#include <asm/page.h>
36
37extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
38extern void paging_init(void);
39extern void vmem_map_init(void);
40
41/*
42 * The S390 doesn't have any external MMU info: the kernel page
43 * tables contain all the necessary information.
44 */
45#define update_mmu_cache(vma, address, ptep) do { } while (0)
46#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
47
48/*
49 * ZERO_PAGE is a global shared page that is always zero; used
50 * for zero-mapped memory areas etc..
51 */
52
53extern unsigned long empty_zero_page;
54extern unsigned long zero_page_mask;
55
56#define ZERO_PAGE(vaddr) \
57 (virt_to_page((void *)(empty_zero_page + \
58 (((unsigned long)(vaddr)) &zero_page_mask))))
59#define __HAVE_COLOR_ZERO_PAGE
60
61/* TODO: s390 cannot support io_remap_pfn_range... */
62#endif /* !__ASSEMBLY__ */
63
64/*
65 * PMD_SHIFT determines the size of the area a second-level page
66 * table can map
67 * PGDIR_SHIFT determines what a third-level page table entry can map
68 */
69#ifndef CONFIG_64BIT
70# define PMD_SHIFT 20
71# define PUD_SHIFT 20
72# define PGDIR_SHIFT 20
73#else /* CONFIG_64BIT */
74# define PMD_SHIFT 20
75# define PUD_SHIFT 31
76# define PGDIR_SHIFT 42
77#endif /* CONFIG_64BIT */
78
79#define PMD_SIZE (1UL << PMD_SHIFT)
80#define PMD_MASK (~(PMD_SIZE-1))
81#define PUD_SIZE (1UL << PUD_SHIFT)
82#define PUD_MASK (~(PUD_SIZE-1))
83#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
84#define PGDIR_MASK (~(PGDIR_SIZE-1))
85
86/*
87 * entries per page directory level: the S390 is two-level, so
88 * we don't really have any PMD directory physically.
89 * for S390 segment-table entries are combined to one PGD
90 * that leads to 1024 pte per pgd
91 */
92#define PTRS_PER_PTE 256
93#ifndef CONFIG_64BIT
94#define PTRS_PER_PMD 1
95#define PTRS_PER_PUD 1
96#else /* CONFIG_64BIT */
97#define PTRS_PER_PMD 2048
98#define PTRS_PER_PUD 2048
99#endif /* CONFIG_64BIT */
100#define PTRS_PER_PGD 2048
101
102#define FIRST_USER_ADDRESS 0
103
104#define pte_ERROR(e) \
105 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
106#define pmd_ERROR(e) \
107 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
108#define pud_ERROR(e) \
109 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
110#define pgd_ERROR(e) \
111 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
112
113#ifndef __ASSEMBLY__
114/*
115 * The vmalloc and module area will always be on the topmost area of the kernel
116 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
117 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
118 * modules will reside. That makes sure that inter module branches always
119 * happen without trampolines and in addition the placement within a 2GB frame
120 * is branch prediction unit friendly.
121 */
122extern unsigned long VMALLOC_START;
123extern unsigned long VMALLOC_END;
124extern struct page *vmemmap;
125
126#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
127
128#ifdef CONFIG_64BIT
129extern unsigned long MODULES_VADDR;
130extern unsigned long MODULES_END;
131#define MODULES_VADDR MODULES_VADDR
132#define MODULES_END MODULES_END
133#define MODULES_LEN (1UL << 31)
134#endif
135
136static inline int is_module_addr(void *addr)
137{
138#ifdef CONFIG_64BIT
139 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
140 if (addr < (void *)MODULES_VADDR)
141 return 0;
142 if (addr > (void *)MODULES_END)
143 return 0;
144#endif
145 return 1;
146}
147
148/*
149 * A 31 bit pagetable entry of S390 has following format:
150 * | PFRA | | OS |
151 * 0 0IP0
152 * 00000000001111111111222222222233
153 * 01234567890123456789012345678901
154 *
155 * I Page-Invalid Bit: Page is not available for address-translation
156 * P Page-Protection Bit: Store access not possible for page
157 *
158 * A 31 bit segmenttable entry of S390 has following format:
159 * | P-table origin | |PTL
160 * 0 IC
161 * 00000000001111111111222222222233
162 * 01234567890123456789012345678901
163 *
164 * I Segment-Invalid Bit: Segment is not available for address-translation
165 * C Common-Segment Bit: Segment is not private (PoP 3-30)
166 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
167 *
168 * The 31 bit segmenttable origin of S390 has following format:
169 *
170 * |S-table origin | | STL |
171 * X **GPS
172 * 00000000001111111111222222222233
173 * 01234567890123456789012345678901
174 *
175 * X Space-Switch event:
176 * G Segment-Invalid Bit: *
177 * P Private-Space Bit: Segment is not private (PoP 3-30)
178 * S Storage-Alteration:
179 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
180 *
181 * A 64 bit pagetable entry of S390 has following format:
182 * | PFRA |0IPC| OS |
183 * 0000000000111111111122222222223333333333444444444455555555556666
184 * 0123456789012345678901234567890123456789012345678901234567890123
185 *
186 * I Page-Invalid Bit: Page is not available for address-translation
187 * P Page-Protection Bit: Store access not possible for page
188 * C Change-bit override: HW is not required to set change bit
189 *
190 * A 64 bit segmenttable entry of S390 has following format:
191 * | P-table origin | TT
192 * 0000000000111111111122222222223333333333444444444455555555556666
193 * 0123456789012345678901234567890123456789012345678901234567890123
194 *
195 * I Segment-Invalid Bit: Segment is not available for address-translation
196 * C Common-Segment Bit: Segment is not private (PoP 3-30)
197 * P Page-Protection Bit: Store access not possible for page
198 * TT Type 00
199 *
200 * A 64 bit region table entry of S390 has following format:
201 * | S-table origin | TF TTTL
202 * 0000000000111111111122222222223333333333444444444455555555556666
203 * 0123456789012345678901234567890123456789012345678901234567890123
204 *
205 * I Segment-Invalid Bit: Segment is not available for address-translation
206 * TT Type 01
207 * TF
208 * TL Table length
209 *
210 * The 64 bit regiontable origin of S390 has following format:
211 * | region table origon | DTTL
212 * 0000000000111111111122222222223333333333444444444455555555556666
213 * 0123456789012345678901234567890123456789012345678901234567890123
214 *
215 * X Space-Switch event:
216 * G Segment-Invalid Bit:
217 * P Private-Space Bit:
218 * S Storage-Alteration:
219 * R Real space
220 * TL Table-Length:
221 *
222 * A storage key has the following format:
223 * | ACC |F|R|C|0|
224 * 0 3 4 5 6 7
225 * ACC: access key
226 * F : fetch protection bit
227 * R : referenced bit
228 * C : changed bit
229 */
230
231/* Hardware bits in the page table entry */
232#define _PAGE_PROTECT 0x200 /* HW read-only bit */
233#define _PAGE_INVALID 0x400 /* HW invalid bit */
234#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
235
236/* Software bits in the page table entry */
237#define _PAGE_PRESENT 0x001 /* SW pte present bit */
238#define _PAGE_TYPE 0x002 /* SW pte type bit */
239#define _PAGE_YOUNG 0x004 /* SW pte young bit */
240#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
241#define _PAGE_READ 0x010 /* SW pte read bit */
242#define _PAGE_WRITE 0x020 /* SW pte write bit */
243#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
244#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
245#define __HAVE_ARCH_PTE_SPECIAL
246
247/* Set of bits not changed in pte_modify */
248#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
249 _PAGE_YOUNG)
250
251/*
252 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
253 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
254 * is used to distinguish present from not-present ptes. It is changed only
255 * with the page table lock held.
256 *
257 * The following table gives the different possible bit combinations for
258 * the pte hardware and software bits in the last 12 bits of a pte:
259 *
260 * 842100000000
261 * 000084210000
262 * 000000008421
263 * .IR...wrdytp
264 * empty .10...000000
265 * swap .10...xxxx10
266 * file .11...xxxxx0
267 * prot-none, clean, old .11...000001
268 * prot-none, clean, young .11...000101
269 * prot-none, dirty, old .10...001001
270 * prot-none, dirty, young .10...001101
271 * read-only, clean, old .11...010001
272 * read-only, clean, young .01...010101
273 * read-only, dirty, old .11...011001
274 * read-only, dirty, young .01...011101
275 * read-write, clean, old .11...110001
276 * read-write, clean, young .01...110101
277 * read-write, dirty, old .10...111001
278 * read-write, dirty, young .00...111101
279 *
280 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
281 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
282 * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
283 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
284 */
285
286#ifndef CONFIG_64BIT
287
288/* Bits in the segment table address-space-control-element */
289#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
290#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
291#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
292#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
293#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
294
295/* Bits in the segment table entry */
296#define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
297#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
298#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
299#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
300#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
301#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
302
303#define _SEGMENT_ENTRY_DIRTY 0 /* No sw dirty bit for 31-bit */
304#define _SEGMENT_ENTRY_YOUNG 0 /* No sw young bit for 31-bit */
305#define _SEGMENT_ENTRY_READ 0 /* No sw read bit for 31-bit */
306#define _SEGMENT_ENTRY_WRITE 0 /* No sw write bit for 31-bit */
307#define _SEGMENT_ENTRY_LARGE 0 /* No large pages for 31-bit */
308#define _SEGMENT_ENTRY_BITS_LARGE 0
309#define _SEGMENT_ENTRY_ORIGIN_LARGE 0
310
311#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
312#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
313
314/*
315 * Segment table entry encoding (I = invalid, R = read-only bit):
316 * ..R...I.....
317 * prot-none ..1...1.....
318 * read-only ..1...0.....
319 * read-write ..0...0.....
320 * empty ..0...1.....
321 */
322
323/* Page status table bits for virtualization */
324#define PGSTE_ACC_BITS 0xf0000000UL
325#define PGSTE_FP_BIT 0x08000000UL
326#define PGSTE_PCL_BIT 0x00800000UL
327#define PGSTE_HR_BIT 0x00400000UL
328#define PGSTE_HC_BIT 0x00200000UL
329#define PGSTE_GR_BIT 0x00040000UL
330#define PGSTE_GC_BIT 0x00020000UL
331#define PGSTE_UC_BIT 0x00008000UL /* user dirty (migration) */
332#define PGSTE_IN_BIT 0x00004000UL /* IPTE notify bit */
333
334#else /* CONFIG_64BIT */
335
336/* Bits in the segment/region table address-space-control-element */
337#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
338#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
339#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
340#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
341#define _ASCE_REAL_SPACE 0x20 /* real space control */
342#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
343#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
344#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
345#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
346#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
347#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
348
349/* Bits in the region table entry */
350#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
351#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
352#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
353#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
354#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
355#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
356#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
357#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
358
359#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
360#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
361#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
362#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
363#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
364#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
365
366#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
367#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
368
369/* Bits in the segment table entry */
370#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
371#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
372#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
373#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
374#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
375#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
376
377#define _SEGMENT_ENTRY (0)
378#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
379
380#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
381#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
382#define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
383#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
384#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
385#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
386
387/*
388 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
389 * dy..R...I...wr
390 * prot-none, clean, old 00..1...1...00
391 * prot-none, clean, young 01..1...1...00
392 * prot-none, dirty, old 10..1...1...00
393 * prot-none, dirty, young 11..1...1...00
394 * read-only, clean, old 00..1...1...01
395 * read-only, clean, young 01..1...0...01
396 * read-only, dirty, old 10..1...1...01
397 * read-only, dirty, young 11..1...0...01
398 * read-write, clean, old 00..1...1...11
399 * read-write, clean, young 01..1...0...11
400 * read-write, dirty, old 10..0...1...11
401 * read-write, dirty, young 11..0...0...11
402 * The segment table origin is used to distinguish empty (origin==0) from
403 * read-write, old segment table entries (origin!=0)
404 */
405
406#define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
407
408/* Page status table bits for virtualization */
409#define PGSTE_ACC_BITS 0xf000000000000000UL
410#define PGSTE_FP_BIT 0x0800000000000000UL
411#define PGSTE_PCL_BIT 0x0080000000000000UL
412#define PGSTE_HR_BIT 0x0040000000000000UL
413#define PGSTE_HC_BIT 0x0020000000000000UL
414#define PGSTE_GR_BIT 0x0004000000000000UL
415#define PGSTE_GC_BIT 0x0002000000000000UL
416#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
417#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
418
419#endif /* CONFIG_64BIT */
420
421/* Guest Page State used for virtualization */
422#define _PGSTE_GPS_ZERO 0x0000000080000000UL
423#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
424#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
425#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
426
427/*
428 * A user page table pointer has the space-switch-event bit, the
429 * private-space-control bit and the storage-alteration-event-control
430 * bit set. A kernel page table pointer doesn't need them.
431 */
432#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
433 _ASCE_ALT_EVENT)
434
435/*
436 * Page protection definitions.
437 */
438#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
439#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
440 _PAGE_INVALID | _PAGE_PROTECT)
441#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
442 _PAGE_INVALID | _PAGE_PROTECT)
443
444#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
445 _PAGE_YOUNG | _PAGE_DIRTY)
446#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
447 _PAGE_YOUNG | _PAGE_DIRTY)
448#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
449 _PAGE_PROTECT)
450
451/*
452 * On s390 the page table entry has an invalid bit and a read-only bit.
453 * Read permission implies execute permission and write permission
454 * implies read permission.
455 */
456 /*xwr*/
457#define __P000 PAGE_NONE
458#define __P001 PAGE_READ
459#define __P010 PAGE_READ
460#define __P011 PAGE_READ
461#define __P100 PAGE_READ
462#define __P101 PAGE_READ
463#define __P110 PAGE_READ
464#define __P111 PAGE_READ
465
466#define __S000 PAGE_NONE
467#define __S001 PAGE_READ
468#define __S010 PAGE_WRITE
469#define __S011 PAGE_WRITE
470#define __S100 PAGE_READ
471#define __S101 PAGE_READ
472#define __S110 PAGE_WRITE
473#define __S111 PAGE_WRITE
474
475/*
476 * Segment entry (large page) protection definitions.
477 */
478#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
479 _SEGMENT_ENTRY_PROTECT)
480#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
481 _SEGMENT_ENTRY_READ)
482#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
483 _SEGMENT_ENTRY_WRITE)
484
485static inline int mm_has_pgste(struct mm_struct *mm)
486{
487#ifdef CONFIG_PGSTE
488 if (unlikely(mm->context.has_pgste))
489 return 1;
490#endif
491 return 0;
492}
493
494/*
495 * In the case that a guest uses storage keys
496 * faults should no longer be backed by zero pages
497 */
498#define mm_forbids_zeropage mm_use_skey
499static inline int mm_use_skey(struct mm_struct *mm)
500{
501#ifdef CONFIG_PGSTE
502 if (mm->context.use_skey)
503 return 1;
504#endif
505 return 0;
506}
507
508/*
509 * pgd/pmd/pte query functions
510 */
511#ifndef CONFIG_64BIT
512
513static inline int pgd_present(pgd_t pgd) { return 1; }
514static inline int pgd_none(pgd_t pgd) { return 0; }
515static inline int pgd_bad(pgd_t pgd) { return 0; }
516
517static inline int pud_present(pud_t pud) { return 1; }
518static inline int pud_none(pud_t pud) { return 0; }
519static inline int pud_large(pud_t pud) { return 0; }
520static inline int pud_bad(pud_t pud) { return 0; }
521
522#else /* CONFIG_64BIT */
523
524static inline int pgd_present(pgd_t pgd)
525{
526 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
527 return 1;
528 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
529}
530
531static inline int pgd_none(pgd_t pgd)
532{
533 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
534 return 0;
535 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
536}
537
538static inline int pgd_bad(pgd_t pgd)
539{
540 /*
541 * With dynamic page table levels the pgd can be a region table
542 * entry or a segment table entry. Check for the bit that are
543 * invalid for either table entry.
544 */
545 unsigned long mask =
546 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
547 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
548 return (pgd_val(pgd) & mask) != 0;
549}
550
551static inline int pud_present(pud_t pud)
552{
553 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
554 return 1;
555 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
556}
557
558static inline int pud_none(pud_t pud)
559{
560 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
561 return 0;
562 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
563}
564
565static inline int pud_large(pud_t pud)
566{
567 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
568 return 0;
569 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
570}
571
572static inline int pud_bad(pud_t pud)
573{
574 /*
575 * With dynamic page table levels the pud can be a region table
576 * entry or a segment table entry. Check for the bit that are
577 * invalid for either table entry.
578 */
579 unsigned long mask =
580 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
581 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
582 return (pud_val(pud) & mask) != 0;
583}
584
585#endif /* CONFIG_64BIT */
586
587static inline int pmd_present(pmd_t pmd)
588{
589 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
590}
591
592static inline int pmd_none(pmd_t pmd)
593{
594 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
595}
596
597static inline int pmd_large(pmd_t pmd)
598{
599 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
600}
601
602static inline int pmd_pfn(pmd_t pmd)
603{
604 unsigned long origin_mask;
605
606 origin_mask = _SEGMENT_ENTRY_ORIGIN;
607 if (pmd_large(pmd))
608 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
609 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
610}
611
612static inline int pmd_bad(pmd_t pmd)
613{
614 if (pmd_large(pmd))
615 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
616 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
617}
618
619#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
620extern void pmdp_splitting_flush(struct vm_area_struct *vma,
621 unsigned long addr, pmd_t *pmdp);
622
623#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
624extern int pmdp_set_access_flags(struct vm_area_struct *vma,
625 unsigned long address, pmd_t *pmdp,
626 pmd_t entry, int dirty);
627
628#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
629extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
630 unsigned long address, pmd_t *pmdp);
631
632#define __HAVE_ARCH_PMD_WRITE
633static inline int pmd_write(pmd_t pmd)
634{
635 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
636}
637
638static inline int pmd_dirty(pmd_t pmd)
639{
640 int dirty = 1;
641 if (pmd_large(pmd))
642 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
643 return dirty;
644}
645
646static inline int pmd_young(pmd_t pmd)
647{
648 int young = 1;
649 if (pmd_large(pmd))
650 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
651 return young;
652}
653
654static inline int pte_present(pte_t pte)
655{
656 /* Bit pattern: (pte & 0x001) == 0x001 */
657 return (pte_val(pte) & _PAGE_PRESENT) != 0;
658}
659
660static inline int pte_none(pte_t pte)
661{
662 /* Bit pattern: pte == 0x400 */
663 return pte_val(pte) == _PAGE_INVALID;
664}
665
666static inline int pte_swap(pte_t pte)
667{
668 /* Bit pattern: (pte & 0x603) == 0x402 */
669 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
670 _PAGE_TYPE | _PAGE_PRESENT))
671 == (_PAGE_INVALID | _PAGE_TYPE);
672}
673
674static inline int pte_file(pte_t pte)
675{
676 /* Bit pattern: (pte & 0x601) == 0x600 */
677 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
678 == (_PAGE_INVALID | _PAGE_PROTECT);
679}
680
681static inline int pte_special(pte_t pte)
682{
683 return (pte_val(pte) & _PAGE_SPECIAL);
684}
685
686#define __HAVE_ARCH_PTE_SAME
687static inline int pte_same(pte_t a, pte_t b)
688{
689 return pte_val(a) == pte_val(b);
690}
691
692static inline pgste_t pgste_get_lock(pte_t *ptep)
693{
694 unsigned long new = 0;
695#ifdef CONFIG_PGSTE
696 unsigned long old;
697
698 preempt_disable();
699 asm(
700 " lg %0,%2\n"
701 "0: lgr %1,%0\n"
702 " nihh %0,0xff7f\n" /* clear PCL bit in old */
703 " oihh %1,0x0080\n" /* set PCL bit in new */
704 " csg %0,%1,%2\n"
705 " jl 0b\n"
706 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
707 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
708#endif
709 return __pgste(new);
710}
711
712static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
713{
714#ifdef CONFIG_PGSTE
715 asm(
716 " nihh %1,0xff7f\n" /* clear PCL bit */
717 " stg %1,%0\n"
718 : "=Q" (ptep[PTRS_PER_PTE])
719 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
720 : "cc", "memory");
721 preempt_enable();
722#endif
723}
724
725static inline pgste_t pgste_get(pte_t *ptep)
726{
727 unsigned long pgste = 0;
728#ifdef CONFIG_PGSTE
729 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
730#endif
731 return __pgste(pgste);
732}
733
734static inline void pgste_set(pte_t *ptep, pgste_t pgste)
735{
736#ifdef CONFIG_PGSTE
737 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
738#endif
739}
740
741static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
742 struct mm_struct *mm)
743{
744#ifdef CONFIG_PGSTE
745 unsigned long address, bits, skey;
746
747 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
748 return pgste;
749 address = pte_val(*ptep) & PAGE_MASK;
750 skey = (unsigned long) page_get_storage_key(address);
751 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
752 /* Transfer page changed & referenced bit to guest bits in pgste */
753 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
754 /* Copy page access key and fetch protection bit to pgste */
755 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
756 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
757#endif
758 return pgste;
759
760}
761
762static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
763 struct mm_struct *mm)
764{
765#ifdef CONFIG_PGSTE
766 unsigned long address;
767 unsigned long nkey;
768
769 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
770 return;
771 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
772 address = pte_val(entry) & PAGE_MASK;
773 /*
774 * Set page access key and fetch protection bit from pgste.
775 * The guest C/R information is still in the PGSTE, set real
776 * key C/R to 0.
777 */
778 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
779 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
780 page_set_storage_key(address, nkey, 0);
781#endif
782}
783
784static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
785{
786 if ((pte_val(entry) & _PAGE_PRESENT) &&
787 (pte_val(entry) & _PAGE_WRITE) &&
788 !(pte_val(entry) & _PAGE_INVALID)) {
789 if (!MACHINE_HAS_ESOP) {
790 /*
791 * Without enhanced suppression-on-protection force
792 * the dirty bit on for all writable ptes.
793 */
794 pte_val(entry) |= _PAGE_DIRTY;
795 pte_val(entry) &= ~_PAGE_PROTECT;
796 }
797 if (!(pte_val(entry) & _PAGE_PROTECT))
798 /* This pte allows write access, set user-dirty */
799 pgste_val(pgste) |= PGSTE_UC_BIT;
800 }
801 *ptep = entry;
802 return pgste;
803}
804
805/**
806 * struct gmap_struct - guest address space
807 * @crst_list: list of all crst tables used in the guest address space
808 * @mm: pointer to the parent mm_struct
809 * @guest_to_host: radix tree with guest to host address translation
810 * @host_to_guest: radix tree with pointer to segment table entries
811 * @guest_table_lock: spinlock to protect all entries in the guest page table
812 * @table: pointer to the page directory
813 * @asce: address space control element for gmap page table
814 * @pfault_enabled: defines if pfaults are applicable for the guest
815 */
816struct gmap {
817 struct list_head list;
818 struct list_head crst_list;
819 struct mm_struct *mm;
820 struct radix_tree_root guest_to_host;
821 struct radix_tree_root host_to_guest;
822 spinlock_t guest_table_lock;
823 unsigned long *table;
824 unsigned long asce;
825 unsigned long asce_end;
826 void *private;
827 bool pfault_enabled;
828};
829
830/**
831 * struct gmap_notifier - notify function block for page invalidation
832 * @notifier_call: address of callback function
833 */
834struct gmap_notifier {
835 struct list_head list;
836 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
837};
838
839struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
840void gmap_free(struct gmap *gmap);
841void gmap_enable(struct gmap *gmap);
842void gmap_disable(struct gmap *gmap);
843int gmap_map_segment(struct gmap *gmap, unsigned long from,
844 unsigned long to, unsigned long len);
845int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
846unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
847unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
848int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
849int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
850void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
851void __gmap_zap(struct gmap *, unsigned long gaddr);
852bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
853
854
855void gmap_register_ipte_notifier(struct gmap_notifier *);
856void gmap_unregister_ipte_notifier(struct gmap_notifier *);
857int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
858void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
859
860static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
861 unsigned long addr,
862 pte_t *ptep, pgste_t pgste)
863{
864#ifdef CONFIG_PGSTE
865 if (pgste_val(pgste) & PGSTE_IN_BIT) {
866 pgste_val(pgste) &= ~PGSTE_IN_BIT;
867 gmap_do_ipte_notify(mm, addr, ptep);
868 }
869#endif
870 return pgste;
871}
872
873/*
874 * Certain architectures need to do special things when PTEs
875 * within a page table are directly modified. Thus, the following
876 * hook is made available.
877 */
878static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
879 pte_t *ptep, pte_t entry)
880{
881 pgste_t pgste;
882
883 if (mm_has_pgste(mm)) {
884 pgste = pgste_get_lock(ptep);
885 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
886 pgste_set_key(ptep, pgste, entry, mm);
887 pgste = pgste_set_pte(ptep, pgste, entry);
888 pgste_set_unlock(ptep, pgste);
889 } else {
890 *ptep = entry;
891 }
892}
893
894/*
895 * query functions pte_write/pte_dirty/pte_young only work if
896 * pte_present() is true. Undefined behaviour if not..
897 */
898static inline int pte_write(pte_t pte)
899{
900 return (pte_val(pte) & _PAGE_WRITE) != 0;
901}
902
903static inline int pte_dirty(pte_t pte)
904{
905 return (pte_val(pte) & _PAGE_DIRTY) != 0;
906}
907
908static inline int pte_young(pte_t pte)
909{
910 return (pte_val(pte) & _PAGE_YOUNG) != 0;
911}
912
913#define __HAVE_ARCH_PTE_UNUSED
914static inline int pte_unused(pte_t pte)
915{
916 return pte_val(pte) & _PAGE_UNUSED;
917}
918
919/*
920 * pgd/pmd/pte modification functions
921 */
922
923static inline void pgd_clear(pgd_t *pgd)
924{
925#ifdef CONFIG_64BIT
926 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
927 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
928#endif
929}
930
931static inline void pud_clear(pud_t *pud)
932{
933#ifdef CONFIG_64BIT
934 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
935 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
936#endif
937}
938
939static inline void pmd_clear(pmd_t *pmdp)
940{
941 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
942}
943
944static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
945{
946 pte_val(*ptep) = _PAGE_INVALID;
947}
948
949/*
950 * The following pte modification functions only work if
951 * pte_present() is true. Undefined behaviour if not..
952 */
953static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
954{
955 pte_val(pte) &= _PAGE_CHG_MASK;
956 pte_val(pte) |= pgprot_val(newprot);
957 /*
958 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
959 * invalid bit set, clear it again for readable, young pages
960 */
961 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
962 pte_val(pte) &= ~_PAGE_INVALID;
963 /*
964 * newprot for PAGE_READ and PAGE_WRITE has the page protection
965 * bit set, clear it again for writable, dirty pages
966 */
967 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
968 pte_val(pte) &= ~_PAGE_PROTECT;
969 return pte;
970}
971
972static inline pte_t pte_wrprotect(pte_t pte)
973{
974 pte_val(pte) &= ~_PAGE_WRITE;
975 pte_val(pte) |= _PAGE_PROTECT;
976 return pte;
977}
978
979static inline pte_t pte_mkwrite(pte_t pte)
980{
981 pte_val(pte) |= _PAGE_WRITE;
982 if (pte_val(pte) & _PAGE_DIRTY)
983 pte_val(pte) &= ~_PAGE_PROTECT;
984 return pte;
985}
986
987static inline pte_t pte_mkclean(pte_t pte)
988{
989 pte_val(pte) &= ~_PAGE_DIRTY;
990 pte_val(pte) |= _PAGE_PROTECT;
991 return pte;
992}
993
994static inline pte_t pte_mkdirty(pte_t pte)
995{
996 pte_val(pte) |= _PAGE_DIRTY;
997 if (pte_val(pte) & _PAGE_WRITE)
998 pte_val(pte) &= ~_PAGE_PROTECT;
999 return pte;
1000}
1001
1002static inline pte_t pte_mkold(pte_t pte)
1003{
1004 pte_val(pte) &= ~_PAGE_YOUNG;
1005 pte_val(pte) |= _PAGE_INVALID;
1006 return pte;
1007}
1008
1009static inline pte_t pte_mkyoung(pte_t pte)
1010{
1011 pte_val(pte) |= _PAGE_YOUNG;
1012 if (pte_val(pte) & _PAGE_READ)
1013 pte_val(pte) &= ~_PAGE_INVALID;
1014 return pte;
1015}
1016
1017static inline pte_t pte_mkspecial(pte_t pte)
1018{
1019 pte_val(pte) |= _PAGE_SPECIAL;
1020 return pte;
1021}
1022
1023#ifdef CONFIG_HUGETLB_PAGE
1024static inline pte_t pte_mkhuge(pte_t pte)
1025{
1026 pte_val(pte) |= _PAGE_LARGE;
1027 return pte;
1028}
1029#endif
1030
1031static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1032{
1033 unsigned long pto = (unsigned long) ptep;
1034
1035#ifndef CONFIG_64BIT
1036 /* pto in ESA mode must point to the start of the segment table */
1037 pto &= 0x7ffffc00;
1038#endif
1039 /* Invalidation + global TLB flush for the pte */
1040 asm volatile(
1041 " ipte %2,%3"
1042 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1043}
1044
1045static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1046{
1047 unsigned long pto = (unsigned long) ptep;
1048
1049#ifndef CONFIG_64BIT
1050 /* pto in ESA mode must point to the start of the segment table */
1051 pto &= 0x7ffffc00;
1052#endif
1053 /* Invalidation + local TLB flush for the pte */
1054 asm volatile(
1055 " .insn rrf,0xb2210000,%2,%3,0,1"
1056 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1057}
1058
1059static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
1060{
1061 unsigned long pto = (unsigned long) ptep;
1062
1063#ifndef CONFIG_64BIT
1064 /* pto in ESA mode must point to the start of the segment table */
1065 pto &= 0x7ffffc00;
1066#endif
1067 /* Invalidate a range of ptes + global TLB flush of the ptes */
1068 do {
1069 asm volatile(
1070 " .insn rrf,0xb2210000,%2,%0,%1,0"
1071 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
1072 } while (nr != 255);
1073}
1074
1075static inline void ptep_flush_direct(struct mm_struct *mm,
1076 unsigned long address, pte_t *ptep)
1077{
1078 int active, count;
1079
1080 if (pte_val(*ptep) & _PAGE_INVALID)
1081 return;
1082 active = (mm == current->active_mm) ? 1 : 0;
1083 count = atomic_add_return(0x10000, &mm->context.attach_count);
1084 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1085 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1086 __ptep_ipte_local(address, ptep);
1087 else
1088 __ptep_ipte(address, ptep);
1089 atomic_sub(0x10000, &mm->context.attach_count);
1090}
1091
1092static inline void ptep_flush_lazy(struct mm_struct *mm,
1093 unsigned long address, pte_t *ptep)
1094{
1095 int active, count;
1096
1097 if (pte_val(*ptep) & _PAGE_INVALID)
1098 return;
1099 active = (mm == current->active_mm) ? 1 : 0;
1100 count = atomic_add_return(0x10000, &mm->context.attach_count);
1101 if ((count & 0xffff) <= active) {
1102 pte_val(*ptep) |= _PAGE_INVALID;
1103 mm->context.flush_mm = 1;
1104 } else
1105 __ptep_ipte(address, ptep);
1106 atomic_sub(0x10000, &mm->context.attach_count);
1107}
1108
1109/*
1110 * Get (and clear) the user dirty bit for a pte.
1111 */
1112static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1113 unsigned long addr,
1114 pte_t *ptep)
1115{
1116 pgste_t pgste;
1117 pte_t pte;
1118 int dirty;
1119
1120 if (!mm_has_pgste(mm))
1121 return 0;
1122 pgste = pgste_get_lock(ptep);
1123 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1124 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1125 pte = *ptep;
1126 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1127 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
1128 __ptep_ipte(addr, ptep);
1129 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1130 pte_val(pte) |= _PAGE_PROTECT;
1131 else
1132 pte_val(pte) |= _PAGE_INVALID;
1133 *ptep = pte;
1134 }
1135 pgste_set_unlock(ptep, pgste);
1136 return dirty;
1137}
1138
1139#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1140static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1141 unsigned long addr, pte_t *ptep)
1142{
1143 pgste_t pgste;
1144 pte_t pte, oldpte;
1145 int young;
1146
1147 if (mm_has_pgste(vma->vm_mm)) {
1148 pgste = pgste_get_lock(ptep);
1149 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1150 }
1151
1152 oldpte = pte = *ptep;
1153 ptep_flush_direct(vma->vm_mm, addr, ptep);
1154 young = pte_young(pte);
1155 pte = pte_mkold(pte);
1156
1157 if (mm_has_pgste(vma->vm_mm)) {
1158 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1159 pgste = pgste_set_pte(ptep, pgste, pte);
1160 pgste_set_unlock(ptep, pgste);
1161 } else
1162 *ptep = pte;
1163
1164 return young;
1165}
1166
1167#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1168static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1169 unsigned long address, pte_t *ptep)
1170{
1171 return ptep_test_and_clear_young(vma, address, ptep);
1172}
1173
1174/*
1175 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1176 * both clear the TLB for the unmapped pte. The reason is that
1177 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1178 * to modify an active pte. The sequence is
1179 * 1) ptep_get_and_clear
1180 * 2) set_pte_at
1181 * 3) flush_tlb_range
1182 * On s390 the tlb needs to get flushed with the modification of the pte
1183 * if the pte is active. The only way how this can be implemented is to
1184 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1185 * is a nop.
1186 */
1187#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1188static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1189 unsigned long address, pte_t *ptep)
1190{
1191 pgste_t pgste;
1192 pte_t pte;
1193
1194 if (mm_has_pgste(mm)) {
1195 pgste = pgste_get_lock(ptep);
1196 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1197 }
1198
1199 pte = *ptep;
1200 ptep_flush_lazy(mm, address, ptep);
1201 pte_val(*ptep) = _PAGE_INVALID;
1202
1203 if (mm_has_pgste(mm)) {
1204 pgste = pgste_update_all(&pte, pgste, mm);
1205 pgste_set_unlock(ptep, pgste);
1206 }
1207 return pte;
1208}
1209
1210#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1211static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1212 unsigned long address,
1213 pte_t *ptep)
1214{
1215 pgste_t pgste;
1216 pte_t pte;
1217
1218 if (mm_has_pgste(mm)) {
1219 pgste = pgste_get_lock(ptep);
1220 pgste_ipte_notify(mm, address, ptep, pgste);
1221 }
1222
1223 pte = *ptep;
1224 ptep_flush_lazy(mm, address, ptep);
1225
1226 if (mm_has_pgste(mm)) {
1227 pgste = pgste_update_all(&pte, pgste, mm);
1228 pgste_set(ptep, pgste);
1229 }
1230 return pte;
1231}
1232
1233static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1234 unsigned long address,
1235 pte_t *ptep, pte_t pte)
1236{
1237 pgste_t pgste;
1238
1239 if (mm_has_pgste(mm)) {
1240 pgste = pgste_get(ptep);
1241 pgste_set_key(ptep, pgste, pte, mm);
1242 pgste = pgste_set_pte(ptep, pgste, pte);
1243 pgste_set_unlock(ptep, pgste);
1244 } else
1245 *ptep = pte;
1246}
1247
1248#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1249static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1250 unsigned long address, pte_t *ptep)
1251{
1252 pgste_t pgste;
1253 pte_t pte;
1254
1255 if (mm_has_pgste(vma->vm_mm)) {
1256 pgste = pgste_get_lock(ptep);
1257 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1258 }
1259
1260 pte = *ptep;
1261 ptep_flush_direct(vma->vm_mm, address, ptep);
1262 pte_val(*ptep) = _PAGE_INVALID;
1263
1264 if (mm_has_pgste(vma->vm_mm)) {
1265 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1266 _PGSTE_GPS_USAGE_UNUSED)
1267 pte_val(pte) |= _PAGE_UNUSED;
1268 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1269 pgste_set_unlock(ptep, pgste);
1270 }
1271 return pte;
1272}
1273
1274/*
1275 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1276 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1277 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1278 * cannot be accessed while the batched unmap is running. In this case
1279 * full==1 and a simple pte_clear is enough. See tlb.h.
1280 */
1281#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1282static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1283 unsigned long address,
1284 pte_t *ptep, int full)
1285{
1286 pgste_t pgste;
1287 pte_t pte;
1288
1289 if (!full && mm_has_pgste(mm)) {
1290 pgste = pgste_get_lock(ptep);
1291 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1292 }
1293
1294 pte = *ptep;
1295 if (!full)
1296 ptep_flush_lazy(mm, address, ptep);
1297 pte_val(*ptep) = _PAGE_INVALID;
1298
1299 if (!full && mm_has_pgste(mm)) {
1300 pgste = pgste_update_all(&pte, pgste, mm);
1301 pgste_set_unlock(ptep, pgste);
1302 }
1303 return pte;
1304}
1305
1306#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1307static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1308 unsigned long address, pte_t *ptep)
1309{
1310 pgste_t pgste;
1311 pte_t pte = *ptep;
1312
1313 if (pte_write(pte)) {
1314 if (mm_has_pgste(mm)) {
1315 pgste = pgste_get_lock(ptep);
1316 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1317 }
1318
1319 ptep_flush_lazy(mm, address, ptep);
1320 pte = pte_wrprotect(pte);
1321
1322 if (mm_has_pgste(mm)) {
1323 pgste = pgste_set_pte(ptep, pgste, pte);
1324 pgste_set_unlock(ptep, pgste);
1325 } else
1326 *ptep = pte;
1327 }
1328 return pte;
1329}
1330
1331#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1332static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1333 unsigned long address, pte_t *ptep,
1334 pte_t entry, int dirty)
1335{
1336 pgste_t pgste;
1337
1338 if (pte_same(*ptep, entry))
1339 return 0;
1340 if (mm_has_pgste(vma->vm_mm)) {
1341 pgste = pgste_get_lock(ptep);
1342 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1343 }
1344
1345 ptep_flush_direct(vma->vm_mm, address, ptep);
1346
1347 if (mm_has_pgste(vma->vm_mm)) {
1348 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1349 pgste = pgste_set_pte(ptep, pgste, entry);
1350 pgste_set_unlock(ptep, pgste);
1351 } else
1352 *ptep = entry;
1353 return 1;
1354}
1355
1356/*
1357 * Conversion functions: convert a page and protection to a page entry,
1358 * and a page entry and page directory to the page they refer to.
1359 */
1360static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1361{
1362 pte_t __pte;
1363 pte_val(__pte) = physpage + pgprot_val(pgprot);
1364 return pte_mkyoung(__pte);
1365}
1366
1367static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1368{
1369 unsigned long physpage = page_to_phys(page);
1370 pte_t __pte = mk_pte_phys(physpage, pgprot);
1371
1372 if (pte_write(__pte) && PageDirty(page))
1373 __pte = pte_mkdirty(__pte);
1374 return __pte;
1375}
1376
1377#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1378#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1379#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1380#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1381
1382#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1383#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1384
1385#ifndef CONFIG_64BIT
1386
1387#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1388#define pud_deref(pmd) ({ BUG(); 0UL; })
1389#define pgd_deref(pmd) ({ BUG(); 0UL; })
1390
1391#define pud_offset(pgd, address) ((pud_t *) pgd)
1392#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1393
1394#else /* CONFIG_64BIT */
1395
1396#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1397#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1398#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1399
1400static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1401{
1402 pud_t *pud = (pud_t *) pgd;
1403 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1404 pud = (pud_t *) pgd_deref(*pgd);
1405 return pud + pud_index(address);
1406}
1407
1408static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1409{
1410 pmd_t *pmd = (pmd_t *) pud;
1411 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1412 pmd = (pmd_t *) pud_deref(*pud);
1413 return pmd + pmd_index(address);
1414}
1415
1416#endif /* CONFIG_64BIT */
1417
1418#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1419#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1420#define pte_page(x) pfn_to_page(pte_pfn(x))
1421
1422#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1423
1424/* Find an entry in the lowest level page table.. */
1425#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1426#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1427#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1428#define pte_unmap(pte) do { } while (0)
1429
1430#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1431static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1432{
1433 /*
1434 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1435 * Convert to segment table entry format.
1436 */
1437 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1438 return pgprot_val(SEGMENT_NONE);
1439 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1440 return pgprot_val(SEGMENT_READ);
1441 return pgprot_val(SEGMENT_WRITE);
1442}
1443
1444static inline pmd_t pmd_wrprotect(pmd_t pmd)
1445{
1446 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1447 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1448 return pmd;
1449}
1450
1451static inline pmd_t pmd_mkwrite(pmd_t pmd)
1452{
1453 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1454 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1455 return pmd;
1456 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1457 return pmd;
1458}
1459
1460static inline pmd_t pmd_mkclean(pmd_t pmd)
1461{
1462 if (pmd_large(pmd)) {
1463 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1464 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1465 }
1466 return pmd;
1467}
1468
1469static inline pmd_t pmd_mkdirty(pmd_t pmd)
1470{
1471 if (pmd_large(pmd)) {
1472 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1473 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1474 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1475 }
1476 return pmd;
1477}
1478
1479static inline pmd_t pmd_mkyoung(pmd_t pmd)
1480{
1481 if (pmd_large(pmd)) {
1482 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1483 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1484 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1485 }
1486 return pmd;
1487}
1488
1489static inline pmd_t pmd_mkold(pmd_t pmd)
1490{
1491 if (pmd_large(pmd)) {
1492 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1493 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1494 }
1495 return pmd;
1496}
1497
1498static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1499{
1500 if (pmd_large(pmd)) {
1501 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1502 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1503 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1504 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1505 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1506 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1507 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1508 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1509 return pmd;
1510 }
1511 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1512 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1513 return pmd;
1514}
1515
1516static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1517{
1518 pmd_t __pmd;
1519 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1520 return __pmd;
1521}
1522
1523#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1524
1525static inline void __pmdp_csp(pmd_t *pmdp)
1526{
1527 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1528 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1529 _SEGMENT_ENTRY_INVALID;
1530 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1531
1532 asm volatile(
1533 " csp %1,%3"
1534 : "=m" (*pmdp)
1535 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1536}
1537
1538static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1539{
1540 unsigned long sto;
1541
1542 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1543 asm volatile(
1544 " .insn rrf,0xb98e0000,%2,%3,0,0"
1545 : "=m" (*pmdp)
1546 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1547 : "cc" );
1548}
1549
1550static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1551{
1552 unsigned long sto;
1553
1554 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1555 asm volatile(
1556 " .insn rrf,0xb98e0000,%2,%3,0,1"
1557 : "=m" (*pmdp)
1558 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1559 : "cc" );
1560}
1561
1562static inline void pmdp_flush_direct(struct mm_struct *mm,
1563 unsigned long address, pmd_t *pmdp)
1564{
1565 int active, count;
1566
1567 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1568 return;
1569 if (!MACHINE_HAS_IDTE) {
1570 __pmdp_csp(pmdp);
1571 return;
1572 }
1573 active = (mm == current->active_mm) ? 1 : 0;
1574 count = atomic_add_return(0x10000, &mm->context.attach_count);
1575 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1576 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1577 __pmdp_idte_local(address, pmdp);
1578 else
1579 __pmdp_idte(address, pmdp);
1580 atomic_sub(0x10000, &mm->context.attach_count);
1581}
1582
1583static inline void pmdp_flush_lazy(struct mm_struct *mm,
1584 unsigned long address, pmd_t *pmdp)
1585{
1586 int active, count;
1587
1588 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1589 return;
1590 active = (mm == current->active_mm) ? 1 : 0;
1591 count = atomic_add_return(0x10000, &mm->context.attach_count);
1592 if ((count & 0xffff) <= active) {
1593 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1594 mm->context.flush_mm = 1;
1595 } else if (MACHINE_HAS_IDTE)
1596 __pmdp_idte(address, pmdp);
1597 else
1598 __pmdp_csp(pmdp);
1599 atomic_sub(0x10000, &mm->context.attach_count);
1600}
1601
1602#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1603
1604#define __HAVE_ARCH_PGTABLE_DEPOSIT
1605extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1606 pgtable_t pgtable);
1607
1608#define __HAVE_ARCH_PGTABLE_WITHDRAW
1609extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1610
1611static inline int pmd_trans_splitting(pmd_t pmd)
1612{
1613 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1614 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1615}
1616
1617static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1618 pmd_t *pmdp, pmd_t entry)
1619{
1620 *pmdp = entry;
1621}
1622
1623static inline pmd_t pmd_mkhuge(pmd_t pmd)
1624{
1625 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1626 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1627 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1628 return pmd;
1629}
1630
1631#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1632static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1633 unsigned long address, pmd_t *pmdp)
1634{
1635 pmd_t pmd;
1636
1637 pmd = *pmdp;
1638 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1639 *pmdp = pmd_mkold(pmd);
1640 return pmd_young(pmd);
1641}
1642
1643#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1644static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1645 unsigned long address, pmd_t *pmdp)
1646{
1647 pmd_t pmd = *pmdp;
1648
1649 pmdp_flush_direct(mm, address, pmdp);
1650 pmd_clear(pmdp);
1651 return pmd;
1652}
1653
1654#define __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
1655static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
1656 unsigned long address,
1657 pmd_t *pmdp, int full)
1658{
1659 pmd_t pmd = *pmdp;
1660
1661 if (!full)
1662 pmdp_flush_lazy(mm, address, pmdp);
1663 pmd_clear(pmdp);
1664 return pmd;
1665}
1666
1667#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1668static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1669 unsigned long address, pmd_t *pmdp)
1670{
1671 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1672}
1673
1674#define __HAVE_ARCH_PMDP_INVALIDATE
1675static inline void pmdp_invalidate(struct vm_area_struct *vma,
1676 unsigned long address, pmd_t *pmdp)
1677{
1678 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1679}
1680
1681#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1682static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1683 unsigned long address, pmd_t *pmdp)
1684{
1685 pmd_t pmd = *pmdp;
1686
1687 if (pmd_write(pmd)) {
1688 pmdp_flush_direct(mm, address, pmdp);
1689 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1690 }
1691}
1692
1693#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1694#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1695
1696static inline int pmd_trans_huge(pmd_t pmd)
1697{
1698 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1699}
1700
1701static inline int has_transparent_hugepage(void)
1702{
1703 return MACHINE_HAS_HPAGE ? 1 : 0;
1704}
1705#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1706
1707/*
1708 * 31 bit swap entry format:
1709 * A page-table entry has some bits we have to treat in a special way.
1710 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1711 * exception will occur instead of a page translation exception. The
1712 * specifiation exception has the bad habit not to store necessary
1713 * information in the lowcore.
1714 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1715 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1716 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1717 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1718 * plus 24 for the offset.
1719 * 0| offset |0110|o|type |00|
1720 * 0 0000000001111111111 2222 2 22222 33
1721 * 0 1234567890123456789 0123 4 56789 01
1722 *
1723 * 64 bit swap entry format:
1724 * A page-table entry has some bits we have to treat in a special way.
1725 * Bits 52 and bit 55 have to be zero, otherwise an specification
1726 * exception will occur instead of a page translation exception. The
1727 * specifiation exception has the bad habit not to store necessary
1728 * information in the lowcore.
1729 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1730 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1731 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1732 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1733 * plus 56 for the offset.
1734 * | offset |0110|o|type |00|
1735 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1736 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1737 */
1738#ifndef CONFIG_64BIT
1739#define __SWP_OFFSET_MASK (~0UL >> 12)
1740#else
1741#define __SWP_OFFSET_MASK (~0UL >> 11)
1742#endif
1743static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1744{
1745 pte_t pte;
1746 offset &= __SWP_OFFSET_MASK;
1747 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1748 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1749 return pte;
1750}
1751
1752#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1753#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1754#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1755
1756#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1757#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1758
1759#ifndef CONFIG_64BIT
1760# define PTE_FILE_MAX_BITS 26
1761#else /* CONFIG_64BIT */
1762# define PTE_FILE_MAX_BITS 59
1763#endif /* CONFIG_64BIT */
1764
1765#define pte_to_pgoff(__pte) \
1766 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1767
1768#define pgoff_to_pte(__off) \
1769 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1770 | _PAGE_INVALID | _PAGE_PROTECT })
1771
1772#endif /* !__ASSEMBLY__ */
1773
1774#define kern_addr_valid(addr) (1)
1775
1776extern int vmem_add_mapping(unsigned long start, unsigned long size);
1777extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1778extern int s390_enable_sie(void);
1779extern int s390_enable_skey(void);
1780extern void s390_reset_cmma(struct mm_struct *mm);
1781
1782/*
1783 * No page table caches to initialise
1784 */
1785static inline void pgtable_cache_init(void) { }
1786static inline void check_pgt_cache(void) { }
1787
1788#include <asm-generic/pgtable.h>
1789
1790#endif /* _S390_PAGE_H */