at v3.19 609 lines 22 kB view raw
1#ifndef _ASM_IA64_PGTABLE_H 2#define _ASM_IA64_PGTABLE_H 3 4/* 5 * This file contains the functions and defines necessary to modify and use 6 * the IA-64 page table tree. 7 * 8 * This hopefully works with any (fixed) IA-64 page-size, as defined 9 * in <asm/page.h>. 10 * 11 * Copyright (C) 1998-2005 Hewlett-Packard Co 12 * David Mosberger-Tang <davidm@hpl.hp.com> 13 */ 14 15 16#include <asm/mman.h> 17#include <asm/page.h> 18#include <asm/processor.h> 19#include <asm/types.h> 20 21#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 22 23/* 24 * First, define the various bits in a PTE. Note that the PTE format 25 * matches the VHPT short format, the firt doubleword of the VHPD long 26 * format, and the first doubleword of the TLB insertion format. 27 */ 28#define _PAGE_P_BIT 0 29#define _PAGE_A_BIT 5 30#define _PAGE_D_BIT 6 31 32#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 33#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 34#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 35#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 36#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 37#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 38#define _PAGE_MA_MASK (0x7 << 2) 39#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 40#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 41#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 42#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 43#define _PAGE_PL_MASK (3 << 7) 44#define _PAGE_AR_R (0 << 9) /* read only */ 45#define _PAGE_AR_RX (1 << 9) /* read & execute */ 46#define _PAGE_AR_RW (2 << 9) /* read & write */ 47#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 48#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 49#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 50#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 51#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 52#define _PAGE_AR_MASK (7 << 9) 53#define _PAGE_AR_SHIFT 9 54#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 55#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 56#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 57#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 58#define _PAGE_PROTNONE (__IA64_UL(1) << 63) 59 60/* Valid only for a PTE with the present bit cleared: */ 61#define _PAGE_FILE (1 << 1) /* see swap & file pte remarks below */ 62 63#define _PFN_MASK _PAGE_PPN_MASK 64/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 65#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 66 67#define _PAGE_SIZE_4K 12 68#define _PAGE_SIZE_8K 13 69#define _PAGE_SIZE_16K 14 70#define _PAGE_SIZE_64K 16 71#define _PAGE_SIZE_256K 18 72#define _PAGE_SIZE_1M 20 73#define _PAGE_SIZE_4M 22 74#define _PAGE_SIZE_16M 24 75#define _PAGE_SIZE_64M 26 76#define _PAGE_SIZE_256M 28 77#define _PAGE_SIZE_1G 30 78#define _PAGE_SIZE_4G 32 79 80#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 81#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 82#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 83 84/* 85 * How many pointers will a page table level hold expressed in shift 86 */ 87#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) 88 89/* 90 * Definitions for fourth level: 91 */ 92#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) 93 94/* 95 * Definitions for third level: 96 * 97 * PMD_SHIFT determines the size of the area a third-level page table 98 * can map. 99 */ 100#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) 101#define PMD_SIZE (1UL << PMD_SHIFT) 102#define PMD_MASK (~(PMD_SIZE-1)) 103#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) 104 105#ifdef CONFIG_PGTABLE_4 106/* 107 * Definitions for second level: 108 * 109 * PUD_SHIFT determines the size of the area a second-level page table 110 * can map. 111 */ 112#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 113#define PUD_SIZE (1UL << PUD_SHIFT) 114#define PUD_MASK (~(PUD_SIZE-1)) 115#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) 116#endif 117 118/* 119 * Definitions for first level: 120 * 121 * PGDIR_SHIFT determines what a first-level page table entry can map. 122 */ 123#ifdef CONFIG_PGTABLE_4 124#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) 125#else 126#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 127#endif 128#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 129#define PGDIR_MASK (~(PGDIR_SIZE-1)) 130#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT 131#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) 132#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 133#define FIRST_USER_ADDRESS 0 134 135/* 136 * All the normal masks have the "page accessed" bits on, as any time 137 * they are used, the page is accessed. They are cleared only by the 138 * page-out routines. 139 */ 140#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 141#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 142#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 143#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 144#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 145#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 146#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 147#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 148#define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \ 149 _PAGE_MA_UC) 150 151# ifndef __ASSEMBLY__ 152 153#include <linux/sched.h> /* for mm_struct */ 154#include <linux/bitops.h> 155#include <asm/cacheflush.h> 156#include <asm/mmu_context.h> 157 158/* 159 * Next come the mappings that determine how mmap() protection bits 160 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 161 * _P version gets used for a private shared memory segment, the _S 162 * version gets used for a shared memory segment with MAP_SHARED on. 163 * In a private shared memory segment, we do a copy-on-write if a task 164 * attempts to write to the page. 165 */ 166 /* xwr */ 167#define __P000 PAGE_NONE 168#define __P001 PAGE_READONLY 169#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 170#define __P011 PAGE_READONLY /* ditto */ 171#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 172#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 173#define __P110 PAGE_COPY_EXEC 174#define __P111 PAGE_COPY_EXEC 175 176#define __S000 PAGE_NONE 177#define __S001 PAGE_READONLY 178#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 179#define __S011 PAGE_SHARED 180#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 181#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 182#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 183#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 184 185#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 186#ifdef CONFIG_PGTABLE_4 187#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 188#endif 189#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 190#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 191 192 193/* 194 * Some definitions to translate between mem_map, PTEs, and page addresses: 195 */ 196 197 198/* Quick test to see if ADDR is a (potentially) valid physical address. */ 199static inline long 200ia64_phys_addr_valid (unsigned long addr) 201{ 202 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 203} 204 205/* 206 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 207 * memory. For the return value to be meaningful, ADDR must be >= 208 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 209 * require a hash-, or multi-level tree-lookup or something of that 210 * sort) but it guarantees to return TRUE only if accessing the page 211 * at that address does not cause an error. Note that there may be 212 * addresses for which kern_addr_valid() returns FALSE even though an 213 * access would not cause an error (e.g., this is typically true for 214 * memory mapped I/O regions. 215 * 216 * XXX Need to implement this for IA-64. 217 */ 218#define kern_addr_valid(addr) (1) 219 220 221/* 222 * Now come the defines and routines to manage and access the three-level 223 * page table. 224 */ 225 226 227#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 228#ifdef CONFIG_VIRTUAL_MEM_MAP 229# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 230extern unsigned long VMALLOC_END; 231#else 232#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP) 233/* SPARSEMEM_VMEMMAP uses half of vmalloc... */ 234# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10))) 235# define vmemmap ((struct page *)VMALLOC_END) 236#else 237# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 238#endif 239#endif 240 241/* fs/proc/kcore.c */ 242#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 243#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 244 245#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) 246#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ 247 248/* 249 * Conversion functions: convert page frame number (pfn) and a protection value to a page 250 * table entry (pte). 251 */ 252#define pfn_pte(pfn, pgprot) \ 253({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 254 255/* Extract pfn from pte. */ 256#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 257 258#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 259 260/* This takes a physical page address that is used by the remapping functions */ 261#define mk_pte_phys(physpage, pgprot) \ 262({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 263 264#define pte_modify(_pte, newprot) \ 265 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 266 267#define pte_none(pte) (!pte_val(pte)) 268#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 269#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 270/* pte_page() returns the "struct page *" corresponding to the PTE: */ 271#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 272 273#define pmd_none(pmd) (!pmd_val(pmd)) 274#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 275#define pmd_present(pmd) (pmd_val(pmd) != 0UL) 276#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 277#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 278#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 279 280#define pud_none(pud) (!pud_val(pud)) 281#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 282#define pud_present(pud) (pud_val(pud) != 0UL) 283#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 284#define pud_page_vaddr(pud) ((unsigned long) __va(pud_val(pud) & _PFN_MASK)) 285#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) 286 287#ifdef CONFIG_PGTABLE_4 288#define pgd_none(pgd) (!pgd_val(pgd)) 289#define pgd_bad(pgd) (!ia64_phys_addr_valid(pgd_val(pgd))) 290#define pgd_present(pgd) (pgd_val(pgd) != 0UL) 291#define pgd_clear(pgdp) (pgd_val(*(pgdp)) = 0UL) 292#define pgd_page_vaddr(pgd) ((unsigned long) __va(pgd_val(pgd) & _PFN_MASK)) 293#define pgd_page(pgd) virt_to_page((pgd_val(pgd) + PAGE_OFFSET)) 294#endif 295 296/* 297 * The following have defined behavior only work if pte_present() is true. 298 */ 299#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 300#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 301#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 302#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 303#define pte_file(pte) ((pte_val(pte) & _PAGE_FILE) != 0) 304#define pte_special(pte) 0 305 306/* 307 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 308 * access rights: 309 */ 310#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 311#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 312#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 313#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 314#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 315#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 316#define pte_mkhuge(pte) (__pte(pte_val(pte))) 317#define pte_mkspecial(pte) (pte) 318 319/* 320 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to 321 * sync icache and dcache when we insert *new* executable page. 322 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache 323 * if necessary. 324 * 325 * set_pte() is also called by the kernel, but we can expect that the kernel 326 * flushes icache explicitly if necessary. 327 */ 328#define pte_present_exec_user(pte)\ 329 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \ 330 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)) 331 332extern void __ia64_sync_icache_dcache(pte_t pteval); 333static inline void set_pte(pte_t *ptep, pte_t pteval) 334{ 335 /* page is present && page is user && page is executable 336 * && (page swapin or new page or page migraton 337 * || copy_on_write with page copying.) 338 */ 339 if (pte_present_exec_user(pteval) && 340 (!pte_present(*ptep) || 341 pte_pfn(*ptep) != pte_pfn(pteval))) 342 /* load_module() calles flush_icache_range() explicitly*/ 343 __ia64_sync_icache_dcache(pteval); 344 *ptep = pteval; 345} 346 347#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 348 349/* 350 * Make page protection values cacheable, uncacheable, or write- 351 * combining. Note that "protection" is really a misnomer here as the 352 * protection value contains the memory attribute bits, dirty bits, and 353 * various other bits as well. 354 */ 355#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) 356#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 357#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 358 359struct file; 360extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 361 unsigned long size, pgprot_t vma_prot); 362#define __HAVE_PHYS_MEM_ACCESS_PROT 363 364static inline unsigned long 365pgd_index (unsigned long address) 366{ 367 unsigned long region = address >> 61; 368 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 369 370 return (region << (PAGE_SHIFT - 6)) | l1index; 371} 372 373/* The offset in the 1-level directory is given by the 3 region bits 374 (61..63) and the level-1 bits. */ 375static inline pgd_t* 376pgd_offset (const struct mm_struct *mm, unsigned long address) 377{ 378 return mm->pgd + pgd_index(address); 379} 380 381/* In the kernel's mapped region we completely ignore the region number 382 (since we know it's in region number 5). */ 383#define pgd_offset_k(addr) \ 384 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 385 386/* Look up a pgd entry in the gate area. On IA-64, the gate-area 387 resides in the kernel-mapped segment, hence we use pgd_offset_k() 388 here. */ 389#define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 390 391#ifdef CONFIG_PGTABLE_4 392/* Find an entry in the second-level page table.. */ 393#define pud_offset(dir,addr) \ 394 ((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1))) 395#endif 396 397/* Find an entry in the third-level page table.. */ 398#define pmd_offset(dir,addr) \ 399 ((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))) 400 401/* 402 * Find an entry in the third-level page table. This looks more complicated than it 403 * should be because some platforms place page tables in high memory. 404 */ 405#define pte_index(addr) (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 406#define pte_offset_kernel(dir,addr) ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr)) 407#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) 408#define pte_unmap(pte) do { } while (0) 409 410/* atomic versions of the some PTE manipulations: */ 411 412static inline int 413ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 414{ 415#ifdef CONFIG_SMP 416 if (!pte_young(*ptep)) 417 return 0; 418 return test_and_clear_bit(_PAGE_A_BIT, ptep); 419#else 420 pte_t pte = *ptep; 421 if (!pte_young(pte)) 422 return 0; 423 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 424 return 1; 425#endif 426} 427 428static inline pte_t 429ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 430{ 431#ifdef CONFIG_SMP 432 return __pte(xchg((long *) ptep, 0)); 433#else 434 pte_t pte = *ptep; 435 pte_clear(mm, addr, ptep); 436 return pte; 437#endif 438} 439 440static inline void 441ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 442{ 443#ifdef CONFIG_SMP 444 unsigned long new, old; 445 446 do { 447 old = pte_val(*ptep); 448 new = pte_val(pte_wrprotect(__pte (old))); 449 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 450#else 451 pte_t old_pte = *ptep; 452 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 453#endif 454} 455 456static inline int 457pte_same (pte_t a, pte_t b) 458{ 459 return pte_val(a) == pte_val(b); 460} 461 462#define update_mmu_cache(vma, address, ptep) do { } while (0) 463 464extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 465extern void paging_init (void); 466 467/* 468 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 469 * bits in the swap-type field of the swap pte. It would be nice to 470 * enforce that, but we can't easily include <linux/swap.h> here. 471 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 472 * 473 * Format of swap pte: 474 * bit 0 : present bit (must be zero) 475 * bit 1 : _PAGE_FILE (must be zero) 476 * bits 2- 8: swap-type 477 * bits 9-62: swap offset 478 * bit 63 : _PAGE_PROTNONE bit 479 * 480 * Format of file pte: 481 * bit 0 : present bit (must be zero) 482 * bit 1 : _PAGE_FILE (must be one) 483 * bits 2-62: file_offset/PAGE_SIZE 484 * bit 63 : _PAGE_PROTNONE bit 485 */ 486#define __swp_type(entry) (((entry).val >> 2) & 0x7f) 487#define __swp_offset(entry) (((entry).val << 1) >> 10) 488#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) }) 489#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 490#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 491 492#define PTE_FILE_MAX_BITS 61 493#define pte_to_pgoff(pte) ((pte_val(pte) << 1) >> 3) 494#define pgoff_to_pte(off) ((pte_t) { ((off) << 2) | _PAGE_FILE }) 495 496/* 497 * ZERO_PAGE is a global shared page that is always zero: used 498 * for zero-mapped memory areas etc.. 499 */ 500extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 501extern struct page *zero_page_memmap_ptr; 502#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 503 504/* We provide our own get_unmapped_area to cope with VA holes for userland */ 505#define HAVE_ARCH_UNMAPPED_AREA 506 507#ifdef CONFIG_HUGETLB_PAGE 508#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 509#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 510#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 511#endif 512 513 514#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 515/* 516 * Update PTEP with ENTRY, which is guaranteed to be a less 517 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 518 * WRITABLE bits turned on, when the value at PTEP did not. The 519 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 520 * 521 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 522 * having to worry about races. On SMP machines, there are only two 523 * cases where this is true: 524 * 525 * (1) *PTEP has the PRESENT bit turned OFF 526 * (2) ENTRY has the DIRTY bit turned ON 527 * 528 * On ia64, we could implement this routine with a cmpxchg()-loop 529 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 530 * However, like on x86, we can get a more streamlined version by 531 * observing that it is OK to drop ACCESSED bit updates when 532 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 533 * result in an extra Access-bit fault, which would then turn on the 534 * ACCESSED bit in the low-level fault handler (iaccess_bit or 535 * daccess_bit in ivt.S). 536 */ 537#ifdef CONFIG_SMP 538# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 539({ \ 540 int __changed = !pte_same(*(__ptep), __entry); \ 541 if (__changed && __safely_writable) { \ 542 set_pte(__ptep, __entry); \ 543 flush_tlb_page(__vma, __addr); \ 544 } \ 545 __changed; \ 546}) 547#else 548# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 549({ \ 550 int __changed = !pte_same(*(__ptep), __entry); \ 551 if (__changed) { \ 552 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \ 553 flush_tlb_page(__vma, __addr); \ 554 } \ 555 __changed; \ 556}) 557#endif 558 559# ifdef CONFIG_VIRTUAL_MEM_MAP 560 /* arch mem_map init routine is needed due to holes in a virtual mem_map */ 561# define __HAVE_ARCH_MEMMAP_INIT 562 extern void memmap_init (unsigned long size, int nid, unsigned long zone, 563 unsigned long start_pfn); 564# endif /* CONFIG_VIRTUAL_MEM_MAP */ 565# endif /* !__ASSEMBLY__ */ 566 567/* 568 * Identity-mapped regions use a large page size. We'll call such large pages 569 * "granules". If you can think of a better name that's unambiguous, let me 570 * know... 571 */ 572#if defined(CONFIG_IA64_GRANULE_64MB) 573# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 574#elif defined(CONFIG_IA64_GRANULE_16MB) 575# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 576#endif 577#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 578/* 579 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 580 */ 581#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 582#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 583 584/* 585 * No page table caches to initialise 586 */ 587#define pgtable_cache_init() do { } while (0) 588 589/* These tell get_user_pages() that the first gate page is accessible from user-level. */ 590#define FIXADDR_USER_START GATE_ADDR 591#ifdef HAVE_BUGGY_SEGREL 592# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 593#else 594# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 595#endif 596 597#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 598#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 599#define __HAVE_ARCH_PTEP_SET_WRPROTECT 600#define __HAVE_ARCH_PTE_SAME 601#define __HAVE_ARCH_PGD_OFFSET_GATE 602 603 604#ifndef CONFIG_PGTABLE_4 605#include <asm-generic/pgtable-nopud.h> 606#endif 607#include <asm-generic/pgtable.h> 608 609#endif /* _ASM_IA64_PGTABLE_H */