Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/interrupt.h>
54#include <linux/completion.h>
55#include <linux/suspend.h>
56#include <linux/workqueue.h>
57#include <linux/scatterlist.h>
58#include <linux/io.h>
59#include <linux/async.h>
60#include <linux/log2.h>
61#include <linux/slab.h>
62#include <linux/glob.h>
63#include <scsi/scsi.h>
64#include <scsi/scsi_cmnd.h>
65#include <scsi/scsi_host.h>
66#include <linux/libata.h>
67#include <asm/byteorder.h>
68#include <linux/cdrom.h>
69#include <linux/ratelimit.h>
70#include <linux/pm_runtime.h>
71#include <linux/platform_device.h>
72
73#include "libata.h"
74#include "libata-transport.h"
75
76/* debounce timing parameters in msecs { interval, duration, timeout } */
77const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
78const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
79const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
80
81const struct ata_port_operations ata_base_port_ops = {
82 .prereset = ata_std_prereset,
83 .postreset = ata_std_postreset,
84 .error_handler = ata_std_error_handler,
85 .sched_eh = ata_std_sched_eh,
86 .end_eh = ata_std_end_eh,
87};
88
89const struct ata_port_operations sata_port_ops = {
90 .inherits = &ata_base_port_ops,
91
92 .qc_defer = ata_std_qc_defer,
93 .hardreset = sata_std_hardreset,
94};
95
96static unsigned int ata_dev_init_params(struct ata_device *dev,
97 u16 heads, u16 sectors);
98static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
99static void ata_dev_xfermask(struct ata_device *dev);
100static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101
102atomic_t ata_print_id = ATOMIC_INIT(0);
103
104struct ata_force_param {
105 const char *name;
106 unsigned int cbl;
107 int spd_limit;
108 unsigned long xfer_mask;
109 unsigned int horkage_on;
110 unsigned int horkage_off;
111 unsigned int lflags;
112};
113
114struct ata_force_ent {
115 int port;
116 int device;
117 struct ata_force_param param;
118};
119
120static struct ata_force_ent *ata_force_tbl;
121static int ata_force_tbl_size;
122
123static char ata_force_param_buf[PAGE_SIZE] __initdata;
124/* param_buf is thrown away after initialization, disallow read */
125module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
126MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127
128static int atapi_enabled = 1;
129module_param(atapi_enabled, int, 0444);
130MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131
132static int atapi_dmadir = 0;
133module_param(atapi_dmadir, int, 0444);
134MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135
136int atapi_passthru16 = 1;
137module_param(atapi_passthru16, int, 0444);
138MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139
140int libata_fua = 0;
141module_param_named(fua, libata_fua, int, 0444);
142MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143
144static int ata_ignore_hpa;
145module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
146MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147
148static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
149module_param_named(dma, libata_dma_mask, int, 0444);
150MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151
152static int ata_probe_timeout;
153module_param(ata_probe_timeout, int, 0444);
154MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155
156int libata_noacpi = 0;
157module_param_named(noacpi, libata_noacpi, int, 0444);
158MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159
160int libata_allow_tpm = 0;
161module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
162MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163
164static int atapi_an;
165module_param(atapi_an, int, 0444);
166MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167
168MODULE_AUTHOR("Jeff Garzik");
169MODULE_DESCRIPTION("Library module for ATA devices");
170MODULE_LICENSE("GPL");
171MODULE_VERSION(DRV_VERSION);
172
173
174static bool ata_sstatus_online(u32 sstatus)
175{
176 return (sstatus & 0xf) == 0x3;
177}
178
179/**
180 * ata_link_next - link iteration helper
181 * @link: the previous link, NULL to start
182 * @ap: ATA port containing links to iterate
183 * @mode: iteration mode, one of ATA_LITER_*
184 *
185 * LOCKING:
186 * Host lock or EH context.
187 *
188 * RETURNS:
189 * Pointer to the next link.
190 */
191struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
192 enum ata_link_iter_mode mode)
193{
194 BUG_ON(mode != ATA_LITER_EDGE &&
195 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196
197 /* NULL link indicates start of iteration */
198 if (!link)
199 switch (mode) {
200 case ATA_LITER_EDGE:
201 case ATA_LITER_PMP_FIRST:
202 if (sata_pmp_attached(ap))
203 return ap->pmp_link;
204 /* fall through */
205 case ATA_LITER_HOST_FIRST:
206 return &ap->link;
207 }
208
209 /* we just iterated over the host link, what's next? */
210 if (link == &ap->link)
211 switch (mode) {
212 case ATA_LITER_HOST_FIRST:
213 if (sata_pmp_attached(ap))
214 return ap->pmp_link;
215 /* fall through */
216 case ATA_LITER_PMP_FIRST:
217 if (unlikely(ap->slave_link))
218 return ap->slave_link;
219 /* fall through */
220 case ATA_LITER_EDGE:
221 return NULL;
222 }
223
224 /* slave_link excludes PMP */
225 if (unlikely(link == ap->slave_link))
226 return NULL;
227
228 /* we were over a PMP link */
229 if (++link < ap->pmp_link + ap->nr_pmp_links)
230 return link;
231
232 if (mode == ATA_LITER_PMP_FIRST)
233 return &ap->link;
234
235 return NULL;
236}
237
238/**
239 * ata_dev_next - device iteration helper
240 * @dev: the previous device, NULL to start
241 * @link: ATA link containing devices to iterate
242 * @mode: iteration mode, one of ATA_DITER_*
243 *
244 * LOCKING:
245 * Host lock or EH context.
246 *
247 * RETURNS:
248 * Pointer to the next device.
249 */
250struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
251 enum ata_dev_iter_mode mode)
252{
253 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
254 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255
256 /* NULL dev indicates start of iteration */
257 if (!dev)
258 switch (mode) {
259 case ATA_DITER_ENABLED:
260 case ATA_DITER_ALL:
261 dev = link->device;
262 goto check;
263 case ATA_DITER_ENABLED_REVERSE:
264 case ATA_DITER_ALL_REVERSE:
265 dev = link->device + ata_link_max_devices(link) - 1;
266 goto check;
267 }
268
269 next:
270 /* move to the next one */
271 switch (mode) {
272 case ATA_DITER_ENABLED:
273 case ATA_DITER_ALL:
274 if (++dev < link->device + ata_link_max_devices(link))
275 goto check;
276 return NULL;
277 case ATA_DITER_ENABLED_REVERSE:
278 case ATA_DITER_ALL_REVERSE:
279 if (--dev >= link->device)
280 goto check;
281 return NULL;
282 }
283
284 check:
285 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
286 !ata_dev_enabled(dev))
287 goto next;
288 return dev;
289}
290
291/**
292 * ata_dev_phys_link - find physical link for a device
293 * @dev: ATA device to look up physical link for
294 *
295 * Look up physical link which @dev is attached to. Note that
296 * this is different from @dev->link only when @dev is on slave
297 * link. For all other cases, it's the same as @dev->link.
298 *
299 * LOCKING:
300 * Don't care.
301 *
302 * RETURNS:
303 * Pointer to the found physical link.
304 */
305struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306{
307 struct ata_port *ap = dev->link->ap;
308
309 if (!ap->slave_link)
310 return dev->link;
311 if (!dev->devno)
312 return &ap->link;
313 return ap->slave_link;
314}
315
316/**
317 * ata_force_cbl - force cable type according to libata.force
318 * @ap: ATA port of interest
319 *
320 * Force cable type according to libata.force and whine about it.
321 * The last entry which has matching port number is used, so it
322 * can be specified as part of device force parameters. For
323 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
324 * same effect.
325 *
326 * LOCKING:
327 * EH context.
328 */
329void ata_force_cbl(struct ata_port *ap)
330{
331 int i;
332
333 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
334 const struct ata_force_ent *fe = &ata_force_tbl[i];
335
336 if (fe->port != -1 && fe->port != ap->print_id)
337 continue;
338
339 if (fe->param.cbl == ATA_CBL_NONE)
340 continue;
341
342 ap->cbl = fe->param.cbl;
343 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
344 return;
345 }
346}
347
348/**
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
351 *
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
360 *
361 * LOCKING:
362 * EH context.
363 */
364static void ata_force_link_limits(struct ata_link *link)
365{
366 bool did_spd = false;
367 int linkno = link->pmp;
368 int i;
369
370 if (ata_is_host_link(link))
371 linkno += 15;
372
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
375
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
378
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
381
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
386 fe->param.name);
387 did_spd = true;
388 }
389
390 /* let lflags stack */
391 if (fe->param.lflags) {
392 link->flags |= fe->param.lflags;
393 ata_link_notice(link,
394 "FORCE: link flag 0x%x forced -> 0x%x\n",
395 fe->param.lflags, link->flags);
396 }
397 }
398}
399
400/**
401 * ata_force_xfermask - force xfermask according to libata.force
402 * @dev: ATA device of interest
403 *
404 * Force xfer_mask according to libata.force and whine about it.
405 * For consistency with link selection, device number 15 selects
406 * the first device connected to the host link.
407 *
408 * LOCKING:
409 * EH context.
410 */
411static void ata_force_xfermask(struct ata_device *dev)
412{
413 int devno = dev->link->pmp + dev->devno;
414 int alt_devno = devno;
415 int i;
416
417 /* allow n.15/16 for devices attached to host port */
418 if (ata_is_host_link(dev->link))
419 alt_devno += 15;
420
421 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
422 const struct ata_force_ent *fe = &ata_force_tbl[i];
423 unsigned long pio_mask, mwdma_mask, udma_mask;
424
425 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
426 continue;
427
428 if (fe->device != -1 && fe->device != devno &&
429 fe->device != alt_devno)
430 continue;
431
432 if (!fe->param.xfer_mask)
433 continue;
434
435 ata_unpack_xfermask(fe->param.xfer_mask,
436 &pio_mask, &mwdma_mask, &udma_mask);
437 if (udma_mask)
438 dev->udma_mask = udma_mask;
439 else if (mwdma_mask) {
440 dev->udma_mask = 0;
441 dev->mwdma_mask = mwdma_mask;
442 } else {
443 dev->udma_mask = 0;
444 dev->mwdma_mask = 0;
445 dev->pio_mask = pio_mask;
446 }
447
448 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
449 fe->param.name);
450 return;
451 }
452}
453
454/**
455 * ata_force_horkage - force horkage according to libata.force
456 * @dev: ATA device of interest
457 *
458 * Force horkage according to libata.force and whine about it.
459 * For consistency with link selection, device number 15 selects
460 * the first device connected to the host link.
461 *
462 * LOCKING:
463 * EH context.
464 */
465static void ata_force_horkage(struct ata_device *dev)
466{
467 int devno = dev->link->pmp + dev->devno;
468 int alt_devno = devno;
469 int i;
470
471 /* allow n.15/16 for devices attached to host port */
472 if (ata_is_host_link(dev->link))
473 alt_devno += 15;
474
475 for (i = 0; i < ata_force_tbl_size; i++) {
476 const struct ata_force_ent *fe = &ata_force_tbl[i];
477
478 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
479 continue;
480
481 if (fe->device != -1 && fe->device != devno &&
482 fe->device != alt_devno)
483 continue;
484
485 if (!(~dev->horkage & fe->param.horkage_on) &&
486 !(dev->horkage & fe->param.horkage_off))
487 continue;
488
489 dev->horkage |= fe->param.horkage_on;
490 dev->horkage &= ~fe->param.horkage_off;
491
492 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
493 fe->param.name);
494 }
495}
496
497/**
498 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
499 * @opcode: SCSI opcode
500 *
501 * Determine ATAPI command type from @opcode.
502 *
503 * LOCKING:
504 * None.
505 *
506 * RETURNS:
507 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508 */
509int atapi_cmd_type(u8 opcode)
510{
511 switch (opcode) {
512 case GPCMD_READ_10:
513 case GPCMD_READ_12:
514 return ATAPI_READ;
515
516 case GPCMD_WRITE_10:
517 case GPCMD_WRITE_12:
518 case GPCMD_WRITE_AND_VERIFY_10:
519 return ATAPI_WRITE;
520
521 case GPCMD_READ_CD:
522 case GPCMD_READ_CD_MSF:
523 return ATAPI_READ_CD;
524
525 case ATA_16:
526 case ATA_12:
527 if (atapi_passthru16)
528 return ATAPI_PASS_THRU;
529 /* fall thru */
530 default:
531 return ATAPI_MISC;
532 }
533}
534
535/**
536 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
537 * @tf: Taskfile to convert
538 * @pmp: Port multiplier port
539 * @is_cmd: This FIS is for command
540 * @fis: Buffer into which data will output
541 *
542 * Converts a standard ATA taskfile to a Serial ATA
543 * FIS structure (Register - Host to Device).
544 *
545 * LOCKING:
546 * Inherited from caller.
547 */
548void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549{
550 fis[0] = 0x27; /* Register - Host to Device FIS */
551 fis[1] = pmp & 0xf; /* Port multiplier number*/
552 if (is_cmd)
553 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
554
555 fis[2] = tf->command;
556 fis[3] = tf->feature;
557
558 fis[4] = tf->lbal;
559 fis[5] = tf->lbam;
560 fis[6] = tf->lbah;
561 fis[7] = tf->device;
562
563 fis[8] = tf->hob_lbal;
564 fis[9] = tf->hob_lbam;
565 fis[10] = tf->hob_lbah;
566 fis[11] = tf->hob_feature;
567
568 fis[12] = tf->nsect;
569 fis[13] = tf->hob_nsect;
570 fis[14] = 0;
571 fis[15] = tf->ctl;
572
573 fis[16] = tf->auxiliary & 0xff;
574 fis[17] = (tf->auxiliary >> 8) & 0xff;
575 fis[18] = (tf->auxiliary >> 16) & 0xff;
576 fis[19] = (tf->auxiliary >> 24) & 0xff;
577}
578
579/**
580 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
581 * @fis: Buffer from which data will be input
582 * @tf: Taskfile to output
583 *
584 * Converts a serial ATA FIS structure to a standard ATA taskfile.
585 *
586 * LOCKING:
587 * Inherited from caller.
588 */
589
590void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591{
592 tf->command = fis[2]; /* status */
593 tf->feature = fis[3]; /* error */
594
595 tf->lbal = fis[4];
596 tf->lbam = fis[5];
597 tf->lbah = fis[6];
598 tf->device = fis[7];
599
600 tf->hob_lbal = fis[8];
601 tf->hob_lbam = fis[9];
602 tf->hob_lbah = fis[10];
603
604 tf->nsect = fis[12];
605 tf->hob_nsect = fis[13];
606}
607
608static const u8 ata_rw_cmds[] = {
609 /* pio multi */
610 ATA_CMD_READ_MULTI,
611 ATA_CMD_WRITE_MULTI,
612 ATA_CMD_READ_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_EXT,
614 0,
615 0,
616 0,
617 ATA_CMD_WRITE_MULTI_FUA_EXT,
618 /* pio */
619 ATA_CMD_PIO_READ,
620 ATA_CMD_PIO_WRITE,
621 ATA_CMD_PIO_READ_EXT,
622 ATA_CMD_PIO_WRITE_EXT,
623 0,
624 0,
625 0,
626 0,
627 /* dma */
628 ATA_CMD_READ,
629 ATA_CMD_WRITE,
630 ATA_CMD_READ_EXT,
631 ATA_CMD_WRITE_EXT,
632 0,
633 0,
634 0,
635 ATA_CMD_WRITE_FUA_EXT
636};
637
638/**
639 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
640 * @tf: command to examine and configure
641 * @dev: device tf belongs to
642 *
643 * Examine the device configuration and tf->flags to calculate
644 * the proper read/write commands and protocol to use.
645 *
646 * LOCKING:
647 * caller.
648 */
649static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650{
651 u8 cmd;
652
653 int index, fua, lba48, write;
654
655 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
656 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
657 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658
659 if (dev->flags & ATA_DFLAG_PIO) {
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
663 /* Unable to use DMA due to host limitation */
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else {
667 tf->protocol = ATA_PROT_DMA;
668 index = 16;
669 }
670
671 cmd = ata_rw_cmds[index + fua + lba48 + write];
672 if (cmd) {
673 tf->command = cmd;
674 return 0;
675 }
676 return -1;
677}
678
679/**
680 * ata_tf_read_block - Read block address from ATA taskfile
681 * @tf: ATA taskfile of interest
682 * @dev: ATA device @tf belongs to
683 *
684 * LOCKING:
685 * None.
686 *
687 * Read block address from @tf. This function can handle all
688 * three address formats - LBA, LBA48 and CHS. tf->protocol and
689 * flags select the address format to use.
690 *
691 * RETURNS:
692 * Block address read from @tf.
693 */
694u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695{
696 u64 block = 0;
697
698 if (tf->flags & ATA_TFLAG_LBA) {
699 if (tf->flags & ATA_TFLAG_LBA48) {
700 block |= (u64)tf->hob_lbah << 40;
701 block |= (u64)tf->hob_lbam << 32;
702 block |= (u64)tf->hob_lbal << 24;
703 } else
704 block |= (tf->device & 0xf) << 24;
705
706 block |= tf->lbah << 16;
707 block |= tf->lbam << 8;
708 block |= tf->lbal;
709 } else {
710 u32 cyl, head, sect;
711
712 cyl = tf->lbam | (tf->lbah << 8);
713 head = tf->device & 0xf;
714 sect = tf->lbal;
715
716 if (!sect) {
717 ata_dev_warn(dev,
718 "device reported invalid CHS sector 0\n");
719 sect = 1; /* oh well */
720 }
721
722 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
723 }
724
725 return block;
726}
727
728/**
729 * ata_build_rw_tf - Build ATA taskfile for given read/write request
730 * @tf: Target ATA taskfile
731 * @dev: ATA device @tf belongs to
732 * @block: Block address
733 * @n_block: Number of blocks
734 * @tf_flags: RW/FUA etc...
735 * @tag: tag
736 *
737 * LOCKING:
738 * None.
739 *
740 * Build ATA taskfile @tf for read/write request described by
741 * @block, @n_block, @tf_flags and @tag on @dev.
742 *
743 * RETURNS:
744 *
745 * 0 on success, -ERANGE if the request is too large for @dev,
746 * -EINVAL if the request is invalid.
747 */
748int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
749 u64 block, u32 n_block, unsigned int tf_flags,
750 unsigned int tag)
751{
752 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
753 tf->flags |= tf_flags;
754
755 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
756 /* yay, NCQ */
757 if (!lba_48_ok(block, n_block))
758 return -ERANGE;
759
760 tf->protocol = ATA_PROT_NCQ;
761 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762
763 if (tf->flags & ATA_TFLAG_WRITE)
764 tf->command = ATA_CMD_FPDMA_WRITE;
765 else
766 tf->command = ATA_CMD_FPDMA_READ;
767
768 tf->nsect = tag << 3;
769 tf->hob_feature = (n_block >> 8) & 0xff;
770 tf->feature = n_block & 0xff;
771
772 tf->hob_lbah = (block >> 40) & 0xff;
773 tf->hob_lbam = (block >> 32) & 0xff;
774 tf->hob_lbal = (block >> 24) & 0xff;
775 tf->lbah = (block >> 16) & 0xff;
776 tf->lbam = (block >> 8) & 0xff;
777 tf->lbal = block & 0xff;
778
779 tf->device = ATA_LBA;
780 if (tf->flags & ATA_TFLAG_FUA)
781 tf->device |= 1 << 7;
782 } else if (dev->flags & ATA_DFLAG_LBA) {
783 tf->flags |= ATA_TFLAG_LBA;
784
785 if (lba_28_ok(block, n_block)) {
786 /* use LBA28 */
787 tf->device |= (block >> 24) & 0xf;
788 } else if (lba_48_ok(block, n_block)) {
789 if (!(dev->flags & ATA_DFLAG_LBA48))
790 return -ERANGE;
791
792 /* use LBA48 */
793 tf->flags |= ATA_TFLAG_LBA48;
794
795 tf->hob_nsect = (n_block >> 8) & 0xff;
796
797 tf->hob_lbah = (block >> 40) & 0xff;
798 tf->hob_lbam = (block >> 32) & 0xff;
799 tf->hob_lbal = (block >> 24) & 0xff;
800 } else
801 /* request too large even for LBA48 */
802 return -ERANGE;
803
804 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
805 return -EINVAL;
806
807 tf->nsect = n_block & 0xff;
808
809 tf->lbah = (block >> 16) & 0xff;
810 tf->lbam = (block >> 8) & 0xff;
811 tf->lbal = block & 0xff;
812
813 tf->device |= ATA_LBA;
814 } else {
815 /* CHS */
816 u32 sect, head, cyl, track;
817
818 /* The request -may- be too large for CHS addressing. */
819 if (!lba_28_ok(block, n_block))
820 return -ERANGE;
821
822 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
823 return -EINVAL;
824
825 /* Convert LBA to CHS */
826 track = (u32)block / dev->sectors;
827 cyl = track / dev->heads;
828 head = track % dev->heads;
829 sect = (u32)block % dev->sectors + 1;
830
831 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
832 (u32)block, track, cyl, head, sect);
833
834 /* Check whether the converted CHS can fit.
835 Cylinder: 0-65535
836 Head: 0-15
837 Sector: 1-255*/
838 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
839 return -ERANGE;
840
841 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
842 tf->lbal = sect;
843 tf->lbam = cyl;
844 tf->lbah = cyl >> 8;
845 tf->device |= head;
846 }
847
848 return 0;
849}
850
851/**
852 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
853 * @pio_mask: pio_mask
854 * @mwdma_mask: mwdma_mask
855 * @udma_mask: udma_mask
856 *
857 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
858 * unsigned int xfer_mask.
859 *
860 * LOCKING:
861 * None.
862 *
863 * RETURNS:
864 * Packed xfer_mask.
865 */
866unsigned long ata_pack_xfermask(unsigned long pio_mask,
867 unsigned long mwdma_mask,
868 unsigned long udma_mask)
869{
870 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
871 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
872 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
873}
874
875/**
876 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
877 * @xfer_mask: xfer_mask to unpack
878 * @pio_mask: resulting pio_mask
879 * @mwdma_mask: resulting mwdma_mask
880 * @udma_mask: resulting udma_mask
881 *
882 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
883 * Any NULL distination masks will be ignored.
884 */
885void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
886 unsigned long *mwdma_mask, unsigned long *udma_mask)
887{
888 if (pio_mask)
889 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
890 if (mwdma_mask)
891 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
892 if (udma_mask)
893 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
894}
895
896static const struct ata_xfer_ent {
897 int shift, bits;
898 u8 base;
899} ata_xfer_tbl[] = {
900 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
901 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
902 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
903 { -1, },
904};
905
906/**
907 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
908 * @xfer_mask: xfer_mask of interest
909 *
910 * Return matching XFER_* value for @xfer_mask. Only the highest
911 * bit of @xfer_mask is considered.
912 *
913 * LOCKING:
914 * None.
915 *
916 * RETURNS:
917 * Matching XFER_* value, 0xff if no match found.
918 */
919u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920{
921 int highbit = fls(xfer_mask) - 1;
922 const struct ata_xfer_ent *ent;
923
924 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
925 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
926 return ent->base + highbit - ent->shift;
927 return 0xff;
928}
929
930/**
931 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
932 * @xfer_mode: XFER_* of interest
933 *
934 * Return matching xfer_mask for @xfer_mode.
935 *
936 * LOCKING:
937 * None.
938 *
939 * RETURNS:
940 * Matching xfer_mask, 0 if no match found.
941 */
942unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943{
944 const struct ata_xfer_ent *ent;
945
946 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
947 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
948 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
949 & ~((1 << ent->shift) - 1);
950 return 0;
951}
952
953/**
954 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
955 * @xfer_mode: XFER_* of interest
956 *
957 * Return matching xfer_shift for @xfer_mode.
958 *
959 * LOCKING:
960 * None.
961 *
962 * RETURNS:
963 * Matching xfer_shift, -1 if no match found.
964 */
965int ata_xfer_mode2shift(unsigned long xfer_mode)
966{
967 const struct ata_xfer_ent *ent;
968
969 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
970 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
971 return ent->shift;
972 return -1;
973}
974
975/**
976 * ata_mode_string - convert xfer_mask to string
977 * @xfer_mask: mask of bits supported; only highest bit counts.
978 *
979 * Determine string which represents the highest speed
980 * (highest bit in @modemask).
981 *
982 * LOCKING:
983 * None.
984 *
985 * RETURNS:
986 * Constant C string representing highest speed listed in
987 * @mode_mask, or the constant C string "<n/a>".
988 */
989const char *ata_mode_string(unsigned long xfer_mask)
990{
991 static const char * const xfer_mode_str[] = {
992 "PIO0",
993 "PIO1",
994 "PIO2",
995 "PIO3",
996 "PIO4",
997 "PIO5",
998 "PIO6",
999 "MWDMA0",
1000 "MWDMA1",
1001 "MWDMA2",
1002 "MWDMA3",
1003 "MWDMA4",
1004 "UDMA/16",
1005 "UDMA/25",
1006 "UDMA/33",
1007 "UDMA/44",
1008 "UDMA/66",
1009 "UDMA/100",
1010 "UDMA/133",
1011 "UDMA7",
1012 };
1013 int highbit;
1014
1015 highbit = fls(xfer_mask) - 1;
1016 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1017 return xfer_mode_str[highbit];
1018 return "<n/a>";
1019}
1020
1021const char *sata_spd_string(unsigned int spd)
1022{
1023 static const char * const spd_str[] = {
1024 "1.5 Gbps",
1025 "3.0 Gbps",
1026 "6.0 Gbps",
1027 };
1028
1029 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1030 return "<unknown>";
1031 return spd_str[spd - 1];
1032}
1033
1034/**
1035 * ata_dev_classify - determine device type based on ATA-spec signature
1036 * @tf: ATA taskfile register set for device to be identified
1037 *
1038 * Determine from taskfile register contents whether a device is
1039 * ATA or ATAPI, as per "Signature and persistence" section
1040 * of ATA/PI spec (volume 1, sect 5.14).
1041 *
1042 * LOCKING:
1043 * None.
1044 *
1045 * RETURNS:
1046 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1047 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1048 */
1049unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050{
1051 /* Apple's open source Darwin code hints that some devices only
1052 * put a proper signature into the LBA mid/high registers,
1053 * So, we only check those. It's sufficient for uniqueness.
1054 *
1055 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1056 * signatures for ATA and ATAPI devices attached on SerialATA,
1057 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1058 * spec has never mentioned about using different signatures
1059 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1060 * Multiplier specification began to use 0x69/0x96 to identify
1061 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1062 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1063 * 0x69/0x96 shortly and described them as reserved for
1064 * SerialATA.
1065 *
1066 * We follow the current spec and consider that 0x69/0x96
1067 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1068 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1069 * SEMB signature. This is worked around in
1070 * ata_dev_read_id().
1071 */
1072 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1073 DPRINTK("found ATA device by sig\n");
1074 return ATA_DEV_ATA;
1075 }
1076
1077 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1078 DPRINTK("found ATAPI device by sig\n");
1079 return ATA_DEV_ATAPI;
1080 }
1081
1082 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1083 DPRINTK("found PMP device by sig\n");
1084 return ATA_DEV_PMP;
1085 }
1086
1087 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1088 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1089 return ATA_DEV_SEMB;
1090 }
1091
1092 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1093 DPRINTK("found ZAC device by sig\n");
1094 return ATA_DEV_ZAC;
1095 }
1096
1097 DPRINTK("unknown device\n");
1098 return ATA_DEV_UNKNOWN;
1099}
1100
1101/**
1102 * ata_id_string - Convert IDENTIFY DEVICE page into string
1103 * @id: IDENTIFY DEVICE results we will examine
1104 * @s: string into which data is output
1105 * @ofs: offset into identify device page
1106 * @len: length of string to return. must be an even number.
1107 *
1108 * The strings in the IDENTIFY DEVICE page are broken up into
1109 * 16-bit chunks. Run through the string, and output each
1110 * 8-bit chunk linearly, regardless of platform.
1111 *
1112 * LOCKING:
1113 * caller.
1114 */
1115
1116void ata_id_string(const u16 *id, unsigned char *s,
1117 unsigned int ofs, unsigned int len)
1118{
1119 unsigned int c;
1120
1121 BUG_ON(len & 1);
1122
1123 while (len > 0) {
1124 c = id[ofs] >> 8;
1125 *s = c;
1126 s++;
1127
1128 c = id[ofs] & 0xff;
1129 *s = c;
1130 s++;
1131
1132 ofs++;
1133 len -= 2;
1134 }
1135}
1136
1137/**
1138 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1139 * @id: IDENTIFY DEVICE results we will examine
1140 * @s: string into which data is output
1141 * @ofs: offset into identify device page
1142 * @len: length of string to return. must be an odd number.
1143 *
1144 * This function is identical to ata_id_string except that it
1145 * trims trailing spaces and terminates the resulting string with
1146 * null. @len must be actual maximum length (even number) + 1.
1147 *
1148 * LOCKING:
1149 * caller.
1150 */
1151void ata_id_c_string(const u16 *id, unsigned char *s,
1152 unsigned int ofs, unsigned int len)
1153{
1154 unsigned char *p;
1155
1156 ata_id_string(id, s, ofs, len - 1);
1157
1158 p = s + strnlen(s, len - 1);
1159 while (p > s && p[-1] == ' ')
1160 p--;
1161 *p = '\0';
1162}
1163
1164static u64 ata_id_n_sectors(const u16 *id)
1165{
1166 if (ata_id_has_lba(id)) {
1167 if (ata_id_has_lba48(id))
1168 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1169 else
1170 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1171 } else {
1172 if (ata_id_current_chs_valid(id))
1173 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1174 id[ATA_ID_CUR_SECTORS];
1175 else
1176 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1177 id[ATA_ID_SECTORS];
1178 }
1179}
1180
1181u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1182{
1183 u64 sectors = 0;
1184
1185 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1186 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1187 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1188 sectors |= (tf->lbah & 0xff) << 16;
1189 sectors |= (tf->lbam & 0xff) << 8;
1190 sectors |= (tf->lbal & 0xff);
1191
1192 return sectors;
1193}
1194
1195u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1196{
1197 u64 sectors = 0;
1198
1199 sectors |= (tf->device & 0x0f) << 24;
1200 sectors |= (tf->lbah & 0xff) << 16;
1201 sectors |= (tf->lbam & 0xff) << 8;
1202 sectors |= (tf->lbal & 0xff);
1203
1204 return sectors;
1205}
1206
1207/**
1208 * ata_read_native_max_address - Read native max address
1209 * @dev: target device
1210 * @max_sectors: out parameter for the result native max address
1211 *
1212 * Perform an LBA48 or LBA28 native size query upon the device in
1213 * question.
1214 *
1215 * RETURNS:
1216 * 0 on success, -EACCES if command is aborted by the drive.
1217 * -EIO on other errors.
1218 */
1219static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1220{
1221 unsigned int err_mask;
1222 struct ata_taskfile tf;
1223 int lba48 = ata_id_has_lba48(dev->id);
1224
1225 ata_tf_init(dev, &tf);
1226
1227 /* always clear all address registers */
1228 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1229
1230 if (lba48) {
1231 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1232 tf.flags |= ATA_TFLAG_LBA48;
1233 } else
1234 tf.command = ATA_CMD_READ_NATIVE_MAX;
1235
1236 tf.protocol |= ATA_PROT_NODATA;
1237 tf.device |= ATA_LBA;
1238
1239 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1240 if (err_mask) {
1241 ata_dev_warn(dev,
1242 "failed to read native max address (err_mask=0x%x)\n",
1243 err_mask);
1244 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1245 return -EACCES;
1246 return -EIO;
1247 }
1248
1249 if (lba48)
1250 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1251 else
1252 *max_sectors = ata_tf_to_lba(&tf) + 1;
1253 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1254 (*max_sectors)--;
1255 return 0;
1256}
1257
1258/**
1259 * ata_set_max_sectors - Set max sectors
1260 * @dev: target device
1261 * @new_sectors: new max sectors value to set for the device
1262 *
1263 * Set max sectors of @dev to @new_sectors.
1264 *
1265 * RETURNS:
1266 * 0 on success, -EACCES if command is aborted or denied (due to
1267 * previous non-volatile SET_MAX) by the drive. -EIO on other
1268 * errors.
1269 */
1270static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1271{
1272 unsigned int err_mask;
1273 struct ata_taskfile tf;
1274 int lba48 = ata_id_has_lba48(dev->id);
1275
1276 new_sectors--;
1277
1278 ata_tf_init(dev, &tf);
1279
1280 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1281
1282 if (lba48) {
1283 tf.command = ATA_CMD_SET_MAX_EXT;
1284 tf.flags |= ATA_TFLAG_LBA48;
1285
1286 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1287 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1288 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1289 } else {
1290 tf.command = ATA_CMD_SET_MAX;
1291
1292 tf.device |= (new_sectors >> 24) & 0xf;
1293 }
1294
1295 tf.protocol |= ATA_PROT_NODATA;
1296 tf.device |= ATA_LBA;
1297
1298 tf.lbal = (new_sectors >> 0) & 0xff;
1299 tf.lbam = (new_sectors >> 8) & 0xff;
1300 tf.lbah = (new_sectors >> 16) & 0xff;
1301
1302 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1303 if (err_mask) {
1304 ata_dev_warn(dev,
1305 "failed to set max address (err_mask=0x%x)\n",
1306 err_mask);
1307 if (err_mask == AC_ERR_DEV &&
1308 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1309 return -EACCES;
1310 return -EIO;
1311 }
1312
1313 return 0;
1314}
1315
1316/**
1317 * ata_hpa_resize - Resize a device with an HPA set
1318 * @dev: Device to resize
1319 *
1320 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1321 * it if required to the full size of the media. The caller must check
1322 * the drive has the HPA feature set enabled.
1323 *
1324 * RETURNS:
1325 * 0 on success, -errno on failure.
1326 */
1327static int ata_hpa_resize(struct ata_device *dev)
1328{
1329 struct ata_eh_context *ehc = &dev->link->eh_context;
1330 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1331 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1332 u64 sectors = ata_id_n_sectors(dev->id);
1333 u64 native_sectors;
1334 int rc;
1335
1336 /* do we need to do it? */
1337 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1338 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1339 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1340 return 0;
1341
1342 /* read native max address */
1343 rc = ata_read_native_max_address(dev, &native_sectors);
1344 if (rc) {
1345 /* If device aborted the command or HPA isn't going to
1346 * be unlocked, skip HPA resizing.
1347 */
1348 if (rc == -EACCES || !unlock_hpa) {
1349 ata_dev_warn(dev,
1350 "HPA support seems broken, skipping HPA handling\n");
1351 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1352
1353 /* we can continue if device aborted the command */
1354 if (rc == -EACCES)
1355 rc = 0;
1356 }
1357
1358 return rc;
1359 }
1360 dev->n_native_sectors = native_sectors;
1361
1362 /* nothing to do? */
1363 if (native_sectors <= sectors || !unlock_hpa) {
1364 if (!print_info || native_sectors == sectors)
1365 return 0;
1366
1367 if (native_sectors > sectors)
1368 ata_dev_info(dev,
1369 "HPA detected: current %llu, native %llu\n",
1370 (unsigned long long)sectors,
1371 (unsigned long long)native_sectors);
1372 else if (native_sectors < sectors)
1373 ata_dev_warn(dev,
1374 "native sectors (%llu) is smaller than sectors (%llu)\n",
1375 (unsigned long long)native_sectors,
1376 (unsigned long long)sectors);
1377 return 0;
1378 }
1379
1380 /* let's unlock HPA */
1381 rc = ata_set_max_sectors(dev, native_sectors);
1382 if (rc == -EACCES) {
1383 /* if device aborted the command, skip HPA resizing */
1384 ata_dev_warn(dev,
1385 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1386 (unsigned long long)sectors,
1387 (unsigned long long)native_sectors);
1388 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1389 return 0;
1390 } else if (rc)
1391 return rc;
1392
1393 /* re-read IDENTIFY data */
1394 rc = ata_dev_reread_id(dev, 0);
1395 if (rc) {
1396 ata_dev_err(dev,
1397 "failed to re-read IDENTIFY data after HPA resizing\n");
1398 return rc;
1399 }
1400
1401 if (print_info) {
1402 u64 new_sectors = ata_id_n_sectors(dev->id);
1403 ata_dev_info(dev,
1404 "HPA unlocked: %llu -> %llu, native %llu\n",
1405 (unsigned long long)sectors,
1406 (unsigned long long)new_sectors,
1407 (unsigned long long)native_sectors);
1408 }
1409
1410 return 0;
1411}
1412
1413/**
1414 * ata_dump_id - IDENTIFY DEVICE info debugging output
1415 * @id: IDENTIFY DEVICE page to dump
1416 *
1417 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1418 * page.
1419 *
1420 * LOCKING:
1421 * caller.
1422 */
1423
1424static inline void ata_dump_id(const u16 *id)
1425{
1426 DPRINTK("49==0x%04x "
1427 "53==0x%04x "
1428 "63==0x%04x "
1429 "64==0x%04x "
1430 "75==0x%04x \n",
1431 id[49],
1432 id[53],
1433 id[63],
1434 id[64],
1435 id[75]);
1436 DPRINTK("80==0x%04x "
1437 "81==0x%04x "
1438 "82==0x%04x "
1439 "83==0x%04x "
1440 "84==0x%04x \n",
1441 id[80],
1442 id[81],
1443 id[82],
1444 id[83],
1445 id[84]);
1446 DPRINTK("88==0x%04x "
1447 "93==0x%04x\n",
1448 id[88],
1449 id[93]);
1450}
1451
1452/**
1453 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1454 * @id: IDENTIFY data to compute xfer mask from
1455 *
1456 * Compute the xfermask for this device. This is not as trivial
1457 * as it seems if we must consider early devices correctly.
1458 *
1459 * FIXME: pre IDE drive timing (do we care ?).
1460 *
1461 * LOCKING:
1462 * None.
1463 *
1464 * RETURNS:
1465 * Computed xfermask
1466 */
1467unsigned long ata_id_xfermask(const u16 *id)
1468{
1469 unsigned long pio_mask, mwdma_mask, udma_mask;
1470
1471 /* Usual case. Word 53 indicates word 64 is valid */
1472 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1473 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1474 pio_mask <<= 3;
1475 pio_mask |= 0x7;
1476 } else {
1477 /* If word 64 isn't valid then Word 51 high byte holds
1478 * the PIO timing number for the maximum. Turn it into
1479 * a mask.
1480 */
1481 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1482 if (mode < 5) /* Valid PIO range */
1483 pio_mask = (2 << mode) - 1;
1484 else
1485 pio_mask = 1;
1486
1487 /* But wait.. there's more. Design your standards by
1488 * committee and you too can get a free iordy field to
1489 * process. However its the speeds not the modes that
1490 * are supported... Note drivers using the timing API
1491 * will get this right anyway
1492 */
1493 }
1494
1495 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1496
1497 if (ata_id_is_cfa(id)) {
1498 /*
1499 * Process compact flash extended modes
1500 */
1501 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1502 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1503
1504 if (pio)
1505 pio_mask |= (1 << 5);
1506 if (pio > 1)
1507 pio_mask |= (1 << 6);
1508 if (dma)
1509 mwdma_mask |= (1 << 3);
1510 if (dma > 1)
1511 mwdma_mask |= (1 << 4);
1512 }
1513
1514 udma_mask = 0;
1515 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1516 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1517
1518 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1519}
1520
1521static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1522{
1523 struct completion *waiting = qc->private_data;
1524
1525 complete(waiting);
1526}
1527
1528/**
1529 * ata_exec_internal_sg - execute libata internal command
1530 * @dev: Device to which the command is sent
1531 * @tf: Taskfile registers for the command and the result
1532 * @cdb: CDB for packet command
1533 * @dma_dir: Data transfer direction of the command
1534 * @sgl: sg list for the data buffer of the command
1535 * @n_elem: Number of sg entries
1536 * @timeout: Timeout in msecs (0 for default)
1537 *
1538 * Executes libata internal command with timeout. @tf contains
1539 * command on entry and result on return. Timeout and error
1540 * conditions are reported via return value. No recovery action
1541 * is taken after a command times out. It's caller's duty to
1542 * clean up after timeout.
1543 *
1544 * LOCKING:
1545 * None. Should be called with kernel context, might sleep.
1546 *
1547 * RETURNS:
1548 * Zero on success, AC_ERR_* mask on failure
1549 */
1550unsigned ata_exec_internal_sg(struct ata_device *dev,
1551 struct ata_taskfile *tf, const u8 *cdb,
1552 int dma_dir, struct scatterlist *sgl,
1553 unsigned int n_elem, unsigned long timeout)
1554{
1555 struct ata_link *link = dev->link;
1556 struct ata_port *ap = link->ap;
1557 u8 command = tf->command;
1558 int auto_timeout = 0;
1559 struct ata_queued_cmd *qc;
1560 unsigned int tag, preempted_tag;
1561 u32 preempted_sactive, preempted_qc_active;
1562 int preempted_nr_active_links;
1563 DECLARE_COMPLETION_ONSTACK(wait);
1564 unsigned long flags;
1565 unsigned int err_mask;
1566 int rc;
1567
1568 spin_lock_irqsave(ap->lock, flags);
1569
1570 /* no internal command while frozen */
1571 if (ap->pflags & ATA_PFLAG_FROZEN) {
1572 spin_unlock_irqrestore(ap->lock, flags);
1573 return AC_ERR_SYSTEM;
1574 }
1575
1576 /* initialize internal qc */
1577
1578 /* XXX: Tag 0 is used for drivers with legacy EH as some
1579 * drivers choke if any other tag is given. This breaks
1580 * ata_tag_internal() test for those drivers. Don't use new
1581 * EH stuff without converting to it.
1582 */
1583 if (ap->ops->error_handler)
1584 tag = ATA_TAG_INTERNAL;
1585 else
1586 tag = 0;
1587
1588 if (test_and_set_bit(tag, &ap->qc_allocated))
1589 BUG();
1590 qc = __ata_qc_from_tag(ap, tag);
1591
1592 qc->tag = tag;
1593 qc->scsicmd = NULL;
1594 qc->ap = ap;
1595 qc->dev = dev;
1596 ata_qc_reinit(qc);
1597
1598 preempted_tag = link->active_tag;
1599 preempted_sactive = link->sactive;
1600 preempted_qc_active = ap->qc_active;
1601 preempted_nr_active_links = ap->nr_active_links;
1602 link->active_tag = ATA_TAG_POISON;
1603 link->sactive = 0;
1604 ap->qc_active = 0;
1605 ap->nr_active_links = 0;
1606
1607 /* prepare & issue qc */
1608 qc->tf = *tf;
1609 if (cdb)
1610 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1611
1612 /* some SATA bridges need us to indicate data xfer direction */
1613 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1614 dma_dir == DMA_FROM_DEVICE)
1615 qc->tf.feature |= ATAPI_DMADIR;
1616
1617 qc->flags |= ATA_QCFLAG_RESULT_TF;
1618 qc->dma_dir = dma_dir;
1619 if (dma_dir != DMA_NONE) {
1620 unsigned int i, buflen = 0;
1621 struct scatterlist *sg;
1622
1623 for_each_sg(sgl, sg, n_elem, i)
1624 buflen += sg->length;
1625
1626 ata_sg_init(qc, sgl, n_elem);
1627 qc->nbytes = buflen;
1628 }
1629
1630 qc->private_data = &wait;
1631 qc->complete_fn = ata_qc_complete_internal;
1632
1633 ata_qc_issue(qc);
1634
1635 spin_unlock_irqrestore(ap->lock, flags);
1636
1637 if (!timeout) {
1638 if (ata_probe_timeout)
1639 timeout = ata_probe_timeout * 1000;
1640 else {
1641 timeout = ata_internal_cmd_timeout(dev, command);
1642 auto_timeout = 1;
1643 }
1644 }
1645
1646 if (ap->ops->error_handler)
1647 ata_eh_release(ap);
1648
1649 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1650
1651 if (ap->ops->error_handler)
1652 ata_eh_acquire(ap);
1653
1654 ata_sff_flush_pio_task(ap);
1655
1656 if (!rc) {
1657 spin_lock_irqsave(ap->lock, flags);
1658
1659 /* We're racing with irq here. If we lose, the
1660 * following test prevents us from completing the qc
1661 * twice. If we win, the port is frozen and will be
1662 * cleaned up by ->post_internal_cmd().
1663 */
1664 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1665 qc->err_mask |= AC_ERR_TIMEOUT;
1666
1667 if (ap->ops->error_handler)
1668 ata_port_freeze(ap);
1669 else
1670 ata_qc_complete(qc);
1671
1672 if (ata_msg_warn(ap))
1673 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1674 command);
1675 }
1676
1677 spin_unlock_irqrestore(ap->lock, flags);
1678 }
1679
1680 /* do post_internal_cmd */
1681 if (ap->ops->post_internal_cmd)
1682 ap->ops->post_internal_cmd(qc);
1683
1684 /* perform minimal error analysis */
1685 if (qc->flags & ATA_QCFLAG_FAILED) {
1686 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1687 qc->err_mask |= AC_ERR_DEV;
1688
1689 if (!qc->err_mask)
1690 qc->err_mask |= AC_ERR_OTHER;
1691
1692 if (qc->err_mask & ~AC_ERR_OTHER)
1693 qc->err_mask &= ~AC_ERR_OTHER;
1694 }
1695
1696 /* finish up */
1697 spin_lock_irqsave(ap->lock, flags);
1698
1699 *tf = qc->result_tf;
1700 err_mask = qc->err_mask;
1701
1702 ata_qc_free(qc);
1703 link->active_tag = preempted_tag;
1704 link->sactive = preempted_sactive;
1705 ap->qc_active = preempted_qc_active;
1706 ap->nr_active_links = preempted_nr_active_links;
1707
1708 spin_unlock_irqrestore(ap->lock, flags);
1709
1710 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1711 ata_internal_cmd_timed_out(dev, command);
1712
1713 return err_mask;
1714}
1715
1716/**
1717 * ata_exec_internal - execute libata internal command
1718 * @dev: Device to which the command is sent
1719 * @tf: Taskfile registers for the command and the result
1720 * @cdb: CDB for packet command
1721 * @dma_dir: Data transfer direction of the command
1722 * @buf: Data buffer of the command
1723 * @buflen: Length of data buffer
1724 * @timeout: Timeout in msecs (0 for default)
1725 *
1726 * Wrapper around ata_exec_internal_sg() which takes simple
1727 * buffer instead of sg list.
1728 *
1729 * LOCKING:
1730 * None. Should be called with kernel context, might sleep.
1731 *
1732 * RETURNS:
1733 * Zero on success, AC_ERR_* mask on failure
1734 */
1735unsigned ata_exec_internal(struct ata_device *dev,
1736 struct ata_taskfile *tf, const u8 *cdb,
1737 int dma_dir, void *buf, unsigned int buflen,
1738 unsigned long timeout)
1739{
1740 struct scatterlist *psg = NULL, sg;
1741 unsigned int n_elem = 0;
1742
1743 if (dma_dir != DMA_NONE) {
1744 WARN_ON(!buf);
1745 sg_init_one(&sg, buf, buflen);
1746 psg = &sg;
1747 n_elem++;
1748 }
1749
1750 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1751 timeout);
1752}
1753
1754/**
1755 * ata_do_simple_cmd - execute simple internal command
1756 * @dev: Device to which the command is sent
1757 * @cmd: Opcode to execute
1758 *
1759 * Execute a 'simple' command, that only consists of the opcode
1760 * 'cmd' itself, without filling any other registers
1761 *
1762 * LOCKING:
1763 * Kernel thread context (may sleep).
1764 *
1765 * RETURNS:
1766 * Zero on success, AC_ERR_* mask on failure
1767 */
1768unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1769{
1770 struct ata_taskfile tf;
1771
1772 ata_tf_init(dev, &tf);
1773
1774 tf.command = cmd;
1775 tf.flags |= ATA_TFLAG_DEVICE;
1776 tf.protocol = ATA_PROT_NODATA;
1777
1778 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1779}
1780
1781/**
1782 * ata_pio_need_iordy - check if iordy needed
1783 * @adev: ATA device
1784 *
1785 * Check if the current speed of the device requires IORDY. Used
1786 * by various controllers for chip configuration.
1787 */
1788unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1789{
1790 /* Don't set IORDY if we're preparing for reset. IORDY may
1791 * lead to controller lock up on certain controllers if the
1792 * port is not occupied. See bko#11703 for details.
1793 */
1794 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1795 return 0;
1796 /* Controller doesn't support IORDY. Probably a pointless
1797 * check as the caller should know this.
1798 */
1799 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1800 return 0;
1801 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1802 if (ata_id_is_cfa(adev->id)
1803 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1804 return 0;
1805 /* PIO3 and higher it is mandatory */
1806 if (adev->pio_mode > XFER_PIO_2)
1807 return 1;
1808 /* We turn it on when possible */
1809 if (ata_id_has_iordy(adev->id))
1810 return 1;
1811 return 0;
1812}
1813
1814/**
1815 * ata_pio_mask_no_iordy - Return the non IORDY mask
1816 * @adev: ATA device
1817 *
1818 * Compute the highest mode possible if we are not using iordy. Return
1819 * -1 if no iordy mode is available.
1820 */
1821static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1822{
1823 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1824 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1825 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1826 /* Is the speed faster than the drive allows non IORDY ? */
1827 if (pio) {
1828 /* This is cycle times not frequency - watch the logic! */
1829 if (pio > 240) /* PIO2 is 240nS per cycle */
1830 return 3 << ATA_SHIFT_PIO;
1831 return 7 << ATA_SHIFT_PIO;
1832 }
1833 }
1834 return 3 << ATA_SHIFT_PIO;
1835}
1836
1837/**
1838 * ata_do_dev_read_id - default ID read method
1839 * @dev: device
1840 * @tf: proposed taskfile
1841 * @id: data buffer
1842 *
1843 * Issue the identify taskfile and hand back the buffer containing
1844 * identify data. For some RAID controllers and for pre ATA devices
1845 * this function is wrapped or replaced by the driver
1846 */
1847unsigned int ata_do_dev_read_id(struct ata_device *dev,
1848 struct ata_taskfile *tf, u16 *id)
1849{
1850 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1851 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1852}
1853
1854/**
1855 * ata_dev_read_id - Read ID data from the specified device
1856 * @dev: target device
1857 * @p_class: pointer to class of the target device (may be changed)
1858 * @flags: ATA_READID_* flags
1859 * @id: buffer to read IDENTIFY data into
1860 *
1861 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1862 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1863 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1864 * for pre-ATA4 drives.
1865 *
1866 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1867 * now we abort if we hit that case.
1868 *
1869 * LOCKING:
1870 * Kernel thread context (may sleep)
1871 *
1872 * RETURNS:
1873 * 0 on success, -errno otherwise.
1874 */
1875int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1876 unsigned int flags, u16 *id)
1877{
1878 struct ata_port *ap = dev->link->ap;
1879 unsigned int class = *p_class;
1880 struct ata_taskfile tf;
1881 unsigned int err_mask = 0;
1882 const char *reason;
1883 bool is_semb = class == ATA_DEV_SEMB;
1884 int may_fallback = 1, tried_spinup = 0;
1885 int rc;
1886
1887 if (ata_msg_ctl(ap))
1888 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1889
1890retry:
1891 ata_tf_init(dev, &tf);
1892
1893 switch (class) {
1894 case ATA_DEV_SEMB:
1895 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1896 case ATA_DEV_ATA:
1897 case ATA_DEV_ZAC:
1898 tf.command = ATA_CMD_ID_ATA;
1899 break;
1900 case ATA_DEV_ATAPI:
1901 tf.command = ATA_CMD_ID_ATAPI;
1902 break;
1903 default:
1904 rc = -ENODEV;
1905 reason = "unsupported class";
1906 goto err_out;
1907 }
1908
1909 tf.protocol = ATA_PROT_PIO;
1910
1911 /* Some devices choke if TF registers contain garbage. Make
1912 * sure those are properly initialized.
1913 */
1914 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1915
1916 /* Device presence detection is unreliable on some
1917 * controllers. Always poll IDENTIFY if available.
1918 */
1919 tf.flags |= ATA_TFLAG_POLLING;
1920
1921 if (ap->ops->read_id)
1922 err_mask = ap->ops->read_id(dev, &tf, id);
1923 else
1924 err_mask = ata_do_dev_read_id(dev, &tf, id);
1925
1926 if (err_mask) {
1927 if (err_mask & AC_ERR_NODEV_HINT) {
1928 ata_dev_dbg(dev, "NODEV after polling detection\n");
1929 return -ENOENT;
1930 }
1931
1932 if (is_semb) {
1933 ata_dev_info(dev,
1934 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1935 /* SEMB is not supported yet */
1936 *p_class = ATA_DEV_SEMB_UNSUP;
1937 return 0;
1938 }
1939
1940 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1941 /* Device or controller might have reported
1942 * the wrong device class. Give a shot at the
1943 * other IDENTIFY if the current one is
1944 * aborted by the device.
1945 */
1946 if (may_fallback) {
1947 may_fallback = 0;
1948
1949 if (class == ATA_DEV_ATA)
1950 class = ATA_DEV_ATAPI;
1951 else
1952 class = ATA_DEV_ATA;
1953 goto retry;
1954 }
1955
1956 /* Control reaches here iff the device aborted
1957 * both flavors of IDENTIFYs which happens
1958 * sometimes with phantom devices.
1959 */
1960 ata_dev_dbg(dev,
1961 "both IDENTIFYs aborted, assuming NODEV\n");
1962 return -ENOENT;
1963 }
1964
1965 rc = -EIO;
1966 reason = "I/O error";
1967 goto err_out;
1968 }
1969
1970 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1971 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1972 "class=%d may_fallback=%d tried_spinup=%d\n",
1973 class, may_fallback, tried_spinup);
1974 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1975 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1976 }
1977
1978 /* Falling back doesn't make sense if ID data was read
1979 * successfully at least once.
1980 */
1981 may_fallback = 0;
1982
1983 swap_buf_le16(id, ATA_ID_WORDS);
1984
1985 /* sanity check */
1986 rc = -EINVAL;
1987 reason = "device reports invalid type";
1988
1989 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1990 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1991 goto err_out;
1992 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1993 ata_id_is_ata(id)) {
1994 ata_dev_dbg(dev,
1995 "host indicates ignore ATA devices, ignored\n");
1996 return -ENOENT;
1997 }
1998 } else {
1999 if (ata_id_is_ata(id))
2000 goto err_out;
2001 }
2002
2003 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2004 tried_spinup = 1;
2005 /*
2006 * Drive powered-up in standby mode, and requires a specific
2007 * SET_FEATURES spin-up subcommand before it will accept
2008 * anything other than the original IDENTIFY command.
2009 */
2010 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2011 if (err_mask && id[2] != 0x738c) {
2012 rc = -EIO;
2013 reason = "SPINUP failed";
2014 goto err_out;
2015 }
2016 /*
2017 * If the drive initially returned incomplete IDENTIFY info,
2018 * we now must reissue the IDENTIFY command.
2019 */
2020 if (id[2] == 0x37c8)
2021 goto retry;
2022 }
2023
2024 if ((flags & ATA_READID_POSTRESET) &&
2025 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2026 /*
2027 * The exact sequence expected by certain pre-ATA4 drives is:
2028 * SRST RESET
2029 * IDENTIFY (optional in early ATA)
2030 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2031 * anything else..
2032 * Some drives were very specific about that exact sequence.
2033 *
2034 * Note that ATA4 says lba is mandatory so the second check
2035 * should never trigger.
2036 */
2037 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2038 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2039 if (err_mask) {
2040 rc = -EIO;
2041 reason = "INIT_DEV_PARAMS failed";
2042 goto err_out;
2043 }
2044
2045 /* current CHS translation info (id[53-58]) might be
2046 * changed. reread the identify device info.
2047 */
2048 flags &= ~ATA_READID_POSTRESET;
2049 goto retry;
2050 }
2051 }
2052
2053 *p_class = class;
2054
2055 return 0;
2056
2057 err_out:
2058 if (ata_msg_warn(ap))
2059 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2060 reason, err_mask);
2061 return rc;
2062}
2063
2064static int ata_do_link_spd_horkage(struct ata_device *dev)
2065{
2066 struct ata_link *plink = ata_dev_phys_link(dev);
2067 u32 target, target_limit;
2068
2069 if (!sata_scr_valid(plink))
2070 return 0;
2071
2072 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2073 target = 1;
2074 else
2075 return 0;
2076
2077 target_limit = (1 << target) - 1;
2078
2079 /* if already on stricter limit, no need to push further */
2080 if (plink->sata_spd_limit <= target_limit)
2081 return 0;
2082
2083 plink->sata_spd_limit = target_limit;
2084
2085 /* Request another EH round by returning -EAGAIN if link is
2086 * going faster than the target speed. Forward progress is
2087 * guaranteed by setting sata_spd_limit to target_limit above.
2088 */
2089 if (plink->sata_spd > target) {
2090 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2091 sata_spd_string(target));
2092 return -EAGAIN;
2093 }
2094 return 0;
2095}
2096
2097static inline u8 ata_dev_knobble(struct ata_device *dev)
2098{
2099 struct ata_port *ap = dev->link->ap;
2100
2101 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2102 return 0;
2103
2104 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2105}
2106
2107static int ata_dev_config_ncq(struct ata_device *dev,
2108 char *desc, size_t desc_sz)
2109{
2110 struct ata_port *ap = dev->link->ap;
2111 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2112 unsigned int err_mask;
2113 char *aa_desc = "";
2114
2115 if (!ata_id_has_ncq(dev->id)) {
2116 desc[0] = '\0';
2117 return 0;
2118 }
2119 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2120 snprintf(desc, desc_sz, "NCQ (not used)");
2121 return 0;
2122 }
2123 if (ap->flags & ATA_FLAG_NCQ) {
2124 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2125 dev->flags |= ATA_DFLAG_NCQ;
2126 }
2127
2128 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2129 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2130 ata_id_has_fpdma_aa(dev->id)) {
2131 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2132 SATA_FPDMA_AA);
2133 if (err_mask) {
2134 ata_dev_err(dev,
2135 "failed to enable AA (error_mask=0x%x)\n",
2136 err_mask);
2137 if (err_mask != AC_ERR_DEV) {
2138 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2139 return -EIO;
2140 }
2141 } else
2142 aa_desc = ", AA";
2143 }
2144
2145 if (hdepth >= ddepth)
2146 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2147 else
2148 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2149 ddepth, aa_desc);
2150
2151 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2152 ata_id_has_ncq_send_and_recv(dev->id)) {
2153 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2154 0, ap->sector_buf, 1);
2155 if (err_mask) {
2156 ata_dev_dbg(dev,
2157 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2158 err_mask);
2159 } else {
2160 u8 *cmds = dev->ncq_send_recv_cmds;
2161
2162 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2163 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2164
2165 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2166 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2167 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2168 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2169 }
2170 }
2171 }
2172
2173 return 0;
2174}
2175
2176/**
2177 * ata_dev_configure - Configure the specified ATA/ATAPI device
2178 * @dev: Target device to configure
2179 *
2180 * Configure @dev according to @dev->id. Generic and low-level
2181 * driver specific fixups are also applied.
2182 *
2183 * LOCKING:
2184 * Kernel thread context (may sleep)
2185 *
2186 * RETURNS:
2187 * 0 on success, -errno otherwise
2188 */
2189int ata_dev_configure(struct ata_device *dev)
2190{
2191 struct ata_port *ap = dev->link->ap;
2192 struct ata_eh_context *ehc = &dev->link->eh_context;
2193 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2194 const u16 *id = dev->id;
2195 unsigned long xfer_mask;
2196 unsigned int err_mask;
2197 char revbuf[7]; /* XYZ-99\0 */
2198 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2199 char modelbuf[ATA_ID_PROD_LEN+1];
2200 int rc;
2201
2202 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2203 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2204 return 0;
2205 }
2206
2207 if (ata_msg_probe(ap))
2208 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2209
2210 /* set horkage */
2211 dev->horkage |= ata_dev_blacklisted(dev);
2212 ata_force_horkage(dev);
2213
2214 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2215 ata_dev_info(dev, "unsupported device, disabling\n");
2216 ata_dev_disable(dev);
2217 return 0;
2218 }
2219
2220 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2221 dev->class == ATA_DEV_ATAPI) {
2222 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2223 atapi_enabled ? "not supported with this driver"
2224 : "disabled");
2225 ata_dev_disable(dev);
2226 return 0;
2227 }
2228
2229 rc = ata_do_link_spd_horkage(dev);
2230 if (rc)
2231 return rc;
2232
2233 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2234 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2235 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2236 dev->horkage |= ATA_HORKAGE_NOLPM;
2237
2238 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2239 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2240 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2241 }
2242
2243 /* let ACPI work its magic */
2244 rc = ata_acpi_on_devcfg(dev);
2245 if (rc)
2246 return rc;
2247
2248 /* massage HPA, do it early as it might change IDENTIFY data */
2249 rc = ata_hpa_resize(dev);
2250 if (rc)
2251 return rc;
2252
2253 /* print device capabilities */
2254 if (ata_msg_probe(ap))
2255 ata_dev_dbg(dev,
2256 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2257 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2258 __func__,
2259 id[49], id[82], id[83], id[84],
2260 id[85], id[86], id[87], id[88]);
2261
2262 /* initialize to-be-configured parameters */
2263 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2264 dev->max_sectors = 0;
2265 dev->cdb_len = 0;
2266 dev->n_sectors = 0;
2267 dev->cylinders = 0;
2268 dev->heads = 0;
2269 dev->sectors = 0;
2270 dev->multi_count = 0;
2271
2272 /*
2273 * common ATA, ATAPI feature tests
2274 */
2275
2276 /* find max transfer mode; for printk only */
2277 xfer_mask = ata_id_xfermask(id);
2278
2279 if (ata_msg_probe(ap))
2280 ata_dump_id(id);
2281
2282 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2283 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2284 sizeof(fwrevbuf));
2285
2286 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2287 sizeof(modelbuf));
2288
2289 /* ATA-specific feature tests */
2290 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2291 if (ata_id_is_cfa(id)) {
2292 /* CPRM may make this media unusable */
2293 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2294 ata_dev_warn(dev,
2295 "supports DRM functions and may not be fully accessible\n");
2296 snprintf(revbuf, 7, "CFA");
2297 } else {
2298 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2299 /* Warn the user if the device has TPM extensions */
2300 if (ata_id_has_tpm(id))
2301 ata_dev_warn(dev,
2302 "supports DRM functions and may not be fully accessible\n");
2303 }
2304
2305 dev->n_sectors = ata_id_n_sectors(id);
2306
2307 /* get current R/W Multiple count setting */
2308 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2309 unsigned int max = dev->id[47] & 0xff;
2310 unsigned int cnt = dev->id[59] & 0xff;
2311 /* only recognize/allow powers of two here */
2312 if (is_power_of_2(max) && is_power_of_2(cnt))
2313 if (cnt <= max)
2314 dev->multi_count = cnt;
2315 }
2316
2317 if (ata_id_has_lba(id)) {
2318 const char *lba_desc;
2319 char ncq_desc[24];
2320
2321 lba_desc = "LBA";
2322 dev->flags |= ATA_DFLAG_LBA;
2323 if (ata_id_has_lba48(id)) {
2324 dev->flags |= ATA_DFLAG_LBA48;
2325 lba_desc = "LBA48";
2326
2327 if (dev->n_sectors >= (1UL << 28) &&
2328 ata_id_has_flush_ext(id))
2329 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2330 }
2331
2332 /* config NCQ */
2333 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2334 if (rc)
2335 return rc;
2336
2337 /* print device info to dmesg */
2338 if (ata_msg_drv(ap) && print_info) {
2339 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340 revbuf, modelbuf, fwrevbuf,
2341 ata_mode_string(xfer_mask));
2342 ata_dev_info(dev,
2343 "%llu sectors, multi %u: %s %s\n",
2344 (unsigned long long)dev->n_sectors,
2345 dev->multi_count, lba_desc, ncq_desc);
2346 }
2347 } else {
2348 /* CHS */
2349
2350 /* Default translation */
2351 dev->cylinders = id[1];
2352 dev->heads = id[3];
2353 dev->sectors = id[6];
2354
2355 if (ata_id_current_chs_valid(id)) {
2356 /* Current CHS translation is valid. */
2357 dev->cylinders = id[54];
2358 dev->heads = id[55];
2359 dev->sectors = id[56];
2360 }
2361
2362 /* print device info to dmesg */
2363 if (ata_msg_drv(ap) && print_info) {
2364 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2365 revbuf, modelbuf, fwrevbuf,
2366 ata_mode_string(xfer_mask));
2367 ata_dev_info(dev,
2368 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2369 (unsigned long long)dev->n_sectors,
2370 dev->multi_count, dev->cylinders,
2371 dev->heads, dev->sectors);
2372 }
2373 }
2374
2375 /* Check and mark DevSlp capability. Get DevSlp timing variables
2376 * from SATA Settings page of Identify Device Data Log.
2377 */
2378 if (ata_id_has_devslp(dev->id)) {
2379 u8 *sata_setting = ap->sector_buf;
2380 int i, j;
2381
2382 dev->flags |= ATA_DFLAG_DEVSLP;
2383 err_mask = ata_read_log_page(dev,
2384 ATA_LOG_SATA_ID_DEV_DATA,
2385 ATA_LOG_SATA_SETTINGS,
2386 sata_setting,
2387 1);
2388 if (err_mask)
2389 ata_dev_dbg(dev,
2390 "failed to get Identify Device Data, Emask 0x%x\n",
2391 err_mask);
2392 else
2393 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2394 j = ATA_LOG_DEVSLP_OFFSET + i;
2395 dev->devslp_timing[i] = sata_setting[j];
2396 }
2397 }
2398
2399 dev->cdb_len = 16;
2400 }
2401
2402 /* ATAPI-specific feature tests */
2403 else if (dev->class == ATA_DEV_ATAPI) {
2404 const char *cdb_intr_string = "";
2405 const char *atapi_an_string = "";
2406 const char *dma_dir_string = "";
2407 u32 sntf;
2408
2409 rc = atapi_cdb_len(id);
2410 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2411 if (ata_msg_warn(ap))
2412 ata_dev_warn(dev, "unsupported CDB len\n");
2413 rc = -EINVAL;
2414 goto err_out_nosup;
2415 }
2416 dev->cdb_len = (unsigned int) rc;
2417
2418 /* Enable ATAPI AN if both the host and device have
2419 * the support. If PMP is attached, SNTF is required
2420 * to enable ATAPI AN to discern between PHY status
2421 * changed notifications and ATAPI ANs.
2422 */
2423 if (atapi_an &&
2424 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2425 (!sata_pmp_attached(ap) ||
2426 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2427 /* issue SET feature command to turn this on */
2428 err_mask = ata_dev_set_feature(dev,
2429 SETFEATURES_SATA_ENABLE, SATA_AN);
2430 if (err_mask)
2431 ata_dev_err(dev,
2432 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2433 err_mask);
2434 else {
2435 dev->flags |= ATA_DFLAG_AN;
2436 atapi_an_string = ", ATAPI AN";
2437 }
2438 }
2439
2440 if (ata_id_cdb_intr(dev->id)) {
2441 dev->flags |= ATA_DFLAG_CDB_INTR;
2442 cdb_intr_string = ", CDB intr";
2443 }
2444
2445 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2446 dev->flags |= ATA_DFLAG_DMADIR;
2447 dma_dir_string = ", DMADIR";
2448 }
2449
2450 if (ata_id_has_da(dev->id)) {
2451 dev->flags |= ATA_DFLAG_DA;
2452 zpodd_init(dev);
2453 }
2454
2455 /* print device info to dmesg */
2456 if (ata_msg_drv(ap) && print_info)
2457 ata_dev_info(dev,
2458 "ATAPI: %s, %s, max %s%s%s%s\n",
2459 modelbuf, fwrevbuf,
2460 ata_mode_string(xfer_mask),
2461 cdb_intr_string, atapi_an_string,
2462 dma_dir_string);
2463 }
2464
2465 /* determine max_sectors */
2466 dev->max_sectors = ATA_MAX_SECTORS;
2467 if (dev->flags & ATA_DFLAG_LBA48)
2468 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2469
2470 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2471 200 sectors */
2472 if (ata_dev_knobble(dev)) {
2473 if (ata_msg_drv(ap) && print_info)
2474 ata_dev_info(dev, "applying bridge limits\n");
2475 dev->udma_mask &= ATA_UDMA5;
2476 dev->max_sectors = ATA_MAX_SECTORS;
2477 }
2478
2479 if ((dev->class == ATA_DEV_ATAPI) &&
2480 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2481 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2482 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2483 }
2484
2485 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2486 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2487 dev->max_sectors);
2488
2489 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2490 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2491
2492 if (ap->ops->dev_config)
2493 ap->ops->dev_config(dev);
2494
2495 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2496 /* Let the user know. We don't want to disallow opens for
2497 rescue purposes, or in case the vendor is just a blithering
2498 idiot. Do this after the dev_config call as some controllers
2499 with buggy firmware may want to avoid reporting false device
2500 bugs */
2501
2502 if (print_info) {
2503 ata_dev_warn(dev,
2504"Drive reports diagnostics failure. This may indicate a drive\n");
2505 ata_dev_warn(dev,
2506"fault or invalid emulation. Contact drive vendor for information.\n");
2507 }
2508 }
2509
2510 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2511 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2512 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2513 }
2514
2515 return 0;
2516
2517err_out_nosup:
2518 if (ata_msg_probe(ap))
2519 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2520 return rc;
2521}
2522
2523/**
2524 * ata_cable_40wire - return 40 wire cable type
2525 * @ap: port
2526 *
2527 * Helper method for drivers which want to hardwire 40 wire cable
2528 * detection.
2529 */
2530
2531int ata_cable_40wire(struct ata_port *ap)
2532{
2533 return ATA_CBL_PATA40;
2534}
2535
2536/**
2537 * ata_cable_80wire - return 80 wire cable type
2538 * @ap: port
2539 *
2540 * Helper method for drivers which want to hardwire 80 wire cable
2541 * detection.
2542 */
2543
2544int ata_cable_80wire(struct ata_port *ap)
2545{
2546 return ATA_CBL_PATA80;
2547}
2548
2549/**
2550 * ata_cable_unknown - return unknown PATA cable.
2551 * @ap: port
2552 *
2553 * Helper method for drivers which have no PATA cable detection.
2554 */
2555
2556int ata_cable_unknown(struct ata_port *ap)
2557{
2558 return ATA_CBL_PATA_UNK;
2559}
2560
2561/**
2562 * ata_cable_ignore - return ignored PATA cable.
2563 * @ap: port
2564 *
2565 * Helper method for drivers which don't use cable type to limit
2566 * transfer mode.
2567 */
2568int ata_cable_ignore(struct ata_port *ap)
2569{
2570 return ATA_CBL_PATA_IGN;
2571}
2572
2573/**
2574 * ata_cable_sata - return SATA cable type
2575 * @ap: port
2576 *
2577 * Helper method for drivers which have SATA cables
2578 */
2579
2580int ata_cable_sata(struct ata_port *ap)
2581{
2582 return ATA_CBL_SATA;
2583}
2584
2585/**
2586 * ata_bus_probe - Reset and probe ATA bus
2587 * @ap: Bus to probe
2588 *
2589 * Master ATA bus probing function. Initiates a hardware-dependent
2590 * bus reset, then attempts to identify any devices found on
2591 * the bus.
2592 *
2593 * LOCKING:
2594 * PCI/etc. bus probe sem.
2595 *
2596 * RETURNS:
2597 * Zero on success, negative errno otherwise.
2598 */
2599
2600int ata_bus_probe(struct ata_port *ap)
2601{
2602 unsigned int classes[ATA_MAX_DEVICES];
2603 int tries[ATA_MAX_DEVICES];
2604 int rc;
2605 struct ata_device *dev;
2606
2607 ata_for_each_dev(dev, &ap->link, ALL)
2608 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2609
2610 retry:
2611 ata_for_each_dev(dev, &ap->link, ALL) {
2612 /* If we issue an SRST then an ATA drive (not ATAPI)
2613 * may change configuration and be in PIO0 timing. If
2614 * we do a hard reset (or are coming from power on)
2615 * this is true for ATA or ATAPI. Until we've set a
2616 * suitable controller mode we should not touch the
2617 * bus as we may be talking too fast.
2618 */
2619 dev->pio_mode = XFER_PIO_0;
2620 dev->dma_mode = 0xff;
2621
2622 /* If the controller has a pio mode setup function
2623 * then use it to set the chipset to rights. Don't
2624 * touch the DMA setup as that will be dealt with when
2625 * configuring devices.
2626 */
2627 if (ap->ops->set_piomode)
2628 ap->ops->set_piomode(ap, dev);
2629 }
2630
2631 /* reset and determine device classes */
2632 ap->ops->phy_reset(ap);
2633
2634 ata_for_each_dev(dev, &ap->link, ALL) {
2635 if (dev->class != ATA_DEV_UNKNOWN)
2636 classes[dev->devno] = dev->class;
2637 else
2638 classes[dev->devno] = ATA_DEV_NONE;
2639
2640 dev->class = ATA_DEV_UNKNOWN;
2641 }
2642
2643 /* read IDENTIFY page and configure devices. We have to do the identify
2644 specific sequence bass-ackwards so that PDIAG- is released by
2645 the slave device */
2646
2647 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2648 if (tries[dev->devno])
2649 dev->class = classes[dev->devno];
2650
2651 if (!ata_dev_enabled(dev))
2652 continue;
2653
2654 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2655 dev->id);
2656 if (rc)
2657 goto fail;
2658 }
2659
2660 /* Now ask for the cable type as PDIAG- should have been released */
2661 if (ap->ops->cable_detect)
2662 ap->cbl = ap->ops->cable_detect(ap);
2663
2664 /* We may have SATA bridge glue hiding here irrespective of
2665 * the reported cable types and sensed types. When SATA
2666 * drives indicate we have a bridge, we don't know which end
2667 * of the link the bridge is which is a problem.
2668 */
2669 ata_for_each_dev(dev, &ap->link, ENABLED)
2670 if (ata_id_is_sata(dev->id))
2671 ap->cbl = ATA_CBL_SATA;
2672
2673 /* After the identify sequence we can now set up the devices. We do
2674 this in the normal order so that the user doesn't get confused */
2675
2676 ata_for_each_dev(dev, &ap->link, ENABLED) {
2677 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2678 rc = ata_dev_configure(dev);
2679 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2680 if (rc)
2681 goto fail;
2682 }
2683
2684 /* configure transfer mode */
2685 rc = ata_set_mode(&ap->link, &dev);
2686 if (rc)
2687 goto fail;
2688
2689 ata_for_each_dev(dev, &ap->link, ENABLED)
2690 return 0;
2691
2692 return -ENODEV;
2693
2694 fail:
2695 tries[dev->devno]--;
2696
2697 switch (rc) {
2698 case -EINVAL:
2699 /* eeek, something went very wrong, give up */
2700 tries[dev->devno] = 0;
2701 break;
2702
2703 case -ENODEV:
2704 /* give it just one more chance */
2705 tries[dev->devno] = min(tries[dev->devno], 1);
2706 case -EIO:
2707 if (tries[dev->devno] == 1) {
2708 /* This is the last chance, better to slow
2709 * down than lose it.
2710 */
2711 sata_down_spd_limit(&ap->link, 0);
2712 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2713 }
2714 }
2715
2716 if (!tries[dev->devno])
2717 ata_dev_disable(dev);
2718
2719 goto retry;
2720}
2721
2722/**
2723 * sata_print_link_status - Print SATA link status
2724 * @link: SATA link to printk link status about
2725 *
2726 * This function prints link speed and status of a SATA link.
2727 *
2728 * LOCKING:
2729 * None.
2730 */
2731static void sata_print_link_status(struct ata_link *link)
2732{
2733 u32 sstatus, scontrol, tmp;
2734
2735 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2736 return;
2737 sata_scr_read(link, SCR_CONTROL, &scontrol);
2738
2739 if (ata_phys_link_online(link)) {
2740 tmp = (sstatus >> 4) & 0xf;
2741 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2742 sata_spd_string(tmp), sstatus, scontrol);
2743 } else {
2744 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2745 sstatus, scontrol);
2746 }
2747}
2748
2749/**
2750 * ata_dev_pair - return other device on cable
2751 * @adev: device
2752 *
2753 * Obtain the other device on the same cable, or if none is
2754 * present NULL is returned
2755 */
2756
2757struct ata_device *ata_dev_pair(struct ata_device *adev)
2758{
2759 struct ata_link *link = adev->link;
2760 struct ata_device *pair = &link->device[1 - adev->devno];
2761 if (!ata_dev_enabled(pair))
2762 return NULL;
2763 return pair;
2764}
2765
2766/**
2767 * sata_down_spd_limit - adjust SATA spd limit downward
2768 * @link: Link to adjust SATA spd limit for
2769 * @spd_limit: Additional limit
2770 *
2771 * Adjust SATA spd limit of @link downward. Note that this
2772 * function only adjusts the limit. The change must be applied
2773 * using sata_set_spd().
2774 *
2775 * If @spd_limit is non-zero, the speed is limited to equal to or
2776 * lower than @spd_limit if such speed is supported. If
2777 * @spd_limit is slower than any supported speed, only the lowest
2778 * supported speed is allowed.
2779 *
2780 * LOCKING:
2781 * Inherited from caller.
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno on failure
2785 */
2786int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2787{
2788 u32 sstatus, spd, mask;
2789 int rc, bit;
2790
2791 if (!sata_scr_valid(link))
2792 return -EOPNOTSUPP;
2793
2794 /* If SCR can be read, use it to determine the current SPD.
2795 * If not, use cached value in link->sata_spd.
2796 */
2797 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2798 if (rc == 0 && ata_sstatus_online(sstatus))
2799 spd = (sstatus >> 4) & 0xf;
2800 else
2801 spd = link->sata_spd;
2802
2803 mask = link->sata_spd_limit;
2804 if (mask <= 1)
2805 return -EINVAL;
2806
2807 /* unconditionally mask off the highest bit */
2808 bit = fls(mask) - 1;
2809 mask &= ~(1 << bit);
2810
2811 /* Mask off all speeds higher than or equal to the current
2812 * one. Force 1.5Gbps if current SPD is not available.
2813 */
2814 if (spd > 1)
2815 mask &= (1 << (spd - 1)) - 1;
2816 else
2817 mask &= 1;
2818
2819 /* were we already at the bottom? */
2820 if (!mask)
2821 return -EINVAL;
2822
2823 if (spd_limit) {
2824 if (mask & ((1 << spd_limit) - 1))
2825 mask &= (1 << spd_limit) - 1;
2826 else {
2827 bit = ffs(mask) - 1;
2828 mask = 1 << bit;
2829 }
2830 }
2831
2832 link->sata_spd_limit = mask;
2833
2834 ata_link_warn(link, "limiting SATA link speed to %s\n",
2835 sata_spd_string(fls(mask)));
2836
2837 return 0;
2838}
2839
2840static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2841{
2842 struct ata_link *host_link = &link->ap->link;
2843 u32 limit, target, spd;
2844
2845 limit = link->sata_spd_limit;
2846
2847 /* Don't configure downstream link faster than upstream link.
2848 * It doesn't speed up anything and some PMPs choke on such
2849 * configuration.
2850 */
2851 if (!ata_is_host_link(link) && host_link->sata_spd)
2852 limit &= (1 << host_link->sata_spd) - 1;
2853
2854 if (limit == UINT_MAX)
2855 target = 0;
2856 else
2857 target = fls(limit);
2858
2859 spd = (*scontrol >> 4) & 0xf;
2860 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2861
2862 return spd != target;
2863}
2864
2865/**
2866 * sata_set_spd_needed - is SATA spd configuration needed
2867 * @link: Link in question
2868 *
2869 * Test whether the spd limit in SControl matches
2870 * @link->sata_spd_limit. This function is used to determine
2871 * whether hardreset is necessary to apply SATA spd
2872 * configuration.
2873 *
2874 * LOCKING:
2875 * Inherited from caller.
2876 *
2877 * RETURNS:
2878 * 1 if SATA spd configuration is needed, 0 otherwise.
2879 */
2880static int sata_set_spd_needed(struct ata_link *link)
2881{
2882 u32 scontrol;
2883
2884 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2885 return 1;
2886
2887 return __sata_set_spd_needed(link, &scontrol);
2888}
2889
2890/**
2891 * sata_set_spd - set SATA spd according to spd limit
2892 * @link: Link to set SATA spd for
2893 *
2894 * Set SATA spd of @link according to sata_spd_limit.
2895 *
2896 * LOCKING:
2897 * Inherited from caller.
2898 *
2899 * RETURNS:
2900 * 0 if spd doesn't need to be changed, 1 if spd has been
2901 * changed. Negative errno if SCR registers are inaccessible.
2902 */
2903int sata_set_spd(struct ata_link *link)
2904{
2905 u32 scontrol;
2906 int rc;
2907
2908 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2909 return rc;
2910
2911 if (!__sata_set_spd_needed(link, &scontrol))
2912 return 0;
2913
2914 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2915 return rc;
2916
2917 return 1;
2918}
2919
2920/*
2921 * This mode timing computation functionality is ported over from
2922 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2923 */
2924/*
2925 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2926 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2927 * for UDMA6, which is currently supported only by Maxtor drives.
2928 *
2929 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2930 */
2931
2932static const struct ata_timing ata_timing[] = {
2933/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2934 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2935 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2936 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2937 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2938 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2939 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2940 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2941
2942 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2943 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2944 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2945
2946 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2947 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2948 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2949 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2950 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2951
2952/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2953 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2954 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2955 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2956 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2957 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2958 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2959 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2960
2961 { 0xFF }
2962};
2963
2964#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2965#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2966
2967static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2968{
2969 q->setup = EZ(t->setup * 1000, T);
2970 q->act8b = EZ(t->act8b * 1000, T);
2971 q->rec8b = EZ(t->rec8b * 1000, T);
2972 q->cyc8b = EZ(t->cyc8b * 1000, T);
2973 q->active = EZ(t->active * 1000, T);
2974 q->recover = EZ(t->recover * 1000, T);
2975 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2976 q->cycle = EZ(t->cycle * 1000, T);
2977 q->udma = EZ(t->udma * 1000, UT);
2978}
2979
2980void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2981 struct ata_timing *m, unsigned int what)
2982{
2983 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2984 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2985 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2986 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2987 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2988 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2989 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2990 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2991 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2992}
2993
2994const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2995{
2996 const struct ata_timing *t = ata_timing;
2997
2998 while (xfer_mode > t->mode)
2999 t++;
3000
3001 if (xfer_mode == t->mode)
3002 return t;
3003
3004 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3005 __func__, xfer_mode);
3006
3007 return NULL;
3008}
3009
3010int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3011 struct ata_timing *t, int T, int UT)
3012{
3013 const u16 *id = adev->id;
3014 const struct ata_timing *s;
3015 struct ata_timing p;
3016
3017 /*
3018 * Find the mode.
3019 */
3020
3021 if (!(s = ata_timing_find_mode(speed)))
3022 return -EINVAL;
3023
3024 memcpy(t, s, sizeof(*s));
3025
3026 /*
3027 * If the drive is an EIDE drive, it can tell us it needs extended
3028 * PIO/MW_DMA cycle timing.
3029 */
3030
3031 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3032 memset(&p, 0, sizeof(p));
3033
3034 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3035 if (speed <= XFER_PIO_2)
3036 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3037 else if ((speed <= XFER_PIO_4) ||
3038 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3039 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3040 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3041 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3042
3043 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3044 }
3045
3046 /*
3047 * Convert the timing to bus clock counts.
3048 */
3049
3050 ata_timing_quantize(t, t, T, UT);
3051
3052 /*
3053 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3054 * S.M.A.R.T * and some other commands. We have to ensure that the
3055 * DMA cycle timing is slower/equal than the fastest PIO timing.
3056 */
3057
3058 if (speed > XFER_PIO_6) {
3059 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3060 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3061 }
3062
3063 /*
3064 * Lengthen active & recovery time so that cycle time is correct.
3065 */
3066
3067 if (t->act8b + t->rec8b < t->cyc8b) {
3068 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3069 t->rec8b = t->cyc8b - t->act8b;
3070 }
3071
3072 if (t->active + t->recover < t->cycle) {
3073 t->active += (t->cycle - (t->active + t->recover)) / 2;
3074 t->recover = t->cycle - t->active;
3075 }
3076
3077 /* In a few cases quantisation may produce enough errors to
3078 leave t->cycle too low for the sum of active and recovery
3079 if so we must correct this */
3080 if (t->active + t->recover > t->cycle)
3081 t->cycle = t->active + t->recover;
3082
3083 return 0;
3084}
3085
3086/**
3087 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3088 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3089 * @cycle: cycle duration in ns
3090 *
3091 * Return matching xfer mode for @cycle. The returned mode is of
3092 * the transfer type specified by @xfer_shift. If @cycle is too
3093 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3094 * than the fastest known mode, the fasted mode is returned.
3095 *
3096 * LOCKING:
3097 * None.
3098 *
3099 * RETURNS:
3100 * Matching xfer_mode, 0xff if no match found.
3101 */
3102u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3103{
3104 u8 base_mode = 0xff, last_mode = 0xff;
3105 const struct ata_xfer_ent *ent;
3106 const struct ata_timing *t;
3107
3108 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3109 if (ent->shift == xfer_shift)
3110 base_mode = ent->base;
3111
3112 for (t = ata_timing_find_mode(base_mode);
3113 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3114 unsigned short this_cycle;
3115
3116 switch (xfer_shift) {
3117 case ATA_SHIFT_PIO:
3118 case ATA_SHIFT_MWDMA:
3119 this_cycle = t->cycle;
3120 break;
3121 case ATA_SHIFT_UDMA:
3122 this_cycle = t->udma;
3123 break;
3124 default:
3125 return 0xff;
3126 }
3127
3128 if (cycle > this_cycle)
3129 break;
3130
3131 last_mode = t->mode;
3132 }
3133
3134 return last_mode;
3135}
3136
3137/**
3138 * ata_down_xfermask_limit - adjust dev xfer masks downward
3139 * @dev: Device to adjust xfer masks
3140 * @sel: ATA_DNXFER_* selector
3141 *
3142 * Adjust xfer masks of @dev downward. Note that this function
3143 * does not apply the change. Invoking ata_set_mode() afterwards
3144 * will apply the limit.
3145 *
3146 * LOCKING:
3147 * Inherited from caller.
3148 *
3149 * RETURNS:
3150 * 0 on success, negative errno on failure
3151 */
3152int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3153{
3154 char buf[32];
3155 unsigned long orig_mask, xfer_mask;
3156 unsigned long pio_mask, mwdma_mask, udma_mask;
3157 int quiet, highbit;
3158
3159 quiet = !!(sel & ATA_DNXFER_QUIET);
3160 sel &= ~ATA_DNXFER_QUIET;
3161
3162 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3163 dev->mwdma_mask,
3164 dev->udma_mask);
3165 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3166
3167 switch (sel) {
3168 case ATA_DNXFER_PIO:
3169 highbit = fls(pio_mask) - 1;
3170 pio_mask &= ~(1 << highbit);
3171 break;
3172
3173 case ATA_DNXFER_DMA:
3174 if (udma_mask) {
3175 highbit = fls(udma_mask) - 1;
3176 udma_mask &= ~(1 << highbit);
3177 if (!udma_mask)
3178 return -ENOENT;
3179 } else if (mwdma_mask) {
3180 highbit = fls(mwdma_mask) - 1;
3181 mwdma_mask &= ~(1 << highbit);
3182 if (!mwdma_mask)
3183 return -ENOENT;
3184 }
3185 break;
3186
3187 case ATA_DNXFER_40C:
3188 udma_mask &= ATA_UDMA_MASK_40C;
3189 break;
3190
3191 case ATA_DNXFER_FORCE_PIO0:
3192 pio_mask &= 1;
3193 case ATA_DNXFER_FORCE_PIO:
3194 mwdma_mask = 0;
3195 udma_mask = 0;
3196 break;
3197
3198 default:
3199 BUG();
3200 }
3201
3202 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3203
3204 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3205 return -ENOENT;
3206
3207 if (!quiet) {
3208 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3209 snprintf(buf, sizeof(buf), "%s:%s",
3210 ata_mode_string(xfer_mask),
3211 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3212 else
3213 snprintf(buf, sizeof(buf), "%s",
3214 ata_mode_string(xfer_mask));
3215
3216 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3217 }
3218
3219 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3220 &dev->udma_mask);
3221
3222 return 0;
3223}
3224
3225static int ata_dev_set_mode(struct ata_device *dev)
3226{
3227 struct ata_port *ap = dev->link->ap;
3228 struct ata_eh_context *ehc = &dev->link->eh_context;
3229 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3230 const char *dev_err_whine = "";
3231 int ign_dev_err = 0;
3232 unsigned int err_mask = 0;
3233 int rc;
3234
3235 dev->flags &= ~ATA_DFLAG_PIO;
3236 if (dev->xfer_shift == ATA_SHIFT_PIO)
3237 dev->flags |= ATA_DFLAG_PIO;
3238
3239 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3240 dev_err_whine = " (SET_XFERMODE skipped)";
3241 else {
3242 if (nosetxfer)
3243 ata_dev_warn(dev,
3244 "NOSETXFER but PATA detected - can't "
3245 "skip SETXFER, might malfunction\n");
3246 err_mask = ata_dev_set_xfermode(dev);
3247 }
3248
3249 if (err_mask & ~AC_ERR_DEV)
3250 goto fail;
3251
3252 /* revalidate */
3253 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3254 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3255 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3256 if (rc)
3257 return rc;
3258
3259 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3260 /* Old CFA may refuse this command, which is just fine */
3261 if (ata_id_is_cfa(dev->id))
3262 ign_dev_err = 1;
3263 /* Catch several broken garbage emulations plus some pre
3264 ATA devices */
3265 if (ata_id_major_version(dev->id) == 0 &&
3266 dev->pio_mode <= XFER_PIO_2)
3267 ign_dev_err = 1;
3268 /* Some very old devices and some bad newer ones fail
3269 any kind of SET_XFERMODE request but support PIO0-2
3270 timings and no IORDY */
3271 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3272 ign_dev_err = 1;
3273 }
3274 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3275 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3276 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3277 dev->dma_mode == XFER_MW_DMA_0 &&
3278 (dev->id[63] >> 8) & 1)
3279 ign_dev_err = 1;
3280
3281 /* if the device is actually configured correctly, ignore dev err */
3282 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3283 ign_dev_err = 1;
3284
3285 if (err_mask & AC_ERR_DEV) {
3286 if (!ign_dev_err)
3287 goto fail;
3288 else
3289 dev_err_whine = " (device error ignored)";
3290 }
3291
3292 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3293 dev->xfer_shift, (int)dev->xfer_mode);
3294
3295 ata_dev_info(dev, "configured for %s%s\n",
3296 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3297 dev_err_whine);
3298
3299 return 0;
3300
3301 fail:
3302 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3303 return -EIO;
3304}
3305
3306/**
3307 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3308 * @link: link on which timings will be programmed
3309 * @r_failed_dev: out parameter for failed device
3310 *
3311 * Standard implementation of the function used to tune and set
3312 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3313 * ata_dev_set_mode() fails, pointer to the failing device is
3314 * returned in @r_failed_dev.
3315 *
3316 * LOCKING:
3317 * PCI/etc. bus probe sem.
3318 *
3319 * RETURNS:
3320 * 0 on success, negative errno otherwise
3321 */
3322
3323int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3324{
3325 struct ata_port *ap = link->ap;
3326 struct ata_device *dev;
3327 int rc = 0, used_dma = 0, found = 0;
3328
3329 /* step 1: calculate xfer_mask */
3330 ata_for_each_dev(dev, link, ENABLED) {
3331 unsigned long pio_mask, dma_mask;
3332 unsigned int mode_mask;
3333
3334 mode_mask = ATA_DMA_MASK_ATA;
3335 if (dev->class == ATA_DEV_ATAPI)
3336 mode_mask = ATA_DMA_MASK_ATAPI;
3337 else if (ata_id_is_cfa(dev->id))
3338 mode_mask = ATA_DMA_MASK_CFA;
3339
3340 ata_dev_xfermask(dev);
3341 ata_force_xfermask(dev);
3342
3343 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3344
3345 if (libata_dma_mask & mode_mask)
3346 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3347 dev->udma_mask);
3348 else
3349 dma_mask = 0;
3350
3351 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3352 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3353
3354 found = 1;
3355 if (ata_dma_enabled(dev))
3356 used_dma = 1;
3357 }
3358 if (!found)
3359 goto out;
3360
3361 /* step 2: always set host PIO timings */
3362 ata_for_each_dev(dev, link, ENABLED) {
3363 if (dev->pio_mode == 0xff) {
3364 ata_dev_warn(dev, "no PIO support\n");
3365 rc = -EINVAL;
3366 goto out;
3367 }
3368
3369 dev->xfer_mode = dev->pio_mode;
3370 dev->xfer_shift = ATA_SHIFT_PIO;
3371 if (ap->ops->set_piomode)
3372 ap->ops->set_piomode(ap, dev);
3373 }
3374
3375 /* step 3: set host DMA timings */
3376 ata_for_each_dev(dev, link, ENABLED) {
3377 if (!ata_dma_enabled(dev))
3378 continue;
3379
3380 dev->xfer_mode = dev->dma_mode;
3381 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3382 if (ap->ops->set_dmamode)
3383 ap->ops->set_dmamode(ap, dev);
3384 }
3385
3386 /* step 4: update devices' xfer mode */
3387 ata_for_each_dev(dev, link, ENABLED) {
3388 rc = ata_dev_set_mode(dev);
3389 if (rc)
3390 goto out;
3391 }
3392
3393 /* Record simplex status. If we selected DMA then the other
3394 * host channels are not permitted to do so.
3395 */
3396 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3397 ap->host->simplex_claimed = ap;
3398
3399 out:
3400 if (rc)
3401 *r_failed_dev = dev;
3402 return rc;
3403}
3404
3405/**
3406 * ata_wait_ready - wait for link to become ready
3407 * @link: link to be waited on
3408 * @deadline: deadline jiffies for the operation
3409 * @check_ready: callback to check link readiness
3410 *
3411 * Wait for @link to become ready. @check_ready should return
3412 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3413 * link doesn't seem to be occupied, other errno for other error
3414 * conditions.
3415 *
3416 * Transient -ENODEV conditions are allowed for
3417 * ATA_TMOUT_FF_WAIT.
3418 *
3419 * LOCKING:
3420 * EH context.
3421 *
3422 * RETURNS:
3423 * 0 if @linke is ready before @deadline; otherwise, -errno.
3424 */
3425int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3426 int (*check_ready)(struct ata_link *link))
3427{
3428 unsigned long start = jiffies;
3429 unsigned long nodev_deadline;
3430 int warned = 0;
3431
3432 /* choose which 0xff timeout to use, read comment in libata.h */
3433 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3434 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3435 else
3436 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3437
3438 /* Slave readiness can't be tested separately from master. On
3439 * M/S emulation configuration, this function should be called
3440 * only on the master and it will handle both master and slave.
3441 */
3442 WARN_ON(link == link->ap->slave_link);
3443
3444 if (time_after(nodev_deadline, deadline))
3445 nodev_deadline = deadline;
3446
3447 while (1) {
3448 unsigned long now = jiffies;
3449 int ready, tmp;
3450
3451 ready = tmp = check_ready(link);
3452 if (ready > 0)
3453 return 0;
3454
3455 /*
3456 * -ENODEV could be transient. Ignore -ENODEV if link
3457 * is online. Also, some SATA devices take a long
3458 * time to clear 0xff after reset. Wait for
3459 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3460 * offline.
3461 *
3462 * Note that some PATA controllers (pata_ali) explode
3463 * if status register is read more than once when
3464 * there's no device attached.
3465 */
3466 if (ready == -ENODEV) {
3467 if (ata_link_online(link))
3468 ready = 0;
3469 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3470 !ata_link_offline(link) &&
3471 time_before(now, nodev_deadline))
3472 ready = 0;
3473 }
3474
3475 if (ready)
3476 return ready;
3477 if (time_after(now, deadline))
3478 return -EBUSY;
3479
3480 if (!warned && time_after(now, start + 5 * HZ) &&
3481 (deadline - now > 3 * HZ)) {
3482 ata_link_warn(link,
3483 "link is slow to respond, please be patient "
3484 "(ready=%d)\n", tmp);
3485 warned = 1;
3486 }
3487
3488 ata_msleep(link->ap, 50);
3489 }
3490}
3491
3492/**
3493 * ata_wait_after_reset - wait for link to become ready after reset
3494 * @link: link to be waited on
3495 * @deadline: deadline jiffies for the operation
3496 * @check_ready: callback to check link readiness
3497 *
3498 * Wait for @link to become ready after reset.
3499 *
3500 * LOCKING:
3501 * EH context.
3502 *
3503 * RETURNS:
3504 * 0 if @linke is ready before @deadline; otherwise, -errno.
3505 */
3506int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3507 int (*check_ready)(struct ata_link *link))
3508{
3509 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3510
3511 return ata_wait_ready(link, deadline, check_ready);
3512}
3513
3514/**
3515 * sata_link_debounce - debounce SATA phy status
3516 * @link: ATA link to debounce SATA phy status for
3517 * @params: timing parameters { interval, duratinon, timeout } in msec
3518 * @deadline: deadline jiffies for the operation
3519 *
3520 * Make sure SStatus of @link reaches stable state, determined by
3521 * holding the same value where DET is not 1 for @duration polled
3522 * every @interval, before @timeout. Timeout constraints the
3523 * beginning of the stable state. Because DET gets stuck at 1 on
3524 * some controllers after hot unplugging, this functions waits
3525 * until timeout then returns 0 if DET is stable at 1.
3526 *
3527 * @timeout is further limited by @deadline. The sooner of the
3528 * two is used.
3529 *
3530 * LOCKING:
3531 * Kernel thread context (may sleep)
3532 *
3533 * RETURNS:
3534 * 0 on success, -errno on failure.
3535 */
3536int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3537 unsigned long deadline)
3538{
3539 unsigned long interval = params[0];
3540 unsigned long duration = params[1];
3541 unsigned long last_jiffies, t;
3542 u32 last, cur;
3543 int rc;
3544
3545 t = ata_deadline(jiffies, params[2]);
3546 if (time_before(t, deadline))
3547 deadline = t;
3548
3549 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3550 return rc;
3551 cur &= 0xf;
3552
3553 last = cur;
3554 last_jiffies = jiffies;
3555
3556 while (1) {
3557 ata_msleep(link->ap, interval);
3558 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3559 return rc;
3560 cur &= 0xf;
3561
3562 /* DET stable? */
3563 if (cur == last) {
3564 if (cur == 1 && time_before(jiffies, deadline))
3565 continue;
3566 if (time_after(jiffies,
3567 ata_deadline(last_jiffies, duration)))
3568 return 0;
3569 continue;
3570 }
3571
3572 /* unstable, start over */
3573 last = cur;
3574 last_jiffies = jiffies;
3575
3576 /* Check deadline. If debouncing failed, return
3577 * -EPIPE to tell upper layer to lower link speed.
3578 */
3579 if (time_after(jiffies, deadline))
3580 return -EPIPE;
3581 }
3582}
3583
3584/**
3585 * sata_link_resume - resume SATA link
3586 * @link: ATA link to resume SATA
3587 * @params: timing parameters { interval, duratinon, timeout } in msec
3588 * @deadline: deadline jiffies for the operation
3589 *
3590 * Resume SATA phy @link and debounce it.
3591 *
3592 * LOCKING:
3593 * Kernel thread context (may sleep)
3594 *
3595 * RETURNS:
3596 * 0 on success, -errno on failure.
3597 */
3598int sata_link_resume(struct ata_link *link, const unsigned long *params,
3599 unsigned long deadline)
3600{
3601 int tries = ATA_LINK_RESUME_TRIES;
3602 u32 scontrol, serror;
3603 int rc;
3604
3605 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606 return rc;
3607
3608 /*
3609 * Writes to SControl sometimes get ignored under certain
3610 * controllers (ata_piix SIDPR). Make sure DET actually is
3611 * cleared.
3612 */
3613 do {
3614 scontrol = (scontrol & 0x0f0) | 0x300;
3615 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3616 return rc;
3617 /*
3618 * Some PHYs react badly if SStatus is pounded
3619 * immediately after resuming. Delay 200ms before
3620 * debouncing.
3621 */
3622 ata_msleep(link->ap, 200);
3623
3624 /* is SControl restored correctly? */
3625 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3626 return rc;
3627 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3628
3629 if ((scontrol & 0xf0f) != 0x300) {
3630 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3631 scontrol);
3632 return 0;
3633 }
3634
3635 if (tries < ATA_LINK_RESUME_TRIES)
3636 ata_link_warn(link, "link resume succeeded after %d retries\n",
3637 ATA_LINK_RESUME_TRIES - tries);
3638
3639 if ((rc = sata_link_debounce(link, params, deadline)))
3640 return rc;
3641
3642 /* clear SError, some PHYs require this even for SRST to work */
3643 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3644 rc = sata_scr_write(link, SCR_ERROR, serror);
3645
3646 return rc != -EINVAL ? rc : 0;
3647}
3648
3649/**
3650 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3651 * @link: ATA link to manipulate SControl for
3652 * @policy: LPM policy to configure
3653 * @spm_wakeup: initiate LPM transition to active state
3654 *
3655 * Manipulate the IPM field of the SControl register of @link
3656 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3657 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3658 * the link. This function also clears PHYRDY_CHG before
3659 * returning.
3660 *
3661 * LOCKING:
3662 * EH context.
3663 *
3664 * RETURNS:
3665 * 0 on succes, -errno otherwise.
3666 */
3667int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3668 bool spm_wakeup)
3669{
3670 struct ata_eh_context *ehc = &link->eh_context;
3671 bool woken_up = false;
3672 u32 scontrol;
3673 int rc;
3674
3675 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3676 if (rc)
3677 return rc;
3678
3679 switch (policy) {
3680 case ATA_LPM_MAX_POWER:
3681 /* disable all LPM transitions */
3682 scontrol |= (0x7 << 8);
3683 /* initiate transition to active state */
3684 if (spm_wakeup) {
3685 scontrol |= (0x4 << 12);
3686 woken_up = true;
3687 }
3688 break;
3689 case ATA_LPM_MED_POWER:
3690 /* allow LPM to PARTIAL */
3691 scontrol &= ~(0x1 << 8);
3692 scontrol |= (0x6 << 8);
3693 break;
3694 case ATA_LPM_MIN_POWER:
3695 if (ata_link_nr_enabled(link) > 0)
3696 /* no restrictions on LPM transitions */
3697 scontrol &= ~(0x7 << 8);
3698 else {
3699 /* empty port, power off */
3700 scontrol &= ~0xf;
3701 scontrol |= (0x1 << 2);
3702 }
3703 break;
3704 default:
3705 WARN_ON(1);
3706 }
3707
3708 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3709 if (rc)
3710 return rc;
3711
3712 /* give the link time to transit out of LPM state */
3713 if (woken_up)
3714 msleep(10);
3715
3716 /* clear PHYRDY_CHG from SError */
3717 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3718 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3719}
3720
3721/**
3722 * ata_std_prereset - prepare for reset
3723 * @link: ATA link to be reset
3724 * @deadline: deadline jiffies for the operation
3725 *
3726 * @link is about to be reset. Initialize it. Failure from
3727 * prereset makes libata abort whole reset sequence and give up
3728 * that port, so prereset should be best-effort. It does its
3729 * best to prepare for reset sequence but if things go wrong, it
3730 * should just whine, not fail.
3731 *
3732 * LOCKING:
3733 * Kernel thread context (may sleep)
3734 *
3735 * RETURNS:
3736 * 0 on success, -errno otherwise.
3737 */
3738int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3739{
3740 struct ata_port *ap = link->ap;
3741 struct ata_eh_context *ehc = &link->eh_context;
3742 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3743 int rc;
3744
3745 /* if we're about to do hardreset, nothing more to do */
3746 if (ehc->i.action & ATA_EH_HARDRESET)
3747 return 0;
3748
3749 /* if SATA, resume link */
3750 if (ap->flags & ATA_FLAG_SATA) {
3751 rc = sata_link_resume(link, timing, deadline);
3752 /* whine about phy resume failure but proceed */
3753 if (rc && rc != -EOPNOTSUPP)
3754 ata_link_warn(link,
3755 "failed to resume link for reset (errno=%d)\n",
3756 rc);
3757 }
3758
3759 /* no point in trying softreset on offline link */
3760 if (ata_phys_link_offline(link))
3761 ehc->i.action &= ~ATA_EH_SOFTRESET;
3762
3763 return 0;
3764}
3765
3766/**
3767 * sata_link_hardreset - reset link via SATA phy reset
3768 * @link: link to reset
3769 * @timing: timing parameters { interval, duratinon, timeout } in msec
3770 * @deadline: deadline jiffies for the operation
3771 * @online: optional out parameter indicating link onlineness
3772 * @check_ready: optional callback to check link readiness
3773 *
3774 * SATA phy-reset @link using DET bits of SControl register.
3775 * After hardreset, link readiness is waited upon using
3776 * ata_wait_ready() if @check_ready is specified. LLDs are
3777 * allowed to not specify @check_ready and wait itself after this
3778 * function returns. Device classification is LLD's
3779 * responsibility.
3780 *
3781 * *@online is set to one iff reset succeeded and @link is online
3782 * after reset.
3783 *
3784 * LOCKING:
3785 * Kernel thread context (may sleep)
3786 *
3787 * RETURNS:
3788 * 0 on success, -errno otherwise.
3789 */
3790int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3791 unsigned long deadline,
3792 bool *online, int (*check_ready)(struct ata_link *))
3793{
3794 u32 scontrol;
3795 int rc;
3796
3797 DPRINTK("ENTER\n");
3798
3799 if (online)
3800 *online = false;
3801
3802 if (sata_set_spd_needed(link)) {
3803 /* SATA spec says nothing about how to reconfigure
3804 * spd. To be on the safe side, turn off phy during
3805 * reconfiguration. This works for at least ICH7 AHCI
3806 * and Sil3124.
3807 */
3808 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3809 goto out;
3810
3811 scontrol = (scontrol & 0x0f0) | 0x304;
3812
3813 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3814 goto out;
3815
3816 sata_set_spd(link);
3817 }
3818
3819 /* issue phy wake/reset */
3820 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3821 goto out;
3822
3823 scontrol = (scontrol & 0x0f0) | 0x301;
3824
3825 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3826 goto out;
3827
3828 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3829 * 10.4.2 says at least 1 ms.
3830 */
3831 ata_msleep(link->ap, 1);
3832
3833 /* bring link back */
3834 rc = sata_link_resume(link, timing, deadline);
3835 if (rc)
3836 goto out;
3837 /* if link is offline nothing more to do */
3838 if (ata_phys_link_offline(link))
3839 goto out;
3840
3841 /* Link is online. From this point, -ENODEV too is an error. */
3842 if (online)
3843 *online = true;
3844
3845 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3846 /* If PMP is supported, we have to do follow-up SRST.
3847 * Some PMPs don't send D2H Reg FIS after hardreset if
3848 * the first port is empty. Wait only for
3849 * ATA_TMOUT_PMP_SRST_WAIT.
3850 */
3851 if (check_ready) {
3852 unsigned long pmp_deadline;
3853
3854 pmp_deadline = ata_deadline(jiffies,
3855 ATA_TMOUT_PMP_SRST_WAIT);
3856 if (time_after(pmp_deadline, deadline))
3857 pmp_deadline = deadline;
3858 ata_wait_ready(link, pmp_deadline, check_ready);
3859 }
3860 rc = -EAGAIN;
3861 goto out;
3862 }
3863
3864 rc = 0;
3865 if (check_ready)
3866 rc = ata_wait_ready(link, deadline, check_ready);
3867 out:
3868 if (rc && rc != -EAGAIN) {
3869 /* online is set iff link is online && reset succeeded */
3870 if (online)
3871 *online = false;
3872 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3873 }
3874 DPRINTK("EXIT, rc=%d\n", rc);
3875 return rc;
3876}
3877
3878/**
3879 * sata_std_hardreset - COMRESET w/o waiting or classification
3880 * @link: link to reset
3881 * @class: resulting class of attached device
3882 * @deadline: deadline jiffies for the operation
3883 *
3884 * Standard SATA COMRESET w/o waiting or classification.
3885 *
3886 * LOCKING:
3887 * Kernel thread context (may sleep)
3888 *
3889 * RETURNS:
3890 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3891 */
3892int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3893 unsigned long deadline)
3894{
3895 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3896 bool online;
3897 int rc;
3898
3899 /* do hardreset */
3900 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3901 return online ? -EAGAIN : rc;
3902}
3903
3904/**
3905 * ata_std_postreset - standard postreset callback
3906 * @link: the target ata_link
3907 * @classes: classes of attached devices
3908 *
3909 * This function is invoked after a successful reset. Note that
3910 * the device might have been reset more than once using
3911 * different reset methods before postreset is invoked.
3912 *
3913 * LOCKING:
3914 * Kernel thread context (may sleep)
3915 */
3916void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3917{
3918 u32 serror;
3919
3920 DPRINTK("ENTER\n");
3921
3922 /* reset complete, clear SError */
3923 if (!sata_scr_read(link, SCR_ERROR, &serror))
3924 sata_scr_write(link, SCR_ERROR, serror);
3925
3926 /* print link status */
3927 sata_print_link_status(link);
3928
3929 DPRINTK("EXIT\n");
3930}
3931
3932/**
3933 * ata_dev_same_device - Determine whether new ID matches configured device
3934 * @dev: device to compare against
3935 * @new_class: class of the new device
3936 * @new_id: IDENTIFY page of the new device
3937 *
3938 * Compare @new_class and @new_id against @dev and determine
3939 * whether @dev is the device indicated by @new_class and
3940 * @new_id.
3941 *
3942 * LOCKING:
3943 * None.
3944 *
3945 * RETURNS:
3946 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3947 */
3948static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3949 const u16 *new_id)
3950{
3951 const u16 *old_id = dev->id;
3952 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3953 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3954
3955 if (dev->class != new_class) {
3956 ata_dev_info(dev, "class mismatch %d != %d\n",
3957 dev->class, new_class);
3958 return 0;
3959 }
3960
3961 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3962 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3963 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3964 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3965
3966 if (strcmp(model[0], model[1])) {
3967 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3968 model[0], model[1]);
3969 return 0;
3970 }
3971
3972 if (strcmp(serial[0], serial[1])) {
3973 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3974 serial[0], serial[1]);
3975 return 0;
3976 }
3977
3978 return 1;
3979}
3980
3981/**
3982 * ata_dev_reread_id - Re-read IDENTIFY data
3983 * @dev: target ATA device
3984 * @readid_flags: read ID flags
3985 *
3986 * Re-read IDENTIFY page and make sure @dev is still attached to
3987 * the port.
3988 *
3989 * LOCKING:
3990 * Kernel thread context (may sleep)
3991 *
3992 * RETURNS:
3993 * 0 on success, negative errno otherwise
3994 */
3995int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3996{
3997 unsigned int class = dev->class;
3998 u16 *id = (void *)dev->link->ap->sector_buf;
3999 int rc;
4000
4001 /* read ID data */
4002 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4003 if (rc)
4004 return rc;
4005
4006 /* is the device still there? */
4007 if (!ata_dev_same_device(dev, class, id))
4008 return -ENODEV;
4009
4010 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4011 return 0;
4012}
4013
4014/**
4015 * ata_dev_revalidate - Revalidate ATA device
4016 * @dev: device to revalidate
4017 * @new_class: new class code
4018 * @readid_flags: read ID flags
4019 *
4020 * Re-read IDENTIFY page, make sure @dev is still attached to the
4021 * port and reconfigure it according to the new IDENTIFY page.
4022 *
4023 * LOCKING:
4024 * Kernel thread context (may sleep)
4025 *
4026 * RETURNS:
4027 * 0 on success, negative errno otherwise
4028 */
4029int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4030 unsigned int readid_flags)
4031{
4032 u64 n_sectors = dev->n_sectors;
4033 u64 n_native_sectors = dev->n_native_sectors;
4034 int rc;
4035
4036 if (!ata_dev_enabled(dev))
4037 return -ENODEV;
4038
4039 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4040 if (ata_class_enabled(new_class) &&
4041 new_class != ATA_DEV_ATA &&
4042 new_class != ATA_DEV_ATAPI &&
4043 new_class != ATA_DEV_ZAC &&
4044 new_class != ATA_DEV_SEMB) {
4045 ata_dev_info(dev, "class mismatch %u != %u\n",
4046 dev->class, new_class);
4047 rc = -ENODEV;
4048 goto fail;
4049 }
4050
4051 /* re-read ID */
4052 rc = ata_dev_reread_id(dev, readid_flags);
4053 if (rc)
4054 goto fail;
4055
4056 /* configure device according to the new ID */
4057 rc = ata_dev_configure(dev);
4058 if (rc)
4059 goto fail;
4060
4061 /* verify n_sectors hasn't changed */
4062 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4063 dev->n_sectors == n_sectors)
4064 return 0;
4065
4066 /* n_sectors has changed */
4067 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4068 (unsigned long long)n_sectors,
4069 (unsigned long long)dev->n_sectors);
4070
4071 /*
4072 * Something could have caused HPA to be unlocked
4073 * involuntarily. If n_native_sectors hasn't changed and the
4074 * new size matches it, keep the device.
4075 */
4076 if (dev->n_native_sectors == n_native_sectors &&
4077 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4078 ata_dev_warn(dev,
4079 "new n_sectors matches native, probably "
4080 "late HPA unlock, n_sectors updated\n");
4081 /* use the larger n_sectors */
4082 return 0;
4083 }
4084
4085 /*
4086 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4087 * unlocking HPA in those cases.
4088 *
4089 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4090 */
4091 if (dev->n_native_sectors == n_native_sectors &&
4092 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4093 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4094 ata_dev_warn(dev,
4095 "old n_sectors matches native, probably "
4096 "late HPA lock, will try to unlock HPA\n");
4097 /* try unlocking HPA */
4098 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4099 rc = -EIO;
4100 } else
4101 rc = -ENODEV;
4102
4103 /* restore original n_[native_]sectors and fail */
4104 dev->n_native_sectors = n_native_sectors;
4105 dev->n_sectors = n_sectors;
4106 fail:
4107 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4108 return rc;
4109}
4110
4111struct ata_blacklist_entry {
4112 const char *model_num;
4113 const char *model_rev;
4114 unsigned long horkage;
4115};
4116
4117static const struct ata_blacklist_entry ata_device_blacklist [] = {
4118 /* Devices with DMA related problems under Linux */
4119 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4120 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4121 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4122 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4123 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4124 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4125 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4126 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4127 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4128 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4129 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4130 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4131 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4132 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4133 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4134 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4135 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4136 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4137 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4138 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4139 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4140 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4141 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4142 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4143 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4144 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4145 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4146 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4147 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4148 /* Odd clown on sil3726/4726 PMPs */
4149 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4150
4151 /* Weird ATAPI devices */
4152 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4153 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4154 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4155 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4156
4157 /* Devices we expect to fail diagnostics */
4158
4159 /* Devices where NCQ should be avoided */
4160 /* NCQ is slow */
4161 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4162 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4163 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4164 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4165 /* NCQ is broken */
4166 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4167 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4168 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4169 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4170 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4171
4172 /* Seagate NCQ + FLUSH CACHE firmware bug */
4173 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4174 ATA_HORKAGE_FIRMWARE_WARN },
4175
4176 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4177 ATA_HORKAGE_FIRMWARE_WARN },
4178
4179 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4180 ATA_HORKAGE_FIRMWARE_WARN },
4181
4182 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4183 ATA_HORKAGE_FIRMWARE_WARN },
4184
4185 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4186 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4187 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4188
4189 /* Blacklist entries taken from Silicon Image 3124/3132
4190 Windows driver .inf file - also several Linux problem reports */
4191 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4192 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4193 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4194
4195 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4196 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4197
4198 /* devices which puke on READ_NATIVE_MAX */
4199 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4200 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4201 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4202 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4203
4204 /* this one allows HPA unlocking but fails IOs on the area */
4205 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4206
4207 /* Devices which report 1 sector over size HPA */
4208 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4209 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4210 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4211
4212 /* Devices which get the IVB wrong */
4213 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4214 /* Maybe we should just blacklist TSSTcorp... */
4215 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4216
4217 /* Devices that do not need bridging limits applied */
4218 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4219 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4220
4221 /* Devices which aren't very happy with higher link speeds */
4222 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4223 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4224
4225 /*
4226 * Devices which choke on SETXFER. Applies only if both the
4227 * device and controller are SATA.
4228 */
4229 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4230 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4231 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4232 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4233 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4234
4235 /* devices that don't properly handle queued TRIM commands */
4236 { "Micron_M[56]*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4237 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4238 { "Crucial_CT*SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4239
4240 /*
4241 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4242 * (Return Zero After Trim) flags in the ATA Command Set are
4243 * unreliable in the sense that they only define what happens if
4244 * the device successfully executed the DSM TRIM command. TRIM
4245 * is only advisory, however, and the device is free to silently
4246 * ignore all or parts of the request.
4247 *
4248 * Whitelist drives that are known to reliably return zeroes
4249 * after TRIM.
4250 */
4251
4252 /*
4253 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4254 * that model before whitelisting all other intel SSDs.
4255 */
4256 { "INTEL*SSDSC2MH*", NULL, 0, },
4257
4258 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4259 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4260 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263
4264 /*
4265 * Some WD SATA-I drives spin up and down erratically when the link
4266 * is put into the slumber mode. We don't have full list of the
4267 * affected devices. Disable LPM if the device matches one of the
4268 * known prefixes and is SATA-1. As a side effect LPM partial is
4269 * lost too.
4270 *
4271 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4272 */
4273 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4274 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4275 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4276 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4277 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280
4281 /* End Marker */
4282 { }
4283};
4284
4285static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4286{
4287 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4288 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4289 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4290
4291 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4292 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4293
4294 while (ad->model_num) {
4295 if (glob_match(ad->model_num, model_num)) {
4296 if (ad->model_rev == NULL)
4297 return ad->horkage;
4298 if (glob_match(ad->model_rev, model_rev))
4299 return ad->horkage;
4300 }
4301 ad++;
4302 }
4303 return 0;
4304}
4305
4306static int ata_dma_blacklisted(const struct ata_device *dev)
4307{
4308 /* We don't support polling DMA.
4309 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4310 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4311 */
4312 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4313 (dev->flags & ATA_DFLAG_CDB_INTR))
4314 return 1;
4315 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4316}
4317
4318/**
4319 * ata_is_40wire - check drive side detection
4320 * @dev: device
4321 *
4322 * Perform drive side detection decoding, allowing for device vendors
4323 * who can't follow the documentation.
4324 */
4325
4326static int ata_is_40wire(struct ata_device *dev)
4327{
4328 if (dev->horkage & ATA_HORKAGE_IVB)
4329 return ata_drive_40wire_relaxed(dev->id);
4330 return ata_drive_40wire(dev->id);
4331}
4332
4333/**
4334 * cable_is_40wire - 40/80/SATA decider
4335 * @ap: port to consider
4336 *
4337 * This function encapsulates the policy for speed management
4338 * in one place. At the moment we don't cache the result but
4339 * there is a good case for setting ap->cbl to the result when
4340 * we are called with unknown cables (and figuring out if it
4341 * impacts hotplug at all).
4342 *
4343 * Return 1 if the cable appears to be 40 wire.
4344 */
4345
4346static int cable_is_40wire(struct ata_port *ap)
4347{
4348 struct ata_link *link;
4349 struct ata_device *dev;
4350
4351 /* If the controller thinks we are 40 wire, we are. */
4352 if (ap->cbl == ATA_CBL_PATA40)
4353 return 1;
4354
4355 /* If the controller thinks we are 80 wire, we are. */
4356 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4357 return 0;
4358
4359 /* If the system is known to be 40 wire short cable (eg
4360 * laptop), then we allow 80 wire modes even if the drive
4361 * isn't sure.
4362 */
4363 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4364 return 0;
4365
4366 /* If the controller doesn't know, we scan.
4367 *
4368 * Note: We look for all 40 wire detects at this point. Any
4369 * 80 wire detect is taken to be 80 wire cable because
4370 * - in many setups only the one drive (slave if present) will
4371 * give a valid detect
4372 * - if you have a non detect capable drive you don't want it
4373 * to colour the choice
4374 */
4375 ata_for_each_link(link, ap, EDGE) {
4376 ata_for_each_dev(dev, link, ENABLED) {
4377 if (!ata_is_40wire(dev))
4378 return 0;
4379 }
4380 }
4381 return 1;
4382}
4383
4384/**
4385 * ata_dev_xfermask - Compute supported xfermask of the given device
4386 * @dev: Device to compute xfermask for
4387 *
4388 * Compute supported xfermask of @dev and store it in
4389 * dev->*_mask. This function is responsible for applying all
4390 * known limits including host controller limits, device
4391 * blacklist, etc...
4392 *
4393 * LOCKING:
4394 * None.
4395 */
4396static void ata_dev_xfermask(struct ata_device *dev)
4397{
4398 struct ata_link *link = dev->link;
4399 struct ata_port *ap = link->ap;
4400 struct ata_host *host = ap->host;
4401 unsigned long xfer_mask;
4402
4403 /* controller modes available */
4404 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4405 ap->mwdma_mask, ap->udma_mask);
4406
4407 /* drive modes available */
4408 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4409 dev->mwdma_mask, dev->udma_mask);
4410 xfer_mask &= ata_id_xfermask(dev->id);
4411
4412 /*
4413 * CFA Advanced TrueIDE timings are not allowed on a shared
4414 * cable
4415 */
4416 if (ata_dev_pair(dev)) {
4417 /* No PIO5 or PIO6 */
4418 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4419 /* No MWDMA3 or MWDMA 4 */
4420 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4421 }
4422
4423 if (ata_dma_blacklisted(dev)) {
4424 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4425 ata_dev_warn(dev,
4426 "device is on DMA blacklist, disabling DMA\n");
4427 }
4428
4429 if ((host->flags & ATA_HOST_SIMPLEX) &&
4430 host->simplex_claimed && host->simplex_claimed != ap) {
4431 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4432 ata_dev_warn(dev,
4433 "simplex DMA is claimed by other device, disabling DMA\n");
4434 }
4435
4436 if (ap->flags & ATA_FLAG_NO_IORDY)
4437 xfer_mask &= ata_pio_mask_no_iordy(dev);
4438
4439 if (ap->ops->mode_filter)
4440 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4441
4442 /* Apply cable rule here. Don't apply it early because when
4443 * we handle hot plug the cable type can itself change.
4444 * Check this last so that we know if the transfer rate was
4445 * solely limited by the cable.
4446 * Unknown or 80 wire cables reported host side are checked
4447 * drive side as well. Cases where we know a 40wire cable
4448 * is used safely for 80 are not checked here.
4449 */
4450 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4451 /* UDMA/44 or higher would be available */
4452 if (cable_is_40wire(ap)) {
4453 ata_dev_warn(dev,
4454 "limited to UDMA/33 due to 40-wire cable\n");
4455 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4456 }
4457
4458 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4459 &dev->mwdma_mask, &dev->udma_mask);
4460}
4461
4462/**
4463 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4464 * @dev: Device to which command will be sent
4465 *
4466 * Issue SET FEATURES - XFER MODE command to device @dev
4467 * on port @ap.
4468 *
4469 * LOCKING:
4470 * PCI/etc. bus probe sem.
4471 *
4472 * RETURNS:
4473 * 0 on success, AC_ERR_* mask otherwise.
4474 */
4475
4476static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4477{
4478 struct ata_taskfile tf;
4479 unsigned int err_mask;
4480
4481 /* set up set-features taskfile */
4482 DPRINTK("set features - xfer mode\n");
4483
4484 /* Some controllers and ATAPI devices show flaky interrupt
4485 * behavior after setting xfer mode. Use polling instead.
4486 */
4487 ata_tf_init(dev, &tf);
4488 tf.command = ATA_CMD_SET_FEATURES;
4489 tf.feature = SETFEATURES_XFER;
4490 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4491 tf.protocol = ATA_PROT_NODATA;
4492 /* If we are using IORDY we must send the mode setting command */
4493 if (ata_pio_need_iordy(dev))
4494 tf.nsect = dev->xfer_mode;
4495 /* If the device has IORDY and the controller does not - turn it off */
4496 else if (ata_id_has_iordy(dev->id))
4497 tf.nsect = 0x01;
4498 else /* In the ancient relic department - skip all of this */
4499 return 0;
4500
4501 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4502
4503 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4504 return err_mask;
4505}
4506
4507/**
4508 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4509 * @dev: Device to which command will be sent
4510 * @enable: Whether to enable or disable the feature
4511 * @feature: The sector count represents the feature to set
4512 *
4513 * Issue SET FEATURES - SATA FEATURES command to device @dev
4514 * on port @ap with sector count
4515 *
4516 * LOCKING:
4517 * PCI/etc. bus probe sem.
4518 *
4519 * RETURNS:
4520 * 0 on success, AC_ERR_* mask otherwise.
4521 */
4522unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4523{
4524 struct ata_taskfile tf;
4525 unsigned int err_mask;
4526
4527 /* set up set-features taskfile */
4528 DPRINTK("set features - SATA features\n");
4529
4530 ata_tf_init(dev, &tf);
4531 tf.command = ATA_CMD_SET_FEATURES;
4532 tf.feature = enable;
4533 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4534 tf.protocol = ATA_PROT_NODATA;
4535 tf.nsect = feature;
4536
4537 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4538
4539 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4540 return err_mask;
4541}
4542EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4543
4544/**
4545 * ata_dev_init_params - Issue INIT DEV PARAMS command
4546 * @dev: Device to which command will be sent
4547 * @heads: Number of heads (taskfile parameter)
4548 * @sectors: Number of sectors (taskfile parameter)
4549 *
4550 * LOCKING:
4551 * Kernel thread context (may sleep)
4552 *
4553 * RETURNS:
4554 * 0 on success, AC_ERR_* mask otherwise.
4555 */
4556static unsigned int ata_dev_init_params(struct ata_device *dev,
4557 u16 heads, u16 sectors)
4558{
4559 struct ata_taskfile tf;
4560 unsigned int err_mask;
4561
4562 /* Number of sectors per track 1-255. Number of heads 1-16 */
4563 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4564 return AC_ERR_INVALID;
4565
4566 /* set up init dev params taskfile */
4567 DPRINTK("init dev params \n");
4568
4569 ata_tf_init(dev, &tf);
4570 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4571 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4572 tf.protocol = ATA_PROT_NODATA;
4573 tf.nsect = sectors;
4574 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4575
4576 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4577 /* A clean abort indicates an original or just out of spec drive
4578 and we should continue as we issue the setup based on the
4579 drive reported working geometry */
4580 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4581 err_mask = 0;
4582
4583 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4584 return err_mask;
4585}
4586
4587/**
4588 * ata_sg_clean - Unmap DMA memory associated with command
4589 * @qc: Command containing DMA memory to be released
4590 *
4591 * Unmap all mapped DMA memory associated with this command.
4592 *
4593 * LOCKING:
4594 * spin_lock_irqsave(host lock)
4595 */
4596void ata_sg_clean(struct ata_queued_cmd *qc)
4597{
4598 struct ata_port *ap = qc->ap;
4599 struct scatterlist *sg = qc->sg;
4600 int dir = qc->dma_dir;
4601
4602 WARN_ON_ONCE(sg == NULL);
4603
4604 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4605
4606 if (qc->n_elem)
4607 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4608
4609 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4610 qc->sg = NULL;
4611}
4612
4613/**
4614 * atapi_check_dma - Check whether ATAPI DMA can be supported
4615 * @qc: Metadata associated with taskfile to check
4616 *
4617 * Allow low-level driver to filter ATA PACKET commands, returning
4618 * a status indicating whether or not it is OK to use DMA for the
4619 * supplied PACKET command.
4620 *
4621 * LOCKING:
4622 * spin_lock_irqsave(host lock)
4623 *
4624 * RETURNS: 0 when ATAPI DMA can be used
4625 * nonzero otherwise
4626 */
4627int atapi_check_dma(struct ata_queued_cmd *qc)
4628{
4629 struct ata_port *ap = qc->ap;
4630
4631 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4632 * few ATAPI devices choke on such DMA requests.
4633 */
4634 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4635 unlikely(qc->nbytes & 15))
4636 return 1;
4637
4638 if (ap->ops->check_atapi_dma)
4639 return ap->ops->check_atapi_dma(qc);
4640
4641 return 0;
4642}
4643
4644/**
4645 * ata_std_qc_defer - Check whether a qc needs to be deferred
4646 * @qc: ATA command in question
4647 *
4648 * Non-NCQ commands cannot run with any other command, NCQ or
4649 * not. As upper layer only knows the queue depth, we are
4650 * responsible for maintaining exclusion. This function checks
4651 * whether a new command @qc can be issued.
4652 *
4653 * LOCKING:
4654 * spin_lock_irqsave(host lock)
4655 *
4656 * RETURNS:
4657 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4658 */
4659int ata_std_qc_defer(struct ata_queued_cmd *qc)
4660{
4661 struct ata_link *link = qc->dev->link;
4662
4663 if (qc->tf.protocol == ATA_PROT_NCQ) {
4664 if (!ata_tag_valid(link->active_tag))
4665 return 0;
4666 } else {
4667 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4668 return 0;
4669 }
4670
4671 return ATA_DEFER_LINK;
4672}
4673
4674void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4675
4676/**
4677 * ata_sg_init - Associate command with scatter-gather table.
4678 * @qc: Command to be associated
4679 * @sg: Scatter-gather table.
4680 * @n_elem: Number of elements in s/g table.
4681 *
4682 * Initialize the data-related elements of queued_cmd @qc
4683 * to point to a scatter-gather table @sg, containing @n_elem
4684 * elements.
4685 *
4686 * LOCKING:
4687 * spin_lock_irqsave(host lock)
4688 */
4689void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4690 unsigned int n_elem)
4691{
4692 qc->sg = sg;
4693 qc->n_elem = n_elem;
4694 qc->cursg = qc->sg;
4695}
4696
4697/**
4698 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4699 * @qc: Command with scatter-gather table to be mapped.
4700 *
4701 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4702 *
4703 * LOCKING:
4704 * spin_lock_irqsave(host lock)
4705 *
4706 * RETURNS:
4707 * Zero on success, negative on error.
4708 *
4709 */
4710static int ata_sg_setup(struct ata_queued_cmd *qc)
4711{
4712 struct ata_port *ap = qc->ap;
4713 unsigned int n_elem;
4714
4715 VPRINTK("ENTER, ata%u\n", ap->print_id);
4716
4717 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4718 if (n_elem < 1)
4719 return -1;
4720
4721 DPRINTK("%d sg elements mapped\n", n_elem);
4722 qc->orig_n_elem = qc->n_elem;
4723 qc->n_elem = n_elem;
4724 qc->flags |= ATA_QCFLAG_DMAMAP;
4725
4726 return 0;
4727}
4728
4729/**
4730 * swap_buf_le16 - swap halves of 16-bit words in place
4731 * @buf: Buffer to swap
4732 * @buf_words: Number of 16-bit words in buffer.
4733 *
4734 * Swap halves of 16-bit words if needed to convert from
4735 * little-endian byte order to native cpu byte order, or
4736 * vice-versa.
4737 *
4738 * LOCKING:
4739 * Inherited from caller.
4740 */
4741void swap_buf_le16(u16 *buf, unsigned int buf_words)
4742{
4743#ifdef __BIG_ENDIAN
4744 unsigned int i;
4745
4746 for (i = 0; i < buf_words; i++)
4747 buf[i] = le16_to_cpu(buf[i]);
4748#endif /* __BIG_ENDIAN */
4749}
4750
4751/**
4752 * ata_qc_new - Request an available ATA command, for queueing
4753 * @ap: target port
4754 *
4755 * Some ATA host controllers may implement a queue depth which is less
4756 * than ATA_MAX_QUEUE. So we shouldn't allocate a tag which is beyond
4757 * the hardware limitation.
4758 *
4759 * LOCKING:
4760 * None.
4761 */
4762
4763static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4764{
4765 struct ata_queued_cmd *qc = NULL;
4766 unsigned int max_queue = ap->host->n_tags;
4767 unsigned int i, tag;
4768
4769 /* no command while frozen */
4770 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4771 return NULL;
4772
4773 for (i = 0, tag = ap->last_tag + 1; i < max_queue; i++, tag++) {
4774 if (ap->flags & ATA_FLAG_LOWTAG)
4775 tag = i;
4776 else
4777 tag = tag < max_queue ? tag : 0;
4778
4779 /* the last tag is reserved for internal command. */
4780 if (tag == ATA_TAG_INTERNAL)
4781 continue;
4782
4783 if (!test_and_set_bit(tag, &ap->qc_allocated)) {
4784 qc = __ata_qc_from_tag(ap, tag);
4785 qc->tag = tag;
4786 ap->last_tag = tag;
4787 break;
4788 }
4789 }
4790
4791 return qc;
4792}
4793
4794/**
4795 * ata_qc_new_init - Request an available ATA command, and initialize it
4796 * @dev: Device from whom we request an available command structure
4797 *
4798 * LOCKING:
4799 * None.
4800 */
4801
4802struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4803{
4804 struct ata_port *ap = dev->link->ap;
4805 struct ata_queued_cmd *qc;
4806
4807 qc = ata_qc_new(ap);
4808 if (qc) {
4809 qc->scsicmd = NULL;
4810 qc->ap = ap;
4811 qc->dev = dev;
4812
4813 ata_qc_reinit(qc);
4814 }
4815
4816 return qc;
4817}
4818
4819/**
4820 * ata_qc_free - free unused ata_queued_cmd
4821 * @qc: Command to complete
4822 *
4823 * Designed to free unused ata_queued_cmd object
4824 * in case something prevents using it.
4825 *
4826 * LOCKING:
4827 * spin_lock_irqsave(host lock)
4828 */
4829void ata_qc_free(struct ata_queued_cmd *qc)
4830{
4831 struct ata_port *ap;
4832 unsigned int tag;
4833
4834 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4835 ap = qc->ap;
4836
4837 qc->flags = 0;
4838 tag = qc->tag;
4839 if (likely(ata_tag_valid(tag))) {
4840 qc->tag = ATA_TAG_POISON;
4841 clear_bit(tag, &ap->qc_allocated);
4842 }
4843}
4844
4845void __ata_qc_complete(struct ata_queued_cmd *qc)
4846{
4847 struct ata_port *ap;
4848 struct ata_link *link;
4849
4850 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4851 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4852 ap = qc->ap;
4853 link = qc->dev->link;
4854
4855 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4856 ata_sg_clean(qc);
4857
4858 /* command should be marked inactive atomically with qc completion */
4859 if (qc->tf.protocol == ATA_PROT_NCQ) {
4860 link->sactive &= ~(1 << qc->tag);
4861 if (!link->sactive)
4862 ap->nr_active_links--;
4863 } else {
4864 link->active_tag = ATA_TAG_POISON;
4865 ap->nr_active_links--;
4866 }
4867
4868 /* clear exclusive status */
4869 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4870 ap->excl_link == link))
4871 ap->excl_link = NULL;
4872
4873 /* atapi: mark qc as inactive to prevent the interrupt handler
4874 * from completing the command twice later, before the error handler
4875 * is called. (when rc != 0 and atapi request sense is needed)
4876 */
4877 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4878 ap->qc_active &= ~(1 << qc->tag);
4879
4880 /* call completion callback */
4881 qc->complete_fn(qc);
4882}
4883
4884static void fill_result_tf(struct ata_queued_cmd *qc)
4885{
4886 struct ata_port *ap = qc->ap;
4887
4888 qc->result_tf.flags = qc->tf.flags;
4889 ap->ops->qc_fill_rtf(qc);
4890}
4891
4892static void ata_verify_xfer(struct ata_queued_cmd *qc)
4893{
4894 struct ata_device *dev = qc->dev;
4895
4896 if (ata_is_nodata(qc->tf.protocol))
4897 return;
4898
4899 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4900 return;
4901
4902 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4903}
4904
4905/**
4906 * ata_qc_complete - Complete an active ATA command
4907 * @qc: Command to complete
4908 *
4909 * Indicate to the mid and upper layers that an ATA command has
4910 * completed, with either an ok or not-ok status.
4911 *
4912 * Refrain from calling this function multiple times when
4913 * successfully completing multiple NCQ commands.
4914 * ata_qc_complete_multiple() should be used instead, which will
4915 * properly update IRQ expect state.
4916 *
4917 * LOCKING:
4918 * spin_lock_irqsave(host lock)
4919 */
4920void ata_qc_complete(struct ata_queued_cmd *qc)
4921{
4922 struct ata_port *ap = qc->ap;
4923
4924 /* XXX: New EH and old EH use different mechanisms to
4925 * synchronize EH with regular execution path.
4926 *
4927 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4928 * Normal execution path is responsible for not accessing a
4929 * failed qc. libata core enforces the rule by returning NULL
4930 * from ata_qc_from_tag() for failed qcs.
4931 *
4932 * Old EH depends on ata_qc_complete() nullifying completion
4933 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4934 * not synchronize with interrupt handler. Only PIO task is
4935 * taken care of.
4936 */
4937 if (ap->ops->error_handler) {
4938 struct ata_device *dev = qc->dev;
4939 struct ata_eh_info *ehi = &dev->link->eh_info;
4940
4941 if (unlikely(qc->err_mask))
4942 qc->flags |= ATA_QCFLAG_FAILED;
4943
4944 /*
4945 * Finish internal commands without any further processing
4946 * and always with the result TF filled.
4947 */
4948 if (unlikely(ata_tag_internal(qc->tag))) {
4949 fill_result_tf(qc);
4950 __ata_qc_complete(qc);
4951 return;
4952 }
4953
4954 /*
4955 * Non-internal qc has failed. Fill the result TF and
4956 * summon EH.
4957 */
4958 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4959 fill_result_tf(qc);
4960 ata_qc_schedule_eh(qc);
4961 return;
4962 }
4963
4964 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4965
4966 /* read result TF if requested */
4967 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4968 fill_result_tf(qc);
4969
4970 /* Some commands need post-processing after successful
4971 * completion.
4972 */
4973 switch (qc->tf.command) {
4974 case ATA_CMD_SET_FEATURES:
4975 if (qc->tf.feature != SETFEATURES_WC_ON &&
4976 qc->tf.feature != SETFEATURES_WC_OFF)
4977 break;
4978 /* fall through */
4979 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4980 case ATA_CMD_SET_MULTI: /* multi_count changed */
4981 /* revalidate device */
4982 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4983 ata_port_schedule_eh(ap);
4984 break;
4985
4986 case ATA_CMD_SLEEP:
4987 dev->flags |= ATA_DFLAG_SLEEPING;
4988 break;
4989 }
4990
4991 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4992 ata_verify_xfer(qc);
4993
4994 __ata_qc_complete(qc);
4995 } else {
4996 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4997 return;
4998
4999 /* read result TF if failed or requested */
5000 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5001 fill_result_tf(qc);
5002
5003 __ata_qc_complete(qc);
5004 }
5005}
5006
5007/**
5008 * ata_qc_complete_multiple - Complete multiple qcs successfully
5009 * @ap: port in question
5010 * @qc_active: new qc_active mask
5011 *
5012 * Complete in-flight commands. This functions is meant to be
5013 * called from low-level driver's interrupt routine to complete
5014 * requests normally. ap->qc_active and @qc_active is compared
5015 * and commands are completed accordingly.
5016 *
5017 * Always use this function when completing multiple NCQ commands
5018 * from IRQ handlers instead of calling ata_qc_complete()
5019 * multiple times to keep IRQ expect status properly in sync.
5020 *
5021 * LOCKING:
5022 * spin_lock_irqsave(host lock)
5023 *
5024 * RETURNS:
5025 * Number of completed commands on success, -errno otherwise.
5026 */
5027int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5028{
5029 int nr_done = 0;
5030 u32 done_mask;
5031
5032 done_mask = ap->qc_active ^ qc_active;
5033
5034 if (unlikely(done_mask & qc_active)) {
5035 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5036 ap->qc_active, qc_active);
5037 return -EINVAL;
5038 }
5039
5040 while (done_mask) {
5041 struct ata_queued_cmd *qc;
5042 unsigned int tag = __ffs(done_mask);
5043
5044 qc = ata_qc_from_tag(ap, tag);
5045 if (qc) {
5046 ata_qc_complete(qc);
5047 nr_done++;
5048 }
5049 done_mask &= ~(1 << tag);
5050 }
5051
5052 return nr_done;
5053}
5054
5055/**
5056 * ata_qc_issue - issue taskfile to device
5057 * @qc: command to issue to device
5058 *
5059 * Prepare an ATA command to submission to device.
5060 * This includes mapping the data into a DMA-able
5061 * area, filling in the S/G table, and finally
5062 * writing the taskfile to hardware, starting the command.
5063 *
5064 * LOCKING:
5065 * spin_lock_irqsave(host lock)
5066 */
5067void ata_qc_issue(struct ata_queued_cmd *qc)
5068{
5069 struct ata_port *ap = qc->ap;
5070 struct ata_link *link = qc->dev->link;
5071 u8 prot = qc->tf.protocol;
5072
5073 /* Make sure only one non-NCQ command is outstanding. The
5074 * check is skipped for old EH because it reuses active qc to
5075 * request ATAPI sense.
5076 */
5077 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5078
5079 if (ata_is_ncq(prot)) {
5080 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5081
5082 if (!link->sactive)
5083 ap->nr_active_links++;
5084 link->sactive |= 1 << qc->tag;
5085 } else {
5086 WARN_ON_ONCE(link->sactive);
5087
5088 ap->nr_active_links++;
5089 link->active_tag = qc->tag;
5090 }
5091
5092 qc->flags |= ATA_QCFLAG_ACTIVE;
5093 ap->qc_active |= 1 << qc->tag;
5094
5095 /*
5096 * We guarantee to LLDs that they will have at least one
5097 * non-zero sg if the command is a data command.
5098 */
5099 if (WARN_ON_ONCE(ata_is_data(prot) &&
5100 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5101 goto sys_err;
5102
5103 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5104 (ap->flags & ATA_FLAG_PIO_DMA)))
5105 if (ata_sg_setup(qc))
5106 goto sys_err;
5107
5108 /* if device is sleeping, schedule reset and abort the link */
5109 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5110 link->eh_info.action |= ATA_EH_RESET;
5111 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5112 ata_link_abort(link);
5113 return;
5114 }
5115
5116 ap->ops->qc_prep(qc);
5117
5118 qc->err_mask |= ap->ops->qc_issue(qc);
5119 if (unlikely(qc->err_mask))
5120 goto err;
5121 return;
5122
5123sys_err:
5124 qc->err_mask |= AC_ERR_SYSTEM;
5125err:
5126 ata_qc_complete(qc);
5127}
5128
5129/**
5130 * sata_scr_valid - test whether SCRs are accessible
5131 * @link: ATA link to test SCR accessibility for
5132 *
5133 * Test whether SCRs are accessible for @link.
5134 *
5135 * LOCKING:
5136 * None.
5137 *
5138 * RETURNS:
5139 * 1 if SCRs are accessible, 0 otherwise.
5140 */
5141int sata_scr_valid(struct ata_link *link)
5142{
5143 struct ata_port *ap = link->ap;
5144
5145 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5146}
5147
5148/**
5149 * sata_scr_read - read SCR register of the specified port
5150 * @link: ATA link to read SCR for
5151 * @reg: SCR to read
5152 * @val: Place to store read value
5153 *
5154 * Read SCR register @reg of @link into *@val. This function is
5155 * guaranteed to succeed if @link is ap->link, the cable type of
5156 * the port is SATA and the port implements ->scr_read.
5157 *
5158 * LOCKING:
5159 * None if @link is ap->link. Kernel thread context otherwise.
5160 *
5161 * RETURNS:
5162 * 0 on success, negative errno on failure.
5163 */
5164int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5165{
5166 if (ata_is_host_link(link)) {
5167 if (sata_scr_valid(link))
5168 return link->ap->ops->scr_read(link, reg, val);
5169 return -EOPNOTSUPP;
5170 }
5171
5172 return sata_pmp_scr_read(link, reg, val);
5173}
5174
5175/**
5176 * sata_scr_write - write SCR register of the specified port
5177 * @link: ATA link to write SCR for
5178 * @reg: SCR to write
5179 * @val: value to write
5180 *
5181 * Write @val to SCR register @reg of @link. This function is
5182 * guaranteed to succeed if @link is ap->link, the cable type of
5183 * the port is SATA and the port implements ->scr_read.
5184 *
5185 * LOCKING:
5186 * None if @link is ap->link. Kernel thread context otherwise.
5187 *
5188 * RETURNS:
5189 * 0 on success, negative errno on failure.
5190 */
5191int sata_scr_write(struct ata_link *link, int reg, u32 val)
5192{
5193 if (ata_is_host_link(link)) {
5194 if (sata_scr_valid(link))
5195 return link->ap->ops->scr_write(link, reg, val);
5196 return -EOPNOTSUPP;
5197 }
5198
5199 return sata_pmp_scr_write(link, reg, val);
5200}
5201
5202/**
5203 * sata_scr_write_flush - write SCR register of the specified port and flush
5204 * @link: ATA link to write SCR for
5205 * @reg: SCR to write
5206 * @val: value to write
5207 *
5208 * This function is identical to sata_scr_write() except that this
5209 * function performs flush after writing to the register.
5210 *
5211 * LOCKING:
5212 * None if @link is ap->link. Kernel thread context otherwise.
5213 *
5214 * RETURNS:
5215 * 0 on success, negative errno on failure.
5216 */
5217int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5218{
5219 if (ata_is_host_link(link)) {
5220 int rc;
5221
5222 if (sata_scr_valid(link)) {
5223 rc = link->ap->ops->scr_write(link, reg, val);
5224 if (rc == 0)
5225 rc = link->ap->ops->scr_read(link, reg, &val);
5226 return rc;
5227 }
5228 return -EOPNOTSUPP;
5229 }
5230
5231 return sata_pmp_scr_write(link, reg, val);
5232}
5233
5234/**
5235 * ata_phys_link_online - test whether the given link is online
5236 * @link: ATA link to test
5237 *
5238 * Test whether @link is online. Note that this function returns
5239 * 0 if online status of @link cannot be obtained, so
5240 * ata_link_online(link) != !ata_link_offline(link).
5241 *
5242 * LOCKING:
5243 * None.
5244 *
5245 * RETURNS:
5246 * True if the port online status is available and online.
5247 */
5248bool ata_phys_link_online(struct ata_link *link)
5249{
5250 u32 sstatus;
5251
5252 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5253 ata_sstatus_online(sstatus))
5254 return true;
5255 return false;
5256}
5257
5258/**
5259 * ata_phys_link_offline - test whether the given link is offline
5260 * @link: ATA link to test
5261 *
5262 * Test whether @link is offline. Note that this function
5263 * returns 0 if offline status of @link cannot be obtained, so
5264 * ata_link_online(link) != !ata_link_offline(link).
5265 *
5266 * LOCKING:
5267 * None.
5268 *
5269 * RETURNS:
5270 * True if the port offline status is available and offline.
5271 */
5272bool ata_phys_link_offline(struct ata_link *link)
5273{
5274 u32 sstatus;
5275
5276 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5277 !ata_sstatus_online(sstatus))
5278 return true;
5279 return false;
5280}
5281
5282/**
5283 * ata_link_online - test whether the given link is online
5284 * @link: ATA link to test
5285 *
5286 * Test whether @link is online. This is identical to
5287 * ata_phys_link_online() when there's no slave link. When
5288 * there's a slave link, this function should only be called on
5289 * the master link and will return true if any of M/S links is
5290 * online.
5291 *
5292 * LOCKING:
5293 * None.
5294 *
5295 * RETURNS:
5296 * True if the port online status is available and online.
5297 */
5298bool ata_link_online(struct ata_link *link)
5299{
5300 struct ata_link *slave = link->ap->slave_link;
5301
5302 WARN_ON(link == slave); /* shouldn't be called on slave link */
5303
5304 return ata_phys_link_online(link) ||
5305 (slave && ata_phys_link_online(slave));
5306}
5307
5308/**
5309 * ata_link_offline - test whether the given link is offline
5310 * @link: ATA link to test
5311 *
5312 * Test whether @link is offline. This is identical to
5313 * ata_phys_link_offline() when there's no slave link. When
5314 * there's a slave link, this function should only be called on
5315 * the master link and will return true if both M/S links are
5316 * offline.
5317 *
5318 * LOCKING:
5319 * None.
5320 *
5321 * RETURNS:
5322 * True if the port offline status is available and offline.
5323 */
5324bool ata_link_offline(struct ata_link *link)
5325{
5326 struct ata_link *slave = link->ap->slave_link;
5327
5328 WARN_ON(link == slave); /* shouldn't be called on slave link */
5329
5330 return ata_phys_link_offline(link) &&
5331 (!slave || ata_phys_link_offline(slave));
5332}
5333
5334#ifdef CONFIG_PM
5335static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5336 unsigned int action, unsigned int ehi_flags,
5337 bool async)
5338{
5339 struct ata_link *link;
5340 unsigned long flags;
5341
5342 /* Previous resume operation might still be in
5343 * progress. Wait for PM_PENDING to clear.
5344 */
5345 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5346 ata_port_wait_eh(ap);
5347 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5348 }
5349
5350 /* request PM ops to EH */
5351 spin_lock_irqsave(ap->lock, flags);
5352
5353 ap->pm_mesg = mesg;
5354 ap->pflags |= ATA_PFLAG_PM_PENDING;
5355 ata_for_each_link(link, ap, HOST_FIRST) {
5356 link->eh_info.action |= action;
5357 link->eh_info.flags |= ehi_flags;
5358 }
5359
5360 ata_port_schedule_eh(ap);
5361
5362 spin_unlock_irqrestore(ap->lock, flags);
5363
5364 if (!async) {
5365 ata_port_wait_eh(ap);
5366 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5367 }
5368}
5369
5370/*
5371 * On some hardware, device fails to respond after spun down for suspend. As
5372 * the device won't be used before being resumed, we don't need to touch the
5373 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5374 *
5375 * http://thread.gmane.org/gmane.linux.ide/46764
5376 */
5377static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5378 | ATA_EHI_NO_AUTOPSY
5379 | ATA_EHI_NO_RECOVERY;
5380
5381static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5382{
5383 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5384}
5385
5386static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5387{
5388 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5389}
5390
5391static int ata_port_pm_suspend(struct device *dev)
5392{
5393 struct ata_port *ap = to_ata_port(dev);
5394
5395 if (pm_runtime_suspended(dev))
5396 return 0;
5397
5398 ata_port_suspend(ap, PMSG_SUSPEND);
5399 return 0;
5400}
5401
5402static int ata_port_pm_freeze(struct device *dev)
5403{
5404 struct ata_port *ap = to_ata_port(dev);
5405
5406 if (pm_runtime_suspended(dev))
5407 return 0;
5408
5409 ata_port_suspend(ap, PMSG_FREEZE);
5410 return 0;
5411}
5412
5413static int ata_port_pm_poweroff(struct device *dev)
5414{
5415 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5416 return 0;
5417}
5418
5419static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5420 | ATA_EHI_QUIET;
5421
5422static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5423{
5424 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5425}
5426
5427static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5428{
5429 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5430}
5431
5432static int ata_port_pm_resume(struct device *dev)
5433{
5434 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5435 pm_runtime_disable(dev);
5436 pm_runtime_set_active(dev);
5437 pm_runtime_enable(dev);
5438 return 0;
5439}
5440
5441/*
5442 * For ODDs, the upper layer will poll for media change every few seconds,
5443 * which will make it enter and leave suspend state every few seconds. And
5444 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5445 * is very little and the ODD may malfunction after constantly being reset.
5446 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5447 * ODD is attached to the port.
5448 */
5449static int ata_port_runtime_idle(struct device *dev)
5450{
5451 struct ata_port *ap = to_ata_port(dev);
5452 struct ata_link *link;
5453 struct ata_device *adev;
5454
5455 ata_for_each_link(link, ap, HOST_FIRST) {
5456 ata_for_each_dev(adev, link, ENABLED)
5457 if (adev->class == ATA_DEV_ATAPI &&
5458 !zpodd_dev_enabled(adev))
5459 return -EBUSY;
5460 }
5461
5462 return 0;
5463}
5464
5465static int ata_port_runtime_suspend(struct device *dev)
5466{
5467 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5468 return 0;
5469}
5470
5471static int ata_port_runtime_resume(struct device *dev)
5472{
5473 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5474 return 0;
5475}
5476
5477static const struct dev_pm_ops ata_port_pm_ops = {
5478 .suspend = ata_port_pm_suspend,
5479 .resume = ata_port_pm_resume,
5480 .freeze = ata_port_pm_freeze,
5481 .thaw = ata_port_pm_resume,
5482 .poweroff = ata_port_pm_poweroff,
5483 .restore = ata_port_pm_resume,
5484
5485 .runtime_suspend = ata_port_runtime_suspend,
5486 .runtime_resume = ata_port_runtime_resume,
5487 .runtime_idle = ata_port_runtime_idle,
5488};
5489
5490/* sas ports don't participate in pm runtime management of ata_ports,
5491 * and need to resume ata devices at the domain level, not the per-port
5492 * level. sas suspend/resume is async to allow parallel port recovery
5493 * since sas has multiple ata_port instances per Scsi_Host.
5494 */
5495void ata_sas_port_suspend(struct ata_port *ap)
5496{
5497 ata_port_suspend_async(ap, PMSG_SUSPEND);
5498}
5499EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5500
5501void ata_sas_port_resume(struct ata_port *ap)
5502{
5503 ata_port_resume_async(ap, PMSG_RESUME);
5504}
5505EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5506
5507/**
5508 * ata_host_suspend - suspend host
5509 * @host: host to suspend
5510 * @mesg: PM message
5511 *
5512 * Suspend @host. Actual operation is performed by port suspend.
5513 */
5514int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5515{
5516 host->dev->power.power_state = mesg;
5517 return 0;
5518}
5519
5520/**
5521 * ata_host_resume - resume host
5522 * @host: host to resume
5523 *
5524 * Resume @host. Actual operation is performed by port resume.
5525 */
5526void ata_host_resume(struct ata_host *host)
5527{
5528 host->dev->power.power_state = PMSG_ON;
5529}
5530#endif
5531
5532struct device_type ata_port_type = {
5533 .name = "ata_port",
5534#ifdef CONFIG_PM
5535 .pm = &ata_port_pm_ops,
5536#endif
5537};
5538
5539/**
5540 * ata_dev_init - Initialize an ata_device structure
5541 * @dev: Device structure to initialize
5542 *
5543 * Initialize @dev in preparation for probing.
5544 *
5545 * LOCKING:
5546 * Inherited from caller.
5547 */
5548void ata_dev_init(struct ata_device *dev)
5549{
5550 struct ata_link *link = ata_dev_phys_link(dev);
5551 struct ata_port *ap = link->ap;
5552 unsigned long flags;
5553
5554 /* SATA spd limit is bound to the attached device, reset together */
5555 link->sata_spd_limit = link->hw_sata_spd_limit;
5556 link->sata_spd = 0;
5557
5558 /* High bits of dev->flags are used to record warm plug
5559 * requests which occur asynchronously. Synchronize using
5560 * host lock.
5561 */
5562 spin_lock_irqsave(ap->lock, flags);
5563 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5564 dev->horkage = 0;
5565 spin_unlock_irqrestore(ap->lock, flags);
5566
5567 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5568 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5569 dev->pio_mask = UINT_MAX;
5570 dev->mwdma_mask = UINT_MAX;
5571 dev->udma_mask = UINT_MAX;
5572}
5573
5574/**
5575 * ata_link_init - Initialize an ata_link structure
5576 * @ap: ATA port link is attached to
5577 * @link: Link structure to initialize
5578 * @pmp: Port multiplier port number
5579 *
5580 * Initialize @link.
5581 *
5582 * LOCKING:
5583 * Kernel thread context (may sleep)
5584 */
5585void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5586{
5587 int i;
5588
5589 /* clear everything except for devices */
5590 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5591 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5592
5593 link->ap = ap;
5594 link->pmp = pmp;
5595 link->active_tag = ATA_TAG_POISON;
5596 link->hw_sata_spd_limit = UINT_MAX;
5597
5598 /* can't use iterator, ap isn't initialized yet */
5599 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5600 struct ata_device *dev = &link->device[i];
5601
5602 dev->link = link;
5603 dev->devno = dev - link->device;
5604#ifdef CONFIG_ATA_ACPI
5605 dev->gtf_filter = ata_acpi_gtf_filter;
5606#endif
5607 ata_dev_init(dev);
5608 }
5609}
5610
5611/**
5612 * sata_link_init_spd - Initialize link->sata_spd_limit
5613 * @link: Link to configure sata_spd_limit for
5614 *
5615 * Initialize @link->[hw_]sata_spd_limit to the currently
5616 * configured value.
5617 *
5618 * LOCKING:
5619 * Kernel thread context (may sleep).
5620 *
5621 * RETURNS:
5622 * 0 on success, -errno on failure.
5623 */
5624int sata_link_init_spd(struct ata_link *link)
5625{
5626 u8 spd;
5627 int rc;
5628
5629 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5630 if (rc)
5631 return rc;
5632
5633 spd = (link->saved_scontrol >> 4) & 0xf;
5634 if (spd)
5635 link->hw_sata_spd_limit &= (1 << spd) - 1;
5636
5637 ata_force_link_limits(link);
5638
5639 link->sata_spd_limit = link->hw_sata_spd_limit;
5640
5641 return 0;
5642}
5643
5644/**
5645 * ata_port_alloc - allocate and initialize basic ATA port resources
5646 * @host: ATA host this allocated port belongs to
5647 *
5648 * Allocate and initialize basic ATA port resources.
5649 *
5650 * RETURNS:
5651 * Allocate ATA port on success, NULL on failure.
5652 *
5653 * LOCKING:
5654 * Inherited from calling layer (may sleep).
5655 */
5656struct ata_port *ata_port_alloc(struct ata_host *host)
5657{
5658 struct ata_port *ap;
5659
5660 DPRINTK("ENTER\n");
5661
5662 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5663 if (!ap)
5664 return NULL;
5665
5666 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5667 ap->lock = &host->lock;
5668 ap->print_id = -1;
5669 ap->local_port_no = -1;
5670 ap->host = host;
5671 ap->dev = host->dev;
5672
5673#if defined(ATA_VERBOSE_DEBUG)
5674 /* turn on all debugging levels */
5675 ap->msg_enable = 0x00FF;
5676#elif defined(ATA_DEBUG)
5677 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5678#else
5679 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5680#endif
5681
5682 mutex_init(&ap->scsi_scan_mutex);
5683 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5684 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5685 INIT_LIST_HEAD(&ap->eh_done_q);
5686 init_waitqueue_head(&ap->eh_wait_q);
5687 init_completion(&ap->park_req_pending);
5688 init_timer_deferrable(&ap->fastdrain_timer);
5689 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5690 ap->fastdrain_timer.data = (unsigned long)ap;
5691
5692 ap->cbl = ATA_CBL_NONE;
5693
5694 ata_link_init(ap, &ap->link, 0);
5695
5696#ifdef ATA_IRQ_TRAP
5697 ap->stats.unhandled_irq = 1;
5698 ap->stats.idle_irq = 1;
5699#endif
5700 ata_sff_port_init(ap);
5701
5702 return ap;
5703}
5704
5705static void ata_host_release(struct device *gendev, void *res)
5706{
5707 struct ata_host *host = dev_get_drvdata(gendev);
5708 int i;
5709
5710 for (i = 0; i < host->n_ports; i++) {
5711 struct ata_port *ap = host->ports[i];
5712
5713 if (!ap)
5714 continue;
5715
5716 if (ap->scsi_host)
5717 scsi_host_put(ap->scsi_host);
5718
5719 kfree(ap->pmp_link);
5720 kfree(ap->slave_link);
5721 kfree(ap);
5722 host->ports[i] = NULL;
5723 }
5724
5725 dev_set_drvdata(gendev, NULL);
5726}
5727
5728/**
5729 * ata_host_alloc - allocate and init basic ATA host resources
5730 * @dev: generic device this host is associated with
5731 * @max_ports: maximum number of ATA ports associated with this host
5732 *
5733 * Allocate and initialize basic ATA host resources. LLD calls
5734 * this function to allocate a host, initializes it fully and
5735 * attaches it using ata_host_register().
5736 *
5737 * @max_ports ports are allocated and host->n_ports is
5738 * initialized to @max_ports. The caller is allowed to decrease
5739 * host->n_ports before calling ata_host_register(). The unused
5740 * ports will be automatically freed on registration.
5741 *
5742 * RETURNS:
5743 * Allocate ATA host on success, NULL on failure.
5744 *
5745 * LOCKING:
5746 * Inherited from calling layer (may sleep).
5747 */
5748struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5749{
5750 struct ata_host *host;
5751 size_t sz;
5752 int i;
5753
5754 DPRINTK("ENTER\n");
5755
5756 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5757 return NULL;
5758
5759 /* alloc a container for our list of ATA ports (buses) */
5760 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5761 /* alloc a container for our list of ATA ports (buses) */
5762 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5763 if (!host)
5764 goto err_out;
5765
5766 devres_add(dev, host);
5767 dev_set_drvdata(dev, host);
5768
5769 spin_lock_init(&host->lock);
5770 mutex_init(&host->eh_mutex);
5771 host->dev = dev;
5772 host->n_ports = max_ports;
5773
5774 /* allocate ports bound to this host */
5775 for (i = 0; i < max_ports; i++) {
5776 struct ata_port *ap;
5777
5778 ap = ata_port_alloc(host);
5779 if (!ap)
5780 goto err_out;
5781
5782 ap->port_no = i;
5783 host->ports[i] = ap;
5784 }
5785
5786 devres_remove_group(dev, NULL);
5787 return host;
5788
5789 err_out:
5790 devres_release_group(dev, NULL);
5791 return NULL;
5792}
5793
5794/**
5795 * ata_host_alloc_pinfo - alloc host and init with port_info array
5796 * @dev: generic device this host is associated with
5797 * @ppi: array of ATA port_info to initialize host with
5798 * @n_ports: number of ATA ports attached to this host
5799 *
5800 * Allocate ATA host and initialize with info from @ppi. If NULL
5801 * terminated, @ppi may contain fewer entries than @n_ports. The
5802 * last entry will be used for the remaining ports.
5803 *
5804 * RETURNS:
5805 * Allocate ATA host on success, NULL on failure.
5806 *
5807 * LOCKING:
5808 * Inherited from calling layer (may sleep).
5809 */
5810struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5811 const struct ata_port_info * const * ppi,
5812 int n_ports)
5813{
5814 const struct ata_port_info *pi;
5815 struct ata_host *host;
5816 int i, j;
5817
5818 host = ata_host_alloc(dev, n_ports);
5819 if (!host)
5820 return NULL;
5821
5822 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5823 struct ata_port *ap = host->ports[i];
5824
5825 if (ppi[j])
5826 pi = ppi[j++];
5827
5828 ap->pio_mask = pi->pio_mask;
5829 ap->mwdma_mask = pi->mwdma_mask;
5830 ap->udma_mask = pi->udma_mask;
5831 ap->flags |= pi->flags;
5832 ap->link.flags |= pi->link_flags;
5833 ap->ops = pi->port_ops;
5834
5835 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5836 host->ops = pi->port_ops;
5837 }
5838
5839 return host;
5840}
5841
5842/**
5843 * ata_slave_link_init - initialize slave link
5844 * @ap: port to initialize slave link for
5845 *
5846 * Create and initialize slave link for @ap. This enables slave
5847 * link handling on the port.
5848 *
5849 * In libata, a port contains links and a link contains devices.
5850 * There is single host link but if a PMP is attached to it,
5851 * there can be multiple fan-out links. On SATA, there's usually
5852 * a single device connected to a link but PATA and SATA
5853 * controllers emulating TF based interface can have two - master
5854 * and slave.
5855 *
5856 * However, there are a few controllers which don't fit into this
5857 * abstraction too well - SATA controllers which emulate TF
5858 * interface with both master and slave devices but also have
5859 * separate SCR register sets for each device. These controllers
5860 * need separate links for physical link handling
5861 * (e.g. onlineness, link speed) but should be treated like a
5862 * traditional M/S controller for everything else (e.g. command
5863 * issue, softreset).
5864 *
5865 * slave_link is libata's way of handling this class of
5866 * controllers without impacting core layer too much. For
5867 * anything other than physical link handling, the default host
5868 * link is used for both master and slave. For physical link
5869 * handling, separate @ap->slave_link is used. All dirty details
5870 * are implemented inside libata core layer. From LLD's POV, the
5871 * only difference is that prereset, hardreset and postreset are
5872 * called once more for the slave link, so the reset sequence
5873 * looks like the following.
5874 *
5875 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5876 * softreset(M) -> postreset(M) -> postreset(S)
5877 *
5878 * Note that softreset is called only for the master. Softreset
5879 * resets both M/S by definition, so SRST on master should handle
5880 * both (the standard method will work just fine).
5881 *
5882 * LOCKING:
5883 * Should be called before host is registered.
5884 *
5885 * RETURNS:
5886 * 0 on success, -errno on failure.
5887 */
5888int ata_slave_link_init(struct ata_port *ap)
5889{
5890 struct ata_link *link;
5891
5892 WARN_ON(ap->slave_link);
5893 WARN_ON(ap->flags & ATA_FLAG_PMP);
5894
5895 link = kzalloc(sizeof(*link), GFP_KERNEL);
5896 if (!link)
5897 return -ENOMEM;
5898
5899 ata_link_init(ap, link, 1);
5900 ap->slave_link = link;
5901 return 0;
5902}
5903
5904static void ata_host_stop(struct device *gendev, void *res)
5905{
5906 struct ata_host *host = dev_get_drvdata(gendev);
5907 int i;
5908
5909 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5910
5911 for (i = 0; i < host->n_ports; i++) {
5912 struct ata_port *ap = host->ports[i];
5913
5914 if (ap->ops->port_stop)
5915 ap->ops->port_stop(ap);
5916 }
5917
5918 if (host->ops->host_stop)
5919 host->ops->host_stop(host);
5920}
5921
5922/**
5923 * ata_finalize_port_ops - finalize ata_port_operations
5924 * @ops: ata_port_operations to finalize
5925 *
5926 * An ata_port_operations can inherit from another ops and that
5927 * ops can again inherit from another. This can go on as many
5928 * times as necessary as long as there is no loop in the
5929 * inheritance chain.
5930 *
5931 * Ops tables are finalized when the host is started. NULL or
5932 * unspecified entries are inherited from the closet ancestor
5933 * which has the method and the entry is populated with it.
5934 * After finalization, the ops table directly points to all the
5935 * methods and ->inherits is no longer necessary and cleared.
5936 *
5937 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5938 *
5939 * LOCKING:
5940 * None.
5941 */
5942static void ata_finalize_port_ops(struct ata_port_operations *ops)
5943{
5944 static DEFINE_SPINLOCK(lock);
5945 const struct ata_port_operations *cur;
5946 void **begin = (void **)ops;
5947 void **end = (void **)&ops->inherits;
5948 void **pp;
5949
5950 if (!ops || !ops->inherits)
5951 return;
5952
5953 spin_lock(&lock);
5954
5955 for (cur = ops->inherits; cur; cur = cur->inherits) {
5956 void **inherit = (void **)cur;
5957
5958 for (pp = begin; pp < end; pp++, inherit++)
5959 if (!*pp)
5960 *pp = *inherit;
5961 }
5962
5963 for (pp = begin; pp < end; pp++)
5964 if (IS_ERR(*pp))
5965 *pp = NULL;
5966
5967 ops->inherits = NULL;
5968
5969 spin_unlock(&lock);
5970}
5971
5972/**
5973 * ata_host_start - start and freeze ports of an ATA host
5974 * @host: ATA host to start ports for
5975 *
5976 * Start and then freeze ports of @host. Started status is
5977 * recorded in host->flags, so this function can be called
5978 * multiple times. Ports are guaranteed to get started only
5979 * once. If host->ops isn't initialized yet, its set to the
5980 * first non-dummy port ops.
5981 *
5982 * LOCKING:
5983 * Inherited from calling layer (may sleep).
5984 *
5985 * RETURNS:
5986 * 0 if all ports are started successfully, -errno otherwise.
5987 */
5988int ata_host_start(struct ata_host *host)
5989{
5990 int have_stop = 0;
5991 void *start_dr = NULL;
5992 int i, rc;
5993
5994 if (host->flags & ATA_HOST_STARTED)
5995 return 0;
5996
5997 ata_finalize_port_ops(host->ops);
5998
5999 for (i = 0; i < host->n_ports; i++) {
6000 struct ata_port *ap = host->ports[i];
6001
6002 ata_finalize_port_ops(ap->ops);
6003
6004 if (!host->ops && !ata_port_is_dummy(ap))
6005 host->ops = ap->ops;
6006
6007 if (ap->ops->port_stop)
6008 have_stop = 1;
6009 }
6010
6011 if (host->ops->host_stop)
6012 have_stop = 1;
6013
6014 if (have_stop) {
6015 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6016 if (!start_dr)
6017 return -ENOMEM;
6018 }
6019
6020 for (i = 0; i < host->n_ports; i++) {
6021 struct ata_port *ap = host->ports[i];
6022
6023 if (ap->ops->port_start) {
6024 rc = ap->ops->port_start(ap);
6025 if (rc) {
6026 if (rc != -ENODEV)
6027 dev_err(host->dev,
6028 "failed to start port %d (errno=%d)\n",
6029 i, rc);
6030 goto err_out;
6031 }
6032 }
6033 ata_eh_freeze_port(ap);
6034 }
6035
6036 if (start_dr)
6037 devres_add(host->dev, start_dr);
6038 host->flags |= ATA_HOST_STARTED;
6039 return 0;
6040
6041 err_out:
6042 while (--i >= 0) {
6043 struct ata_port *ap = host->ports[i];
6044
6045 if (ap->ops->port_stop)
6046 ap->ops->port_stop(ap);
6047 }
6048 devres_free(start_dr);
6049 return rc;
6050}
6051
6052/**
6053 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6054 * @host: host to initialize
6055 * @dev: device host is attached to
6056 * @ops: port_ops
6057 *
6058 */
6059void ata_host_init(struct ata_host *host, struct device *dev,
6060 struct ata_port_operations *ops)
6061{
6062 spin_lock_init(&host->lock);
6063 mutex_init(&host->eh_mutex);
6064 host->n_tags = ATA_MAX_QUEUE - 1;
6065 host->dev = dev;
6066 host->ops = ops;
6067}
6068
6069void __ata_port_probe(struct ata_port *ap)
6070{
6071 struct ata_eh_info *ehi = &ap->link.eh_info;
6072 unsigned long flags;
6073
6074 /* kick EH for boot probing */
6075 spin_lock_irqsave(ap->lock, flags);
6076
6077 ehi->probe_mask |= ATA_ALL_DEVICES;
6078 ehi->action |= ATA_EH_RESET;
6079 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6080
6081 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6082 ap->pflags |= ATA_PFLAG_LOADING;
6083 ata_port_schedule_eh(ap);
6084
6085 spin_unlock_irqrestore(ap->lock, flags);
6086}
6087
6088int ata_port_probe(struct ata_port *ap)
6089{
6090 int rc = 0;
6091
6092 if (ap->ops->error_handler) {
6093 __ata_port_probe(ap);
6094 ata_port_wait_eh(ap);
6095 } else {
6096 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6097 rc = ata_bus_probe(ap);
6098 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6099 }
6100 return rc;
6101}
6102
6103
6104static void async_port_probe(void *data, async_cookie_t cookie)
6105{
6106 struct ata_port *ap = data;
6107
6108 /*
6109 * If we're not allowed to scan this host in parallel,
6110 * we need to wait until all previous scans have completed
6111 * before going further.
6112 * Jeff Garzik says this is only within a controller, so we
6113 * don't need to wait for port 0, only for later ports.
6114 */
6115 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6116 async_synchronize_cookie(cookie);
6117
6118 (void)ata_port_probe(ap);
6119
6120 /* in order to keep device order, we need to synchronize at this point */
6121 async_synchronize_cookie(cookie);
6122
6123 ata_scsi_scan_host(ap, 1);
6124}
6125
6126/**
6127 * ata_host_register - register initialized ATA host
6128 * @host: ATA host to register
6129 * @sht: template for SCSI host
6130 *
6131 * Register initialized ATA host. @host is allocated using
6132 * ata_host_alloc() and fully initialized by LLD. This function
6133 * starts ports, registers @host with ATA and SCSI layers and
6134 * probe registered devices.
6135 *
6136 * LOCKING:
6137 * Inherited from calling layer (may sleep).
6138 *
6139 * RETURNS:
6140 * 0 on success, -errno otherwise.
6141 */
6142int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6143{
6144 int i, rc;
6145
6146 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6147
6148 /* host must have been started */
6149 if (!(host->flags & ATA_HOST_STARTED)) {
6150 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6151 WARN_ON(1);
6152 return -EINVAL;
6153 }
6154
6155 /* Blow away unused ports. This happens when LLD can't
6156 * determine the exact number of ports to allocate at
6157 * allocation time.
6158 */
6159 for (i = host->n_ports; host->ports[i]; i++)
6160 kfree(host->ports[i]);
6161
6162 /* give ports names and add SCSI hosts */
6163 for (i = 0; i < host->n_ports; i++) {
6164 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6165 host->ports[i]->local_port_no = i + 1;
6166 }
6167
6168 /* Create associated sysfs transport objects */
6169 for (i = 0; i < host->n_ports; i++) {
6170 rc = ata_tport_add(host->dev,host->ports[i]);
6171 if (rc) {
6172 goto err_tadd;
6173 }
6174 }
6175
6176 rc = ata_scsi_add_hosts(host, sht);
6177 if (rc)
6178 goto err_tadd;
6179
6180 /* set cable, sata_spd_limit and report */
6181 for (i = 0; i < host->n_ports; i++) {
6182 struct ata_port *ap = host->ports[i];
6183 unsigned long xfer_mask;
6184
6185 /* set SATA cable type if still unset */
6186 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6187 ap->cbl = ATA_CBL_SATA;
6188
6189 /* init sata_spd_limit to the current value */
6190 sata_link_init_spd(&ap->link);
6191 if (ap->slave_link)
6192 sata_link_init_spd(ap->slave_link);
6193
6194 /* print per-port info to dmesg */
6195 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6196 ap->udma_mask);
6197
6198 if (!ata_port_is_dummy(ap)) {
6199 ata_port_info(ap, "%cATA max %s %s\n",
6200 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6201 ata_mode_string(xfer_mask),
6202 ap->link.eh_info.desc);
6203 ata_ehi_clear_desc(&ap->link.eh_info);
6204 } else
6205 ata_port_info(ap, "DUMMY\n");
6206 }
6207
6208 /* perform each probe asynchronously */
6209 for (i = 0; i < host->n_ports; i++) {
6210 struct ata_port *ap = host->ports[i];
6211 async_schedule(async_port_probe, ap);
6212 }
6213
6214 return 0;
6215
6216 err_tadd:
6217 while (--i >= 0) {
6218 ata_tport_delete(host->ports[i]);
6219 }
6220 return rc;
6221
6222}
6223
6224/**
6225 * ata_host_activate - start host, request IRQ and register it
6226 * @host: target ATA host
6227 * @irq: IRQ to request
6228 * @irq_handler: irq_handler used when requesting IRQ
6229 * @irq_flags: irq_flags used when requesting IRQ
6230 * @sht: scsi_host_template to use when registering the host
6231 *
6232 * After allocating an ATA host and initializing it, most libata
6233 * LLDs perform three steps to activate the host - start host,
6234 * request IRQ and register it. This helper takes necessasry
6235 * arguments and performs the three steps in one go.
6236 *
6237 * An invalid IRQ skips the IRQ registration and expects the host to
6238 * have set polling mode on the port. In this case, @irq_handler
6239 * should be NULL.
6240 *
6241 * LOCKING:
6242 * Inherited from calling layer (may sleep).
6243 *
6244 * RETURNS:
6245 * 0 on success, -errno otherwise.
6246 */
6247int ata_host_activate(struct ata_host *host, int irq,
6248 irq_handler_t irq_handler, unsigned long irq_flags,
6249 struct scsi_host_template *sht)
6250{
6251 int i, rc;
6252
6253 rc = ata_host_start(host);
6254 if (rc)
6255 return rc;
6256
6257 /* Special case for polling mode */
6258 if (!irq) {
6259 WARN_ON(irq_handler);
6260 return ata_host_register(host, sht);
6261 }
6262
6263 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6264 dev_name(host->dev), host);
6265 if (rc)
6266 return rc;
6267
6268 for (i = 0; i < host->n_ports; i++)
6269 ata_port_desc(host->ports[i], "irq %d", irq);
6270
6271 rc = ata_host_register(host, sht);
6272 /* if failed, just free the IRQ and leave ports alone */
6273 if (rc)
6274 devm_free_irq(host->dev, irq, host);
6275
6276 return rc;
6277}
6278
6279/**
6280 * ata_port_detach - Detach ATA port in prepration of device removal
6281 * @ap: ATA port to be detached
6282 *
6283 * Detach all ATA devices and the associated SCSI devices of @ap;
6284 * then, remove the associated SCSI host. @ap is guaranteed to
6285 * be quiescent on return from this function.
6286 *
6287 * LOCKING:
6288 * Kernel thread context (may sleep).
6289 */
6290static void ata_port_detach(struct ata_port *ap)
6291{
6292 unsigned long flags;
6293 struct ata_link *link;
6294 struct ata_device *dev;
6295
6296 if (!ap->ops->error_handler)
6297 goto skip_eh;
6298
6299 /* tell EH we're leaving & flush EH */
6300 spin_lock_irqsave(ap->lock, flags);
6301 ap->pflags |= ATA_PFLAG_UNLOADING;
6302 ata_port_schedule_eh(ap);
6303 spin_unlock_irqrestore(ap->lock, flags);
6304
6305 /* wait till EH commits suicide */
6306 ata_port_wait_eh(ap);
6307
6308 /* it better be dead now */
6309 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6310
6311 cancel_delayed_work_sync(&ap->hotplug_task);
6312
6313 skip_eh:
6314 /* clean up zpodd on port removal */
6315 ata_for_each_link(link, ap, HOST_FIRST) {
6316 ata_for_each_dev(dev, link, ALL) {
6317 if (zpodd_dev_enabled(dev))
6318 zpodd_exit(dev);
6319 }
6320 }
6321 if (ap->pmp_link) {
6322 int i;
6323 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6324 ata_tlink_delete(&ap->pmp_link[i]);
6325 }
6326 /* remove the associated SCSI host */
6327 scsi_remove_host(ap->scsi_host);
6328 ata_tport_delete(ap);
6329}
6330
6331/**
6332 * ata_host_detach - Detach all ports of an ATA host
6333 * @host: Host to detach
6334 *
6335 * Detach all ports of @host.
6336 *
6337 * LOCKING:
6338 * Kernel thread context (may sleep).
6339 */
6340void ata_host_detach(struct ata_host *host)
6341{
6342 int i;
6343
6344 for (i = 0; i < host->n_ports; i++)
6345 ata_port_detach(host->ports[i]);
6346
6347 /* the host is dead now, dissociate ACPI */
6348 ata_acpi_dissociate(host);
6349}
6350
6351#ifdef CONFIG_PCI
6352
6353/**
6354 * ata_pci_remove_one - PCI layer callback for device removal
6355 * @pdev: PCI device that was removed
6356 *
6357 * PCI layer indicates to libata via this hook that hot-unplug or
6358 * module unload event has occurred. Detach all ports. Resource
6359 * release is handled via devres.
6360 *
6361 * LOCKING:
6362 * Inherited from PCI layer (may sleep).
6363 */
6364void ata_pci_remove_one(struct pci_dev *pdev)
6365{
6366 struct ata_host *host = pci_get_drvdata(pdev);
6367
6368 ata_host_detach(host);
6369}
6370
6371/* move to PCI subsystem */
6372int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6373{
6374 unsigned long tmp = 0;
6375
6376 switch (bits->width) {
6377 case 1: {
6378 u8 tmp8 = 0;
6379 pci_read_config_byte(pdev, bits->reg, &tmp8);
6380 tmp = tmp8;
6381 break;
6382 }
6383 case 2: {
6384 u16 tmp16 = 0;
6385 pci_read_config_word(pdev, bits->reg, &tmp16);
6386 tmp = tmp16;
6387 break;
6388 }
6389 case 4: {
6390 u32 tmp32 = 0;
6391 pci_read_config_dword(pdev, bits->reg, &tmp32);
6392 tmp = tmp32;
6393 break;
6394 }
6395
6396 default:
6397 return -EINVAL;
6398 }
6399
6400 tmp &= bits->mask;
6401
6402 return (tmp == bits->val) ? 1 : 0;
6403}
6404
6405#ifdef CONFIG_PM
6406void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6407{
6408 pci_save_state(pdev);
6409 pci_disable_device(pdev);
6410
6411 if (mesg.event & PM_EVENT_SLEEP)
6412 pci_set_power_state(pdev, PCI_D3hot);
6413}
6414
6415int ata_pci_device_do_resume(struct pci_dev *pdev)
6416{
6417 int rc;
6418
6419 pci_set_power_state(pdev, PCI_D0);
6420 pci_restore_state(pdev);
6421
6422 rc = pcim_enable_device(pdev);
6423 if (rc) {
6424 dev_err(&pdev->dev,
6425 "failed to enable device after resume (%d)\n", rc);
6426 return rc;
6427 }
6428
6429 pci_set_master(pdev);
6430 return 0;
6431}
6432
6433int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6434{
6435 struct ata_host *host = pci_get_drvdata(pdev);
6436 int rc = 0;
6437
6438 rc = ata_host_suspend(host, mesg);
6439 if (rc)
6440 return rc;
6441
6442 ata_pci_device_do_suspend(pdev, mesg);
6443
6444 return 0;
6445}
6446
6447int ata_pci_device_resume(struct pci_dev *pdev)
6448{
6449 struct ata_host *host = pci_get_drvdata(pdev);
6450 int rc;
6451
6452 rc = ata_pci_device_do_resume(pdev);
6453 if (rc == 0)
6454 ata_host_resume(host);
6455 return rc;
6456}
6457#endif /* CONFIG_PM */
6458
6459#endif /* CONFIG_PCI */
6460
6461/**
6462 * ata_platform_remove_one - Platform layer callback for device removal
6463 * @pdev: Platform device that was removed
6464 *
6465 * Platform layer indicates to libata via this hook that hot-unplug or
6466 * module unload event has occurred. Detach all ports. Resource
6467 * release is handled via devres.
6468 *
6469 * LOCKING:
6470 * Inherited from platform layer (may sleep).
6471 */
6472int ata_platform_remove_one(struct platform_device *pdev)
6473{
6474 struct ata_host *host = platform_get_drvdata(pdev);
6475
6476 ata_host_detach(host);
6477
6478 return 0;
6479}
6480
6481static int __init ata_parse_force_one(char **cur,
6482 struct ata_force_ent *force_ent,
6483 const char **reason)
6484{
6485 /* FIXME: Currently, there's no way to tag init const data and
6486 * using __initdata causes build failure on some versions of
6487 * gcc. Once __initdataconst is implemented, add const to the
6488 * following structure.
6489 */
6490 static struct ata_force_param force_tbl[] __initdata = {
6491 { "40c", .cbl = ATA_CBL_PATA40 },
6492 { "80c", .cbl = ATA_CBL_PATA80 },
6493 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6494 { "unk", .cbl = ATA_CBL_PATA_UNK },
6495 { "ign", .cbl = ATA_CBL_PATA_IGN },
6496 { "sata", .cbl = ATA_CBL_SATA },
6497 { "1.5Gbps", .spd_limit = 1 },
6498 { "3.0Gbps", .spd_limit = 2 },
6499 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6500 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6501 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6502 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6503 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6504 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6505 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6506 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6507 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6508 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6509 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6510 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6511 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6512 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6513 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6514 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6515 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6516 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6517 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6518 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6519 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6520 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6521 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6522 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6523 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6524 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6525 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6526 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6527 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6528 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6529 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6530 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6531 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6532 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6533 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6534 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6535 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6536 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6537 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6538 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6539 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6540 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6541 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6542 };
6543 char *start = *cur, *p = *cur;
6544 char *id, *val, *endp;
6545 const struct ata_force_param *match_fp = NULL;
6546 int nr_matches = 0, i;
6547
6548 /* find where this param ends and update *cur */
6549 while (*p != '\0' && *p != ',')
6550 p++;
6551
6552 if (*p == '\0')
6553 *cur = p;
6554 else
6555 *cur = p + 1;
6556
6557 *p = '\0';
6558
6559 /* parse */
6560 p = strchr(start, ':');
6561 if (!p) {
6562 val = strstrip(start);
6563 goto parse_val;
6564 }
6565 *p = '\0';
6566
6567 id = strstrip(start);
6568 val = strstrip(p + 1);
6569
6570 /* parse id */
6571 p = strchr(id, '.');
6572 if (p) {
6573 *p++ = '\0';
6574 force_ent->device = simple_strtoul(p, &endp, 10);
6575 if (p == endp || *endp != '\0') {
6576 *reason = "invalid device";
6577 return -EINVAL;
6578 }
6579 }
6580
6581 force_ent->port = simple_strtoul(id, &endp, 10);
6582 if (p == endp || *endp != '\0') {
6583 *reason = "invalid port/link";
6584 return -EINVAL;
6585 }
6586
6587 parse_val:
6588 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6589 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6590 const struct ata_force_param *fp = &force_tbl[i];
6591
6592 if (strncasecmp(val, fp->name, strlen(val)))
6593 continue;
6594
6595 nr_matches++;
6596 match_fp = fp;
6597
6598 if (strcasecmp(val, fp->name) == 0) {
6599 nr_matches = 1;
6600 break;
6601 }
6602 }
6603
6604 if (!nr_matches) {
6605 *reason = "unknown value";
6606 return -EINVAL;
6607 }
6608 if (nr_matches > 1) {
6609 *reason = "ambigious value";
6610 return -EINVAL;
6611 }
6612
6613 force_ent->param = *match_fp;
6614
6615 return 0;
6616}
6617
6618static void __init ata_parse_force_param(void)
6619{
6620 int idx = 0, size = 1;
6621 int last_port = -1, last_device = -1;
6622 char *p, *cur, *next;
6623
6624 /* calculate maximum number of params and allocate force_tbl */
6625 for (p = ata_force_param_buf; *p; p++)
6626 if (*p == ',')
6627 size++;
6628
6629 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6630 if (!ata_force_tbl) {
6631 printk(KERN_WARNING "ata: failed to extend force table, "
6632 "libata.force ignored\n");
6633 return;
6634 }
6635
6636 /* parse and populate the table */
6637 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6638 const char *reason = "";
6639 struct ata_force_ent te = { .port = -1, .device = -1 };
6640
6641 next = cur;
6642 if (ata_parse_force_one(&next, &te, &reason)) {
6643 printk(KERN_WARNING "ata: failed to parse force "
6644 "parameter \"%s\" (%s)\n",
6645 cur, reason);
6646 continue;
6647 }
6648
6649 if (te.port == -1) {
6650 te.port = last_port;
6651 te.device = last_device;
6652 }
6653
6654 ata_force_tbl[idx++] = te;
6655
6656 last_port = te.port;
6657 last_device = te.device;
6658 }
6659
6660 ata_force_tbl_size = idx;
6661}
6662
6663static int __init ata_init(void)
6664{
6665 int rc;
6666
6667 ata_parse_force_param();
6668
6669 rc = ata_sff_init();
6670 if (rc) {
6671 kfree(ata_force_tbl);
6672 return rc;
6673 }
6674
6675 libata_transport_init();
6676 ata_scsi_transport_template = ata_attach_transport();
6677 if (!ata_scsi_transport_template) {
6678 ata_sff_exit();
6679 rc = -ENOMEM;
6680 goto err_out;
6681 }
6682
6683 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6684 return 0;
6685
6686err_out:
6687 return rc;
6688}
6689
6690static void __exit ata_exit(void)
6691{
6692 ata_release_transport(ata_scsi_transport_template);
6693 libata_transport_exit();
6694 ata_sff_exit();
6695 kfree(ata_force_tbl);
6696}
6697
6698subsys_initcall(ata_init);
6699module_exit(ata_exit);
6700
6701static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6702
6703int ata_ratelimit(void)
6704{
6705 return __ratelimit(&ratelimit);
6706}
6707
6708/**
6709 * ata_msleep - ATA EH owner aware msleep
6710 * @ap: ATA port to attribute the sleep to
6711 * @msecs: duration to sleep in milliseconds
6712 *
6713 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6714 * ownership is released before going to sleep and reacquired
6715 * after the sleep is complete. IOW, other ports sharing the
6716 * @ap->host will be allowed to own the EH while this task is
6717 * sleeping.
6718 *
6719 * LOCKING:
6720 * Might sleep.
6721 */
6722void ata_msleep(struct ata_port *ap, unsigned int msecs)
6723{
6724 bool owns_eh = ap && ap->host->eh_owner == current;
6725
6726 if (owns_eh)
6727 ata_eh_release(ap);
6728
6729 msleep(msecs);
6730
6731 if (owns_eh)
6732 ata_eh_acquire(ap);
6733}
6734
6735/**
6736 * ata_wait_register - wait until register value changes
6737 * @ap: ATA port to wait register for, can be NULL
6738 * @reg: IO-mapped register
6739 * @mask: Mask to apply to read register value
6740 * @val: Wait condition
6741 * @interval: polling interval in milliseconds
6742 * @timeout: timeout in milliseconds
6743 *
6744 * Waiting for some bits of register to change is a common
6745 * operation for ATA controllers. This function reads 32bit LE
6746 * IO-mapped register @reg and tests for the following condition.
6747 *
6748 * (*@reg & mask) != val
6749 *
6750 * If the condition is met, it returns; otherwise, the process is
6751 * repeated after @interval_msec until timeout.
6752 *
6753 * LOCKING:
6754 * Kernel thread context (may sleep)
6755 *
6756 * RETURNS:
6757 * The final register value.
6758 */
6759u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6760 unsigned long interval, unsigned long timeout)
6761{
6762 unsigned long deadline;
6763 u32 tmp;
6764
6765 tmp = ioread32(reg);
6766
6767 /* Calculate timeout _after_ the first read to make sure
6768 * preceding writes reach the controller before starting to
6769 * eat away the timeout.
6770 */
6771 deadline = ata_deadline(jiffies, timeout);
6772
6773 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6774 ata_msleep(ap, interval);
6775 tmp = ioread32(reg);
6776 }
6777
6778 return tmp;
6779}
6780
6781/*
6782 * Dummy port_ops
6783 */
6784static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6785{
6786 return AC_ERR_SYSTEM;
6787}
6788
6789static void ata_dummy_error_handler(struct ata_port *ap)
6790{
6791 /* truly dummy */
6792}
6793
6794struct ata_port_operations ata_dummy_port_ops = {
6795 .qc_prep = ata_noop_qc_prep,
6796 .qc_issue = ata_dummy_qc_issue,
6797 .error_handler = ata_dummy_error_handler,
6798 .sched_eh = ata_std_sched_eh,
6799 .end_eh = ata_std_end_eh,
6800};
6801
6802const struct ata_port_info ata_dummy_port_info = {
6803 .port_ops = &ata_dummy_port_ops,
6804};
6805
6806/*
6807 * Utility print functions
6808 */
6809void ata_port_printk(const struct ata_port *ap, const char *level,
6810 const char *fmt, ...)
6811{
6812 struct va_format vaf;
6813 va_list args;
6814
6815 va_start(args, fmt);
6816
6817 vaf.fmt = fmt;
6818 vaf.va = &args;
6819
6820 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6821
6822 va_end(args);
6823}
6824EXPORT_SYMBOL(ata_port_printk);
6825
6826void ata_link_printk(const struct ata_link *link, const char *level,
6827 const char *fmt, ...)
6828{
6829 struct va_format vaf;
6830 va_list args;
6831
6832 va_start(args, fmt);
6833
6834 vaf.fmt = fmt;
6835 vaf.va = &args;
6836
6837 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6838 printk("%sata%u.%02u: %pV",
6839 level, link->ap->print_id, link->pmp, &vaf);
6840 else
6841 printk("%sata%u: %pV",
6842 level, link->ap->print_id, &vaf);
6843
6844 va_end(args);
6845}
6846EXPORT_SYMBOL(ata_link_printk);
6847
6848void ata_dev_printk(const struct ata_device *dev, const char *level,
6849 const char *fmt, ...)
6850{
6851 struct va_format vaf;
6852 va_list args;
6853
6854 va_start(args, fmt);
6855
6856 vaf.fmt = fmt;
6857 vaf.va = &args;
6858
6859 printk("%sata%u.%02u: %pV",
6860 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6861 &vaf);
6862
6863 va_end(args);
6864}
6865EXPORT_SYMBOL(ata_dev_printk);
6866
6867void ata_print_version(const struct device *dev, const char *version)
6868{
6869 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6870}
6871EXPORT_SYMBOL(ata_print_version);
6872
6873/*
6874 * libata is essentially a library of internal helper functions for
6875 * low-level ATA host controller drivers. As such, the API/ABI is
6876 * likely to change as new drivers are added and updated.
6877 * Do not depend on ABI/API stability.
6878 */
6879EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6880EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6881EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6882EXPORT_SYMBOL_GPL(ata_base_port_ops);
6883EXPORT_SYMBOL_GPL(sata_port_ops);
6884EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6885EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6886EXPORT_SYMBOL_GPL(ata_link_next);
6887EXPORT_SYMBOL_GPL(ata_dev_next);
6888EXPORT_SYMBOL_GPL(ata_std_bios_param);
6889EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6890EXPORT_SYMBOL_GPL(ata_host_init);
6891EXPORT_SYMBOL_GPL(ata_host_alloc);
6892EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6893EXPORT_SYMBOL_GPL(ata_slave_link_init);
6894EXPORT_SYMBOL_GPL(ata_host_start);
6895EXPORT_SYMBOL_GPL(ata_host_register);
6896EXPORT_SYMBOL_GPL(ata_host_activate);
6897EXPORT_SYMBOL_GPL(ata_host_detach);
6898EXPORT_SYMBOL_GPL(ata_sg_init);
6899EXPORT_SYMBOL_GPL(ata_qc_complete);
6900EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6901EXPORT_SYMBOL_GPL(atapi_cmd_type);
6902EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6903EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6904EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6905EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6906EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6907EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6908EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6909EXPORT_SYMBOL_GPL(ata_mode_string);
6910EXPORT_SYMBOL_GPL(ata_id_xfermask);
6911EXPORT_SYMBOL_GPL(ata_do_set_mode);
6912EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6913EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6914EXPORT_SYMBOL_GPL(ata_dev_disable);
6915EXPORT_SYMBOL_GPL(sata_set_spd);
6916EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6917EXPORT_SYMBOL_GPL(sata_link_debounce);
6918EXPORT_SYMBOL_GPL(sata_link_resume);
6919EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6920EXPORT_SYMBOL_GPL(ata_std_prereset);
6921EXPORT_SYMBOL_GPL(sata_link_hardreset);
6922EXPORT_SYMBOL_GPL(sata_std_hardreset);
6923EXPORT_SYMBOL_GPL(ata_std_postreset);
6924EXPORT_SYMBOL_GPL(ata_dev_classify);
6925EXPORT_SYMBOL_GPL(ata_dev_pair);
6926EXPORT_SYMBOL_GPL(ata_ratelimit);
6927EXPORT_SYMBOL_GPL(ata_msleep);
6928EXPORT_SYMBOL_GPL(ata_wait_register);
6929EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6930EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6931EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6932EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6933EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6934EXPORT_SYMBOL_GPL(sata_scr_valid);
6935EXPORT_SYMBOL_GPL(sata_scr_read);
6936EXPORT_SYMBOL_GPL(sata_scr_write);
6937EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6938EXPORT_SYMBOL_GPL(ata_link_online);
6939EXPORT_SYMBOL_GPL(ata_link_offline);
6940#ifdef CONFIG_PM
6941EXPORT_SYMBOL_GPL(ata_host_suspend);
6942EXPORT_SYMBOL_GPL(ata_host_resume);
6943#endif /* CONFIG_PM */
6944EXPORT_SYMBOL_GPL(ata_id_string);
6945EXPORT_SYMBOL_GPL(ata_id_c_string);
6946EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6947EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6948
6949EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6950EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6951EXPORT_SYMBOL_GPL(ata_timing_compute);
6952EXPORT_SYMBOL_GPL(ata_timing_merge);
6953EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6954
6955#ifdef CONFIG_PCI
6956EXPORT_SYMBOL_GPL(pci_test_config_bits);
6957EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6958#ifdef CONFIG_PM
6959EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6960EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6961EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6962EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6963#endif /* CONFIG_PM */
6964#endif /* CONFIG_PCI */
6965
6966EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6967
6968EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6969EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6970EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6971EXPORT_SYMBOL_GPL(ata_port_desc);
6972#ifdef CONFIG_PCI
6973EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6974#endif /* CONFIG_PCI */
6975EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6976EXPORT_SYMBOL_GPL(ata_link_abort);
6977EXPORT_SYMBOL_GPL(ata_port_abort);
6978EXPORT_SYMBOL_GPL(ata_port_freeze);
6979EXPORT_SYMBOL_GPL(sata_async_notification);
6980EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6981EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6982EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6983EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6984EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6985EXPORT_SYMBOL_GPL(ata_do_eh);
6986EXPORT_SYMBOL_GPL(ata_std_error_handler);
6987
6988EXPORT_SYMBOL_GPL(ata_cable_40wire);
6989EXPORT_SYMBOL_GPL(ata_cable_80wire);
6990EXPORT_SYMBOL_GPL(ata_cable_unknown);
6991EXPORT_SYMBOL_GPL(ata_cable_ignore);
6992EXPORT_SYMBOL_GPL(ata_cable_sata);