at v3.19-rc7 4086 lines 172 kB view raw
1<?xml version="1.0" encoding="UTF-8"?> 2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" 3 "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> 4 5<book id="drmDevelopersGuide"> 6 <bookinfo> 7 <title>Linux DRM Developer's Guide</title> 8 9 <authorgroup> 10 <author> 11 <firstname>Jesse</firstname> 12 <surname>Barnes</surname> 13 <contrib>Initial version</contrib> 14 <affiliation> 15 <orgname>Intel Corporation</orgname> 16 <address> 17 <email>jesse.barnes@intel.com</email> 18 </address> 19 </affiliation> 20 </author> 21 <author> 22 <firstname>Laurent</firstname> 23 <surname>Pinchart</surname> 24 <contrib>Driver internals</contrib> 25 <affiliation> 26 <orgname>Ideas on board SPRL</orgname> 27 <address> 28 <email>laurent.pinchart@ideasonboard.com</email> 29 </address> 30 </affiliation> 31 </author> 32 <author> 33 <firstname>Daniel</firstname> 34 <surname>Vetter</surname> 35 <contrib>Contributions all over the place</contrib> 36 <affiliation> 37 <orgname>Intel Corporation</orgname> 38 <address> 39 <email>daniel.vetter@ffwll.ch</email> 40 </address> 41 </affiliation> 42 </author> 43 </authorgroup> 44 45 <copyright> 46 <year>2008-2009</year> 47 <year>2013-2014</year> 48 <holder>Intel Corporation</holder> 49 </copyright> 50 <copyright> 51 <year>2012</year> 52 <holder>Laurent Pinchart</holder> 53 </copyright> 54 55 <legalnotice> 56 <para> 57 The contents of this file may be used under the terms of the GNU 58 General Public License version 2 (the "GPL") as distributed in 59 the kernel source COPYING file. 60 </para> 61 </legalnotice> 62 63 <revhistory> 64 <!-- Put document revisions here, newest first. --> 65 <revision> 66 <revnumber>1.0</revnumber> 67 <date>2012-07-13</date> 68 <authorinitials>LP</authorinitials> 69 <revremark>Added extensive documentation about driver internals. 70 </revremark> 71 </revision> 72 </revhistory> 73 </bookinfo> 74 75<toc></toc> 76 77<part id="drmCore"> 78 <title>DRM Core</title> 79 <partintro> 80 <para> 81 This first part of the DRM Developer's Guide documents core DRM code, 82 helper libraries for writing drivers and generic userspace interfaces 83 exposed by DRM drivers. 84 </para> 85 </partintro> 86 87 <chapter id="drmIntroduction"> 88 <title>Introduction</title> 89 <para> 90 The Linux DRM layer contains code intended to support the needs 91 of complex graphics devices, usually containing programmable 92 pipelines well suited to 3D graphics acceleration. Graphics 93 drivers in the kernel may make use of DRM functions to make 94 tasks like memory management, interrupt handling and DMA easier, 95 and provide a uniform interface to applications. 96 </para> 97 <para> 98 A note on versions: this guide covers features found in the DRM 99 tree, including the TTM memory manager, output configuration and 100 mode setting, and the new vblank internals, in addition to all 101 the regular features found in current kernels. 102 </para> 103 <para> 104 [Insert diagram of typical DRM stack here] 105 </para> 106 </chapter> 107 108 <!-- Internals --> 109 110 <chapter id="drmInternals"> 111 <title>DRM Internals</title> 112 <para> 113 This chapter documents DRM internals relevant to driver authors 114 and developers working to add support for the latest features to 115 existing drivers. 116 </para> 117 <para> 118 First, we go over some typical driver initialization 119 requirements, like setting up command buffers, creating an 120 initial output configuration, and initializing core services. 121 Subsequent sections cover core internals in more detail, 122 providing implementation notes and examples. 123 </para> 124 <para> 125 The DRM layer provides several services to graphics drivers, 126 many of them driven by the application interfaces it provides 127 through libdrm, the library that wraps most of the DRM ioctls. 128 These include vblank event handling, memory 129 management, output management, framebuffer management, command 130 submission &amp; fencing, suspend/resume support, and DMA 131 services. 132 </para> 133 134 <!-- Internals: driver init --> 135 136 <sect1> 137 <title>Driver Initialization</title> 138 <para> 139 At the core of every DRM driver is a <structname>drm_driver</structname> 140 structure. Drivers typically statically initialize a drm_driver structure, 141 and then pass it to one of the <function>drm_*_init()</function> functions 142 to register it with the DRM subsystem. 143 </para> 144 <para> 145 Newer drivers that no longer require a <structname>drm_bus</structname> 146 structure can alternatively use the low-level device initialization and 147 registration functions such as <function>drm_dev_alloc()</function> and 148 <function>drm_dev_register()</function> directly. 149 </para> 150 <para> 151 The <structname>drm_driver</structname> structure contains static 152 information that describes the driver and features it supports, and 153 pointers to methods that the DRM core will call to implement the DRM API. 154 We will first go through the <structname>drm_driver</structname> static 155 information fields, and will then describe individual operations in 156 details as they get used in later sections. 157 </para> 158 <sect2> 159 <title>Driver Information</title> 160 <sect3> 161 <title>Driver Features</title> 162 <para> 163 Drivers inform the DRM core about their requirements and supported 164 features by setting appropriate flags in the 165 <structfield>driver_features</structfield> field. Since those flags 166 influence the DRM core behaviour since registration time, most of them 167 must be set to registering the <structname>drm_driver</structname> 168 instance. 169 </para> 170 <synopsis>u32 driver_features;</synopsis> 171 <variablelist> 172 <title>Driver Feature Flags</title> 173 <varlistentry> 174 <term>DRIVER_USE_AGP</term> 175 <listitem><para> 176 Driver uses AGP interface, the DRM core will manage AGP resources. 177 </para></listitem> 178 </varlistentry> 179 <varlistentry> 180 <term>DRIVER_REQUIRE_AGP</term> 181 <listitem><para> 182 Driver needs AGP interface to function. AGP initialization failure 183 will become a fatal error. 184 </para></listitem> 185 </varlistentry> 186 <varlistentry> 187 <term>DRIVER_PCI_DMA</term> 188 <listitem><para> 189 Driver is capable of PCI DMA, mapping of PCI DMA buffers to 190 userspace will be enabled. Deprecated. 191 </para></listitem> 192 </varlistentry> 193 <varlistentry> 194 <term>DRIVER_SG</term> 195 <listitem><para> 196 Driver can perform scatter/gather DMA, allocation and mapping of 197 scatter/gather buffers will be enabled. Deprecated. 198 </para></listitem> 199 </varlistentry> 200 <varlistentry> 201 <term>DRIVER_HAVE_DMA</term> 202 <listitem><para> 203 Driver supports DMA, the userspace DMA API will be supported. 204 Deprecated. 205 </para></listitem> 206 </varlistentry> 207 <varlistentry> 208 <term>DRIVER_HAVE_IRQ</term><term>DRIVER_IRQ_SHARED</term> 209 <listitem><para> 210 DRIVER_HAVE_IRQ indicates whether the driver has an IRQ handler 211 managed by the DRM Core. The core will support simple IRQ handler 212 installation when the flag is set. The installation process is 213 described in <xref linkend="drm-irq-registration"/>.</para> 214 <para>DRIVER_IRQ_SHARED indicates whether the device &amp; handler 215 support shared IRQs (note that this is required of PCI drivers). 216 </para></listitem> 217 </varlistentry> 218 <varlistentry> 219 <term>DRIVER_GEM</term> 220 <listitem><para> 221 Driver use the GEM memory manager. 222 </para></listitem> 223 </varlistentry> 224 <varlistentry> 225 <term>DRIVER_MODESET</term> 226 <listitem><para> 227 Driver supports mode setting interfaces (KMS). 228 </para></listitem> 229 </varlistentry> 230 <varlistentry> 231 <term>DRIVER_PRIME</term> 232 <listitem><para> 233 Driver implements DRM PRIME buffer sharing. 234 </para></listitem> 235 </varlistentry> 236 <varlistentry> 237 <term>DRIVER_RENDER</term> 238 <listitem><para> 239 Driver supports dedicated render nodes. 240 </para></listitem> 241 </varlistentry> 242 </variablelist> 243 </sect3> 244 <sect3> 245 <title>Major, Minor and Patchlevel</title> 246 <synopsis>int major; 247int minor; 248int patchlevel;</synopsis> 249 <para> 250 The DRM core identifies driver versions by a major, minor and patch 251 level triplet. The information is printed to the kernel log at 252 initialization time and passed to userspace through the 253 DRM_IOCTL_VERSION ioctl. 254 </para> 255 <para> 256 The major and minor numbers are also used to verify the requested driver 257 API version passed to DRM_IOCTL_SET_VERSION. When the driver API changes 258 between minor versions, applications can call DRM_IOCTL_SET_VERSION to 259 select a specific version of the API. If the requested major isn't equal 260 to the driver major, or the requested minor is larger than the driver 261 minor, the DRM_IOCTL_SET_VERSION call will return an error. Otherwise 262 the driver's set_version() method will be called with the requested 263 version. 264 </para> 265 </sect3> 266 <sect3> 267 <title>Name, Description and Date</title> 268 <synopsis>char *name; 269char *desc; 270char *date;</synopsis> 271 <para> 272 The driver name is printed to the kernel log at initialization time, 273 used for IRQ registration and passed to userspace through 274 DRM_IOCTL_VERSION. 275 </para> 276 <para> 277 The driver description is a purely informative string passed to 278 userspace through the DRM_IOCTL_VERSION ioctl and otherwise unused by 279 the kernel. 280 </para> 281 <para> 282 The driver date, formatted as YYYYMMDD, is meant to identify the date of 283 the latest modification to the driver. However, as most drivers fail to 284 update it, its value is mostly useless. The DRM core prints it to the 285 kernel log at initialization time and passes it to userspace through the 286 DRM_IOCTL_VERSION ioctl. 287 </para> 288 </sect3> 289 </sect2> 290 <sect2> 291 <title>Device Registration</title> 292 <para> 293 A number of functions are provided to help with device registration. 294 The functions deal with PCI and platform devices, respectively. 295 </para> 296!Edrivers/gpu/drm/drm_pci.c 297!Edrivers/gpu/drm/drm_platform.c 298 <para> 299 New drivers that no longer rely on the services provided by the 300 <structname>drm_bus</structname> structure can call the low-level 301 device registration functions directly. The 302 <function>drm_dev_alloc()</function> function can be used to allocate 303 and initialize a new <structname>drm_device</structname> structure. 304 Drivers will typically want to perform some additional setup on this 305 structure, such as allocating driver-specific data and storing a 306 pointer to it in the DRM device's <structfield>dev_private</structfield> 307 field. Drivers should also set the device's unique name using the 308 <function>drm_dev_set_unique()</function> function. After it has been 309 set up a device can be registered with the DRM subsystem by calling 310 <function>drm_dev_register()</function>. This will cause the device to 311 be exposed to userspace and will call the driver's 312 <structfield>.load()</structfield> implementation. When a device is 313 removed, the DRM device can safely be unregistered and freed by calling 314 <function>drm_dev_unregister()</function> followed by a call to 315 <function>drm_dev_unref()</function>. 316 </para> 317!Edrivers/gpu/drm/drm_drv.c 318 </sect2> 319 <sect2> 320 <title>Driver Load</title> 321 <para> 322 The <methodname>load</methodname> method is the driver and device 323 initialization entry point. The method is responsible for allocating and 324 initializing driver private data, performing resource allocation and 325 mapping (e.g. acquiring 326 clocks, mapping registers or allocating command buffers), initializing 327 the memory manager (<xref linkend="drm-memory-management"/>), installing 328 the IRQ handler (<xref linkend="drm-irq-registration"/>), setting up 329 vertical blanking handling (<xref linkend="drm-vertical-blank"/>), mode 330 setting (<xref linkend="drm-mode-setting"/>) and initial output 331 configuration (<xref linkend="drm-kms-init"/>). 332 </para> 333 <note><para> 334 If compatibility is a concern (e.g. with drivers converted over from 335 User Mode Setting to Kernel Mode Setting), care must be taken to prevent 336 device initialization and control that is incompatible with currently 337 active userspace drivers. For instance, if user level mode setting 338 drivers are in use, it would be problematic to perform output discovery 339 &amp; configuration at load time. Likewise, if user-level drivers 340 unaware of memory management are in use, memory management and command 341 buffer setup may need to be omitted. These requirements are 342 driver-specific, and care needs to be taken to keep both old and new 343 applications and libraries working. 344 </para></note> 345 <synopsis>int (*load) (struct drm_device *, unsigned long flags);</synopsis> 346 <para> 347 The method takes two arguments, a pointer to the newly created 348 <structname>drm_device</structname> and flags. The flags are used to 349 pass the <structfield>driver_data</structfield> field of the device id 350 corresponding to the device passed to <function>drm_*_init()</function>. 351 Only PCI devices currently use this, USB and platform DRM drivers have 352 their <methodname>load</methodname> method called with flags to 0. 353 </para> 354 <sect3> 355 <title>Driver Private Data</title> 356 <para> 357 The driver private hangs off the main 358 <structname>drm_device</structname> structure and can be used for 359 tracking various device-specific bits of information, like register 360 offsets, command buffer status, register state for suspend/resume, etc. 361 At load time, a driver may simply allocate one and set 362 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 363 appropriately; it should be freed and 364 <structname>drm_device</structname>.<structfield>dev_priv</structfield> 365 set to NULL when the driver is unloaded. 366 </para> 367 </sect3> 368 <sect3 id="drm-irq-registration"> 369 <title>IRQ Registration</title> 370 <para> 371 The DRM core tries to facilitate IRQ handler registration and 372 unregistration by providing <function>drm_irq_install</function> and 373 <function>drm_irq_uninstall</function> functions. Those functions only 374 support a single interrupt per device, devices that use more than one 375 IRQs need to be handled manually. 376 </para> 377 <sect4> 378 <title>Managed IRQ Registration</title> 379 <para> 380 <function>drm_irq_install</function> starts by calling the 381 <methodname>irq_preinstall</methodname> driver operation. The operation 382 is optional and must make sure that the interrupt will not get fired by 383 clearing all pending interrupt flags or disabling the interrupt. 384 </para> 385 <para> 386 The passed-in IRQ will then be requested by a call to 387 <function>request_irq</function>. If the DRIVER_IRQ_SHARED driver 388 feature flag is set, a shared (IRQF_SHARED) IRQ handler will be 389 requested. 390 </para> 391 <para> 392 The IRQ handler function must be provided as the mandatory irq_handler 393 driver operation. It will get passed directly to 394 <function>request_irq</function> and thus has the same prototype as all 395 IRQ handlers. It will get called with a pointer to the DRM device as the 396 second argument. 397 </para> 398 <para> 399 Finally the function calls the optional 400 <methodname>irq_postinstall</methodname> driver operation. The operation 401 usually enables interrupts (excluding the vblank interrupt, which is 402 enabled separately), but drivers may choose to enable/disable interrupts 403 at a different time. 404 </para> 405 <para> 406 <function>drm_irq_uninstall</function> is similarly used to uninstall an 407 IRQ handler. It starts by waking up all processes waiting on a vblank 408 interrupt to make sure they don't hang, and then calls the optional 409 <methodname>irq_uninstall</methodname> driver operation. The operation 410 must disable all hardware interrupts. Finally the function frees the IRQ 411 by calling <function>free_irq</function>. 412 </para> 413 </sect4> 414 <sect4> 415 <title>Manual IRQ Registration</title> 416 <para> 417 Drivers that require multiple interrupt handlers can't use the managed 418 IRQ registration functions. In that case IRQs must be registered and 419 unregistered manually (usually with the <function>request_irq</function> 420 and <function>free_irq</function> functions, or their devm_* equivalent). 421 </para> 422 <para> 423 When manually registering IRQs, drivers must not set the DRIVER_HAVE_IRQ 424 driver feature flag, and must not provide the 425 <methodname>irq_handler</methodname> driver operation. They must set the 426 <structname>drm_device</structname> <structfield>irq_enabled</structfield> 427 field to 1 upon registration of the IRQs, and clear it to 0 after 428 unregistering the IRQs. 429 </para> 430 </sect4> 431 </sect3> 432 <sect3> 433 <title>Memory Manager Initialization</title> 434 <para> 435 Every DRM driver requires a memory manager which must be initialized at 436 load time. DRM currently contains two memory managers, the Translation 437 Table Manager (TTM) and the Graphics Execution Manager (GEM). 438 This document describes the use of the GEM memory manager only. See 439 <xref linkend="drm-memory-management"/> for details. 440 </para> 441 </sect3> 442 <sect3> 443 <title>Miscellaneous Device Configuration</title> 444 <para> 445 Another task that may be necessary for PCI devices during configuration 446 is mapping the video BIOS. On many devices, the VBIOS describes device 447 configuration, LCD panel timings (if any), and contains flags indicating 448 device state. Mapping the BIOS can be done using the pci_map_rom() call, 449 a convenience function that takes care of mapping the actual ROM, 450 whether it has been shadowed into memory (typically at address 0xc0000) 451 or exists on the PCI device in the ROM BAR. Note that after the ROM has 452 been mapped and any necessary information has been extracted, it should 453 be unmapped; on many devices, the ROM address decoder is shared with 454 other BARs, so leaving it mapped could cause undesired behaviour like 455 hangs or memory corruption. 456 <!--!Fdrivers/pci/rom.c pci_map_rom--> 457 </para> 458 </sect3> 459 </sect2> 460 </sect1> 461 462 <!-- Internals: memory management --> 463 464 <sect1 id="drm-memory-management"> 465 <title>Memory management</title> 466 <para> 467 Modern Linux systems require large amount of graphics memory to store 468 frame buffers, textures, vertices and other graphics-related data. Given 469 the very dynamic nature of many of that data, managing graphics memory 470 efficiently is thus crucial for the graphics stack and plays a central 471 role in the DRM infrastructure. 472 </para> 473 <para> 474 The DRM core includes two memory managers, namely Translation Table Maps 475 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory 476 manager to be developed and tried to be a one-size-fits-them all 477 solution. It provides a single userspace API to accommodate the need of 478 all hardware, supporting both Unified Memory Architecture (UMA) devices 479 and devices with dedicated video RAM (i.e. most discrete video cards). 480 This resulted in a large, complex piece of code that turned out to be 481 hard to use for driver development. 482 </para> 483 <para> 484 GEM started as an Intel-sponsored project in reaction to TTM's 485 complexity. Its design philosophy is completely different: instead of 486 providing a solution to every graphics memory-related problems, GEM 487 identified common code between drivers and created a support library to 488 share it. GEM has simpler initialization and execution requirements than 489 TTM, but has no video RAM management capabilities and is thus limited to 490 UMA devices. 491 </para> 492 <sect2> 493 <title>The Translation Table Manager (TTM)</title> 494 <para> 495 TTM design background and information belongs here. 496 </para> 497 <sect3> 498 <title>TTM initialization</title> 499 <warning><para>This section is outdated.</para></warning> 500 <para> 501 Drivers wishing to support TTM must fill out a drm_bo_driver 502 structure. The structure contains several fields with function 503 pointers for initializing the TTM, allocating and freeing memory, 504 waiting for command completion and fence synchronization, and memory 505 migration. See the radeon_ttm.c file for an example of usage. 506 </para> 507 <para> 508 The ttm_global_reference structure is made up of several fields: 509 </para> 510 <programlisting> 511 struct ttm_global_reference { 512 enum ttm_global_types global_type; 513 size_t size; 514 void *object; 515 int (*init) (struct ttm_global_reference *); 516 void (*release) (struct ttm_global_reference *); 517 }; 518 </programlisting> 519 <para> 520 There should be one global reference structure for your memory 521 manager as a whole, and there will be others for each object 522 created by the memory manager at runtime. Your global TTM should 523 have a type of TTM_GLOBAL_TTM_MEM. The size field for the global 524 object should be sizeof(struct ttm_mem_global), and the init and 525 release hooks should point at your driver-specific init and 526 release routines, which probably eventually call 527 ttm_mem_global_init and ttm_mem_global_release, respectively. 528 </para> 529 <para> 530 Once your global TTM accounting structure is set up and initialized 531 by calling ttm_global_item_ref() on it, 532 you need to create a buffer object TTM to 533 provide a pool for buffer object allocation by clients and the 534 kernel itself. The type of this object should be TTM_GLOBAL_TTM_BO, 535 and its size should be sizeof(struct ttm_bo_global). Again, 536 driver-specific init and release functions may be provided, 537 likely eventually calling ttm_bo_global_init() and 538 ttm_bo_global_release(), respectively. Also, like the previous 539 object, ttm_global_item_ref() is used to create an initial reference 540 count for the TTM, which will call your initialization function. 541 </para> 542 </sect3> 543 </sect2> 544 <sect2 id="drm-gem"> 545 <title>The Graphics Execution Manager (GEM)</title> 546 <para> 547 The GEM design approach has resulted in a memory manager that doesn't 548 provide full coverage of all (or even all common) use cases in its 549 userspace or kernel API. GEM exposes a set of standard memory-related 550 operations to userspace and a set of helper functions to drivers, and let 551 drivers implement hardware-specific operations with their own private API. 552 </para> 553 <para> 554 The GEM userspace API is described in the 555 <ulink url="http://lwn.net/Articles/283798/"><citetitle>GEM - the Graphics 556 Execution Manager</citetitle></ulink> article on LWN. While slightly 557 outdated, the document provides a good overview of the GEM API principles. 558 Buffer allocation and read and write operations, described as part of the 559 common GEM API, are currently implemented using driver-specific ioctls. 560 </para> 561 <para> 562 GEM is data-agnostic. It manages abstract buffer objects without knowing 563 what individual buffers contain. APIs that require knowledge of buffer 564 contents or purpose, such as buffer allocation or synchronization 565 primitives, are thus outside of the scope of GEM and must be implemented 566 using driver-specific ioctls. 567 </para> 568 <para> 569 On a fundamental level, GEM involves several operations: 570 <itemizedlist> 571 <listitem>Memory allocation and freeing</listitem> 572 <listitem>Command execution</listitem> 573 <listitem>Aperture management at command execution time</listitem> 574 </itemizedlist> 575 Buffer object allocation is relatively straightforward and largely 576 provided by Linux's shmem layer, which provides memory to back each 577 object. 578 </para> 579 <para> 580 Device-specific operations, such as command execution, pinning, buffer 581 read &amp; write, mapping, and domain ownership transfers are left to 582 driver-specific ioctls. 583 </para> 584 <sect3> 585 <title>GEM Initialization</title> 586 <para> 587 Drivers that use GEM must set the DRIVER_GEM bit in the struct 588 <structname>drm_driver</structname> 589 <structfield>driver_features</structfield> field. The DRM core will 590 then automatically initialize the GEM core before calling the 591 <methodname>load</methodname> operation. Behind the scene, this will 592 create a DRM Memory Manager object which provides an address space 593 pool for object allocation. 594 </para> 595 <para> 596 In a KMS configuration, drivers need to allocate and initialize a 597 command ring buffer following core GEM initialization if required by 598 the hardware. UMA devices usually have what is called a "stolen" 599 memory region, which provides space for the initial framebuffer and 600 large, contiguous memory regions required by the device. This space is 601 typically not managed by GEM, and must be initialized separately into 602 its own DRM MM object. 603 </para> 604 </sect3> 605 <sect3> 606 <title>GEM Objects Creation</title> 607 <para> 608 GEM splits creation of GEM objects and allocation of the memory that 609 backs them in two distinct operations. 610 </para> 611 <para> 612 GEM objects are represented by an instance of struct 613 <structname>drm_gem_object</structname>. Drivers usually need to extend 614 GEM objects with private information and thus create a driver-specific 615 GEM object structure type that embeds an instance of struct 616 <structname>drm_gem_object</structname>. 617 </para> 618 <para> 619 To create a GEM object, a driver allocates memory for an instance of its 620 specific GEM object type and initializes the embedded struct 621 <structname>drm_gem_object</structname> with a call to 622 <function>drm_gem_object_init</function>. The function takes a pointer to 623 the DRM device, a pointer to the GEM object and the buffer object size 624 in bytes. 625 </para> 626 <para> 627 GEM uses shmem to allocate anonymous pageable memory. 628 <function>drm_gem_object_init</function> will create an shmfs file of 629 the requested size and store it into the struct 630 <structname>drm_gem_object</structname> <structfield>filp</structfield> 631 field. The memory is used as either main storage for the object when the 632 graphics hardware uses system memory directly or as a backing store 633 otherwise. 634 </para> 635 <para> 636 Drivers are responsible for the actual physical pages allocation by 637 calling <function>shmem_read_mapping_page_gfp</function> for each page. 638 Note that they can decide to allocate pages when initializing the GEM 639 object, or to delay allocation until the memory is needed (for instance 640 when a page fault occurs as a result of a userspace memory access or 641 when the driver needs to start a DMA transfer involving the memory). 642 </para> 643 <para> 644 Anonymous pageable memory allocation is not always desired, for instance 645 when the hardware requires physically contiguous system memory as is 646 often the case in embedded devices. Drivers can create GEM objects with 647 no shmfs backing (called private GEM objects) by initializing them with 648 a call to <function>drm_gem_private_object_init</function> instead of 649 <function>drm_gem_object_init</function>. Storage for private GEM 650 objects must be managed by drivers. 651 </para> 652 <para> 653 Drivers that do not need to extend GEM objects with private information 654 can call the <function>drm_gem_object_alloc</function> function to 655 allocate and initialize a struct <structname>drm_gem_object</structname> 656 instance. The GEM core will call the optional driver 657 <methodname>gem_init_object</methodname> operation after initializing 658 the GEM object with <function>drm_gem_object_init</function>. 659 <synopsis>int (*gem_init_object) (struct drm_gem_object *obj);</synopsis> 660 </para> 661 <para> 662 No alloc-and-init function exists for private GEM objects. 663 </para> 664 </sect3> 665 <sect3> 666 <title>GEM Objects Lifetime</title> 667 <para> 668 All GEM objects are reference-counted by the GEM core. References can be 669 acquired and release by <function>calling drm_gem_object_reference</function> 670 and <function>drm_gem_object_unreference</function> respectively. The 671 caller must hold the <structname>drm_device</structname> 672 <structfield>struct_mutex</structfield> lock. As a convenience, GEM 673 provides the <function>drm_gem_object_reference_unlocked</function> and 674 <function>drm_gem_object_unreference_unlocked</function> functions that 675 can be called without holding the lock. 676 </para> 677 <para> 678 When the last reference to a GEM object is released the GEM core calls 679 the <structname>drm_driver</structname> 680 <methodname>gem_free_object</methodname> operation. That operation is 681 mandatory for GEM-enabled drivers and must free the GEM object and all 682 associated resources. 683 </para> 684 <para> 685 <synopsis>void (*gem_free_object) (struct drm_gem_object *obj);</synopsis> 686 Drivers are responsible for freeing all GEM object resources, including 687 the resources created by the GEM core. If an mmap offset has been 688 created for the object (in which case 689 <structname>drm_gem_object</structname>::<structfield>map_list</structfield>::<structfield>map</structfield> 690 is not NULL) it must be freed by a call to 691 <function>drm_gem_free_mmap_offset</function>. The shmfs backing store 692 must be released by calling <function>drm_gem_object_release</function> 693 (that function can safely be called if no shmfs backing store has been 694 created). 695 </para> 696 </sect3> 697 <sect3> 698 <title>GEM Objects Naming</title> 699 <para> 700 Communication between userspace and the kernel refers to GEM objects 701 using local handles, global names or, more recently, file descriptors. 702 All of those are 32-bit integer values; the usual Linux kernel limits 703 apply to the file descriptors. 704 </para> 705 <para> 706 GEM handles are local to a DRM file. Applications get a handle to a GEM 707 object through a driver-specific ioctl, and can use that handle to refer 708 to the GEM object in other standard or driver-specific ioctls. Closing a 709 DRM file handle frees all its GEM handles and dereferences the 710 associated GEM objects. 711 </para> 712 <para> 713 To create a handle for a GEM object drivers call 714 <function>drm_gem_handle_create</function>. The function takes a pointer 715 to the DRM file and the GEM object and returns a locally unique handle. 716 When the handle is no longer needed drivers delete it with a call to 717 <function>drm_gem_handle_delete</function>. Finally the GEM object 718 associated with a handle can be retrieved by a call to 719 <function>drm_gem_object_lookup</function>. 720 </para> 721 <para> 722 Handles don't take ownership of GEM objects, they only take a reference 723 to the object that will be dropped when the handle is destroyed. To 724 avoid leaking GEM objects, drivers must make sure they drop the 725 reference(s) they own (such as the initial reference taken at object 726 creation time) as appropriate, without any special consideration for the 727 handle. For example, in the particular case of combined GEM object and 728 handle creation in the implementation of the 729 <methodname>dumb_create</methodname> operation, drivers must drop the 730 initial reference to the GEM object before returning the handle. 731 </para> 732 <para> 733 GEM names are similar in purpose to handles but are not local to DRM 734 files. They can be passed between processes to reference a GEM object 735 globally. Names can't be used directly to refer to objects in the DRM 736 API, applications must convert handles to names and names to handles 737 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls 738 respectively. The conversion is handled by the DRM core without any 739 driver-specific support. 740 </para> 741 <para> 742 GEM also supports buffer sharing with dma-buf file descriptors through 743 PRIME. GEM-based drivers must use the provided helpers functions to 744 implement the exporting and importing correctly. See <xref linkend="drm-prime-support" />. 745 Since sharing file descriptors is inherently more secure than the 746 easily guessable and global GEM names it is the preferred buffer 747 sharing mechanism. Sharing buffers through GEM names is only supported 748 for legacy userspace. Furthermore PRIME also allows cross-device 749 buffer sharing since it is based on dma-bufs. 750 </para> 751 </sect3> 752 <sect3 id="drm-gem-objects-mapping"> 753 <title>GEM Objects Mapping</title> 754 <para> 755 Because mapping operations are fairly heavyweight GEM favours 756 read/write-like access to buffers, implemented through driver-specific 757 ioctls, over mapping buffers to userspace. However, when random access 758 to the buffer is needed (to perform software rendering for instance), 759 direct access to the object can be more efficient. 760 </para> 761 <para> 762 The mmap system call can't be used directly to map GEM objects, as they 763 don't have their own file handle. Two alternative methods currently 764 co-exist to map GEM objects to userspace. The first method uses a 765 driver-specific ioctl to perform the mapping operation, calling 766 <function>do_mmap</function> under the hood. This is often considered 767 dubious, seems to be discouraged for new GEM-enabled drivers, and will 768 thus not be described here. 769 </para> 770 <para> 771 The second method uses the mmap system call on the DRM file handle. 772 <synopsis>void *mmap(void *addr, size_t length, int prot, int flags, int fd, 773 off_t offset);</synopsis> 774 DRM identifies the GEM object to be mapped by a fake offset passed 775 through the mmap offset argument. Prior to being mapped, a GEM object 776 must thus be associated with a fake offset. To do so, drivers must call 777 <function>drm_gem_create_mmap_offset</function> on the object. The 778 function allocates a fake offset range from a pool and stores the 779 offset divided by PAGE_SIZE in 780 <literal>obj-&gt;map_list.hash.key</literal>. Care must be taken not to 781 call <function>drm_gem_create_mmap_offset</function> if a fake offset 782 has already been allocated for the object. This can be tested by 783 <literal>obj-&gt;map_list.map</literal> being non-NULL. 784 </para> 785 <para> 786 Once allocated, the fake offset value 787 (<literal>obj-&gt;map_list.hash.key &lt;&lt; PAGE_SHIFT</literal>) 788 must be passed to the application in a driver-specific way and can then 789 be used as the mmap offset argument. 790 </para> 791 <para> 792 The GEM core provides a helper method <function>drm_gem_mmap</function> 793 to handle object mapping. The method can be set directly as the mmap 794 file operation handler. It will look up the GEM object based on the 795 offset value and set the VMA operations to the 796 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 797 field. Note that <function>drm_gem_mmap</function> doesn't map memory to 798 userspace, but relies on the driver-provided fault handler to map pages 799 individually. 800 </para> 801 <para> 802 To use <function>drm_gem_mmap</function>, drivers must fill the struct 803 <structname>drm_driver</structname> <structfield>gem_vm_ops</structfield> 804 field with a pointer to VM operations. 805 </para> 806 <para> 807 <synopsis>struct vm_operations_struct *gem_vm_ops 808 809 struct vm_operations_struct { 810 void (*open)(struct vm_area_struct * area); 811 void (*close)(struct vm_area_struct * area); 812 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 813 };</synopsis> 814 </para> 815 <para> 816 The <methodname>open</methodname> and <methodname>close</methodname> 817 operations must update the GEM object reference count. Drivers can use 818 the <function>drm_gem_vm_open</function> and 819 <function>drm_gem_vm_close</function> helper functions directly as open 820 and close handlers. 821 </para> 822 <para> 823 The fault operation handler is responsible for mapping individual pages 824 to userspace when a page fault occurs. Depending on the memory 825 allocation scheme, drivers can allocate pages at fault time, or can 826 decide to allocate memory for the GEM object at the time the object is 827 created. 828 </para> 829 <para> 830 Drivers that want to map the GEM object upfront instead of handling page 831 faults can implement their own mmap file operation handler. 832 </para> 833 </sect3> 834 <sect3> 835 <title>Memory Coherency</title> 836 <para> 837 When mapped to the device or used in a command buffer, backing pages 838 for an object are flushed to memory and marked write combined so as to 839 be coherent with the GPU. Likewise, if the CPU accesses an object 840 after the GPU has finished rendering to the object, then the object 841 must be made coherent with the CPU's view of memory, usually involving 842 GPU cache flushing of various kinds. This core CPU&lt;-&gt;GPU 843 coherency management is provided by a device-specific ioctl, which 844 evaluates an object's current domain and performs any necessary 845 flushing or synchronization to put the object into the desired 846 coherency domain (note that the object may be busy, i.e. an active 847 render target; in that case, setting the domain blocks the client and 848 waits for rendering to complete before performing any necessary 849 flushing operations). 850 </para> 851 </sect3> 852 <sect3> 853 <title>Command Execution</title> 854 <para> 855 Perhaps the most important GEM function for GPU devices is providing a 856 command execution interface to clients. Client programs construct 857 command buffers containing references to previously allocated memory 858 objects, and then submit them to GEM. At that point, GEM takes care to 859 bind all the objects into the GTT, execute the buffer, and provide 860 necessary synchronization between clients accessing the same buffers. 861 This often involves evicting some objects from the GTT and re-binding 862 others (a fairly expensive operation), and providing relocation 863 support which hides fixed GTT offsets from clients. Clients must take 864 care not to submit command buffers that reference more objects than 865 can fit in the GTT; otherwise, GEM will reject them and no rendering 866 will occur. Similarly, if several objects in the buffer require fence 867 registers to be allocated for correct rendering (e.g. 2D blits on 868 pre-965 chips), care must be taken not to require more fence registers 869 than are available to the client. Such resource management should be 870 abstracted from the client in libdrm. 871 </para> 872 </sect3> 873 <sect3> 874 <title>GEM Function Reference</title> 875!Edrivers/gpu/drm/drm_gem.c 876 </sect3> 877 </sect2> 878 <sect2> 879 <title>VMA Offset Manager</title> 880!Pdrivers/gpu/drm/drm_vma_manager.c vma offset manager 881!Edrivers/gpu/drm/drm_vma_manager.c 882!Iinclude/drm/drm_vma_manager.h 883 </sect2> 884 <sect2 id="drm-prime-support"> 885 <title>PRIME Buffer Sharing</title> 886 <para> 887 PRIME is the cross device buffer sharing framework in drm, originally 888 created for the OPTIMUS range of multi-gpu platforms. To userspace 889 PRIME buffers are dma-buf based file descriptors. 890 </para> 891 <sect3> 892 <title>Overview and Driver Interface</title> 893 <para> 894 Similar to GEM global names, PRIME file descriptors are 895 also used to share buffer objects across processes. They offer 896 additional security: as file descriptors must be explicitly sent over 897 UNIX domain sockets to be shared between applications, they can't be 898 guessed like the globally unique GEM names. 899 </para> 900 <para> 901 Drivers that support the PRIME 902 API must set the DRIVER_PRIME bit in the struct 903 <structname>drm_driver</structname> 904 <structfield>driver_features</structfield> field, and implement the 905 <methodname>prime_handle_to_fd</methodname> and 906 <methodname>prime_fd_to_handle</methodname> operations. 907 </para> 908 <para> 909 <synopsis>int (*prime_handle_to_fd)(struct drm_device *dev, 910 struct drm_file *file_priv, uint32_t handle, 911 uint32_t flags, int *prime_fd); 912int (*prime_fd_to_handle)(struct drm_device *dev, 913 struct drm_file *file_priv, int prime_fd, 914 uint32_t *handle);</synopsis> 915 Those two operations convert a handle to a PRIME file descriptor and 916 vice versa. Drivers must use the kernel dma-buf buffer sharing framework 917 to manage the PRIME file descriptors. Similar to the mode setting 918 API PRIME is agnostic to the underlying buffer object manager, as 919 long as handles are 32bit unsigned integers. 920 </para> 921 <para> 922 While non-GEM drivers must implement the operations themselves, GEM 923 drivers must use the <function>drm_gem_prime_handle_to_fd</function> 924 and <function>drm_gem_prime_fd_to_handle</function> helper functions. 925 Those helpers rely on the driver 926 <methodname>gem_prime_export</methodname> and 927 <methodname>gem_prime_import</methodname> operations to create a dma-buf 928 instance from a GEM object (dma-buf exporter role) and to create a GEM 929 object from a dma-buf instance (dma-buf importer role). 930 </para> 931 <para> 932 <synopsis>struct dma_buf * (*gem_prime_export)(struct drm_device *dev, 933 struct drm_gem_object *obj, 934 int flags); 935struct drm_gem_object * (*gem_prime_import)(struct drm_device *dev, 936 struct dma_buf *dma_buf);</synopsis> 937 These two operations are mandatory for GEM drivers that support 938 PRIME. 939 </para> 940 </sect3> 941 <sect3> 942 <title>PRIME Helper Functions</title> 943!Pdrivers/gpu/drm/drm_prime.c PRIME Helpers 944 </sect3> 945 </sect2> 946 <sect2> 947 <title>PRIME Function References</title> 948!Edrivers/gpu/drm/drm_prime.c 949 </sect2> 950 <sect2> 951 <title>DRM MM Range Allocator</title> 952 <sect3> 953 <title>Overview</title> 954!Pdrivers/gpu/drm/drm_mm.c Overview 955 </sect3> 956 <sect3> 957 <title>LRU Scan/Eviction Support</title> 958!Pdrivers/gpu/drm/drm_mm.c lru scan roaster 959 </sect3> 960 </sect2> 961 <sect2> 962 <title>DRM MM Range Allocator Function References</title> 963!Edrivers/gpu/drm/drm_mm.c 964!Iinclude/drm/drm_mm.h 965 </sect2> 966 <sect2> 967 <title>CMA Helper Functions Reference</title> 968!Pdrivers/gpu/drm/drm_gem_cma_helper.c cma helpers 969!Edrivers/gpu/drm/drm_gem_cma_helper.c 970!Iinclude/drm/drm_gem_cma_helper.h 971 </sect2> 972 </sect1> 973 974 <!-- Internals: mode setting --> 975 976 <sect1 id="drm-mode-setting"> 977 <title>Mode Setting</title> 978 <para> 979 Drivers must initialize the mode setting core by calling 980 <function>drm_mode_config_init</function> on the DRM device. The function 981 initializes the <structname>drm_device</structname> 982 <structfield>mode_config</structfield> field and never fails. Once done, 983 mode configuration must be setup by initializing the following fields. 984 </para> 985 <itemizedlist> 986 <listitem> 987 <synopsis>int min_width, min_height; 988int max_width, max_height;</synopsis> 989 <para> 990 Minimum and maximum width and height of the frame buffers in pixel 991 units. 992 </para> 993 </listitem> 994 <listitem> 995 <synopsis>struct drm_mode_config_funcs *funcs;</synopsis> 996 <para>Mode setting functions.</para> 997 </listitem> 998 </itemizedlist> 999 <sect2> 1000 <title>Display Modes Function Reference</title> 1001!Iinclude/drm/drm_modes.h 1002!Edrivers/gpu/drm/drm_modes.c 1003 </sect2> 1004 <sect2> 1005 <title>Atomic Mode Setting Function Reference</title> 1006!Edrivers/gpu/drm/drm_atomic.c 1007 </sect2> 1008 <sect2> 1009 <title>Frame Buffer Creation</title> 1010 <synopsis>struct drm_framebuffer *(*fb_create)(struct drm_device *dev, 1011 struct drm_file *file_priv, 1012 struct drm_mode_fb_cmd2 *mode_cmd);</synopsis> 1013 <para> 1014 Frame buffers are abstract memory objects that provide a source of 1015 pixels to scanout to a CRTC. Applications explicitly request the 1016 creation of frame buffers through the DRM_IOCTL_MODE_ADDFB(2) ioctls and 1017 receive an opaque handle that can be passed to the KMS CRTC control, 1018 plane configuration and page flip functions. 1019 </para> 1020 <para> 1021 Frame buffers rely on the underneath memory manager for low-level memory 1022 operations. When creating a frame buffer applications pass a memory 1023 handle (or a list of memory handles for multi-planar formats) through 1024 the <parameter>drm_mode_fb_cmd2</parameter> argument. For drivers using 1025 GEM as their userspace buffer management interface this would be a GEM 1026 handle. Drivers are however free to use their own backing storage object 1027 handles, e.g. vmwgfx directly exposes special TTM handles to userspace 1028 and so expects TTM handles in the create ioctl and not GEM handles. 1029 </para> 1030 <para> 1031 Drivers must first validate the requested frame buffer parameters passed 1032 through the mode_cmd argument. In particular this is where invalid 1033 sizes, pixel formats or pitches can be caught. 1034 </para> 1035 <para> 1036 If the parameters are deemed valid, drivers then create, initialize and 1037 return an instance of struct <structname>drm_framebuffer</structname>. 1038 If desired the instance can be embedded in a larger driver-specific 1039 structure. Drivers must fill its <structfield>width</structfield>, 1040 <structfield>height</structfield>, <structfield>pitches</structfield>, 1041 <structfield>offsets</structfield>, <structfield>depth</structfield>, 1042 <structfield>bits_per_pixel</structfield> and 1043 <structfield>pixel_format</structfield> fields from the values passed 1044 through the <parameter>drm_mode_fb_cmd2</parameter> argument. They 1045 should call the <function>drm_helper_mode_fill_fb_struct</function> 1046 helper function to do so. 1047 </para> 1048 1049 <para> 1050 The initialization of the new framebuffer instance is finalized with a 1051 call to <function>drm_framebuffer_init</function> which takes a pointer 1052 to DRM frame buffer operations (struct 1053 <structname>drm_framebuffer_funcs</structname>). Note that this function 1054 publishes the framebuffer and so from this point on it can be accessed 1055 concurrently from other threads. Hence it must be the last step in the 1056 driver's framebuffer initialization sequence. Frame buffer operations 1057 are 1058 <itemizedlist> 1059 <listitem> 1060 <synopsis>int (*create_handle)(struct drm_framebuffer *fb, 1061 struct drm_file *file_priv, unsigned int *handle);</synopsis> 1062 <para> 1063 Create a handle to the frame buffer underlying memory object. If 1064 the frame buffer uses a multi-plane format, the handle will 1065 reference the memory object associated with the first plane. 1066 </para> 1067 <para> 1068 Drivers call <function>drm_gem_handle_create</function> to create 1069 the handle. 1070 </para> 1071 </listitem> 1072 <listitem> 1073 <synopsis>void (*destroy)(struct drm_framebuffer *framebuffer);</synopsis> 1074 <para> 1075 Destroy the frame buffer object and frees all associated 1076 resources. Drivers must call 1077 <function>drm_framebuffer_cleanup</function> to free resources 1078 allocated by the DRM core for the frame buffer object, and must 1079 make sure to unreference all memory objects associated with the 1080 frame buffer. Handles created by the 1081 <methodname>create_handle</methodname> operation are released by 1082 the DRM core. 1083 </para> 1084 </listitem> 1085 <listitem> 1086 <synopsis>int (*dirty)(struct drm_framebuffer *framebuffer, 1087 struct drm_file *file_priv, unsigned flags, unsigned color, 1088 struct drm_clip_rect *clips, unsigned num_clips);</synopsis> 1089 <para> 1090 This optional operation notifies the driver that a region of the 1091 frame buffer has changed in response to a DRM_IOCTL_MODE_DIRTYFB 1092 ioctl call. 1093 </para> 1094 </listitem> 1095 </itemizedlist> 1096 </para> 1097 <para> 1098 The lifetime of a drm framebuffer is controlled with a reference count, 1099 drivers can grab additional references with 1100 <function>drm_framebuffer_reference</function>and drop them 1101 again with <function>drm_framebuffer_unreference</function>. For 1102 driver-private framebuffers for which the last reference is never 1103 dropped (e.g. for the fbdev framebuffer when the struct 1104 <structname>drm_framebuffer</structname> is embedded into the fbdev 1105 helper struct) drivers can manually clean up a framebuffer at module 1106 unload time with 1107 <function>drm_framebuffer_unregister_private</function>. 1108 </para> 1109 </sect2> 1110 <sect2> 1111 <title>Dumb Buffer Objects</title> 1112 <para> 1113 The KMS API doesn't standardize backing storage object creation and 1114 leaves it to driver-specific ioctls. Furthermore actually creating a 1115 buffer object even for GEM-based drivers is done through a 1116 driver-specific ioctl - GEM only has a common userspace interface for 1117 sharing and destroying objects. While not an issue for full-fledged 1118 graphics stacks that include device-specific userspace components (in 1119 libdrm for instance), this limit makes DRM-based early boot graphics 1120 unnecessarily complex. 1121 </para> 1122 <para> 1123 Dumb objects partly alleviate the problem by providing a standard 1124 API to create dumb buffers suitable for scanout, which can then be used 1125 to create KMS frame buffers. 1126 </para> 1127 <para> 1128 To support dumb objects drivers must implement the 1129 <methodname>dumb_create</methodname>, 1130 <methodname>dumb_destroy</methodname> and 1131 <methodname>dumb_map_offset</methodname> operations. 1132 </para> 1133 <itemizedlist> 1134 <listitem> 1135 <synopsis>int (*dumb_create)(struct drm_file *file_priv, struct drm_device *dev, 1136 struct drm_mode_create_dumb *args);</synopsis> 1137 <para> 1138 The <methodname>dumb_create</methodname> operation creates a driver 1139 object (GEM or TTM handle) suitable for scanout based on the 1140 width, height and depth from the struct 1141 <structname>drm_mode_create_dumb</structname> argument. It fills the 1142 argument's <structfield>handle</structfield>, 1143 <structfield>pitch</structfield> and <structfield>size</structfield> 1144 fields with a handle for the newly created object and its line 1145 pitch and size in bytes. 1146 </para> 1147 </listitem> 1148 <listitem> 1149 <synopsis>int (*dumb_destroy)(struct drm_file *file_priv, struct drm_device *dev, 1150 uint32_t handle);</synopsis> 1151 <para> 1152 The <methodname>dumb_destroy</methodname> operation destroys a dumb 1153 object created by <methodname>dumb_create</methodname>. 1154 </para> 1155 </listitem> 1156 <listitem> 1157 <synopsis>int (*dumb_map_offset)(struct drm_file *file_priv, struct drm_device *dev, 1158 uint32_t handle, uint64_t *offset);</synopsis> 1159 <para> 1160 The <methodname>dumb_map_offset</methodname> operation associates an 1161 mmap fake offset with the object given by the handle and returns 1162 it. Drivers must use the 1163 <function>drm_gem_create_mmap_offset</function> function to 1164 associate the fake offset as described in 1165 <xref linkend="drm-gem-objects-mapping"/>. 1166 </para> 1167 </listitem> 1168 </itemizedlist> 1169 <para> 1170 Note that dumb objects may not be used for gpu acceleration, as has been 1171 attempted on some ARM embedded platforms. Such drivers really must have 1172 a hardware-specific ioctl to allocate suitable buffer objects. 1173 </para> 1174 </sect2> 1175 <sect2> 1176 <title>Output Polling</title> 1177 <synopsis>void (*output_poll_changed)(struct drm_device *dev);</synopsis> 1178 <para> 1179 This operation notifies the driver that the status of one or more 1180 connectors has changed. Drivers that use the fb helper can just call the 1181 <function>drm_fb_helper_hotplug_event</function> function to handle this 1182 operation. 1183 </para> 1184 </sect2> 1185 <sect2> 1186 <title>Locking</title> 1187 <para> 1188 Beside some lookup structures with their own locking (which is hidden 1189 behind the interface functions) most of the modeset state is protected 1190 by the <code>dev-&lt;mode_config.lock</code> mutex and additionally 1191 per-crtc locks to allow cursor updates, pageflips and similar operations 1192 to occur concurrently with background tasks like output detection. 1193 Operations which cross domains like a full modeset always grab all 1194 locks. Drivers there need to protect resources shared between crtcs with 1195 additional locking. They also need to be careful to always grab the 1196 relevant crtc locks if a modset functions touches crtc state, e.g. for 1197 load detection (which does only grab the <code>mode_config.lock</code> 1198 to allow concurrent screen updates on live crtcs). 1199 </para> 1200 </sect2> 1201 </sect1> 1202 1203 <!-- Internals: kms initialization and cleanup --> 1204 1205 <sect1 id="drm-kms-init"> 1206 <title>KMS Initialization and Cleanup</title> 1207 <para> 1208 A KMS device is abstracted and exposed as a set of planes, CRTCs, encoders 1209 and connectors. KMS drivers must thus create and initialize all those 1210 objects at load time after initializing mode setting. 1211 </para> 1212 <sect2> 1213 <title>CRTCs (struct <structname>drm_crtc</structname>)</title> 1214 <para> 1215 A CRTC is an abstraction representing a part of the chip that contains a 1216 pointer to a scanout buffer. Therefore, the number of CRTCs available 1217 determines how many independent scanout buffers can be active at any 1218 given time. The CRTC structure contains several fields to support this: 1219 a pointer to some video memory (abstracted as a frame buffer object), a 1220 display mode, and an (x, y) offset into the video memory to support 1221 panning or configurations where one piece of video memory spans multiple 1222 CRTCs. 1223 </para> 1224 <sect3> 1225 <title>CRTC Initialization</title> 1226 <para> 1227 A KMS device must create and register at least one struct 1228 <structname>drm_crtc</structname> instance. The instance is allocated 1229 and zeroed by the driver, possibly as part of a larger structure, and 1230 registered with a call to <function>drm_crtc_init</function> with a 1231 pointer to CRTC functions. 1232 </para> 1233 </sect3> 1234 <sect3 id="drm-kms-crtcops"> 1235 <title>CRTC Operations</title> 1236 <sect4> 1237 <title>Set Configuration</title> 1238 <synopsis>int (*set_config)(struct drm_mode_set *set);</synopsis> 1239 <para> 1240 Apply a new CRTC configuration to the device. The configuration 1241 specifies a CRTC, a frame buffer to scan out from, a (x,y) position in 1242 the frame buffer, a display mode and an array of connectors to drive 1243 with the CRTC if possible. 1244 </para> 1245 <para> 1246 If the frame buffer specified in the configuration is NULL, the driver 1247 must detach all encoders connected to the CRTC and all connectors 1248 attached to those encoders and disable them. 1249 </para> 1250 <para> 1251 This operation is called with the mode config lock held. 1252 </para> 1253 <note><para> 1254 Note that the drm core has no notion of restoring the mode setting 1255 state after resume, since all resume handling is in the full 1256 responsibility of the driver. The common mode setting helper library 1257 though provides a helper which can be used for this: 1258 <function>drm_helper_resume_force_mode</function>. 1259 </para></note> 1260 </sect4> 1261 <sect4> 1262 <title>Page Flipping</title> 1263 <synopsis>int (*page_flip)(struct drm_crtc *crtc, struct drm_framebuffer *fb, 1264 struct drm_pending_vblank_event *event);</synopsis> 1265 <para> 1266 Schedule a page flip to the given frame buffer for the CRTC. This 1267 operation is called with the mode config mutex held. 1268 </para> 1269 <para> 1270 Page flipping is a synchronization mechanism that replaces the frame 1271 buffer being scanned out by the CRTC with a new frame buffer during 1272 vertical blanking, avoiding tearing. When an application requests a page 1273 flip the DRM core verifies that the new frame buffer is large enough to 1274 be scanned out by the CRTC in the currently configured mode and then 1275 calls the CRTC <methodname>page_flip</methodname> operation with a 1276 pointer to the new frame buffer. 1277 </para> 1278 <para> 1279 The <methodname>page_flip</methodname> operation schedules a page flip. 1280 Once any pending rendering targeting the new frame buffer has 1281 completed, the CRTC will be reprogrammed to display that frame buffer 1282 after the next vertical refresh. The operation must return immediately 1283 without waiting for rendering or page flip to complete and must block 1284 any new rendering to the frame buffer until the page flip completes. 1285 </para> 1286 <para> 1287 If a page flip can be successfully scheduled the driver must set the 1288 <code>drm_crtc-&lt;fb</code> field to the new framebuffer pointed to 1289 by <code>fb</code>. This is important so that the reference counting 1290 on framebuffers stays balanced. 1291 </para> 1292 <para> 1293 If a page flip is already pending, the 1294 <methodname>page_flip</methodname> operation must return 1295 -<errorname>EBUSY</errorname>. 1296 </para> 1297 <para> 1298 To synchronize page flip to vertical blanking the driver will likely 1299 need to enable vertical blanking interrupts. It should call 1300 <function>drm_vblank_get</function> for that purpose, and call 1301 <function>drm_vblank_put</function> after the page flip completes. 1302 </para> 1303 <para> 1304 If the application has requested to be notified when page flip completes 1305 the <methodname>page_flip</methodname> operation will be called with a 1306 non-NULL <parameter>event</parameter> argument pointing to a 1307 <structname>drm_pending_vblank_event</structname> instance. Upon page 1308 flip completion the driver must call <methodname>drm_send_vblank_event</methodname> 1309 to fill in the event and send to wake up any waiting processes. 1310 This can be performed with 1311 <programlisting><![CDATA[ 1312 spin_lock_irqsave(&dev->event_lock, flags); 1313 ... 1314 drm_send_vblank_event(dev, pipe, event); 1315 spin_unlock_irqrestore(&dev->event_lock, flags); 1316 ]]></programlisting> 1317 </para> 1318 <note><para> 1319 FIXME: Could drivers that don't need to wait for rendering to complete 1320 just add the event to <literal>dev-&gt;vblank_event_list</literal> and 1321 let the DRM core handle everything, as for "normal" vertical blanking 1322 events? 1323 </para></note> 1324 <para> 1325 While waiting for the page flip to complete, the 1326 <literal>event-&gt;base.link</literal> list head can be used freely by 1327 the driver to store the pending event in a driver-specific list. 1328 </para> 1329 <para> 1330 If the file handle is closed before the event is signaled, drivers must 1331 take care to destroy the event in their 1332 <methodname>preclose</methodname> operation (and, if needed, call 1333 <function>drm_vblank_put</function>). 1334 </para> 1335 </sect4> 1336 <sect4> 1337 <title>Miscellaneous</title> 1338 <itemizedlist> 1339 <listitem> 1340 <synopsis>void (*set_property)(struct drm_crtc *crtc, 1341 struct drm_property *property, uint64_t value);</synopsis> 1342 <para> 1343 Set the value of the given CRTC property to 1344 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1345 for more information about properties. 1346 </para> 1347 </listitem> 1348 <listitem> 1349 <synopsis>void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, 1350 uint32_t start, uint32_t size);</synopsis> 1351 <para> 1352 Apply a gamma table to the device. The operation is optional. 1353 </para> 1354 </listitem> 1355 <listitem> 1356 <synopsis>void (*destroy)(struct drm_crtc *crtc);</synopsis> 1357 <para> 1358 Destroy the CRTC when not needed anymore. See 1359 <xref linkend="drm-kms-init"/>. 1360 </para> 1361 </listitem> 1362 </itemizedlist> 1363 </sect4> 1364 </sect3> 1365 </sect2> 1366 <sect2> 1367 <title>Planes (struct <structname>drm_plane</structname>)</title> 1368 <para> 1369 A plane represents an image source that can be blended with or overlayed 1370 on top of a CRTC during the scanout process. Planes are associated with 1371 a frame buffer to crop a portion of the image memory (source) and 1372 optionally scale it to a destination size. The result is then blended 1373 with or overlayed on top of a CRTC. 1374 </para> 1375 <para> 1376 The DRM core recognizes three types of planes: 1377 <itemizedlist> 1378 <listitem> 1379 DRM_PLANE_TYPE_PRIMARY represents a "main" plane for a CRTC. Primary 1380 planes are the planes operated upon by by CRTC modesetting and flipping 1381 operations described in <xref linkend="drm-kms-crtcops"/>. 1382 </listitem> 1383 <listitem> 1384 DRM_PLANE_TYPE_CURSOR represents a "cursor" plane for a CRTC. Cursor 1385 planes are the planes operated upon by the DRM_IOCTL_MODE_CURSOR and 1386 DRM_IOCTL_MODE_CURSOR2 ioctls. 1387 </listitem> 1388 <listitem> 1389 DRM_PLANE_TYPE_OVERLAY represents all non-primary, non-cursor planes. 1390 Some drivers refer to these types of planes as "sprites" internally. 1391 </listitem> 1392 </itemizedlist> 1393 For compatibility with legacy userspace, only overlay planes are made 1394 available to userspace by default. Userspace clients may set the 1395 DRM_CLIENT_CAP_UNIVERSAL_PLANES client capability bit to indicate that 1396 they wish to receive a universal plane list containing all plane types. 1397 </para> 1398 <sect3> 1399 <title>Plane Initialization</title> 1400 <para> 1401 To create a plane, a KMS drivers allocates and 1402 zeroes an instances of struct <structname>drm_plane</structname> 1403 (possibly as part of a larger structure) and registers it with a call 1404 to <function>drm_universal_plane_init</function>. The function takes a bitmask 1405 of the CRTCs that can be associated with the plane, a pointer to the 1406 plane functions, a list of format supported formats, and the type of 1407 plane (primary, cursor, or overlay) being initialized. 1408 </para> 1409 <para> 1410 Cursor and overlay planes are optional. All drivers should provide 1411 one primary plane per CRTC (although this requirement may change in 1412 the future); drivers that do not wish to provide special handling for 1413 primary planes may make use of the helper functions described in 1414 <xref linkend="drm-kms-planehelpers"/> to create and register a 1415 primary plane with standard capabilities. 1416 </para> 1417 </sect3> 1418 <sect3> 1419 <title>Plane Operations</title> 1420 <itemizedlist> 1421 <listitem> 1422 <synopsis>int (*update_plane)(struct drm_plane *plane, struct drm_crtc *crtc, 1423 struct drm_framebuffer *fb, int crtc_x, int crtc_y, 1424 unsigned int crtc_w, unsigned int crtc_h, 1425 uint32_t src_x, uint32_t src_y, 1426 uint32_t src_w, uint32_t src_h);</synopsis> 1427 <para> 1428 Enable and configure the plane to use the given CRTC and frame buffer. 1429 </para> 1430 <para> 1431 The source rectangle in frame buffer memory coordinates is given by 1432 the <parameter>src_x</parameter>, <parameter>src_y</parameter>, 1433 <parameter>src_w</parameter> and <parameter>src_h</parameter> 1434 parameters (as 16.16 fixed point values). Devices that don't support 1435 subpixel plane coordinates can ignore the fractional part. 1436 </para> 1437 <para> 1438 The destination rectangle in CRTC coordinates is given by the 1439 <parameter>crtc_x</parameter>, <parameter>crtc_y</parameter>, 1440 <parameter>crtc_w</parameter> and <parameter>crtc_h</parameter> 1441 parameters (as integer values). Devices scale the source rectangle to 1442 the destination rectangle. If scaling is not supported, and the source 1443 rectangle size doesn't match the destination rectangle size, the 1444 driver must return a -<errorname>EINVAL</errorname> error. 1445 </para> 1446 </listitem> 1447 <listitem> 1448 <synopsis>int (*disable_plane)(struct drm_plane *plane);</synopsis> 1449 <para> 1450 Disable the plane. The DRM core calls this method in response to a 1451 DRM_IOCTL_MODE_SETPLANE ioctl call with the frame buffer ID set to 0. 1452 Disabled planes must not be processed by the CRTC. 1453 </para> 1454 </listitem> 1455 <listitem> 1456 <synopsis>void (*destroy)(struct drm_plane *plane);</synopsis> 1457 <para> 1458 Destroy the plane when not needed anymore. See 1459 <xref linkend="drm-kms-init"/>. 1460 </para> 1461 </listitem> 1462 </itemizedlist> 1463 </sect3> 1464 </sect2> 1465 <sect2> 1466 <title>Encoders (struct <structname>drm_encoder</structname>)</title> 1467 <para> 1468 An encoder takes pixel data from a CRTC and converts it to a format 1469 suitable for any attached connectors. On some devices, it may be 1470 possible to have a CRTC send data to more than one encoder. In that 1471 case, both encoders would receive data from the same scanout buffer, 1472 resulting in a "cloned" display configuration across the connectors 1473 attached to each encoder. 1474 </para> 1475 <sect3> 1476 <title>Encoder Initialization</title> 1477 <para> 1478 As for CRTCs, a KMS driver must create, initialize and register at 1479 least one struct <structname>drm_encoder</structname> instance. The 1480 instance is allocated and zeroed by the driver, possibly as part of a 1481 larger structure. 1482 </para> 1483 <para> 1484 Drivers must initialize the struct <structname>drm_encoder</structname> 1485 <structfield>possible_crtcs</structfield> and 1486 <structfield>possible_clones</structfield> fields before registering the 1487 encoder. Both fields are bitmasks of respectively the CRTCs that the 1488 encoder can be connected to, and sibling encoders candidate for cloning. 1489 </para> 1490 <para> 1491 After being initialized, the encoder must be registered with a call to 1492 <function>drm_encoder_init</function>. The function takes a pointer to 1493 the encoder functions and an encoder type. Supported types are 1494 <itemizedlist> 1495 <listitem> 1496 DRM_MODE_ENCODER_DAC for VGA and analog on DVI-I/DVI-A 1497 </listitem> 1498 <listitem> 1499 DRM_MODE_ENCODER_TMDS for DVI, HDMI and (embedded) DisplayPort 1500 </listitem> 1501 <listitem> 1502 DRM_MODE_ENCODER_LVDS for display panels 1503 </listitem> 1504 <listitem> 1505 DRM_MODE_ENCODER_TVDAC for TV output (Composite, S-Video, Component, 1506 SCART) 1507 </listitem> 1508 <listitem> 1509 DRM_MODE_ENCODER_VIRTUAL for virtual machine displays 1510 </listitem> 1511 </itemizedlist> 1512 </para> 1513 <para> 1514 Encoders must be attached to a CRTC to be used. DRM drivers leave 1515 encoders unattached at initialization time. Applications (or the fbdev 1516 compatibility layer when implemented) are responsible for attaching the 1517 encoders they want to use to a CRTC. 1518 </para> 1519 </sect3> 1520 <sect3> 1521 <title>Encoder Operations</title> 1522 <itemizedlist> 1523 <listitem> 1524 <synopsis>void (*destroy)(struct drm_encoder *encoder);</synopsis> 1525 <para> 1526 Called to destroy the encoder when not needed anymore. See 1527 <xref linkend="drm-kms-init"/>. 1528 </para> 1529 </listitem> 1530 <listitem> 1531 <synopsis>void (*set_property)(struct drm_plane *plane, 1532 struct drm_property *property, uint64_t value);</synopsis> 1533 <para> 1534 Set the value of the given plane property to 1535 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1536 for more information about properties. 1537 </para> 1538 </listitem> 1539 </itemizedlist> 1540 </sect3> 1541 </sect2> 1542 <sect2> 1543 <title>Connectors (struct <structname>drm_connector</structname>)</title> 1544 <para> 1545 A connector is the final destination for pixel data on a device, and 1546 usually connects directly to an external display device like a monitor 1547 or laptop panel. A connector can only be attached to one encoder at a 1548 time. The connector is also the structure where information about the 1549 attached display is kept, so it contains fields for display data, EDID 1550 data, DPMS &amp; connection status, and information about modes 1551 supported on the attached displays. 1552 </para> 1553 <sect3> 1554 <title>Connector Initialization</title> 1555 <para> 1556 Finally a KMS driver must create, initialize, register and attach at 1557 least one struct <structname>drm_connector</structname> instance. The 1558 instance is created as other KMS objects and initialized by setting the 1559 following fields. 1560 </para> 1561 <variablelist> 1562 <varlistentry> 1563 <term><structfield>interlace_allowed</structfield></term> 1564 <listitem><para> 1565 Whether the connector can handle interlaced modes. 1566 </para></listitem> 1567 </varlistentry> 1568 <varlistentry> 1569 <term><structfield>doublescan_allowed</structfield></term> 1570 <listitem><para> 1571 Whether the connector can handle doublescan. 1572 </para></listitem> 1573 </varlistentry> 1574 <varlistentry> 1575 <term><structfield>display_info 1576 </structfield></term> 1577 <listitem><para> 1578 Display information is filled from EDID information when a display 1579 is detected. For non hot-pluggable displays such as flat panels in 1580 embedded systems, the driver should initialize the 1581 <structfield>display_info</structfield>.<structfield>width_mm</structfield> 1582 and 1583 <structfield>display_info</structfield>.<structfield>height_mm</structfield> 1584 fields with the physical size of the display. 1585 </para></listitem> 1586 </varlistentry> 1587 <varlistentry> 1588 <term id="drm-kms-connector-polled"><structfield>polled</structfield></term> 1589 <listitem><para> 1590 Connector polling mode, a combination of 1591 <variablelist> 1592 <varlistentry> 1593 <term>DRM_CONNECTOR_POLL_HPD</term> 1594 <listitem><para> 1595 The connector generates hotplug events and doesn't need to be 1596 periodically polled. The CONNECT and DISCONNECT flags must not 1597 be set together with the HPD flag. 1598 </para></listitem> 1599 </varlistentry> 1600 <varlistentry> 1601 <term>DRM_CONNECTOR_POLL_CONNECT</term> 1602 <listitem><para> 1603 Periodically poll the connector for connection. 1604 </para></listitem> 1605 </varlistentry> 1606 <varlistentry> 1607 <term>DRM_CONNECTOR_POLL_DISCONNECT</term> 1608 <listitem><para> 1609 Periodically poll the connector for disconnection. 1610 </para></listitem> 1611 </varlistentry> 1612 </variablelist> 1613 Set to 0 for connectors that don't support connection status 1614 discovery. 1615 </para></listitem> 1616 </varlistentry> 1617 </variablelist> 1618 <para> 1619 The connector is then registered with a call to 1620 <function>drm_connector_init</function> with a pointer to the connector 1621 functions and a connector type, and exposed through sysfs with a call to 1622 <function>drm_connector_register</function>. 1623 </para> 1624 <para> 1625 Supported connector types are 1626 <itemizedlist> 1627 <listitem>DRM_MODE_CONNECTOR_VGA</listitem> 1628 <listitem>DRM_MODE_CONNECTOR_DVII</listitem> 1629 <listitem>DRM_MODE_CONNECTOR_DVID</listitem> 1630 <listitem>DRM_MODE_CONNECTOR_DVIA</listitem> 1631 <listitem>DRM_MODE_CONNECTOR_Composite</listitem> 1632 <listitem>DRM_MODE_CONNECTOR_SVIDEO</listitem> 1633 <listitem>DRM_MODE_CONNECTOR_LVDS</listitem> 1634 <listitem>DRM_MODE_CONNECTOR_Component</listitem> 1635 <listitem>DRM_MODE_CONNECTOR_9PinDIN</listitem> 1636 <listitem>DRM_MODE_CONNECTOR_DisplayPort</listitem> 1637 <listitem>DRM_MODE_CONNECTOR_HDMIA</listitem> 1638 <listitem>DRM_MODE_CONNECTOR_HDMIB</listitem> 1639 <listitem>DRM_MODE_CONNECTOR_TV</listitem> 1640 <listitem>DRM_MODE_CONNECTOR_eDP</listitem> 1641 <listitem>DRM_MODE_CONNECTOR_VIRTUAL</listitem> 1642 </itemizedlist> 1643 </para> 1644 <para> 1645 Connectors must be attached to an encoder to be used. For devices that 1646 map connectors to encoders 1:1, the connector should be attached at 1647 initialization time with a call to 1648 <function>drm_mode_connector_attach_encoder</function>. The driver must 1649 also set the <structname>drm_connector</structname> 1650 <structfield>encoder</structfield> field to point to the attached 1651 encoder. 1652 </para> 1653 <para> 1654 Finally, drivers must initialize the connectors state change detection 1655 with a call to <function>drm_kms_helper_poll_init</function>. If at 1656 least one connector is pollable but can't generate hotplug interrupts 1657 (indicated by the DRM_CONNECTOR_POLL_CONNECT and 1658 DRM_CONNECTOR_POLL_DISCONNECT connector flags), a delayed work will 1659 automatically be queued to periodically poll for changes. Connectors 1660 that can generate hotplug interrupts must be marked with the 1661 DRM_CONNECTOR_POLL_HPD flag instead, and their interrupt handler must 1662 call <function>drm_helper_hpd_irq_event</function>. The function will 1663 queue a delayed work to check the state of all connectors, but no 1664 periodic polling will be done. 1665 </para> 1666 </sect3> 1667 <sect3> 1668 <title>Connector Operations</title> 1669 <note><para> 1670 Unless otherwise state, all operations are mandatory. 1671 </para></note> 1672 <sect4> 1673 <title>DPMS</title> 1674 <synopsis>void (*dpms)(struct drm_connector *connector, int mode);</synopsis> 1675 <para> 1676 The DPMS operation sets the power state of a connector. The mode 1677 argument is one of 1678 <itemizedlist> 1679 <listitem><para>DRM_MODE_DPMS_ON</para></listitem> 1680 <listitem><para>DRM_MODE_DPMS_STANDBY</para></listitem> 1681 <listitem><para>DRM_MODE_DPMS_SUSPEND</para></listitem> 1682 <listitem><para>DRM_MODE_DPMS_OFF</para></listitem> 1683 </itemizedlist> 1684 </para> 1685 <para> 1686 In all but DPMS_ON mode the encoder to which the connector is attached 1687 should put the display in low-power mode by driving its signals 1688 appropriately. If more than one connector is attached to the encoder 1689 care should be taken not to change the power state of other displays as 1690 a side effect. Low-power mode should be propagated to the encoders and 1691 CRTCs when all related connectors are put in low-power mode. 1692 </para> 1693 </sect4> 1694 <sect4> 1695 <title>Modes</title> 1696 <synopsis>int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, 1697 uint32_t max_height);</synopsis> 1698 <para> 1699 Fill the mode list with all supported modes for the connector. If the 1700 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1701 arguments are non-zero, the implementation must ignore all modes wider 1702 than <parameter>max_width</parameter> or higher than 1703 <parameter>max_height</parameter>. 1704 </para> 1705 <para> 1706 The connector must also fill in this operation its 1707 <structfield>display_info</structfield> 1708 <structfield>width_mm</structfield> and 1709 <structfield>height_mm</structfield> fields with the connected display 1710 physical size in millimeters. The fields should be set to 0 if the value 1711 isn't known or is not applicable (for instance for projector devices). 1712 </para> 1713 </sect4> 1714 <sect4> 1715 <title>Connection Status</title> 1716 <para> 1717 The connection status is updated through polling or hotplug events when 1718 supported (see <xref linkend="drm-kms-connector-polled"/>). The status 1719 value is reported to userspace through ioctls and must not be used 1720 inside the driver, as it only gets initialized by a call to 1721 <function>drm_mode_getconnector</function> from userspace. 1722 </para> 1723 <synopsis>enum drm_connector_status (*detect)(struct drm_connector *connector, 1724 bool force);</synopsis> 1725 <para> 1726 Check to see if anything is attached to the connector. The 1727 <parameter>force</parameter> parameter is set to false whilst polling or 1728 to true when checking the connector due to user request. 1729 <parameter>force</parameter> can be used by the driver to avoid 1730 expensive, destructive operations during automated probing. 1731 </para> 1732 <para> 1733 Return connector_status_connected if something is connected to the 1734 connector, connector_status_disconnected if nothing is connected and 1735 connector_status_unknown if the connection state isn't known. 1736 </para> 1737 <para> 1738 Drivers should only return connector_status_connected if the connection 1739 status has really been probed as connected. Connectors that can't detect 1740 the connection status, or failed connection status probes, should return 1741 connector_status_unknown. 1742 </para> 1743 </sect4> 1744 <sect4> 1745 <title>Miscellaneous</title> 1746 <itemizedlist> 1747 <listitem> 1748 <synopsis>void (*set_property)(struct drm_connector *connector, 1749 struct drm_property *property, uint64_t value);</synopsis> 1750 <para> 1751 Set the value of the given connector property to 1752 <parameter>value</parameter>. See <xref linkend="drm-kms-properties"/> 1753 for more information about properties. 1754 </para> 1755 </listitem> 1756 <listitem> 1757 <synopsis>void (*destroy)(struct drm_connector *connector);</synopsis> 1758 <para> 1759 Destroy the connector when not needed anymore. See 1760 <xref linkend="drm-kms-init"/>. 1761 </para> 1762 </listitem> 1763 </itemizedlist> 1764 </sect4> 1765 </sect3> 1766 </sect2> 1767 <sect2> 1768 <title>Cleanup</title> 1769 <para> 1770 The DRM core manages its objects' lifetime. When an object is not needed 1771 anymore the core calls its destroy function, which must clean up and 1772 free every resource allocated for the object. Every 1773 <function>drm_*_init</function> call must be matched with a 1774 corresponding <function>drm_*_cleanup</function> call to cleanup CRTCs 1775 (<function>drm_crtc_cleanup</function>), planes 1776 (<function>drm_plane_cleanup</function>), encoders 1777 (<function>drm_encoder_cleanup</function>) and connectors 1778 (<function>drm_connector_cleanup</function>). Furthermore, connectors 1779 that have been added to sysfs must be removed by a call to 1780 <function>drm_connector_unregister</function> before calling 1781 <function>drm_connector_cleanup</function>. 1782 </para> 1783 <para> 1784 Connectors state change detection must be cleanup up with a call to 1785 <function>drm_kms_helper_poll_fini</function>. 1786 </para> 1787 </sect2> 1788 <sect2> 1789 <title>Output discovery and initialization example</title> 1790 <programlisting><![CDATA[ 1791void intel_crt_init(struct drm_device *dev) 1792{ 1793 struct drm_connector *connector; 1794 struct intel_output *intel_output; 1795 1796 intel_output = kzalloc(sizeof(struct intel_output), GFP_KERNEL); 1797 if (!intel_output) 1798 return; 1799 1800 connector = &intel_output->base; 1801 drm_connector_init(dev, &intel_output->base, 1802 &intel_crt_connector_funcs, DRM_MODE_CONNECTOR_VGA); 1803 1804 drm_encoder_init(dev, &intel_output->enc, &intel_crt_enc_funcs, 1805 DRM_MODE_ENCODER_DAC); 1806 1807 drm_mode_connector_attach_encoder(&intel_output->base, 1808 &intel_output->enc); 1809 1810 /* Set up the DDC bus. */ 1811 intel_output->ddc_bus = intel_i2c_create(dev, GPIOA, "CRTDDC_A"); 1812 if (!intel_output->ddc_bus) { 1813 dev_printk(KERN_ERR, &dev->pdev->dev, "DDC bus registration " 1814 "failed.\n"); 1815 return; 1816 } 1817 1818 intel_output->type = INTEL_OUTPUT_ANALOG; 1819 connector->interlace_allowed = 0; 1820 connector->doublescan_allowed = 0; 1821 1822 drm_encoder_helper_add(&intel_output->enc, &intel_crt_helper_funcs); 1823 drm_connector_helper_add(connector, &intel_crt_connector_helper_funcs); 1824 1825 drm_connector_register(connector); 1826}]]></programlisting> 1827 <para> 1828 In the example above (taken from the i915 driver), a CRTC, connector and 1829 encoder combination is created. A device-specific i2c bus is also 1830 created for fetching EDID data and performing monitor detection. Once 1831 the process is complete, the new connector is registered with sysfs to 1832 make its properties available to applications. 1833 </para> 1834 </sect2> 1835 <sect2> 1836 <title>KMS API Functions</title> 1837!Edrivers/gpu/drm/drm_crtc.c 1838 </sect2> 1839 <sect2> 1840 <title>KMS Data Structures</title> 1841!Iinclude/drm/drm_crtc.h 1842 </sect2> 1843 <sect2> 1844 <title>KMS Locking</title> 1845!Pdrivers/gpu/drm/drm_modeset_lock.c kms locking 1846!Iinclude/drm/drm_modeset_lock.h 1847!Edrivers/gpu/drm/drm_modeset_lock.c 1848 </sect2> 1849 </sect1> 1850 1851 <!-- Internals: kms helper functions --> 1852 1853 <sect1> 1854 <title>Mode Setting Helper Functions</title> 1855 <para> 1856 The plane, CRTC, encoder and connector functions provided by the drivers 1857 implement the DRM API. They're called by the DRM core and ioctl handlers 1858 to handle device state changes and configuration request. As implementing 1859 those functions often requires logic not specific to drivers, mid-layer 1860 helper functions are available to avoid duplicating boilerplate code. 1861 </para> 1862 <para> 1863 The DRM core contains one mid-layer implementation. The mid-layer provides 1864 implementations of several plane, CRTC, encoder and connector functions 1865 (called from the top of the mid-layer) that pre-process requests and call 1866 lower-level functions provided by the driver (at the bottom of the 1867 mid-layer). For instance, the 1868 <function>drm_crtc_helper_set_config</function> function can be used to 1869 fill the struct <structname>drm_crtc_funcs</structname> 1870 <structfield>set_config</structfield> field. When called, it will split 1871 the <methodname>set_config</methodname> operation in smaller, simpler 1872 operations and call the driver to handle them. 1873 </para> 1874 <para> 1875 To use the mid-layer, drivers call <function>drm_crtc_helper_add</function>, 1876 <function>drm_encoder_helper_add</function> and 1877 <function>drm_connector_helper_add</function> functions to install their 1878 mid-layer bottom operations handlers, and fill the 1879 <structname>drm_crtc_funcs</structname>, 1880 <structname>drm_encoder_funcs</structname> and 1881 <structname>drm_connector_funcs</structname> structures with pointers to 1882 the mid-layer top API functions. Installing the mid-layer bottom operation 1883 handlers is best done right after registering the corresponding KMS object. 1884 </para> 1885 <para> 1886 The mid-layer is not split between CRTC, encoder and connector operations. 1887 To use it, a driver must provide bottom functions for all of the three KMS 1888 entities. 1889 </para> 1890 <sect2> 1891 <title>Helper Functions</title> 1892 <itemizedlist> 1893 <listitem> 1894 <synopsis>int drm_crtc_helper_set_config(struct drm_mode_set *set);</synopsis> 1895 <para> 1896 The <function>drm_crtc_helper_set_config</function> helper function 1897 is a CRTC <methodname>set_config</methodname> implementation. It 1898 first tries to locate the best encoder for each connector by calling 1899 the connector <methodname>best_encoder</methodname> helper 1900 operation. 1901 </para> 1902 <para> 1903 After locating the appropriate encoders, the helper function will 1904 call the <methodname>mode_fixup</methodname> encoder and CRTC helper 1905 operations to adjust the requested mode, or reject it completely in 1906 which case an error will be returned to the application. If the new 1907 configuration after mode adjustment is identical to the current 1908 configuration the helper function will return without performing any 1909 other operation. 1910 </para> 1911 <para> 1912 If the adjusted mode is identical to the current mode but changes to 1913 the frame buffer need to be applied, the 1914 <function>drm_crtc_helper_set_config</function> function will call 1915 the CRTC <methodname>mode_set_base</methodname> helper operation. If 1916 the adjusted mode differs from the current mode, or if the 1917 <methodname>mode_set_base</methodname> helper operation is not 1918 provided, the helper function performs a full mode set sequence by 1919 calling the <methodname>prepare</methodname>, 1920 <methodname>mode_set</methodname> and 1921 <methodname>commit</methodname> CRTC and encoder helper operations, 1922 in that order. 1923 </para> 1924 </listitem> 1925 <listitem> 1926 <synopsis>void drm_helper_connector_dpms(struct drm_connector *connector, int mode);</synopsis> 1927 <para> 1928 The <function>drm_helper_connector_dpms</function> helper function 1929 is a connector <methodname>dpms</methodname> implementation that 1930 tracks power state of connectors. To use the function, drivers must 1931 provide <methodname>dpms</methodname> helper operations for CRTCs 1932 and encoders to apply the DPMS state to the device. 1933 </para> 1934 <para> 1935 The mid-layer doesn't track the power state of CRTCs and encoders. 1936 The <methodname>dpms</methodname> helper operations can thus be 1937 called with a mode identical to the currently active mode. 1938 </para> 1939 </listitem> 1940 <listitem> 1941 <synopsis>int drm_helper_probe_single_connector_modes(struct drm_connector *connector, 1942 uint32_t maxX, uint32_t maxY);</synopsis> 1943 <para> 1944 The <function>drm_helper_probe_single_connector_modes</function> helper 1945 function is a connector <methodname>fill_modes</methodname> 1946 implementation that updates the connection status for the connector 1947 and then retrieves a list of modes by calling the connector 1948 <methodname>get_modes</methodname> helper operation. 1949 </para> 1950 <para> 1951 If the helper operation returns no mode, and if the connector status 1952 is connector_status_connected, standard VESA DMT modes up to 1953 1024x768 are automatically added to the modes list by a call to 1954 <function>drm_add_modes_noedid</function>. 1955 </para> 1956 <para> 1957 The function then filters out modes larger than 1958 <parameter>max_width</parameter> and <parameter>max_height</parameter> 1959 if specified. It finally calls the optional connector 1960 <methodname>mode_valid</methodname> helper operation for each mode in 1961 the probed list to check whether the mode is valid for the connector. 1962 </para> 1963 </listitem> 1964 </itemizedlist> 1965 </sect2> 1966 <sect2> 1967 <title>CRTC Helper Operations</title> 1968 <itemizedlist> 1969 <listitem id="drm-helper-crtc-mode-fixup"> 1970 <synopsis>bool (*mode_fixup)(struct drm_crtc *crtc, 1971 const struct drm_display_mode *mode, 1972 struct drm_display_mode *adjusted_mode);</synopsis> 1973 <para> 1974 Let CRTCs adjust the requested mode or reject it completely. This 1975 operation returns true if the mode is accepted (possibly after being 1976 adjusted) or false if it is rejected. 1977 </para> 1978 <para> 1979 The <methodname>mode_fixup</methodname> operation should reject the 1980 mode if it can't reasonably use it. The definition of "reasonable" 1981 is currently fuzzy in this context. One possible behaviour would be 1982 to set the adjusted mode to the panel timings when a fixed-mode 1983 panel is used with hardware capable of scaling. Another behaviour 1984 would be to accept any input mode and adjust it to the closest mode 1985 supported by the hardware (FIXME: This needs to be clarified). 1986 </para> 1987 </listitem> 1988 <listitem> 1989 <synopsis>int (*mode_set_base)(struct drm_crtc *crtc, int x, int y, 1990 struct drm_framebuffer *old_fb)</synopsis> 1991 <para> 1992 Move the CRTC on the current frame buffer (stored in 1993 <literal>crtc-&gt;fb</literal>) to position (x,y). Any of the frame 1994 buffer, x position or y position may have been modified. 1995 </para> 1996 <para> 1997 This helper operation is optional. If not provided, the 1998 <function>drm_crtc_helper_set_config</function> function will fall 1999 back to the <methodname>mode_set</methodname> helper operation. 2000 </para> 2001 <note><para> 2002 FIXME: Why are x and y passed as arguments, as they can be accessed 2003 through <literal>crtc-&gt;x</literal> and 2004 <literal>crtc-&gt;y</literal>? 2005 </para></note> 2006 </listitem> 2007 <listitem> 2008 <synopsis>void (*prepare)(struct drm_crtc *crtc);</synopsis> 2009 <para> 2010 Prepare the CRTC for mode setting. This operation is called after 2011 validating the requested mode. Drivers use it to perform 2012 device-specific operations required before setting the new mode. 2013 </para> 2014 </listitem> 2015 <listitem> 2016 <synopsis>int (*mode_set)(struct drm_crtc *crtc, struct drm_display_mode *mode, 2017 struct drm_display_mode *adjusted_mode, int x, int y, 2018 struct drm_framebuffer *old_fb);</synopsis> 2019 <para> 2020 Set a new mode, position and frame buffer. Depending on the device 2021 requirements, the mode can be stored internally by the driver and 2022 applied in the <methodname>commit</methodname> operation, or 2023 programmed to the hardware immediately. 2024 </para> 2025 <para> 2026 The <methodname>mode_set</methodname> operation returns 0 on success 2027 or a negative error code if an error occurs. 2028 </para> 2029 </listitem> 2030 <listitem> 2031 <synopsis>void (*commit)(struct drm_crtc *crtc);</synopsis> 2032 <para> 2033 Commit a mode. This operation is called after setting the new mode. 2034 Upon return the device must use the new mode and be fully 2035 operational. 2036 </para> 2037 </listitem> 2038 </itemizedlist> 2039 </sect2> 2040 <sect2> 2041 <title>Encoder Helper Operations</title> 2042 <itemizedlist> 2043 <listitem> 2044 <synopsis>bool (*mode_fixup)(struct drm_encoder *encoder, 2045 const struct drm_display_mode *mode, 2046 struct drm_display_mode *adjusted_mode);</synopsis> 2047 <para> 2048 Let encoders adjust the requested mode or reject it completely. This 2049 operation returns true if the mode is accepted (possibly after being 2050 adjusted) or false if it is rejected. See the 2051 <link linkend="drm-helper-crtc-mode-fixup">mode_fixup CRTC helper 2052 operation</link> for an explanation of the allowed adjustments. 2053 </para> 2054 </listitem> 2055 <listitem> 2056 <synopsis>void (*prepare)(struct drm_encoder *encoder);</synopsis> 2057 <para> 2058 Prepare the encoder for mode setting. This operation is called after 2059 validating the requested mode. Drivers use it to perform 2060 device-specific operations required before setting the new mode. 2061 </para> 2062 </listitem> 2063 <listitem> 2064 <synopsis>void (*mode_set)(struct drm_encoder *encoder, 2065 struct drm_display_mode *mode, 2066 struct drm_display_mode *adjusted_mode);</synopsis> 2067 <para> 2068 Set a new mode. Depending on the device requirements, the mode can 2069 be stored internally by the driver and applied in the 2070 <methodname>commit</methodname> operation, or programmed to the 2071 hardware immediately. 2072 </para> 2073 </listitem> 2074 <listitem> 2075 <synopsis>void (*commit)(struct drm_encoder *encoder);</synopsis> 2076 <para> 2077 Commit a mode. This operation is called after setting the new mode. 2078 Upon return the device must use the new mode and be fully 2079 operational. 2080 </para> 2081 </listitem> 2082 </itemizedlist> 2083 </sect2> 2084 <sect2> 2085 <title>Connector Helper Operations</title> 2086 <itemizedlist> 2087 <listitem> 2088 <synopsis>struct drm_encoder *(*best_encoder)(struct drm_connector *connector);</synopsis> 2089 <para> 2090 Return a pointer to the best encoder for the connecter. Device that 2091 map connectors to encoders 1:1 simply return the pointer to the 2092 associated encoder. This operation is mandatory. 2093 </para> 2094 </listitem> 2095 <listitem> 2096 <synopsis>int (*get_modes)(struct drm_connector *connector);</synopsis> 2097 <para> 2098 Fill the connector's <structfield>probed_modes</structfield> list 2099 by parsing EDID data with <function>drm_add_edid_modes</function>, 2100 adding standard VESA DMT modes with <function>drm_add_modes_noedid</function>, 2101 or calling <function>drm_mode_probed_add</function> directly for every 2102 supported mode and return the number of modes it has detected. This 2103 operation is mandatory. 2104 </para> 2105 <para> 2106 Note that the caller function will automatically add standard VESA 2107 DMT modes up to 1024x768 if the <methodname>get_modes</methodname> 2108 helper operation returns no mode and if the connector status is 2109 connector_status_connected. There is no need to call 2110 <function>drm_add_edid_modes</function> manually in that case. 2111 </para> 2112 <para> 2113 When adding modes manually the driver creates each mode with a call to 2114 <function>drm_mode_create</function> and must fill the following fields. 2115 <itemizedlist> 2116 <listitem> 2117 <synopsis>__u32 type;</synopsis> 2118 <para> 2119 Mode type bitmask, a combination of 2120 <variablelist> 2121 <varlistentry> 2122 <term>DRM_MODE_TYPE_BUILTIN</term> 2123 <listitem><para>not used?</para></listitem> 2124 </varlistentry> 2125 <varlistentry> 2126 <term>DRM_MODE_TYPE_CLOCK_C</term> 2127 <listitem><para>not used?</para></listitem> 2128 </varlistentry> 2129 <varlistentry> 2130 <term>DRM_MODE_TYPE_CRTC_C</term> 2131 <listitem><para>not used?</para></listitem> 2132 </varlistentry> 2133 <varlistentry> 2134 <term> 2135 DRM_MODE_TYPE_PREFERRED - The preferred mode for the connector 2136 </term> 2137 <listitem> 2138 <para>not used?</para> 2139 </listitem> 2140 </varlistentry> 2141 <varlistentry> 2142 <term>DRM_MODE_TYPE_DEFAULT</term> 2143 <listitem><para>not used?</para></listitem> 2144 </varlistentry> 2145 <varlistentry> 2146 <term>DRM_MODE_TYPE_USERDEF</term> 2147 <listitem><para>not used?</para></listitem> 2148 </varlistentry> 2149 <varlistentry> 2150 <term>DRM_MODE_TYPE_DRIVER</term> 2151 <listitem> 2152 <para> 2153 The mode has been created by the driver (as opposed to 2154 to user-created modes). 2155 </para> 2156 </listitem> 2157 </varlistentry> 2158 </variablelist> 2159 Drivers must set the DRM_MODE_TYPE_DRIVER bit for all modes they 2160 create, and set the DRM_MODE_TYPE_PREFERRED bit for the preferred 2161 mode. 2162 </para> 2163 </listitem> 2164 <listitem> 2165 <synopsis>__u32 clock;</synopsis> 2166 <para>Pixel clock frequency in kHz unit</para> 2167 </listitem> 2168 <listitem> 2169 <synopsis>__u16 hdisplay, hsync_start, hsync_end, htotal; 2170 __u16 vdisplay, vsync_start, vsync_end, vtotal;</synopsis> 2171 <para>Horizontal and vertical timing information</para> 2172 <screen><![CDATA[ 2173 Active Front Sync Back 2174 Region Porch Porch 2175 <-----------------------><----------------><-------------><--------------> 2176 2177 //////////////////////| 2178 ////////////////////// | 2179 ////////////////////// |.................. ................ 2180 _______________ 2181 2182 <----- [hv]display -----> 2183 <------------- [hv]sync_start ------------> 2184 <--------------------- [hv]sync_end ---------------------> 2185 <-------------------------------- [hv]total -----------------------------> 2186]]></screen> 2187 </listitem> 2188 <listitem> 2189 <synopsis>__u16 hskew; 2190 __u16 vscan;</synopsis> 2191 <para>Unknown</para> 2192 </listitem> 2193 <listitem> 2194 <synopsis>__u32 flags;</synopsis> 2195 <para> 2196 Mode flags, a combination of 2197 <variablelist> 2198 <varlistentry> 2199 <term>DRM_MODE_FLAG_PHSYNC</term> 2200 <listitem><para> 2201 Horizontal sync is active high 2202 </para></listitem> 2203 </varlistentry> 2204 <varlistentry> 2205 <term>DRM_MODE_FLAG_NHSYNC</term> 2206 <listitem><para> 2207 Horizontal sync is active low 2208 </para></listitem> 2209 </varlistentry> 2210 <varlistentry> 2211 <term>DRM_MODE_FLAG_PVSYNC</term> 2212 <listitem><para> 2213 Vertical sync is active high 2214 </para></listitem> 2215 </varlistentry> 2216 <varlistentry> 2217 <term>DRM_MODE_FLAG_NVSYNC</term> 2218 <listitem><para> 2219 Vertical sync is active low 2220 </para></listitem> 2221 </varlistentry> 2222 <varlistentry> 2223 <term>DRM_MODE_FLAG_INTERLACE</term> 2224 <listitem><para> 2225 Mode is interlaced 2226 </para></listitem> 2227 </varlistentry> 2228 <varlistentry> 2229 <term>DRM_MODE_FLAG_DBLSCAN</term> 2230 <listitem><para> 2231 Mode uses doublescan 2232 </para></listitem> 2233 </varlistentry> 2234 <varlistentry> 2235 <term>DRM_MODE_FLAG_CSYNC</term> 2236 <listitem><para> 2237 Mode uses composite sync 2238 </para></listitem> 2239 </varlistentry> 2240 <varlistentry> 2241 <term>DRM_MODE_FLAG_PCSYNC</term> 2242 <listitem><para> 2243 Composite sync is active high 2244 </para></listitem> 2245 </varlistentry> 2246 <varlistentry> 2247 <term>DRM_MODE_FLAG_NCSYNC</term> 2248 <listitem><para> 2249 Composite sync is active low 2250 </para></listitem> 2251 </varlistentry> 2252 <varlistentry> 2253 <term>DRM_MODE_FLAG_HSKEW</term> 2254 <listitem><para> 2255 hskew provided (not used?) 2256 </para></listitem> 2257 </varlistentry> 2258 <varlistentry> 2259 <term>DRM_MODE_FLAG_BCAST</term> 2260 <listitem><para> 2261 not used? 2262 </para></listitem> 2263 </varlistentry> 2264 <varlistentry> 2265 <term>DRM_MODE_FLAG_PIXMUX</term> 2266 <listitem><para> 2267 not used? 2268 </para></listitem> 2269 </varlistentry> 2270 <varlistentry> 2271 <term>DRM_MODE_FLAG_DBLCLK</term> 2272 <listitem><para> 2273 not used? 2274 </para></listitem> 2275 </varlistentry> 2276 <varlistentry> 2277 <term>DRM_MODE_FLAG_CLKDIV2</term> 2278 <listitem><para> 2279 ? 2280 </para></listitem> 2281 </varlistentry> 2282 </variablelist> 2283 </para> 2284 <para> 2285 Note that modes marked with the INTERLACE or DBLSCAN flags will be 2286 filtered out by 2287 <function>drm_helper_probe_single_connector_modes</function> if 2288 the connector's <structfield>interlace_allowed</structfield> or 2289 <structfield>doublescan_allowed</structfield> field is set to 0. 2290 </para> 2291 </listitem> 2292 <listitem> 2293 <synopsis>char name[DRM_DISPLAY_MODE_LEN];</synopsis> 2294 <para> 2295 Mode name. The driver must call 2296 <function>drm_mode_set_name</function> to fill the mode name from 2297 <structfield>hdisplay</structfield>, 2298 <structfield>vdisplay</structfield> and interlace flag after 2299 filling the corresponding fields. 2300 </para> 2301 </listitem> 2302 </itemizedlist> 2303 </para> 2304 <para> 2305 The <structfield>vrefresh</structfield> value is computed by 2306 <function>drm_helper_probe_single_connector_modes</function>. 2307 </para> 2308 <para> 2309 When parsing EDID data, <function>drm_add_edid_modes</function> fills the 2310 connector <structfield>display_info</structfield> 2311 <structfield>width_mm</structfield> and 2312 <structfield>height_mm</structfield> fields. When creating modes 2313 manually the <methodname>get_modes</methodname> helper operation must 2314 set the <structfield>display_info</structfield> 2315 <structfield>width_mm</structfield> and 2316 <structfield>height_mm</structfield> fields if they haven't been set 2317 already (for instance at initialization time when a fixed-size panel is 2318 attached to the connector). The mode <structfield>width_mm</structfield> 2319 and <structfield>height_mm</structfield> fields are only used internally 2320 during EDID parsing and should not be set when creating modes manually. 2321 </para> 2322 </listitem> 2323 <listitem> 2324 <synopsis>int (*mode_valid)(struct drm_connector *connector, 2325 struct drm_display_mode *mode);</synopsis> 2326 <para> 2327 Verify whether a mode is valid for the connector. Return MODE_OK for 2328 supported modes and one of the enum drm_mode_status values (MODE_*) 2329 for unsupported modes. This operation is optional. 2330 </para> 2331 <para> 2332 As the mode rejection reason is currently not used beside for 2333 immediately removing the unsupported mode, an implementation can 2334 return MODE_BAD regardless of the exact reason why the mode is not 2335 valid. 2336 </para> 2337 <note><para> 2338 Note that the <methodname>mode_valid</methodname> helper operation is 2339 only called for modes detected by the device, and 2340 <emphasis>not</emphasis> for modes set by the user through the CRTC 2341 <methodname>set_config</methodname> operation. 2342 </para></note> 2343 </listitem> 2344 </itemizedlist> 2345 </sect2> 2346 <sect2> 2347 <title>Atomic Modeset Helper Functions Reference</title> 2348 <sect3> 2349 <title>Overview</title> 2350!Pdrivers/gpu/drm/drm_atomic_helper.c overview 2351 </sect3> 2352 <sect3> 2353 <title>Implementing Asynchronous Atomic Commit</title> 2354!Pdrivers/gpu/drm/drm_atomic_helper.c implementing async commit 2355 </sect3> 2356 <sect3> 2357 <title>Atomic State Reset and Initialization</title> 2358!Pdrivers/gpu/drm/drm_atomic_helper.c atomic state reset and initialization 2359 </sect3> 2360!Iinclude/drm/drm_atomic_helper.h 2361!Edrivers/gpu/drm/drm_atomic_helper.c 2362 </sect2> 2363 <sect2> 2364 <title>Modeset Helper Functions Reference</title> 2365!Edrivers/gpu/drm/drm_crtc_helper.c 2366!Pdrivers/gpu/drm/drm_crtc_helper.c overview 2367 </sect2> 2368 <sect2> 2369 <title>Output Probing Helper Functions Reference</title> 2370!Pdrivers/gpu/drm/drm_probe_helper.c output probing helper overview 2371!Edrivers/gpu/drm/drm_probe_helper.c 2372 </sect2> 2373 <sect2> 2374 <title>fbdev Helper Functions Reference</title> 2375!Pdrivers/gpu/drm/drm_fb_helper.c fbdev helpers 2376!Edrivers/gpu/drm/drm_fb_helper.c 2377!Iinclude/drm/drm_fb_helper.h 2378 </sect2> 2379 <sect2> 2380 <title>Display Port Helper Functions Reference</title> 2381!Pdrivers/gpu/drm/drm_dp_helper.c dp helpers 2382!Iinclude/drm/drm_dp_helper.h 2383!Edrivers/gpu/drm/drm_dp_helper.c 2384 </sect2> 2385 <sect2> 2386 <title>Display Port MST Helper Functions Reference</title> 2387!Pdrivers/gpu/drm/drm_dp_mst_topology.c dp mst helper 2388!Iinclude/drm/drm_dp_mst_helper.h 2389!Edrivers/gpu/drm/drm_dp_mst_topology.c 2390 </sect2> 2391 <sect2> 2392 <title>MIPI DSI Helper Functions Reference</title> 2393!Pdrivers/gpu/drm/drm_mipi_dsi.c dsi helpers 2394!Iinclude/drm/drm_mipi_dsi.h 2395!Edrivers/gpu/drm/drm_mipi_dsi.c 2396 </sect2> 2397 <sect2> 2398 <title>EDID Helper Functions Reference</title> 2399!Edrivers/gpu/drm/drm_edid.c 2400 </sect2> 2401 <sect2> 2402 <title>Rectangle Utilities Reference</title> 2403!Pinclude/drm/drm_rect.h rect utils 2404!Iinclude/drm/drm_rect.h 2405!Edrivers/gpu/drm/drm_rect.c 2406 </sect2> 2407 <sect2> 2408 <title>Flip-work Helper Reference</title> 2409!Pinclude/drm/drm_flip_work.h flip utils 2410!Iinclude/drm/drm_flip_work.h 2411!Edrivers/gpu/drm/drm_flip_work.c 2412 </sect2> 2413 <sect2> 2414 <title>HDMI Infoframes Helper Reference</title> 2415 <para> 2416 Strictly speaking this is not a DRM helper library but generally useable 2417 by any driver interfacing with HDMI outputs like v4l or alsa drivers. 2418 But it nicely fits into the overall topic of mode setting helper 2419 libraries and hence is also included here. 2420 </para> 2421!Iinclude/linux/hdmi.h 2422!Edrivers/video/hdmi.c 2423 </sect2> 2424 <sect2> 2425 <title id="drm-kms-planehelpers">Plane Helper Reference</title> 2426!Edrivers/gpu/drm/drm_plane_helper.c 2427!Pdrivers/gpu/drm/drm_plane_helper.c overview 2428 </sect2> 2429 <sect2> 2430 <title>Tile group</title> 2431!Pdrivers/gpu/drm/drm_crtc.c Tile group 2432 </sect2> 2433 </sect1> 2434 2435 <!-- Internals: kms properties --> 2436 2437 <sect1 id="drm-kms-properties"> 2438 <title>KMS Properties</title> 2439 <para> 2440 Drivers may need to expose additional parameters to applications than 2441 those described in the previous sections. KMS supports attaching 2442 properties to CRTCs, connectors and planes and offers a userspace API to 2443 list, get and set the property values. 2444 </para> 2445 <para> 2446 Properties are identified by a name that uniquely defines the property 2447 purpose, and store an associated value. For all property types except blob 2448 properties the value is a 64-bit unsigned integer. 2449 </para> 2450 <para> 2451 KMS differentiates between properties and property instances. Drivers 2452 first create properties and then create and associate individual instances 2453 of those properties to objects. A property can be instantiated multiple 2454 times and associated with different objects. Values are stored in property 2455 instances, and all other property information are stored in the property 2456 and shared between all instances of the property. 2457 </para> 2458 <para> 2459 Every property is created with a type that influences how the KMS core 2460 handles the property. Supported property types are 2461 <variablelist> 2462 <varlistentry> 2463 <term>DRM_MODE_PROP_RANGE</term> 2464 <listitem><para>Range properties report their minimum and maximum 2465 admissible values. The KMS core verifies that values set by 2466 application fit in that range.</para></listitem> 2467 </varlistentry> 2468 <varlistentry> 2469 <term>DRM_MODE_PROP_ENUM</term> 2470 <listitem><para>Enumerated properties take a numerical value that 2471 ranges from 0 to the number of enumerated values defined by the 2472 property minus one, and associate a free-formed string name to each 2473 value. Applications can retrieve the list of defined value-name pairs 2474 and use the numerical value to get and set property instance values. 2475 </para></listitem> 2476 </varlistentry> 2477 <varlistentry> 2478 <term>DRM_MODE_PROP_BITMASK</term> 2479 <listitem><para>Bitmask properties are enumeration properties that 2480 additionally restrict all enumerated values to the 0..63 range. 2481 Bitmask property instance values combine one or more of the 2482 enumerated bits defined by the property.</para></listitem> 2483 </varlistentry> 2484 <varlistentry> 2485 <term>DRM_MODE_PROP_BLOB</term> 2486 <listitem><para>Blob properties store a binary blob without any format 2487 restriction. The binary blobs are created as KMS standalone objects, 2488 and blob property instance values store the ID of their associated 2489 blob object.</para> 2490 <para>Blob properties are only used for the connector EDID property 2491 and cannot be created by drivers.</para></listitem> 2492 </varlistentry> 2493 </variablelist> 2494 </para> 2495 <para> 2496 To create a property drivers call one of the following functions depending 2497 on the property type. All property creation functions take property flags 2498 and name, as well as type-specific arguments. 2499 <itemizedlist> 2500 <listitem> 2501 <synopsis>struct drm_property *drm_property_create_range(struct drm_device *dev, int flags, 2502 const char *name, 2503 uint64_t min, uint64_t max);</synopsis> 2504 <para>Create a range property with the given minimum and maximum 2505 values.</para> 2506 </listitem> 2507 <listitem> 2508 <synopsis>struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags, 2509 const char *name, 2510 const struct drm_prop_enum_list *props, 2511 int num_values);</synopsis> 2512 <para>Create an enumerated property. The <parameter>props</parameter> 2513 argument points to an array of <parameter>num_values</parameter> 2514 value-name pairs.</para> 2515 </listitem> 2516 <listitem> 2517 <synopsis>struct drm_property *drm_property_create_bitmask(struct drm_device *dev, 2518 int flags, const char *name, 2519 const struct drm_prop_enum_list *props, 2520 int num_values);</synopsis> 2521 <para>Create a bitmask property. The <parameter>props</parameter> 2522 argument points to an array of <parameter>num_values</parameter> 2523 value-name pairs.</para> 2524 </listitem> 2525 </itemizedlist> 2526 </para> 2527 <para> 2528 Properties can additionally be created as immutable, in which case they 2529 will be read-only for applications but can be modified by the driver. To 2530 create an immutable property drivers must set the DRM_MODE_PROP_IMMUTABLE 2531 flag at property creation time. 2532 </para> 2533 <para> 2534 When no array of value-name pairs is readily available at property 2535 creation time for enumerated or range properties, drivers can create 2536 the property using the <function>drm_property_create</function> function 2537 and manually add enumeration value-name pairs by calling the 2538 <function>drm_property_add_enum</function> function. Care must be taken to 2539 properly specify the property type through the <parameter>flags</parameter> 2540 argument. 2541 </para> 2542 <para> 2543 After creating properties drivers can attach property instances to CRTC, 2544 connector and plane objects by calling the 2545 <function>drm_object_attach_property</function>. The function takes a 2546 pointer to the target object, a pointer to the previously created property 2547 and an initial instance value. 2548 </para> 2549 <sect2> 2550 <title>Existing KMS Properties</title> 2551 <para> 2552 The following table gives description of drm properties exposed by various 2553 modules/drivers. 2554 </para> 2555 <table border="1" cellpadding="0" cellspacing="0"> 2556 <tbody> 2557 <tr style="font-weight: bold;"> 2558 <td valign="top" >Owner Module/Drivers</td> 2559 <td valign="top" >Group</td> 2560 <td valign="top" >Property Name</td> 2561 <td valign="top" >Type</td> 2562 <td valign="top" >Property Values</td> 2563 <td valign="top" >Object attached</td> 2564 <td valign="top" >Description/Restrictions</td> 2565 </tr> 2566 <tr> 2567 <td rowspan="25" valign="top" >DRM</td> 2568 <td rowspan="4" valign="top" >Generic</td> 2569 <td valign="top" >“EDID”</td> 2570 <td valign="top" >BLOB | IMMUTABLE</td> 2571 <td valign="top" >0</td> 2572 <td valign="top" >Connector</td> 2573 <td valign="top" >Contains id of edid blob ptr object.</td> 2574 </tr> 2575 <tr> 2576 <td valign="top" >“DPMS”</td> 2577 <td valign="top" >ENUM</td> 2578 <td valign="top" >{ “On”, “Standby”, “Suspend”, “Off” }</td> 2579 <td valign="top" >Connector</td> 2580 <td valign="top" >Contains DPMS operation mode value.</td> 2581 </tr> 2582 <tr> 2583 <td valign="top" >“PATH”</td> 2584 <td valign="top" >BLOB | IMMUTABLE</td> 2585 <td valign="top" >0</td> 2586 <td valign="top" >Connector</td> 2587 <td valign="top" >Contains topology path to a connector.</td> 2588 </tr> 2589 <tr> 2590 <td valign="top" >“TILE”</td> 2591 <td valign="top" >BLOB | IMMUTABLE</td> 2592 <td valign="top" >0</td> 2593 <td valign="top" >Connector</td> 2594 <td valign="top" >Contains tiling information for a connector.</td> 2595 </tr> 2596 <tr> 2597 <td rowspan="1" valign="top" >Plane</td> 2598 <td valign="top" >“type”</td> 2599 <td valign="top" >ENUM | IMMUTABLE</td> 2600 <td valign="top" >{ "Overlay", "Primary", "Cursor" }</td> 2601 <td valign="top" >Plane</td> 2602 <td valign="top" >Plane type</td> 2603 </tr> 2604 <tr> 2605 <td rowspan="2" valign="top" >DVI-I</td> 2606 <td valign="top" >“subconnector”</td> 2607 <td valign="top" >ENUM</td> 2608 <td valign="top" >{ “Unknown”, “DVI-D”, “DVI-A” }</td> 2609 <td valign="top" >Connector</td> 2610 <td valign="top" >TBD</td> 2611 </tr> 2612 <tr> 2613 <td valign="top" >“select subconnector”</td> 2614 <td valign="top" >ENUM</td> 2615 <td valign="top" >{ “Automatic”, “DVI-D”, “DVI-A” }</td> 2616 <td valign="top" >Connector</td> 2617 <td valign="top" >TBD</td> 2618 </tr> 2619 <tr> 2620 <td rowspan="13" valign="top" >TV</td> 2621 <td valign="top" >“subconnector”</td> 2622 <td valign="top" >ENUM</td> 2623 <td valign="top" >{ "Unknown", "Composite", "SVIDEO", "Component", "SCART" }</td> 2624 <td valign="top" >Connector</td> 2625 <td valign="top" >TBD</td> 2626 </tr> 2627 <tr> 2628 <td valign="top" >“select subconnector”</td> 2629 <td valign="top" >ENUM</td> 2630 <td valign="top" >{ "Automatic", "Composite", "SVIDEO", "Component", "SCART" }</td> 2631 <td valign="top" >Connector</td> 2632 <td valign="top" >TBD</td> 2633 </tr> 2634 <tr> 2635 <td valign="top" >“mode”</td> 2636 <td valign="top" >ENUM</td> 2637 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td> 2638 <td valign="top" >Connector</td> 2639 <td valign="top" >TBD</td> 2640 </tr> 2641 <tr> 2642 <td valign="top" >“left margin”</td> 2643 <td valign="top" >RANGE</td> 2644 <td valign="top" >Min=0, Max=100</td> 2645 <td valign="top" >Connector</td> 2646 <td valign="top" >TBD</td> 2647 </tr> 2648 <tr> 2649 <td valign="top" >“right margin”</td> 2650 <td valign="top" >RANGE</td> 2651 <td valign="top" >Min=0, Max=100</td> 2652 <td valign="top" >Connector</td> 2653 <td valign="top" >TBD</td> 2654 </tr> 2655 <tr> 2656 <td valign="top" >“top margin”</td> 2657 <td valign="top" >RANGE</td> 2658 <td valign="top" >Min=0, Max=100</td> 2659 <td valign="top" >Connector</td> 2660 <td valign="top" >TBD</td> 2661 </tr> 2662 <tr> 2663 <td valign="top" >“bottom margin”</td> 2664 <td valign="top" >RANGE</td> 2665 <td valign="top" >Min=0, Max=100</td> 2666 <td valign="top" >Connector</td> 2667 <td valign="top" >TBD</td> 2668 </tr> 2669 <tr> 2670 <td valign="top" >“brightness”</td> 2671 <td valign="top" >RANGE</td> 2672 <td valign="top" >Min=0, Max=100</td> 2673 <td valign="top" >Connector</td> 2674 <td valign="top" >TBD</td> 2675 </tr> 2676 <tr> 2677 <td valign="top" >“contrast”</td> 2678 <td valign="top" >RANGE</td> 2679 <td valign="top" >Min=0, Max=100</td> 2680 <td valign="top" >Connector</td> 2681 <td valign="top" >TBD</td> 2682 </tr> 2683 <tr> 2684 <td valign="top" >“flicker reduction”</td> 2685 <td valign="top" >RANGE</td> 2686 <td valign="top" >Min=0, Max=100</td> 2687 <td valign="top" >Connector</td> 2688 <td valign="top" >TBD</td> 2689 </tr> 2690 <tr> 2691 <td valign="top" >“overscan”</td> 2692 <td valign="top" >RANGE</td> 2693 <td valign="top" >Min=0, Max=100</td> 2694 <td valign="top" >Connector</td> 2695 <td valign="top" >TBD</td> 2696 </tr> 2697 <tr> 2698 <td valign="top" >“saturation”</td> 2699 <td valign="top" >RANGE</td> 2700 <td valign="top" >Min=0, Max=100</td> 2701 <td valign="top" >Connector</td> 2702 <td valign="top" >TBD</td> 2703 </tr> 2704 <tr> 2705 <td valign="top" >“hue”</td> 2706 <td valign="top" >RANGE</td> 2707 <td valign="top" >Min=0, Max=100</td> 2708 <td valign="top" >Connector</td> 2709 <td valign="top" >TBD</td> 2710 </tr> 2711 <tr> 2712 <td rowspan="2" valign="top" >Virtual GPU</td> 2713 <td valign="top" >“suggested X”</td> 2714 <td valign="top" >RANGE</td> 2715 <td valign="top" >Min=0, Max=0xffffffff</td> 2716 <td valign="top" >Connector</td> 2717 <td valign="top" >property to suggest an X offset for a connector</td> 2718 </tr> 2719 <tr> 2720 <td valign="top" >“suggested Y”</td> 2721 <td valign="top" >RANGE</td> 2722 <td valign="top" >Min=0, Max=0xffffffff</td> 2723 <td valign="top" >Connector</td> 2724 <td valign="top" >property to suggest an Y offset for a connector</td> 2725 </tr> 2726 <tr> 2727 <td rowspan="3" valign="top" >Optional</td> 2728 <td valign="top" >“scaling mode”</td> 2729 <td valign="top" >ENUM</td> 2730 <td valign="top" >{ "None", "Full", "Center", "Full aspect" }</td> 2731 <td valign="top" >Connector</td> 2732 <td valign="top" >TBD</td> 2733 </tr> 2734 <tr> 2735 <td valign="top" >"aspect ratio"</td> 2736 <td valign="top" >ENUM</td> 2737 <td valign="top" >{ "None", "4:3", "16:9" }</td> 2738 <td valign="top" >Connector</td> 2739 <td valign="top" >DRM property to set aspect ratio from user space app. 2740 This enum is made generic to allow addition of custom aspect 2741 ratios.</td> 2742 </tr> 2743 <tr> 2744 <td valign="top" >“dirty”</td> 2745 <td valign="top" >ENUM | IMMUTABLE</td> 2746 <td valign="top" >{ "Off", "On", "Annotate" }</td> 2747 <td valign="top" >Connector</td> 2748 <td valign="top" >TBD</td> 2749 </tr> 2750 <tr> 2751 <td rowspan="21" valign="top" >i915</td> 2752 <td rowspan="2" valign="top" >Generic</td> 2753 <td valign="top" >"Broadcast RGB"</td> 2754 <td valign="top" >ENUM</td> 2755 <td valign="top" >{ "Automatic", "Full", "Limited 16:235" }</td> 2756 <td valign="top" >Connector</td> 2757 <td valign="top" >TBD</td> 2758 </tr> 2759 <tr> 2760 <td valign="top" >“audio”</td> 2761 <td valign="top" >ENUM</td> 2762 <td valign="top" >{ "force-dvi", "off", "auto", "on" }</td> 2763 <td valign="top" >Connector</td> 2764 <td valign="top" >TBD</td> 2765 </tr> 2766 <tr> 2767 <td rowspan="1" valign="top" >Plane</td> 2768 <td valign="top" >“rotation”</td> 2769 <td valign="top" >BITMASK</td> 2770 <td valign="top" >{ 0, "rotate-0" }, { 2, "rotate-180" }</td> 2771 <td valign="top" >Plane</td> 2772 <td valign="top" >TBD</td> 2773 </tr> 2774 <tr> 2775 <td rowspan="17" valign="top" >SDVO-TV</td> 2776 <td valign="top" >“mode”</td> 2777 <td valign="top" >ENUM</td> 2778 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td> 2779 <td valign="top" >Connector</td> 2780 <td valign="top" >TBD</td> 2781 </tr> 2782 <tr> 2783 <td valign="top" >"left_margin"</td> 2784 <td valign="top" >RANGE</td> 2785 <td valign="top" >Min=0, Max= SDVO dependent</td> 2786 <td valign="top" >Connector</td> 2787 <td valign="top" >TBD</td> 2788 </tr> 2789 <tr> 2790 <td valign="top" >"right_margin"</td> 2791 <td valign="top" >RANGE</td> 2792 <td valign="top" >Min=0, Max= SDVO dependent</td> 2793 <td valign="top" >Connector</td> 2794 <td valign="top" >TBD</td> 2795 </tr> 2796 <tr> 2797 <td valign="top" >"top_margin"</td> 2798 <td valign="top" >RANGE</td> 2799 <td valign="top" >Min=0, Max= SDVO dependent</td> 2800 <td valign="top" >Connector</td> 2801 <td valign="top" >TBD</td> 2802 </tr> 2803 <tr> 2804 <td valign="top" >"bottom_margin"</td> 2805 <td valign="top" >RANGE</td> 2806 <td valign="top" >Min=0, Max= SDVO dependent</td> 2807 <td valign="top" >Connector</td> 2808 <td valign="top" >TBD</td> 2809 </tr> 2810 <tr> 2811 <td valign="top" >“hpos”</td> 2812 <td valign="top" >RANGE</td> 2813 <td valign="top" >Min=0, Max= SDVO dependent</td> 2814 <td valign="top" >Connector</td> 2815 <td valign="top" >TBD</td> 2816 </tr> 2817 <tr> 2818 <td valign="top" >“vpos”</td> 2819 <td valign="top" >RANGE</td> 2820 <td valign="top" >Min=0, Max= SDVO dependent</td> 2821 <td valign="top" >Connector</td> 2822 <td valign="top" >TBD</td> 2823 </tr> 2824 <tr> 2825 <td valign="top" >“contrast”</td> 2826 <td valign="top" >RANGE</td> 2827 <td valign="top" >Min=0, Max= SDVO dependent</td> 2828 <td valign="top" >Connector</td> 2829 <td valign="top" >TBD</td> 2830 </tr> 2831 <tr> 2832 <td valign="top" >“saturation”</td> 2833 <td valign="top" >RANGE</td> 2834 <td valign="top" >Min=0, Max= SDVO dependent</td> 2835 <td valign="top" >Connector</td> 2836 <td valign="top" >TBD</td> 2837 </tr> 2838 <tr> 2839 <td valign="top" >“hue”</td> 2840 <td valign="top" >RANGE</td> 2841 <td valign="top" >Min=0, Max= SDVO dependent</td> 2842 <td valign="top" >Connector</td> 2843 <td valign="top" >TBD</td> 2844 </tr> 2845 <tr> 2846 <td valign="top" >“sharpness”</td> 2847 <td valign="top" >RANGE</td> 2848 <td valign="top" >Min=0, Max= SDVO dependent</td> 2849 <td valign="top" >Connector</td> 2850 <td valign="top" >TBD</td> 2851 </tr> 2852 <tr> 2853 <td valign="top" >“flicker_filter”</td> 2854 <td valign="top" >RANGE</td> 2855 <td valign="top" >Min=0, Max= SDVO dependent</td> 2856 <td valign="top" >Connector</td> 2857 <td valign="top" >TBD</td> 2858 </tr> 2859 <tr> 2860 <td valign="top" >“flicker_filter_adaptive”</td> 2861 <td valign="top" >RANGE</td> 2862 <td valign="top" >Min=0, Max= SDVO dependent</td> 2863 <td valign="top" >Connector</td> 2864 <td valign="top" >TBD</td> 2865 </tr> 2866 <tr> 2867 <td valign="top" >“flicker_filter_2d”</td> 2868 <td valign="top" >RANGE</td> 2869 <td valign="top" >Min=0, Max= SDVO dependent</td> 2870 <td valign="top" >Connector</td> 2871 <td valign="top" >TBD</td> 2872 </tr> 2873 <tr> 2874 <td valign="top" >“tv_chroma_filter”</td> 2875 <td valign="top" >RANGE</td> 2876 <td valign="top" >Min=0, Max= SDVO dependent</td> 2877 <td valign="top" >Connector</td> 2878 <td valign="top" >TBD</td> 2879 </tr> 2880 <tr> 2881 <td valign="top" >“tv_luma_filter”</td> 2882 <td valign="top" >RANGE</td> 2883 <td valign="top" >Min=0, Max= SDVO dependent</td> 2884 <td valign="top" >Connector</td> 2885 <td valign="top" >TBD</td> 2886 </tr> 2887 <tr> 2888 <td valign="top" >“dot_crawl”</td> 2889 <td valign="top" >RANGE</td> 2890 <td valign="top" >Min=0, Max=1</td> 2891 <td valign="top" >Connector</td> 2892 <td valign="top" >TBD</td> 2893 </tr> 2894 <tr> 2895 <td valign="top" >SDVO-TV/LVDS</td> 2896 <td valign="top" >“brightness”</td> 2897 <td valign="top" >RANGE</td> 2898 <td valign="top" >Min=0, Max= SDVO dependent</td> 2899 <td valign="top" >Connector</td> 2900 <td valign="top" >TBD</td> 2901 </tr> 2902 <tr> 2903 <td rowspan="2" valign="top" >CDV gma-500</td> 2904 <td rowspan="2" valign="top" >Generic</td> 2905 <td valign="top" >"Broadcast RGB"</td> 2906 <td valign="top" >ENUM</td> 2907 <td valign="top" >{ “Full”, “Limited 16:235” }</td> 2908 <td valign="top" >Connector</td> 2909 <td valign="top" >TBD</td> 2910 </tr> 2911 <tr> 2912 <td valign="top" >"Broadcast RGB"</td> 2913 <td valign="top" >ENUM</td> 2914 <td valign="top" >{ “off”, “auto”, “on” }</td> 2915 <td valign="top" >Connector</td> 2916 <td valign="top" >TBD</td> 2917 </tr> 2918 <tr> 2919 <td rowspan="19" valign="top" >Poulsbo</td> 2920 <td rowspan="1" valign="top" >Generic</td> 2921 <td valign="top" >“backlight”</td> 2922 <td valign="top" >RANGE</td> 2923 <td valign="top" >Min=0, Max=100</td> 2924 <td valign="top" >Connector</td> 2925 <td valign="top" >TBD</td> 2926 </tr> 2927 <tr> 2928 <td rowspan="17" valign="top" >SDVO-TV</td> 2929 <td valign="top" >“mode”</td> 2930 <td valign="top" >ENUM</td> 2931 <td valign="top" >{ "NTSC_M", "NTSC_J", "NTSC_443", "PAL_B" } etc.</td> 2932 <td valign="top" >Connector</td> 2933 <td valign="top" >TBD</td> 2934 </tr> 2935 <tr> 2936 <td valign="top" >"left_margin"</td> 2937 <td valign="top" >RANGE</td> 2938 <td valign="top" >Min=0, Max= SDVO dependent</td> 2939 <td valign="top" >Connector</td> 2940 <td valign="top" >TBD</td> 2941 </tr> 2942 <tr> 2943 <td valign="top" >"right_margin"</td> 2944 <td valign="top" >RANGE</td> 2945 <td valign="top" >Min=0, Max= SDVO dependent</td> 2946 <td valign="top" >Connector</td> 2947 <td valign="top" >TBD</td> 2948 </tr> 2949 <tr> 2950 <td valign="top" >"top_margin"</td> 2951 <td valign="top" >RANGE</td> 2952 <td valign="top" >Min=0, Max= SDVO dependent</td> 2953 <td valign="top" >Connector</td> 2954 <td valign="top" >TBD</td> 2955 </tr> 2956 <tr> 2957 <td valign="top" >"bottom_margin"</td> 2958 <td valign="top" >RANGE</td> 2959 <td valign="top" >Min=0, Max= SDVO dependent</td> 2960 <td valign="top" >Connector</td> 2961 <td valign="top" >TBD</td> 2962 </tr> 2963 <tr> 2964 <td valign="top" >“hpos”</td> 2965 <td valign="top" >RANGE</td> 2966 <td valign="top" >Min=0, Max= SDVO dependent</td> 2967 <td valign="top" >Connector</td> 2968 <td valign="top" >TBD</td> 2969 </tr> 2970 <tr> 2971 <td valign="top" >“vpos”</td> 2972 <td valign="top" >RANGE</td> 2973 <td valign="top" >Min=0, Max= SDVO dependent</td> 2974 <td valign="top" >Connector</td> 2975 <td valign="top" >TBD</td> 2976 </tr> 2977 <tr> 2978 <td valign="top" >“contrast”</td> 2979 <td valign="top" >RANGE</td> 2980 <td valign="top" >Min=0, Max= SDVO dependent</td> 2981 <td valign="top" >Connector</td> 2982 <td valign="top" >TBD</td> 2983 </tr> 2984 <tr> 2985 <td valign="top" >“saturation”</td> 2986 <td valign="top" >RANGE</td> 2987 <td valign="top" >Min=0, Max= SDVO dependent</td> 2988 <td valign="top" >Connector</td> 2989 <td valign="top" >TBD</td> 2990 </tr> 2991 <tr> 2992 <td valign="top" >“hue”</td> 2993 <td valign="top" >RANGE</td> 2994 <td valign="top" >Min=0, Max= SDVO dependent</td> 2995 <td valign="top" >Connector</td> 2996 <td valign="top" >TBD</td> 2997 </tr> 2998 <tr> 2999 <td valign="top" >“sharpness”</td> 3000 <td valign="top" >RANGE</td> 3001 <td valign="top" >Min=0, Max= SDVO dependent</td> 3002 <td valign="top" >Connector</td> 3003 <td valign="top" >TBD</td> 3004 </tr> 3005 <tr> 3006 <td valign="top" >“flicker_filter”</td> 3007 <td valign="top" >RANGE</td> 3008 <td valign="top" >Min=0, Max= SDVO dependent</td> 3009 <td valign="top" >Connector</td> 3010 <td valign="top" >TBD</td> 3011 </tr> 3012 <tr> 3013 <td valign="top" >“flicker_filter_adaptive”</td> 3014 <td valign="top" >RANGE</td> 3015 <td valign="top" >Min=0, Max= SDVO dependent</td> 3016 <td valign="top" >Connector</td> 3017 <td valign="top" >TBD</td> 3018 </tr> 3019 <tr> 3020 <td valign="top" >“flicker_filter_2d”</td> 3021 <td valign="top" >RANGE</td> 3022 <td valign="top" >Min=0, Max= SDVO dependent</td> 3023 <td valign="top" >Connector</td> 3024 <td valign="top" >TBD</td> 3025 </tr> 3026 <tr> 3027 <td valign="top" >“tv_chroma_filter”</td> 3028 <td valign="top" >RANGE</td> 3029 <td valign="top" >Min=0, Max= SDVO dependent</td> 3030 <td valign="top" >Connector</td> 3031 <td valign="top" >TBD</td> 3032 </tr> 3033 <tr> 3034 <td valign="top" >“tv_luma_filter”</td> 3035 <td valign="top" >RANGE</td> 3036 <td valign="top" >Min=0, Max= SDVO dependent</td> 3037 <td valign="top" >Connector</td> 3038 <td valign="top" >TBD</td> 3039 </tr> 3040 <tr> 3041 <td valign="top" >“dot_crawl”</td> 3042 <td valign="top" >RANGE</td> 3043 <td valign="top" >Min=0, Max=1</td> 3044 <td valign="top" >Connector</td> 3045 <td valign="top" >TBD</td> 3046 </tr> 3047 <tr> 3048 <td valign="top" >SDVO-TV/LVDS</td> 3049 <td valign="top" >“brightness”</td> 3050 <td valign="top" >RANGE</td> 3051 <td valign="top" >Min=0, Max= SDVO dependent</td> 3052 <td valign="top" >Connector</td> 3053 <td valign="top" >TBD</td> 3054 </tr> 3055 <tr> 3056 <td rowspan="11" valign="top" >armada</td> 3057 <td rowspan="2" valign="top" >CRTC</td> 3058 <td valign="top" >"CSC_YUV"</td> 3059 <td valign="top" >ENUM</td> 3060 <td valign="top" >{ "Auto" , "CCIR601", "CCIR709" }</td> 3061 <td valign="top" >CRTC</td> 3062 <td valign="top" >TBD</td> 3063 </tr> 3064 <tr> 3065 <td valign="top" >"CSC_RGB"</td> 3066 <td valign="top" >ENUM</td> 3067 <td valign="top" >{ "Auto", "Computer system", "Studio" }</td> 3068 <td valign="top" >CRTC</td> 3069 <td valign="top" >TBD</td> 3070 </tr> 3071 <tr> 3072 <td rowspan="9" valign="top" >Overlay</td> 3073 <td valign="top" >"colorkey"</td> 3074 <td valign="top" >RANGE</td> 3075 <td valign="top" >Min=0, Max=0xffffff</td> 3076 <td valign="top" >Plane</td> 3077 <td valign="top" >TBD</td> 3078 </tr> 3079 <tr> 3080 <td valign="top" >"colorkey_min"</td> 3081 <td valign="top" >RANGE</td> 3082 <td valign="top" >Min=0, Max=0xffffff</td> 3083 <td valign="top" >Plane</td> 3084 <td valign="top" >TBD</td> 3085 </tr> 3086 <tr> 3087 <td valign="top" >"colorkey_max"</td> 3088 <td valign="top" >RANGE</td> 3089 <td valign="top" >Min=0, Max=0xffffff</td> 3090 <td valign="top" >Plane</td> 3091 <td valign="top" >TBD</td> 3092 </tr> 3093 <tr> 3094 <td valign="top" >"colorkey_val"</td> 3095 <td valign="top" >RANGE</td> 3096 <td valign="top" >Min=0, Max=0xffffff</td> 3097 <td valign="top" >Plane</td> 3098 <td valign="top" >TBD</td> 3099 </tr> 3100 <tr> 3101 <td valign="top" >"colorkey_alpha"</td> 3102 <td valign="top" >RANGE</td> 3103 <td valign="top" >Min=0, Max=0xffffff</td> 3104 <td valign="top" >Plane</td> 3105 <td valign="top" >TBD</td> 3106 </tr> 3107 <tr> 3108 <td valign="top" >"colorkey_mode"</td> 3109 <td valign="top" >ENUM</td> 3110 <td valign="top" >{ "disabled", "Y component", "U component" 3111 , "V component", "RGB", “R component", "G component", "B component" }</td> 3112 <td valign="top" >Plane</td> 3113 <td valign="top" >TBD</td> 3114 </tr> 3115 <tr> 3116 <td valign="top" >"brightness"</td> 3117 <td valign="top" >RANGE</td> 3118 <td valign="top" >Min=0, Max=256 + 255</td> 3119 <td valign="top" >Plane</td> 3120 <td valign="top" >TBD</td> 3121 </tr> 3122 <tr> 3123 <td valign="top" >"contrast"</td> 3124 <td valign="top" >RANGE</td> 3125 <td valign="top" >Min=0, Max=0x7fff</td> 3126 <td valign="top" >Plane</td> 3127 <td valign="top" >TBD</td> 3128 </tr> 3129 <tr> 3130 <td valign="top" >"saturation"</td> 3131 <td valign="top" >RANGE</td> 3132 <td valign="top" >Min=0, Max=0x7fff</td> 3133 <td valign="top" >Plane</td> 3134 <td valign="top" >TBD</td> 3135 </tr> 3136 <tr> 3137 <td rowspan="2" valign="top" >exynos</td> 3138 <td valign="top" >CRTC</td> 3139 <td valign="top" >“mode”</td> 3140 <td valign="top" >ENUM</td> 3141 <td valign="top" >{ "normal", "blank" }</td> 3142 <td valign="top" >CRTC</td> 3143 <td valign="top" >TBD</td> 3144 </tr> 3145 <tr> 3146 <td valign="top" >Overlay</td> 3147 <td valign="top" >“zpos”</td> 3148 <td valign="top" >RANGE</td> 3149 <td valign="top" >Min=0, Max=MAX_PLANE-1</td> 3150 <td valign="top" >Plane</td> 3151 <td valign="top" >TBD</td> 3152 </tr> 3153 <tr> 3154 <td rowspan="2" valign="top" >i2c/ch7006_drv</td> 3155 <td valign="top" >Generic</td> 3156 <td valign="top" >“scale”</td> 3157 <td valign="top" >RANGE</td> 3158 <td valign="top" >Min=0, Max=2</td> 3159 <td valign="top" >Connector</td> 3160 <td valign="top" >TBD</td> 3161 </tr> 3162 <tr> 3163 <td rowspan="1" valign="top" >TV</td> 3164 <td valign="top" >“mode”</td> 3165 <td valign="top" >ENUM</td> 3166 <td valign="top" >{ "PAL", "PAL-M","PAL-N"}, ”PAL-Nc" 3167 , "PAL-60", "NTSC-M", "NTSC-J" }</td> 3168 <td valign="top" >Connector</td> 3169 <td valign="top" >TBD</td> 3170 </tr> 3171 <tr> 3172 <td rowspan="15" valign="top" >nouveau</td> 3173 <td rowspan="6" valign="top" >NV10 Overlay</td> 3174 <td valign="top" >"colorkey"</td> 3175 <td valign="top" >RANGE</td> 3176 <td valign="top" >Min=0, Max=0x01ffffff</td> 3177 <td valign="top" >Plane</td> 3178 <td valign="top" >TBD</td> 3179 </tr> 3180 <tr> 3181 <td valign="top" >“contrast”</td> 3182 <td valign="top" >RANGE</td> 3183 <td valign="top" >Min=0, Max=8192-1</td> 3184 <td valign="top" >Plane</td> 3185 <td valign="top" >TBD</td> 3186 </tr> 3187 <tr> 3188 <td valign="top" >“brightness”</td> 3189 <td valign="top" >RANGE</td> 3190 <td valign="top" >Min=0, Max=1024</td> 3191 <td valign="top" >Plane</td> 3192 <td valign="top" >TBD</td> 3193 </tr> 3194 <tr> 3195 <td valign="top" >“hue”</td> 3196 <td valign="top" >RANGE</td> 3197 <td valign="top" >Min=0, Max=359</td> 3198 <td valign="top" >Plane</td> 3199 <td valign="top" >TBD</td> 3200 </tr> 3201 <tr> 3202 <td valign="top" >“saturation”</td> 3203 <td valign="top" >RANGE</td> 3204 <td valign="top" >Min=0, Max=8192-1</td> 3205 <td valign="top" >Plane</td> 3206 <td valign="top" >TBD</td> 3207 </tr> 3208 <tr> 3209 <td valign="top" >“iturbt_709”</td> 3210 <td valign="top" >RANGE</td> 3211 <td valign="top" >Min=0, Max=1</td> 3212 <td valign="top" >Plane</td> 3213 <td valign="top" >TBD</td> 3214 </tr> 3215 <tr> 3216 <td rowspan="2" valign="top" >Nv04 Overlay</td> 3217 <td valign="top" >“colorkey”</td> 3218 <td valign="top" >RANGE</td> 3219 <td valign="top" >Min=0, Max=0x01ffffff</td> 3220 <td valign="top" >Plane</td> 3221 <td valign="top" >TBD</td> 3222 </tr> 3223 <tr> 3224 <td valign="top" >“brightness”</td> 3225 <td valign="top" >RANGE</td> 3226 <td valign="top" >Min=0, Max=1024</td> 3227 <td valign="top" >Plane</td> 3228 <td valign="top" >TBD</td> 3229 </tr> 3230 <tr> 3231 <td rowspan="7" valign="top" >Display</td> 3232 <td valign="top" >“dithering mode”</td> 3233 <td valign="top" >ENUM</td> 3234 <td valign="top" >{ "auto", "off", "on" }</td> 3235 <td valign="top" >Connector</td> 3236 <td valign="top" >TBD</td> 3237 </tr> 3238 <tr> 3239 <td valign="top" >“dithering depth”</td> 3240 <td valign="top" >ENUM</td> 3241 <td valign="top" >{ "auto", "off", "on", "static 2x2", "dynamic 2x2", "temporal" }</td> 3242 <td valign="top" >Connector</td> 3243 <td valign="top" >TBD</td> 3244 </tr> 3245 <tr> 3246 <td valign="top" >“underscan”</td> 3247 <td valign="top" >ENUM</td> 3248 <td valign="top" >{ "auto", "6 bpc", "8 bpc" }</td> 3249 <td valign="top" >Connector</td> 3250 <td valign="top" >TBD</td> 3251 </tr> 3252 <tr> 3253 <td valign="top" >“underscan hborder”</td> 3254 <td valign="top" >RANGE</td> 3255 <td valign="top" >Min=0, Max=128</td> 3256 <td valign="top" >Connector</td> 3257 <td valign="top" >TBD</td> 3258 </tr> 3259 <tr> 3260 <td valign="top" >“underscan vborder”</td> 3261 <td valign="top" >RANGE</td> 3262 <td valign="top" >Min=0, Max=128</td> 3263 <td valign="top" >Connector</td> 3264 <td valign="top" >TBD</td> 3265 </tr> 3266 <tr> 3267 <td valign="top" >“vibrant hue”</td> 3268 <td valign="top" >RANGE</td> 3269 <td valign="top" >Min=0, Max=180</td> 3270 <td valign="top" >Connector</td> 3271 <td valign="top" >TBD</td> 3272 </tr> 3273 <tr> 3274 <td valign="top" >“color vibrance”</td> 3275 <td valign="top" >RANGE</td> 3276 <td valign="top" >Min=0, Max=200</td> 3277 <td valign="top" >Connector</td> 3278 <td valign="top" >TBD</td> 3279 </tr> 3280 <tr> 3281 <td rowspan="2" valign="top" >omap</td> 3282 <td rowspan="2" valign="top" >Generic</td> 3283 <td valign="top" >“rotation”</td> 3284 <td valign="top" >BITMASK</td> 3285 <td valign="top" >{ 0, "rotate-0" }, 3286 { 1, "rotate-90" }, 3287 { 2, "rotate-180" }, 3288 { 3, "rotate-270" }, 3289 { 4, "reflect-x" }, 3290 { 5, "reflect-y" }</td> 3291 <td valign="top" >CRTC, Plane</td> 3292 <td valign="top" >TBD</td> 3293 </tr> 3294 <tr> 3295 <td valign="top" >“zorder”</td> 3296 <td valign="top" >RANGE</td> 3297 <td valign="top" >Min=0, Max=3</td> 3298 <td valign="top" >CRTC, Plane</td> 3299 <td valign="top" >TBD</td> 3300 </tr> 3301 <tr> 3302 <td valign="top" >qxl</td> 3303 <td valign="top" >Generic</td> 3304 <td valign="top" >“hotplug_mode_update"</td> 3305 <td valign="top" >RANGE</td> 3306 <td valign="top" >Min=0, Max=1</td> 3307 <td valign="top" >Connector</td> 3308 <td valign="top" >TBD</td> 3309 </tr> 3310 <tr> 3311 <td rowspan="9" valign="top" >radeon</td> 3312 <td valign="top" >DVI-I</td> 3313 <td valign="top" >“coherent”</td> 3314 <td valign="top" >RANGE</td> 3315 <td valign="top" >Min=0, Max=1</td> 3316 <td valign="top" >Connector</td> 3317 <td valign="top" >TBD</td> 3318 </tr> 3319 <tr> 3320 <td valign="top" >DAC enable load detect</td> 3321 <td valign="top" >“load detection”</td> 3322 <td valign="top" >RANGE</td> 3323 <td valign="top" >Min=0, Max=1</td> 3324 <td valign="top" >Connector</td> 3325 <td valign="top" >TBD</td> 3326 </tr> 3327 <tr> 3328 <td valign="top" >TV Standard</td> 3329 <td valign="top" >"tv standard"</td> 3330 <td valign="top" >ENUM</td> 3331 <td valign="top" >{ "ntsc", "pal", "pal-m", "pal-60", "ntsc-j" 3332 , "scart-pal", "pal-cn", "secam" }</td> 3333 <td valign="top" >Connector</td> 3334 <td valign="top" >TBD</td> 3335 </tr> 3336 <tr> 3337 <td valign="top" >legacy TMDS PLL detect</td> 3338 <td valign="top" >"tmds_pll"</td> 3339 <td valign="top" >ENUM</td> 3340 <td valign="top" >{ "driver", "bios" }</td> 3341 <td valign="top" >-</td> 3342 <td valign="top" >TBD</td> 3343 </tr> 3344 <tr> 3345 <td rowspan="3" valign="top" >Underscan</td> 3346 <td valign="top" >"underscan"</td> 3347 <td valign="top" >ENUM</td> 3348 <td valign="top" >{ "off", "on", "auto" }</td> 3349 <td valign="top" >Connector</td> 3350 <td valign="top" >TBD</td> 3351 </tr> 3352 <tr> 3353 <td valign="top" >"underscan hborder"</td> 3354 <td valign="top" >RANGE</td> 3355 <td valign="top" >Min=0, Max=128</td> 3356 <td valign="top" >Connector</td> 3357 <td valign="top" >TBD</td> 3358 </tr> 3359 <tr> 3360 <td valign="top" >"underscan vborder"</td> 3361 <td valign="top" >RANGE</td> 3362 <td valign="top" >Min=0, Max=128</td> 3363 <td valign="top" >Connector</td> 3364 <td valign="top" >TBD</td> 3365 </tr> 3366 <tr> 3367 <td valign="top" >Audio</td> 3368 <td valign="top" >“audio”</td> 3369 <td valign="top" >ENUM</td> 3370 <td valign="top" >{ "off", "on", "auto" }</td> 3371 <td valign="top" >Connector</td> 3372 <td valign="top" >TBD</td> 3373 </tr> 3374 <tr> 3375 <td valign="top" >FMT Dithering</td> 3376 <td valign="top" >“dither”</td> 3377 <td valign="top" >ENUM</td> 3378 <td valign="top" >{ "off", "on" }</td> 3379 <td valign="top" >Connector</td> 3380 <td valign="top" >TBD</td> 3381 </tr> 3382 <tr> 3383 <td rowspan="3" valign="top" >rcar-du</td> 3384 <td rowspan="3" valign="top" >Generic</td> 3385 <td valign="top" >"alpha"</td> 3386 <td valign="top" >RANGE</td> 3387 <td valign="top" >Min=0, Max=255</td> 3388 <td valign="top" >Plane</td> 3389 <td valign="top" >TBD</td> 3390 </tr> 3391 <tr> 3392 <td valign="top" >"colorkey"</td> 3393 <td valign="top" >RANGE</td> 3394 <td valign="top" >Min=0, Max=0x01ffffff</td> 3395 <td valign="top" >Plane</td> 3396 <td valign="top" >TBD</td> 3397 </tr> 3398 <tr> 3399 <td valign="top" >"zpos"</td> 3400 <td valign="top" >RANGE</td> 3401 <td valign="top" >Min=1, Max=7</td> 3402 <td valign="top" >Plane</td> 3403 <td valign="top" >TBD</td> 3404 </tr> 3405 </tbody> 3406 </table> 3407 </sect2> 3408 </sect1> 3409 3410 <!-- Internals: vertical blanking --> 3411 3412 <sect1 id="drm-vertical-blank"> 3413 <title>Vertical Blanking</title> 3414 <para> 3415 Vertical blanking plays a major role in graphics rendering. To achieve 3416 tear-free display, users must synchronize page flips and/or rendering to 3417 vertical blanking. The DRM API offers ioctls to perform page flips 3418 synchronized to vertical blanking and wait for vertical blanking. 3419 </para> 3420 <para> 3421 The DRM core handles most of the vertical blanking management logic, which 3422 involves filtering out spurious interrupts, keeping race-free blanking 3423 counters, coping with counter wrap-around and resets and keeping use 3424 counts. It relies on the driver to generate vertical blanking interrupts 3425 and optionally provide a hardware vertical blanking counter. Drivers must 3426 implement the following operations. 3427 </para> 3428 <itemizedlist> 3429 <listitem> 3430 <synopsis>int (*enable_vblank) (struct drm_device *dev, int crtc); 3431void (*disable_vblank) (struct drm_device *dev, int crtc);</synopsis> 3432 <para> 3433 Enable or disable vertical blanking interrupts for the given CRTC. 3434 </para> 3435 </listitem> 3436 <listitem> 3437 <synopsis>u32 (*get_vblank_counter) (struct drm_device *dev, int crtc);</synopsis> 3438 <para> 3439 Retrieve the value of the vertical blanking counter for the given 3440 CRTC. If the hardware maintains a vertical blanking counter its value 3441 should be returned. Otherwise drivers can use the 3442 <function>drm_vblank_count</function> helper function to handle this 3443 operation. 3444 </para> 3445 </listitem> 3446 </itemizedlist> 3447 <para> 3448 Drivers must initialize the vertical blanking handling core with a call to 3449 <function>drm_vblank_init</function> in their 3450 <methodname>load</methodname> operation. The function will set the struct 3451 <structname>drm_device</structname> 3452 <structfield>vblank_disable_allowed</structfield> field to 0. This will 3453 keep vertical blanking interrupts enabled permanently until the first mode 3454 set operation, where <structfield>vblank_disable_allowed</structfield> is 3455 set to 1. The reason behind this is not clear. Drivers can set the field 3456 to 1 after <function>calling drm_vblank_init</function> to make vertical 3457 blanking interrupts dynamically managed from the beginning. 3458 </para> 3459 <para> 3460 Vertical blanking interrupts can be enabled by the DRM core or by drivers 3461 themselves (for instance to handle page flipping operations). The DRM core 3462 maintains a vertical blanking use count to ensure that the interrupts are 3463 not disabled while a user still needs them. To increment the use count, 3464 drivers call <function>drm_vblank_get</function>. Upon return vertical 3465 blanking interrupts are guaranteed to be enabled. 3466 </para> 3467 <para> 3468 To decrement the use count drivers call 3469 <function>drm_vblank_put</function>. Only when the use count drops to zero 3470 will the DRM core disable the vertical blanking interrupts after a delay 3471 by scheduling a timer. The delay is accessible through the vblankoffdelay 3472 module parameter or the <varname>drm_vblank_offdelay</varname> global 3473 variable and expressed in milliseconds. Its default value is 5000 ms. 3474 Zero means never disable, and a negative value means disable immediately. 3475 Drivers may override the behaviour by setting the 3476 <structname>drm_device</structname> 3477 <structfield>vblank_disable_immediate</structfield> flag, which when set 3478 causes vblank interrupts to be disabled immediately regardless of the 3479 drm_vblank_offdelay value. The flag should only be set if there's a 3480 properly working hardware vblank counter present. 3481 </para> 3482 <para> 3483 When a vertical blanking interrupt occurs drivers only need to call the 3484 <function>drm_handle_vblank</function> function to account for the 3485 interrupt. 3486 </para> 3487 <para> 3488 Resources allocated by <function>drm_vblank_init</function> must be freed 3489 with a call to <function>drm_vblank_cleanup</function> in the driver 3490 <methodname>unload</methodname> operation handler. 3491 </para> 3492 <sect2> 3493 <title>Vertical Blanking and Interrupt Handling Functions Reference</title> 3494!Edrivers/gpu/drm/drm_irq.c 3495!Finclude/drm/drmP.h drm_crtc_vblank_waitqueue 3496 </sect2> 3497 </sect1> 3498 3499 <!-- Internals: open/close, file operations and ioctls --> 3500 3501 <sect1> 3502 <title>Open/Close, File Operations and IOCTLs</title> 3503 <sect2> 3504 <title>Open and Close</title> 3505 <synopsis>int (*firstopen) (struct drm_device *); 3506void (*lastclose) (struct drm_device *); 3507int (*open) (struct drm_device *, struct drm_file *); 3508void (*preclose) (struct drm_device *, struct drm_file *); 3509void (*postclose) (struct drm_device *, struct drm_file *);</synopsis> 3510 <abstract>Open and close handlers. None of those methods are mandatory. 3511 </abstract> 3512 <para> 3513 The <methodname>firstopen</methodname> method is called by the DRM core 3514 for legacy UMS (User Mode Setting) drivers only when an application 3515 opens a device that has no other opened file handle. UMS drivers can 3516 implement it to acquire device resources. KMS drivers can't use the 3517 method and must acquire resources in the <methodname>load</methodname> 3518 method instead. 3519 </para> 3520 <para> 3521 Similarly the <methodname>lastclose</methodname> method is called when 3522 the last application holding a file handle opened on the device closes 3523 it, for both UMS and KMS drivers. Additionally, the method is also 3524 called at module unload time or, for hot-pluggable devices, when the 3525 device is unplugged. The <methodname>firstopen</methodname> and 3526 <methodname>lastclose</methodname> calls can thus be unbalanced. 3527 </para> 3528 <para> 3529 The <methodname>open</methodname> method is called every time the device 3530 is opened by an application. Drivers can allocate per-file private data 3531 in this method and store them in the struct 3532 <structname>drm_file</structname> <structfield>driver_priv</structfield> 3533 field. Note that the <methodname>open</methodname> method is called 3534 before <methodname>firstopen</methodname>. 3535 </para> 3536 <para> 3537 The close operation is split into <methodname>preclose</methodname> and 3538 <methodname>postclose</methodname> methods. Drivers must stop and 3539 cleanup all per-file operations in the <methodname>preclose</methodname> 3540 method. For instance pending vertical blanking and page flip events must 3541 be cancelled. No per-file operation is allowed on the file handle after 3542 returning from the <methodname>preclose</methodname> method. 3543 </para> 3544 <para> 3545 Finally the <methodname>postclose</methodname> method is called as the 3546 last step of the close operation, right before calling the 3547 <methodname>lastclose</methodname> method if no other open file handle 3548 exists for the device. Drivers that have allocated per-file private data 3549 in the <methodname>open</methodname> method should free it here. 3550 </para> 3551 <para> 3552 The <methodname>lastclose</methodname> method should restore CRTC and 3553 plane properties to default value, so that a subsequent open of the 3554 device will not inherit state from the previous user. It can also be 3555 used to execute delayed power switching state changes, e.g. in 3556 conjunction with the vga-switcheroo infrastructure. Beyond that KMS 3557 drivers should not do any further cleanup. Only legacy UMS drivers might 3558 need to clean up device state so that the vga console or an independent 3559 fbdev driver could take over. 3560 </para> 3561 </sect2> 3562 <sect2> 3563 <title>File Operations</title> 3564 <synopsis>const struct file_operations *fops</synopsis> 3565 <abstract>File operations for the DRM device node.</abstract> 3566 <para> 3567 Drivers must define the file operations structure that forms the DRM 3568 userspace API entry point, even though most of those operations are 3569 implemented in the DRM core. The <methodname>open</methodname>, 3570 <methodname>release</methodname> and <methodname>ioctl</methodname> 3571 operations are handled by 3572 <programlisting> 3573 .owner = THIS_MODULE, 3574 .open = drm_open, 3575 .release = drm_release, 3576 .unlocked_ioctl = drm_ioctl, 3577 #ifdef CONFIG_COMPAT 3578 .compat_ioctl = drm_compat_ioctl, 3579 #endif 3580 </programlisting> 3581 </para> 3582 <para> 3583 Drivers that implement private ioctls that requires 32/64bit 3584 compatibility support must provide their own 3585 <methodname>compat_ioctl</methodname> handler that processes private 3586 ioctls and calls <function>drm_compat_ioctl</function> for core ioctls. 3587 </para> 3588 <para> 3589 The <methodname>read</methodname> and <methodname>poll</methodname> 3590 operations provide support for reading DRM events and polling them. They 3591 are implemented by 3592 <programlisting> 3593 .poll = drm_poll, 3594 .read = drm_read, 3595 .llseek = no_llseek, 3596 </programlisting> 3597 </para> 3598 <para> 3599 The memory mapping implementation varies depending on how the driver 3600 manages memory. Pre-GEM drivers will use <function>drm_mmap</function>, 3601 while GEM-aware drivers will use <function>drm_gem_mmap</function>. See 3602 <xref linkend="drm-gem"/>. 3603 <programlisting> 3604 .mmap = drm_gem_mmap, 3605 </programlisting> 3606 </para> 3607 <para> 3608 No other file operation is supported by the DRM API. 3609 </para> 3610 </sect2> 3611 <sect2> 3612 <title>IOCTLs</title> 3613 <synopsis>struct drm_ioctl_desc *ioctls; 3614int num_ioctls;</synopsis> 3615 <abstract>Driver-specific ioctls descriptors table.</abstract> 3616 <para> 3617 Driver-specific ioctls numbers start at DRM_COMMAND_BASE. The ioctls 3618 descriptors table is indexed by the ioctl number offset from the base 3619 value. Drivers can use the DRM_IOCTL_DEF_DRV() macro to initialize the 3620 table entries. 3621 </para> 3622 <para> 3623 <programlisting>DRM_IOCTL_DEF_DRV(ioctl, func, flags)</programlisting> 3624 <para> 3625 <parameter>ioctl</parameter> is the ioctl name. Drivers must define 3626 the DRM_##ioctl and DRM_IOCTL_##ioctl macros to the ioctl number 3627 offset from DRM_COMMAND_BASE and the ioctl number respectively. The 3628 first macro is private to the device while the second must be exposed 3629 to userspace in a public header. 3630 </para> 3631 <para> 3632 <parameter>func</parameter> is a pointer to the ioctl handler function 3633 compatible with the <type>drm_ioctl_t</type> type. 3634 <programlisting>typedef int drm_ioctl_t(struct drm_device *dev, void *data, 3635 struct drm_file *file_priv);</programlisting> 3636 </para> 3637 <para> 3638 <parameter>flags</parameter> is a bitmask combination of the following 3639 values. It restricts how the ioctl is allowed to be called. 3640 <itemizedlist> 3641 <listitem><para> 3642 DRM_AUTH - Only authenticated callers allowed 3643 </para></listitem> 3644 <listitem><para> 3645 DRM_MASTER - The ioctl can only be called on the master file 3646 handle 3647 </para></listitem> 3648 <listitem><para> 3649 DRM_ROOT_ONLY - Only callers with the SYSADMIN capability allowed 3650 </para></listitem> 3651 <listitem><para> 3652 DRM_CONTROL_ALLOW - The ioctl can only be called on a control 3653 device 3654 </para></listitem> 3655 <listitem><para> 3656 DRM_UNLOCKED - The ioctl handler will be called without locking 3657 the DRM global mutex 3658 </para></listitem> 3659 </itemizedlist> 3660 </para> 3661 </para> 3662 </sect2> 3663 </sect1> 3664 <sect1> 3665 <title>Legacy Support Code</title> 3666 <para> 3667 The section very briefly covers some of the old legacy support code which 3668 is only used by old DRM drivers which have done a so-called shadow-attach 3669 to the underlying device instead of registering as a real driver. This 3670 also includes some of the old generic buffer management and command 3671 submission code. Do not use any of this in new and modern drivers. 3672 </para> 3673 3674 <sect2> 3675 <title>Legacy Suspend/Resume</title> 3676 <para> 3677 The DRM core provides some suspend/resume code, but drivers wanting full 3678 suspend/resume support should provide save() and restore() functions. 3679 These are called at suspend, hibernate, or resume time, and should perform 3680 any state save or restore required by your device across suspend or 3681 hibernate states. 3682 </para> 3683 <synopsis>int (*suspend) (struct drm_device *, pm_message_t state); 3684 int (*resume) (struct drm_device *);</synopsis> 3685 <para> 3686 Those are legacy suspend and resume methods which 3687 <emphasis>only</emphasis> work with the legacy shadow-attach driver 3688 registration functions. New driver should use the power management 3689 interface provided by their bus type (usually through 3690 the struct <structname>device_driver</structname> dev_pm_ops) and set 3691 these methods to NULL. 3692 </para> 3693 </sect2> 3694 3695 <sect2> 3696 <title>Legacy DMA Services</title> 3697 <para> 3698 This should cover how DMA mapping etc. is supported by the core. 3699 These functions are deprecated and should not be used. 3700 </para> 3701 </sect2> 3702 </sect1> 3703 </chapter> 3704 3705<!-- TODO 3706 3707- Add a glossary 3708- Document the struct_mutex catch-all lock 3709- Document connector properties 3710 3711- Why is the load method optional? 3712- What are drivers supposed to set the initial display state to, and how? 3713 Connector's DPMS states are not initialized and are thus equal to 3714 DRM_MODE_DPMS_ON. The fbcon compatibility layer calls 3715 drm_helper_disable_unused_functions(), which disables unused encoders and 3716 CRTCs, but doesn't touch the connectors' DPMS state, and 3717 drm_helper_connector_dpms() in reaction to fbdev blanking events. Do drivers 3718 that don't implement (or just don't use) fbcon compatibility need to call 3719 those functions themselves? 3720- KMS drivers must call drm_vblank_pre_modeset() and drm_vblank_post_modeset() 3721 around mode setting. Should this be done in the DRM core? 3722- vblank_disable_allowed is set to 1 in the first drm_vblank_post_modeset() 3723 call and never set back to 0. It seems to be safe to permanently set it to 1 3724 in drm_vblank_init() for KMS driver, and it might be safe for UMS drivers as 3725 well. This should be investigated. 3726- crtc and connector .save and .restore operations are only used internally in 3727 drivers, should they be removed from the core? 3728- encoder mid-layer .save and .restore operations are only used internally in 3729 drivers, should they be removed from the core? 3730- encoder mid-layer .detect operation is only used internally in drivers, 3731 should it be removed from the core? 3732--> 3733 3734 <!-- External interfaces --> 3735 3736 <chapter id="drmExternals"> 3737 <title>Userland interfaces</title> 3738 <para> 3739 The DRM core exports several interfaces to applications, 3740 generally intended to be used through corresponding libdrm 3741 wrapper functions. In addition, drivers export device-specific 3742 interfaces for use by userspace drivers &amp; device-aware 3743 applications through ioctls and sysfs files. 3744 </para> 3745 <para> 3746 External interfaces include: memory mapping, context management, 3747 DMA operations, AGP management, vblank control, fence 3748 management, memory management, and output management. 3749 </para> 3750 <para> 3751 Cover generic ioctls and sysfs layout here. We only need high-level 3752 info, since man pages should cover the rest. 3753 </para> 3754 3755 <!-- External: render nodes --> 3756 3757 <sect1> 3758 <title>Render nodes</title> 3759 <para> 3760 DRM core provides multiple character-devices for user-space to use. 3761 Depending on which device is opened, user-space can perform a different 3762 set of operations (mainly ioctls). The primary node is always created 3763 and called card&lt;num&gt;. Additionally, a currently 3764 unused control node, called controlD&lt;num&gt; is also 3765 created. The primary node provides all legacy operations and 3766 historically was the only interface used by userspace. With KMS, the 3767 control node was introduced. However, the planned KMS control interface 3768 has never been written and so the control node stays unused to date. 3769 </para> 3770 <para> 3771 With the increased use of offscreen renderers and GPGPU applications, 3772 clients no longer require running compositors or graphics servers to 3773 make use of a GPU. But the DRM API required unprivileged clients to 3774 authenticate to a DRM-Master prior to getting GPU access. To avoid this 3775 step and to grant clients GPU access without authenticating, render 3776 nodes were introduced. Render nodes solely serve render clients, that 3777 is, no modesetting or privileged ioctls can be issued on render nodes. 3778 Only non-global rendering commands are allowed. If a driver supports 3779 render nodes, it must advertise it via the DRIVER_RENDER 3780 DRM driver capability. If not supported, the primary node must be used 3781 for render clients together with the legacy drmAuth authentication 3782 procedure. 3783 </para> 3784 <para> 3785 If a driver advertises render node support, DRM core will create a 3786 separate render node called renderD&lt;num&gt;. There will 3787 be one render node per device. No ioctls except PRIME-related ioctls 3788 will be allowed on this node. Especially GEM_OPEN will be 3789 explicitly prohibited. Render nodes are designed to avoid the 3790 buffer-leaks, which occur if clients guess the flink names or mmap 3791 offsets on the legacy interface. Additionally to this basic interface, 3792 drivers must mark their driver-dependent render-only ioctls as 3793 DRM_RENDER_ALLOW so render clients can use them. Driver 3794 authors must be careful not to allow any privileged ioctls on render 3795 nodes. 3796 </para> 3797 <para> 3798 With render nodes, user-space can now control access to the render node 3799 via basic file-system access-modes. A running graphics server which 3800 authenticates clients on the privileged primary/legacy node is no longer 3801 required. Instead, a client can open the render node and is immediately 3802 granted GPU access. Communication between clients (or servers) is done 3803 via PRIME. FLINK from render node to legacy node is not supported. New 3804 clients must not use the insecure FLINK interface. 3805 </para> 3806 <para> 3807 Besides dropping all modeset/global ioctls, render nodes also drop the 3808 DRM-Master concept. There is no reason to associate render clients with 3809 a DRM-Master as they are independent of any graphics server. Besides, 3810 they must work without any running master, anyway. 3811 Drivers must be able to run without a master object if they support 3812 render nodes. If, on the other hand, a driver requires shared state 3813 between clients which is visible to user-space and accessible beyond 3814 open-file boundaries, they cannot support render nodes. 3815 </para> 3816 </sect1> 3817 3818 <!-- External: vblank handling --> 3819 3820 <sect1> 3821 <title>VBlank event handling</title> 3822 <para> 3823 The DRM core exposes two vertical blank related ioctls: 3824 <variablelist> 3825 <varlistentry> 3826 <term>DRM_IOCTL_WAIT_VBLANK</term> 3827 <listitem> 3828 <para> 3829 This takes a struct drm_wait_vblank structure as its argument, 3830 and it is used to block or request a signal when a specified 3831 vblank event occurs. 3832 </para> 3833 </listitem> 3834 </varlistentry> 3835 <varlistentry> 3836 <term>DRM_IOCTL_MODESET_CTL</term> 3837 <listitem> 3838 <para> 3839 This was only used for user-mode-settind drivers around 3840 modesetting changes to allow the kernel to update the vblank 3841 interrupt after mode setting, since on many devices the vertical 3842 blank counter is reset to 0 at some point during modeset. Modern 3843 drivers should not call this any more since with kernel mode 3844 setting it is a no-op. 3845 </para> 3846 </listitem> 3847 </varlistentry> 3848 </variablelist> 3849 </para> 3850 </sect1> 3851 3852 </chapter> 3853</part> 3854<part id="drmDrivers"> 3855 <title>DRM Drivers</title> 3856 3857 <partintro> 3858 <para> 3859 This second part of the DRM Developer's Guide documents driver code, 3860 implementation details and also all the driver-specific userspace 3861 interfaces. Especially since all hardware-acceleration interfaces to 3862 userspace are driver specific for efficiency and other reasons these 3863 interfaces can be rather substantial. Hence every driver has its own 3864 chapter. 3865 </para> 3866 </partintro> 3867 3868 <chapter id="drmI915"> 3869 <title>drm/i915 Intel GFX Driver</title> 3870 <para> 3871 The drm/i915 driver supports all (with the exception of some very early 3872 models) integrated GFX chipsets with both Intel display and rendering 3873 blocks. This excludes a set of SoC platforms with an SGX rendering unit, 3874 those have basic support through the gma500 drm driver. 3875 </para> 3876 <sect1> 3877 <title>Core Driver Infrastructure</title> 3878 <para> 3879 This section covers core driver infrastructure used by both the display 3880 and the GEM parts of the driver. 3881 </para> 3882 <sect2> 3883 <title>Runtime Power Management</title> 3884!Pdrivers/gpu/drm/i915/intel_runtime_pm.c runtime pm 3885!Idrivers/gpu/drm/i915/intel_runtime_pm.c 3886 </sect2> 3887 <sect2> 3888 <title>Interrupt Handling</title> 3889!Pdrivers/gpu/drm/i915/i915_irq.c interrupt handling 3890!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_init intel_irq_init_hw intel_hpd_init 3891!Fdrivers/gpu/drm/i915/i915_irq.c intel_irq_fini 3892!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_disable_interrupts 3893!Fdrivers/gpu/drm/i915/i915_irq.c intel_runtime_pm_enable_interrupts 3894 </sect2> 3895 </sect1> 3896 <sect1> 3897 <title>Display Hardware Handling</title> 3898 <para> 3899 This section covers everything related to the display hardware including 3900 the mode setting infrastructure, plane, sprite and cursor handling and 3901 display, output probing and related topics. 3902 </para> 3903 <sect2> 3904 <title>Mode Setting Infrastructure</title> 3905 <para> 3906 The i915 driver is thus far the only DRM driver which doesn't use the 3907 common DRM helper code to implement mode setting sequences. Thus it 3908 has its own tailor-made infrastructure for executing a display 3909 configuration change. 3910 </para> 3911 </sect2> 3912 <sect2> 3913 <title>Frontbuffer Tracking</title> 3914!Pdrivers/gpu/drm/i915/intel_frontbuffer.c frontbuffer tracking 3915!Idrivers/gpu/drm/i915/intel_frontbuffer.c 3916!Fdrivers/gpu/drm/i915/intel_drv.h intel_frontbuffer_flip 3917!Fdrivers/gpu/drm/i915/i915_gem.c i915_gem_track_fb 3918 </sect2> 3919 <sect2> 3920 <title>Display FIFO Underrun Reporting</title> 3921!Pdrivers/gpu/drm/i915/intel_fifo_underrun.c fifo underrun handling 3922!Idrivers/gpu/drm/i915/intel_fifo_underrun.c 3923 </sect2> 3924 <sect2> 3925 <title>Plane Configuration</title> 3926 <para> 3927 This section covers plane configuration and composition with the 3928 primary plane, sprites, cursors and overlays. This includes the 3929 infrastructure to do atomic vsync'ed updates of all this state and 3930 also tightly coupled topics like watermark setup and computation, 3931 framebuffer compression and panel self refresh. 3932 </para> 3933 </sect2> 3934 <sect2> 3935 <title>Output Probing</title> 3936 <para> 3937 This section covers output probing and related infrastructure like the 3938 hotplug interrupt storm detection and mitigation code. Note that the 3939 i915 driver still uses most of the common DRM helper code for output 3940 probing, so those sections fully apply. 3941 </para> 3942 </sect2> 3943 <sect2> 3944 <title>High Definition Audio</title> 3945!Pdrivers/gpu/drm/i915/intel_audio.c High Definition Audio over HDMI and Display Port 3946!Idrivers/gpu/drm/i915/intel_audio.c 3947 </sect2> 3948 <sect2> 3949 <title>Panel Self Refresh PSR (PSR/SRD)</title> 3950!Pdrivers/gpu/drm/i915/intel_psr.c Panel Self Refresh (PSR/SRD) 3951!Idrivers/gpu/drm/i915/intel_psr.c 3952 </sect2> 3953 <sect2> 3954 <title>DPIO</title> 3955!Pdrivers/gpu/drm/i915/i915_reg.h DPIO 3956 <table id="dpiox2"> 3957 <title>Dual channel PHY (VLV/CHV)</title> 3958 <tgroup cols="8"> 3959 <colspec colname="c0" /> 3960 <colspec colname="c1" /> 3961 <colspec colname="c2" /> 3962 <colspec colname="c3" /> 3963 <colspec colname="c4" /> 3964 <colspec colname="c5" /> 3965 <colspec colname="c6" /> 3966 <colspec colname="c7" /> 3967 <spanspec spanname="ch0" namest="c0" nameend="c3" /> 3968 <spanspec spanname="ch1" namest="c4" nameend="c7" /> 3969 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" /> 3970 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" /> 3971 <spanspec spanname="ch1pcs01" namest="c4" nameend="c5" /> 3972 <spanspec spanname="ch1pcs23" namest="c6" nameend="c7" /> 3973 <thead> 3974 <row> 3975 <entry spanname="ch0">CH0</entry> 3976 <entry spanname="ch1">CH1</entry> 3977 </row> 3978 </thead> 3979 <tbody valign="top" align="center"> 3980 <row> 3981 <entry spanname="ch0">CMN/PLL/REF</entry> 3982 <entry spanname="ch1">CMN/PLL/REF</entry> 3983 </row> 3984 <row> 3985 <entry spanname="ch0pcs01">PCS01</entry> 3986 <entry spanname="ch0pcs23">PCS23</entry> 3987 <entry spanname="ch1pcs01">PCS01</entry> 3988 <entry spanname="ch1pcs23">PCS23</entry> 3989 </row> 3990 <row> 3991 <entry>TX0</entry> 3992 <entry>TX1</entry> 3993 <entry>TX2</entry> 3994 <entry>TX3</entry> 3995 <entry>TX0</entry> 3996 <entry>TX1</entry> 3997 <entry>TX2</entry> 3998 <entry>TX3</entry> 3999 </row> 4000 <row> 4001 <entry spanname="ch0">DDI0</entry> 4002 <entry spanname="ch1">DDI1</entry> 4003 </row> 4004 </tbody> 4005 </tgroup> 4006 </table> 4007 <table id="dpiox1"> 4008 <title>Single channel PHY (CHV)</title> 4009 <tgroup cols="4"> 4010 <colspec colname="c0" /> 4011 <colspec colname="c1" /> 4012 <colspec colname="c2" /> 4013 <colspec colname="c3" /> 4014 <spanspec spanname="ch0" namest="c0" nameend="c3" /> 4015 <spanspec spanname="ch0pcs01" namest="c0" nameend="c1" /> 4016 <spanspec spanname="ch0pcs23" namest="c2" nameend="c3" /> 4017 <thead> 4018 <row> 4019 <entry spanname="ch0">CH0</entry> 4020 </row> 4021 </thead> 4022 <tbody valign="top" align="center"> 4023 <row> 4024 <entry spanname="ch0">CMN/PLL/REF</entry> 4025 </row> 4026 <row> 4027 <entry spanname="ch0pcs01">PCS01</entry> 4028 <entry spanname="ch0pcs23">PCS23</entry> 4029 </row> 4030 <row> 4031 <entry>TX0</entry> 4032 <entry>TX1</entry> 4033 <entry>TX2</entry> 4034 <entry>TX3</entry> 4035 </row> 4036 <row> 4037 <entry spanname="ch0">DDI2</entry> 4038 </row> 4039 </tbody> 4040 </tgroup> 4041 </table> 4042 </sect2> 4043 </sect1> 4044 4045 <sect1> 4046 <title>Memory Management and Command Submission</title> 4047 <para> 4048 This sections covers all things related to the GEM implementation in the 4049 i915 driver. 4050 </para> 4051 <sect2> 4052 <title>Batchbuffer Parsing</title> 4053!Pdrivers/gpu/drm/i915/i915_cmd_parser.c batch buffer command parser 4054!Idrivers/gpu/drm/i915/i915_cmd_parser.c 4055 </sect2> 4056 <sect2> 4057 <title>Logical Rings, Logical Ring Contexts and Execlists</title> 4058!Pdrivers/gpu/drm/i915/intel_lrc.c Logical Rings, Logical Ring Contexts and Execlists 4059!Idrivers/gpu/drm/i915/intel_lrc.c 4060 </sect2> 4061 </sect1> 4062 4063 <sect1> 4064 <title> Tracing </title> 4065 <para> 4066 This sections covers all things related to the tracepoints implemented in 4067 the i915 driver. 4068 </para> 4069 <sect2> 4070 <title> i915_ppgtt_create and i915_ppgtt_release </title> 4071!Pdrivers/gpu/drm/i915/i915_trace.h i915_ppgtt_create and i915_ppgtt_release tracepoints 4072 </sect2> 4073 <sect2> 4074 <title> i915_context_create and i915_context_free </title> 4075!Pdrivers/gpu/drm/i915/i915_trace.h i915_context_create and i915_context_free tracepoints 4076 </sect2> 4077 <sect2> 4078 <title> switch_mm </title> 4079!Pdrivers/gpu/drm/i915/i915_trace.h switch_mm tracepoint 4080 </sect2> 4081 </sect1> 4082 4083 </chapter> 4084!Cdrivers/gpu/drm/i915/i915_irq.c 4085</part> 4086</book>