Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <net/mpls.h>
122#include <linux/ipv6.h>
123#include <linux/in.h>
124#include <linux/jhash.h>
125#include <linux/random.h>
126#include <trace/events/napi.h>
127#include <trace/events/net.h>
128#include <trace/events/skb.h>
129#include <linux/pci.h>
130#include <linux/inetdevice.h>
131#include <linux/cpu_rmap.h>
132#include <linux/static_key.h>
133#include <linux/hashtable.h>
134#include <linux/vmalloc.h>
135#include <linux/if_macvlan.h>
136#include <linux/errqueue.h>
137#include <linux/hrtimer.h>
138
139#include "net-sysfs.h"
140
141/* Instead of increasing this, you should create a hash table. */
142#define MAX_GRO_SKBS 8
143
144/* This should be increased if a protocol with a bigger head is added. */
145#define GRO_MAX_HEAD (MAX_HEADER + 128)
146
147static DEFINE_SPINLOCK(ptype_lock);
148static DEFINE_SPINLOCK(offload_lock);
149struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
150struct list_head ptype_all __read_mostly; /* Taps */
151static struct list_head offload_base __read_mostly;
152
153static int netif_rx_internal(struct sk_buff *skb);
154static int call_netdevice_notifiers_info(unsigned long val,
155 struct net_device *dev,
156 struct netdev_notifier_info *info);
157
158/*
159 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
160 * semaphore.
161 *
162 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
163 *
164 * Writers must hold the rtnl semaphore while they loop through the
165 * dev_base_head list, and hold dev_base_lock for writing when they do the
166 * actual updates. This allows pure readers to access the list even
167 * while a writer is preparing to update it.
168 *
169 * To put it another way, dev_base_lock is held for writing only to
170 * protect against pure readers; the rtnl semaphore provides the
171 * protection against other writers.
172 *
173 * See, for example usages, register_netdevice() and
174 * unregister_netdevice(), which must be called with the rtnl
175 * semaphore held.
176 */
177DEFINE_RWLOCK(dev_base_lock);
178EXPORT_SYMBOL(dev_base_lock);
179
180/* protects napi_hash addition/deletion and napi_gen_id */
181static DEFINE_SPINLOCK(napi_hash_lock);
182
183static unsigned int napi_gen_id;
184static DEFINE_HASHTABLE(napi_hash, 8);
185
186static seqcount_t devnet_rename_seq;
187
188static inline void dev_base_seq_inc(struct net *net)
189{
190 while (++net->dev_base_seq == 0);
191}
192
193static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194{
195 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
196
197 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198}
199
200static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201{
202 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203}
204
205static inline void rps_lock(struct softnet_data *sd)
206{
207#ifdef CONFIG_RPS
208 spin_lock(&sd->input_pkt_queue.lock);
209#endif
210}
211
212static inline void rps_unlock(struct softnet_data *sd)
213{
214#ifdef CONFIG_RPS
215 spin_unlock(&sd->input_pkt_queue.lock);
216#endif
217}
218
219/* Device list insertion */
220static void list_netdevice(struct net_device *dev)
221{
222 struct net *net = dev_net(dev);
223
224 ASSERT_RTNL();
225
226 write_lock_bh(&dev_base_lock);
227 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
228 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
229 hlist_add_head_rcu(&dev->index_hlist,
230 dev_index_hash(net, dev->ifindex));
231 write_unlock_bh(&dev_base_lock);
232
233 dev_base_seq_inc(net);
234}
235
236/* Device list removal
237 * caller must respect a RCU grace period before freeing/reusing dev
238 */
239static void unlist_netdevice(struct net_device *dev)
240{
241 ASSERT_RTNL();
242
243 /* Unlink dev from the device chain */
244 write_lock_bh(&dev_base_lock);
245 list_del_rcu(&dev->dev_list);
246 hlist_del_rcu(&dev->name_hlist);
247 hlist_del_rcu(&dev->index_hlist);
248 write_unlock_bh(&dev_base_lock);
249
250 dev_base_seq_inc(dev_net(dev));
251}
252
253/*
254 * Our notifier list
255 */
256
257static RAW_NOTIFIER_HEAD(netdev_chain);
258
259/*
260 * Device drivers call our routines to queue packets here. We empty the
261 * queue in the local softnet handler.
262 */
263
264DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
265EXPORT_PER_CPU_SYMBOL(softnet_data);
266
267#ifdef CONFIG_LOCKDEP
268/*
269 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
270 * according to dev->type
271 */
272static const unsigned short netdev_lock_type[] =
273 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
274 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
275 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
276 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
277 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
278 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
279 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
280 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
281 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
282 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
283 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
284 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
285 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
286 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
287 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
288
289static const char *const netdev_lock_name[] =
290 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
291 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
292 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
293 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
294 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
295 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
296 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
297 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
298 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
299 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
300 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
301 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
302 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
303 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
304 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
305
306static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
307static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
308
309static inline unsigned short netdev_lock_pos(unsigned short dev_type)
310{
311 int i;
312
313 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
314 if (netdev_lock_type[i] == dev_type)
315 return i;
316 /* the last key is used by default */
317 return ARRAY_SIZE(netdev_lock_type) - 1;
318}
319
320static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
321 unsigned short dev_type)
322{
323 int i;
324
325 i = netdev_lock_pos(dev_type);
326 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
327 netdev_lock_name[i]);
328}
329
330static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
331{
332 int i;
333
334 i = netdev_lock_pos(dev->type);
335 lockdep_set_class_and_name(&dev->addr_list_lock,
336 &netdev_addr_lock_key[i],
337 netdev_lock_name[i]);
338}
339#else
340static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
341 unsigned short dev_type)
342{
343}
344static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345{
346}
347#endif
348
349/*******************************************************************************
350
351 Protocol management and registration routines
352
353*******************************************************************************/
354
355/*
356 * Add a protocol ID to the list. Now that the input handler is
357 * smarter we can dispense with all the messy stuff that used to be
358 * here.
359 *
360 * BEWARE!!! Protocol handlers, mangling input packets,
361 * MUST BE last in hash buckets and checking protocol handlers
362 * MUST start from promiscuous ptype_all chain in net_bh.
363 * It is true now, do not change it.
364 * Explanation follows: if protocol handler, mangling packet, will
365 * be the first on list, it is not able to sense, that packet
366 * is cloned and should be copied-on-write, so that it will
367 * change it and subsequent readers will get broken packet.
368 * --ANK (980803)
369 */
370
371static inline struct list_head *ptype_head(const struct packet_type *pt)
372{
373 if (pt->type == htons(ETH_P_ALL))
374 return &ptype_all;
375 else
376 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
377}
378
379/**
380 * dev_add_pack - add packet handler
381 * @pt: packet type declaration
382 *
383 * Add a protocol handler to the networking stack. The passed &packet_type
384 * is linked into kernel lists and may not be freed until it has been
385 * removed from the kernel lists.
386 *
387 * This call does not sleep therefore it can not
388 * guarantee all CPU's that are in middle of receiving packets
389 * will see the new packet type (until the next received packet).
390 */
391
392void dev_add_pack(struct packet_type *pt)
393{
394 struct list_head *head = ptype_head(pt);
395
396 spin_lock(&ptype_lock);
397 list_add_rcu(&pt->list, head);
398 spin_unlock(&ptype_lock);
399}
400EXPORT_SYMBOL(dev_add_pack);
401
402/**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415void __dev_remove_pack(struct packet_type *pt)
416{
417 struct list_head *head = ptype_head(pt);
418 struct packet_type *pt1;
419
420 spin_lock(&ptype_lock);
421
422 list_for_each_entry(pt1, head, list) {
423 if (pt == pt1) {
424 list_del_rcu(&pt->list);
425 goto out;
426 }
427 }
428
429 pr_warn("dev_remove_pack: %p not found\n", pt);
430out:
431 spin_unlock(&ptype_lock);
432}
433EXPORT_SYMBOL(__dev_remove_pack);
434
435/**
436 * dev_remove_pack - remove packet handler
437 * @pt: packet type declaration
438 *
439 * Remove a protocol handler that was previously added to the kernel
440 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
441 * from the kernel lists and can be freed or reused once this function
442 * returns.
443 *
444 * This call sleeps to guarantee that no CPU is looking at the packet
445 * type after return.
446 */
447void dev_remove_pack(struct packet_type *pt)
448{
449 __dev_remove_pack(pt);
450
451 synchronize_net();
452}
453EXPORT_SYMBOL(dev_remove_pack);
454
455
456/**
457 * dev_add_offload - register offload handlers
458 * @po: protocol offload declaration
459 *
460 * Add protocol offload handlers to the networking stack. The passed
461 * &proto_offload is linked into kernel lists and may not be freed until
462 * it has been removed from the kernel lists.
463 *
464 * This call does not sleep therefore it can not
465 * guarantee all CPU's that are in middle of receiving packets
466 * will see the new offload handlers (until the next received packet).
467 */
468void dev_add_offload(struct packet_offload *po)
469{
470 struct list_head *head = &offload_base;
471
472 spin_lock(&offload_lock);
473 list_add_rcu(&po->list, head);
474 spin_unlock(&offload_lock);
475}
476EXPORT_SYMBOL(dev_add_offload);
477
478/**
479 * __dev_remove_offload - remove offload handler
480 * @po: packet offload declaration
481 *
482 * Remove a protocol offload handler that was previously added to the
483 * kernel offload handlers by dev_add_offload(). The passed &offload_type
484 * is removed from the kernel lists and can be freed or reused once this
485 * function returns.
486 *
487 * The packet type might still be in use by receivers
488 * and must not be freed until after all the CPU's have gone
489 * through a quiescent state.
490 */
491static void __dev_remove_offload(struct packet_offload *po)
492{
493 struct list_head *head = &offload_base;
494 struct packet_offload *po1;
495
496 spin_lock(&offload_lock);
497
498 list_for_each_entry(po1, head, list) {
499 if (po == po1) {
500 list_del_rcu(&po->list);
501 goto out;
502 }
503 }
504
505 pr_warn("dev_remove_offload: %p not found\n", po);
506out:
507 spin_unlock(&offload_lock);
508}
509
510/**
511 * dev_remove_offload - remove packet offload handler
512 * @po: packet offload declaration
513 *
514 * Remove a packet offload handler that was previously added to the kernel
515 * offload handlers by dev_add_offload(). The passed &offload_type is
516 * removed from the kernel lists and can be freed or reused once this
517 * function returns.
518 *
519 * This call sleeps to guarantee that no CPU is looking at the packet
520 * type after return.
521 */
522void dev_remove_offload(struct packet_offload *po)
523{
524 __dev_remove_offload(po);
525
526 synchronize_net();
527}
528EXPORT_SYMBOL(dev_remove_offload);
529
530/******************************************************************************
531
532 Device Boot-time Settings Routines
533
534*******************************************************************************/
535
536/* Boot time configuration table */
537static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
538
539/**
540 * netdev_boot_setup_add - add new setup entry
541 * @name: name of the device
542 * @map: configured settings for the device
543 *
544 * Adds new setup entry to the dev_boot_setup list. The function
545 * returns 0 on error and 1 on success. This is a generic routine to
546 * all netdevices.
547 */
548static int netdev_boot_setup_add(char *name, struct ifmap *map)
549{
550 struct netdev_boot_setup *s;
551 int i;
552
553 s = dev_boot_setup;
554 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
555 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
556 memset(s[i].name, 0, sizeof(s[i].name));
557 strlcpy(s[i].name, name, IFNAMSIZ);
558 memcpy(&s[i].map, map, sizeof(s[i].map));
559 break;
560 }
561 }
562
563 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
564}
565
566/**
567 * netdev_boot_setup_check - check boot time settings
568 * @dev: the netdevice
569 *
570 * Check boot time settings for the device.
571 * The found settings are set for the device to be used
572 * later in the device probing.
573 * Returns 0 if no settings found, 1 if they are.
574 */
575int netdev_boot_setup_check(struct net_device *dev)
576{
577 struct netdev_boot_setup *s = dev_boot_setup;
578 int i;
579
580 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
581 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
582 !strcmp(dev->name, s[i].name)) {
583 dev->irq = s[i].map.irq;
584 dev->base_addr = s[i].map.base_addr;
585 dev->mem_start = s[i].map.mem_start;
586 dev->mem_end = s[i].map.mem_end;
587 return 1;
588 }
589 }
590 return 0;
591}
592EXPORT_SYMBOL(netdev_boot_setup_check);
593
594
595/**
596 * netdev_boot_base - get address from boot time settings
597 * @prefix: prefix for network device
598 * @unit: id for network device
599 *
600 * Check boot time settings for the base address of device.
601 * The found settings are set for the device to be used
602 * later in the device probing.
603 * Returns 0 if no settings found.
604 */
605unsigned long netdev_boot_base(const char *prefix, int unit)
606{
607 const struct netdev_boot_setup *s = dev_boot_setup;
608 char name[IFNAMSIZ];
609 int i;
610
611 sprintf(name, "%s%d", prefix, unit);
612
613 /*
614 * If device already registered then return base of 1
615 * to indicate not to probe for this interface
616 */
617 if (__dev_get_by_name(&init_net, name))
618 return 1;
619
620 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
621 if (!strcmp(name, s[i].name))
622 return s[i].map.base_addr;
623 return 0;
624}
625
626/*
627 * Saves at boot time configured settings for any netdevice.
628 */
629int __init netdev_boot_setup(char *str)
630{
631 int ints[5];
632 struct ifmap map;
633
634 str = get_options(str, ARRAY_SIZE(ints), ints);
635 if (!str || !*str)
636 return 0;
637
638 /* Save settings */
639 memset(&map, 0, sizeof(map));
640 if (ints[0] > 0)
641 map.irq = ints[1];
642 if (ints[0] > 1)
643 map.base_addr = ints[2];
644 if (ints[0] > 2)
645 map.mem_start = ints[3];
646 if (ints[0] > 3)
647 map.mem_end = ints[4];
648
649 /* Add new entry to the list */
650 return netdev_boot_setup_add(str, &map);
651}
652
653__setup("netdev=", netdev_boot_setup);
654
655/*******************************************************************************
656
657 Device Interface Subroutines
658
659*******************************************************************************/
660
661/**
662 * __dev_get_by_name - find a device by its name
663 * @net: the applicable net namespace
664 * @name: name to find
665 *
666 * Find an interface by name. Must be called under RTNL semaphore
667 * or @dev_base_lock. If the name is found a pointer to the device
668 * is returned. If the name is not found then %NULL is returned. The
669 * reference counters are not incremented so the caller must be
670 * careful with locks.
671 */
672
673struct net_device *__dev_get_by_name(struct net *net, const char *name)
674{
675 struct net_device *dev;
676 struct hlist_head *head = dev_name_hash(net, name);
677
678 hlist_for_each_entry(dev, head, name_hlist)
679 if (!strncmp(dev->name, name, IFNAMSIZ))
680 return dev;
681
682 return NULL;
683}
684EXPORT_SYMBOL(__dev_get_by_name);
685
686/**
687 * dev_get_by_name_rcu - find a device by its name
688 * @net: the applicable net namespace
689 * @name: name to find
690 *
691 * Find an interface by name.
692 * If the name is found a pointer to the device is returned.
693 * If the name is not found then %NULL is returned.
694 * The reference counters are not incremented so the caller must be
695 * careful with locks. The caller must hold RCU lock.
696 */
697
698struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
699{
700 struct net_device *dev;
701 struct hlist_head *head = dev_name_hash(net, name);
702
703 hlist_for_each_entry_rcu(dev, head, name_hlist)
704 if (!strncmp(dev->name, name, IFNAMSIZ))
705 return dev;
706
707 return NULL;
708}
709EXPORT_SYMBOL(dev_get_by_name_rcu);
710
711/**
712 * dev_get_by_name - find a device by its name
713 * @net: the applicable net namespace
714 * @name: name to find
715 *
716 * Find an interface by name. This can be called from any
717 * context and does its own locking. The returned handle has
718 * the usage count incremented and the caller must use dev_put() to
719 * release it when it is no longer needed. %NULL is returned if no
720 * matching device is found.
721 */
722
723struct net_device *dev_get_by_name(struct net *net, const char *name)
724{
725 struct net_device *dev;
726
727 rcu_read_lock();
728 dev = dev_get_by_name_rcu(net, name);
729 if (dev)
730 dev_hold(dev);
731 rcu_read_unlock();
732 return dev;
733}
734EXPORT_SYMBOL(dev_get_by_name);
735
736/**
737 * __dev_get_by_index - find a device by its ifindex
738 * @net: the applicable net namespace
739 * @ifindex: index of device
740 *
741 * Search for an interface by index. Returns %NULL if the device
742 * is not found or a pointer to the device. The device has not
743 * had its reference counter increased so the caller must be careful
744 * about locking. The caller must hold either the RTNL semaphore
745 * or @dev_base_lock.
746 */
747
748struct net_device *__dev_get_by_index(struct net *net, int ifindex)
749{
750 struct net_device *dev;
751 struct hlist_head *head = dev_index_hash(net, ifindex);
752
753 hlist_for_each_entry(dev, head, index_hlist)
754 if (dev->ifindex == ifindex)
755 return dev;
756
757 return NULL;
758}
759EXPORT_SYMBOL(__dev_get_by_index);
760
761/**
762 * dev_get_by_index_rcu - find a device by its ifindex
763 * @net: the applicable net namespace
764 * @ifindex: index of device
765 *
766 * Search for an interface by index. Returns %NULL if the device
767 * is not found or a pointer to the device. The device has not
768 * had its reference counter increased so the caller must be careful
769 * about locking. The caller must hold RCU lock.
770 */
771
772struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
773{
774 struct net_device *dev;
775 struct hlist_head *head = dev_index_hash(net, ifindex);
776
777 hlist_for_each_entry_rcu(dev, head, index_hlist)
778 if (dev->ifindex == ifindex)
779 return dev;
780
781 return NULL;
782}
783EXPORT_SYMBOL(dev_get_by_index_rcu);
784
785
786/**
787 * dev_get_by_index - find a device by its ifindex
788 * @net: the applicable net namespace
789 * @ifindex: index of device
790 *
791 * Search for an interface by index. Returns NULL if the device
792 * is not found or a pointer to the device. The device returned has
793 * had a reference added and the pointer is safe until the user calls
794 * dev_put to indicate they have finished with it.
795 */
796
797struct net_device *dev_get_by_index(struct net *net, int ifindex)
798{
799 struct net_device *dev;
800
801 rcu_read_lock();
802 dev = dev_get_by_index_rcu(net, ifindex);
803 if (dev)
804 dev_hold(dev);
805 rcu_read_unlock();
806 return dev;
807}
808EXPORT_SYMBOL(dev_get_by_index);
809
810/**
811 * netdev_get_name - get a netdevice name, knowing its ifindex.
812 * @net: network namespace
813 * @name: a pointer to the buffer where the name will be stored.
814 * @ifindex: the ifindex of the interface to get the name from.
815 *
816 * The use of raw_seqcount_begin() and cond_resched() before
817 * retrying is required as we want to give the writers a chance
818 * to complete when CONFIG_PREEMPT is not set.
819 */
820int netdev_get_name(struct net *net, char *name, int ifindex)
821{
822 struct net_device *dev;
823 unsigned int seq;
824
825retry:
826 seq = raw_seqcount_begin(&devnet_rename_seq);
827 rcu_read_lock();
828 dev = dev_get_by_index_rcu(net, ifindex);
829 if (!dev) {
830 rcu_read_unlock();
831 return -ENODEV;
832 }
833
834 strcpy(name, dev->name);
835 rcu_read_unlock();
836 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
837 cond_resched();
838 goto retry;
839 }
840
841 return 0;
842}
843
844/**
845 * dev_getbyhwaddr_rcu - find a device by its hardware address
846 * @net: the applicable net namespace
847 * @type: media type of device
848 * @ha: hardware address
849 *
850 * Search for an interface by MAC address. Returns NULL if the device
851 * is not found or a pointer to the device.
852 * The caller must hold RCU or RTNL.
853 * The returned device has not had its ref count increased
854 * and the caller must therefore be careful about locking
855 *
856 */
857
858struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
859 const char *ha)
860{
861 struct net_device *dev;
862
863 for_each_netdev_rcu(net, dev)
864 if (dev->type == type &&
865 !memcmp(dev->dev_addr, ha, dev->addr_len))
866 return dev;
867
868 return NULL;
869}
870EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
871
872struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
873{
874 struct net_device *dev;
875
876 ASSERT_RTNL();
877 for_each_netdev(net, dev)
878 if (dev->type == type)
879 return dev;
880
881 return NULL;
882}
883EXPORT_SYMBOL(__dev_getfirstbyhwtype);
884
885struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
886{
887 struct net_device *dev, *ret = NULL;
888
889 rcu_read_lock();
890 for_each_netdev_rcu(net, dev)
891 if (dev->type == type) {
892 dev_hold(dev);
893 ret = dev;
894 break;
895 }
896 rcu_read_unlock();
897 return ret;
898}
899EXPORT_SYMBOL(dev_getfirstbyhwtype);
900
901/**
902 * __dev_get_by_flags - find any device with given flags
903 * @net: the applicable net namespace
904 * @if_flags: IFF_* values
905 * @mask: bitmask of bits in if_flags to check
906 *
907 * Search for any interface with the given flags. Returns NULL if a device
908 * is not found or a pointer to the device. Must be called inside
909 * rtnl_lock(), and result refcount is unchanged.
910 */
911
912struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
913 unsigned short mask)
914{
915 struct net_device *dev, *ret;
916
917 ASSERT_RTNL();
918
919 ret = NULL;
920 for_each_netdev(net, dev) {
921 if (((dev->flags ^ if_flags) & mask) == 0) {
922 ret = dev;
923 break;
924 }
925 }
926 return ret;
927}
928EXPORT_SYMBOL(__dev_get_by_flags);
929
930/**
931 * dev_valid_name - check if name is okay for network device
932 * @name: name string
933 *
934 * Network device names need to be valid file names to
935 * to allow sysfs to work. We also disallow any kind of
936 * whitespace.
937 */
938bool dev_valid_name(const char *name)
939{
940 if (*name == '\0')
941 return false;
942 if (strlen(name) >= IFNAMSIZ)
943 return false;
944 if (!strcmp(name, ".") || !strcmp(name, ".."))
945 return false;
946
947 while (*name) {
948 if (*name == '/' || isspace(*name))
949 return false;
950 name++;
951 }
952 return true;
953}
954EXPORT_SYMBOL(dev_valid_name);
955
956/**
957 * __dev_alloc_name - allocate a name for a device
958 * @net: network namespace to allocate the device name in
959 * @name: name format string
960 * @buf: scratch buffer and result name string
961 *
962 * Passed a format string - eg "lt%d" it will try and find a suitable
963 * id. It scans list of devices to build up a free map, then chooses
964 * the first empty slot. The caller must hold the dev_base or rtnl lock
965 * while allocating the name and adding the device in order to avoid
966 * duplicates.
967 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
968 * Returns the number of the unit assigned or a negative errno code.
969 */
970
971static int __dev_alloc_name(struct net *net, const char *name, char *buf)
972{
973 int i = 0;
974 const char *p;
975 const int max_netdevices = 8*PAGE_SIZE;
976 unsigned long *inuse;
977 struct net_device *d;
978
979 p = strnchr(name, IFNAMSIZ-1, '%');
980 if (p) {
981 /*
982 * Verify the string as this thing may have come from
983 * the user. There must be either one "%d" and no other "%"
984 * characters.
985 */
986 if (p[1] != 'd' || strchr(p + 2, '%'))
987 return -EINVAL;
988
989 /* Use one page as a bit array of possible slots */
990 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
991 if (!inuse)
992 return -ENOMEM;
993
994 for_each_netdev(net, d) {
995 if (!sscanf(d->name, name, &i))
996 continue;
997 if (i < 0 || i >= max_netdevices)
998 continue;
999
1000 /* avoid cases where sscanf is not exact inverse of printf */
1001 snprintf(buf, IFNAMSIZ, name, i);
1002 if (!strncmp(buf, d->name, IFNAMSIZ))
1003 set_bit(i, inuse);
1004 }
1005
1006 i = find_first_zero_bit(inuse, max_netdevices);
1007 free_page((unsigned long) inuse);
1008 }
1009
1010 if (buf != name)
1011 snprintf(buf, IFNAMSIZ, name, i);
1012 if (!__dev_get_by_name(net, buf))
1013 return i;
1014
1015 /* It is possible to run out of possible slots
1016 * when the name is long and there isn't enough space left
1017 * for the digits, or if all bits are used.
1018 */
1019 return -ENFILE;
1020}
1021
1022/**
1023 * dev_alloc_name - allocate a name for a device
1024 * @dev: device
1025 * @name: name format string
1026 *
1027 * Passed a format string - eg "lt%d" it will try and find a suitable
1028 * id. It scans list of devices to build up a free map, then chooses
1029 * the first empty slot. The caller must hold the dev_base or rtnl lock
1030 * while allocating the name and adding the device in order to avoid
1031 * duplicates.
1032 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1033 * Returns the number of the unit assigned or a negative errno code.
1034 */
1035
1036int dev_alloc_name(struct net_device *dev, const char *name)
1037{
1038 char buf[IFNAMSIZ];
1039 struct net *net;
1040 int ret;
1041
1042 BUG_ON(!dev_net(dev));
1043 net = dev_net(dev);
1044 ret = __dev_alloc_name(net, name, buf);
1045 if (ret >= 0)
1046 strlcpy(dev->name, buf, IFNAMSIZ);
1047 return ret;
1048}
1049EXPORT_SYMBOL(dev_alloc_name);
1050
1051static int dev_alloc_name_ns(struct net *net,
1052 struct net_device *dev,
1053 const char *name)
1054{
1055 char buf[IFNAMSIZ];
1056 int ret;
1057
1058 ret = __dev_alloc_name(net, name, buf);
1059 if (ret >= 0)
1060 strlcpy(dev->name, buf, IFNAMSIZ);
1061 return ret;
1062}
1063
1064static int dev_get_valid_name(struct net *net,
1065 struct net_device *dev,
1066 const char *name)
1067{
1068 BUG_ON(!net);
1069
1070 if (!dev_valid_name(name))
1071 return -EINVAL;
1072
1073 if (strchr(name, '%'))
1074 return dev_alloc_name_ns(net, dev, name);
1075 else if (__dev_get_by_name(net, name))
1076 return -EEXIST;
1077 else if (dev->name != name)
1078 strlcpy(dev->name, name, IFNAMSIZ);
1079
1080 return 0;
1081}
1082
1083/**
1084 * dev_change_name - change name of a device
1085 * @dev: device
1086 * @newname: name (or format string) must be at least IFNAMSIZ
1087 *
1088 * Change name of a device, can pass format strings "eth%d".
1089 * for wildcarding.
1090 */
1091int dev_change_name(struct net_device *dev, const char *newname)
1092{
1093 unsigned char old_assign_type;
1094 char oldname[IFNAMSIZ];
1095 int err = 0;
1096 int ret;
1097 struct net *net;
1098
1099 ASSERT_RTNL();
1100 BUG_ON(!dev_net(dev));
1101
1102 net = dev_net(dev);
1103 if (dev->flags & IFF_UP)
1104 return -EBUSY;
1105
1106 write_seqcount_begin(&devnet_rename_seq);
1107
1108 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1109 write_seqcount_end(&devnet_rename_seq);
1110 return 0;
1111 }
1112
1113 memcpy(oldname, dev->name, IFNAMSIZ);
1114
1115 err = dev_get_valid_name(net, dev, newname);
1116 if (err < 0) {
1117 write_seqcount_end(&devnet_rename_seq);
1118 return err;
1119 }
1120
1121 if (oldname[0] && !strchr(oldname, '%'))
1122 netdev_info(dev, "renamed from %s\n", oldname);
1123
1124 old_assign_type = dev->name_assign_type;
1125 dev->name_assign_type = NET_NAME_RENAMED;
1126
1127rollback:
1128 ret = device_rename(&dev->dev, dev->name);
1129 if (ret) {
1130 memcpy(dev->name, oldname, IFNAMSIZ);
1131 dev->name_assign_type = old_assign_type;
1132 write_seqcount_end(&devnet_rename_seq);
1133 return ret;
1134 }
1135
1136 write_seqcount_end(&devnet_rename_seq);
1137
1138 netdev_adjacent_rename_links(dev, oldname);
1139
1140 write_lock_bh(&dev_base_lock);
1141 hlist_del_rcu(&dev->name_hlist);
1142 write_unlock_bh(&dev_base_lock);
1143
1144 synchronize_rcu();
1145
1146 write_lock_bh(&dev_base_lock);
1147 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1148 write_unlock_bh(&dev_base_lock);
1149
1150 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1151 ret = notifier_to_errno(ret);
1152
1153 if (ret) {
1154 /* err >= 0 after dev_alloc_name() or stores the first errno */
1155 if (err >= 0) {
1156 err = ret;
1157 write_seqcount_begin(&devnet_rename_seq);
1158 memcpy(dev->name, oldname, IFNAMSIZ);
1159 memcpy(oldname, newname, IFNAMSIZ);
1160 dev->name_assign_type = old_assign_type;
1161 old_assign_type = NET_NAME_RENAMED;
1162 goto rollback;
1163 } else {
1164 pr_err("%s: name change rollback failed: %d\n",
1165 dev->name, ret);
1166 }
1167 }
1168
1169 return err;
1170}
1171
1172/**
1173 * dev_set_alias - change ifalias of a device
1174 * @dev: device
1175 * @alias: name up to IFALIASZ
1176 * @len: limit of bytes to copy from info
1177 *
1178 * Set ifalias for a device,
1179 */
1180int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1181{
1182 char *new_ifalias;
1183
1184 ASSERT_RTNL();
1185
1186 if (len >= IFALIASZ)
1187 return -EINVAL;
1188
1189 if (!len) {
1190 kfree(dev->ifalias);
1191 dev->ifalias = NULL;
1192 return 0;
1193 }
1194
1195 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1196 if (!new_ifalias)
1197 return -ENOMEM;
1198 dev->ifalias = new_ifalias;
1199
1200 strlcpy(dev->ifalias, alias, len+1);
1201 return len;
1202}
1203
1204
1205/**
1206 * netdev_features_change - device changes features
1207 * @dev: device to cause notification
1208 *
1209 * Called to indicate a device has changed features.
1210 */
1211void netdev_features_change(struct net_device *dev)
1212{
1213 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1214}
1215EXPORT_SYMBOL(netdev_features_change);
1216
1217/**
1218 * netdev_state_change - device changes state
1219 * @dev: device to cause notification
1220 *
1221 * Called to indicate a device has changed state. This function calls
1222 * the notifier chains for netdev_chain and sends a NEWLINK message
1223 * to the routing socket.
1224 */
1225void netdev_state_change(struct net_device *dev)
1226{
1227 if (dev->flags & IFF_UP) {
1228 struct netdev_notifier_change_info change_info;
1229
1230 change_info.flags_changed = 0;
1231 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1232 &change_info.info);
1233 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1234 }
1235}
1236EXPORT_SYMBOL(netdev_state_change);
1237
1238/**
1239 * netdev_notify_peers - notify network peers about existence of @dev
1240 * @dev: network device
1241 *
1242 * Generate traffic such that interested network peers are aware of
1243 * @dev, such as by generating a gratuitous ARP. This may be used when
1244 * a device wants to inform the rest of the network about some sort of
1245 * reconfiguration such as a failover event or virtual machine
1246 * migration.
1247 */
1248void netdev_notify_peers(struct net_device *dev)
1249{
1250 rtnl_lock();
1251 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1252 rtnl_unlock();
1253}
1254EXPORT_SYMBOL(netdev_notify_peers);
1255
1256static int __dev_open(struct net_device *dev)
1257{
1258 const struct net_device_ops *ops = dev->netdev_ops;
1259 int ret;
1260
1261 ASSERT_RTNL();
1262
1263 if (!netif_device_present(dev))
1264 return -ENODEV;
1265
1266 /* Block netpoll from trying to do any rx path servicing.
1267 * If we don't do this there is a chance ndo_poll_controller
1268 * or ndo_poll may be running while we open the device
1269 */
1270 netpoll_poll_disable(dev);
1271
1272 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1273 ret = notifier_to_errno(ret);
1274 if (ret)
1275 return ret;
1276
1277 set_bit(__LINK_STATE_START, &dev->state);
1278
1279 if (ops->ndo_validate_addr)
1280 ret = ops->ndo_validate_addr(dev);
1281
1282 if (!ret && ops->ndo_open)
1283 ret = ops->ndo_open(dev);
1284
1285 netpoll_poll_enable(dev);
1286
1287 if (ret)
1288 clear_bit(__LINK_STATE_START, &dev->state);
1289 else {
1290 dev->flags |= IFF_UP;
1291 dev_set_rx_mode(dev);
1292 dev_activate(dev);
1293 add_device_randomness(dev->dev_addr, dev->addr_len);
1294 }
1295
1296 return ret;
1297}
1298
1299/**
1300 * dev_open - prepare an interface for use.
1301 * @dev: device to open
1302 *
1303 * Takes a device from down to up state. The device's private open
1304 * function is invoked and then the multicast lists are loaded. Finally
1305 * the device is moved into the up state and a %NETDEV_UP message is
1306 * sent to the netdev notifier chain.
1307 *
1308 * Calling this function on an active interface is a nop. On a failure
1309 * a negative errno code is returned.
1310 */
1311int dev_open(struct net_device *dev)
1312{
1313 int ret;
1314
1315 if (dev->flags & IFF_UP)
1316 return 0;
1317
1318 ret = __dev_open(dev);
1319 if (ret < 0)
1320 return ret;
1321
1322 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1323 call_netdevice_notifiers(NETDEV_UP, dev);
1324
1325 return ret;
1326}
1327EXPORT_SYMBOL(dev_open);
1328
1329static int __dev_close_many(struct list_head *head)
1330{
1331 struct net_device *dev;
1332
1333 ASSERT_RTNL();
1334 might_sleep();
1335
1336 list_for_each_entry(dev, head, close_list) {
1337 /* Temporarily disable netpoll until the interface is down */
1338 netpoll_poll_disable(dev);
1339
1340 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1341
1342 clear_bit(__LINK_STATE_START, &dev->state);
1343
1344 /* Synchronize to scheduled poll. We cannot touch poll list, it
1345 * can be even on different cpu. So just clear netif_running().
1346 *
1347 * dev->stop() will invoke napi_disable() on all of it's
1348 * napi_struct instances on this device.
1349 */
1350 smp_mb__after_atomic(); /* Commit netif_running(). */
1351 }
1352
1353 dev_deactivate_many(head);
1354
1355 list_for_each_entry(dev, head, close_list) {
1356 const struct net_device_ops *ops = dev->netdev_ops;
1357
1358 /*
1359 * Call the device specific close. This cannot fail.
1360 * Only if device is UP
1361 *
1362 * We allow it to be called even after a DETACH hot-plug
1363 * event.
1364 */
1365 if (ops->ndo_stop)
1366 ops->ndo_stop(dev);
1367
1368 dev->flags &= ~IFF_UP;
1369 netpoll_poll_enable(dev);
1370 }
1371
1372 return 0;
1373}
1374
1375static int __dev_close(struct net_device *dev)
1376{
1377 int retval;
1378 LIST_HEAD(single);
1379
1380 list_add(&dev->close_list, &single);
1381 retval = __dev_close_many(&single);
1382 list_del(&single);
1383
1384 return retval;
1385}
1386
1387static int dev_close_many(struct list_head *head)
1388{
1389 struct net_device *dev, *tmp;
1390
1391 /* Remove the devices that don't need to be closed */
1392 list_for_each_entry_safe(dev, tmp, head, close_list)
1393 if (!(dev->flags & IFF_UP))
1394 list_del_init(&dev->close_list);
1395
1396 __dev_close_many(head);
1397
1398 list_for_each_entry_safe(dev, tmp, head, close_list) {
1399 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1400 call_netdevice_notifiers(NETDEV_DOWN, dev);
1401 list_del_init(&dev->close_list);
1402 }
1403
1404 return 0;
1405}
1406
1407/**
1408 * dev_close - shutdown an interface.
1409 * @dev: device to shutdown
1410 *
1411 * This function moves an active device into down state. A
1412 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1413 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1414 * chain.
1415 */
1416int dev_close(struct net_device *dev)
1417{
1418 if (dev->flags & IFF_UP) {
1419 LIST_HEAD(single);
1420
1421 list_add(&dev->close_list, &single);
1422 dev_close_many(&single);
1423 list_del(&single);
1424 }
1425 return 0;
1426}
1427EXPORT_SYMBOL(dev_close);
1428
1429
1430/**
1431 * dev_disable_lro - disable Large Receive Offload on a device
1432 * @dev: device
1433 *
1434 * Disable Large Receive Offload (LRO) on a net device. Must be
1435 * called under RTNL. This is needed if received packets may be
1436 * forwarded to another interface.
1437 */
1438void dev_disable_lro(struct net_device *dev)
1439{
1440 struct net_device *lower_dev;
1441 struct list_head *iter;
1442
1443 dev->wanted_features &= ~NETIF_F_LRO;
1444 netdev_update_features(dev);
1445
1446 if (unlikely(dev->features & NETIF_F_LRO))
1447 netdev_WARN(dev, "failed to disable LRO!\n");
1448
1449 netdev_for_each_lower_dev(dev, lower_dev, iter)
1450 dev_disable_lro(lower_dev);
1451}
1452EXPORT_SYMBOL(dev_disable_lro);
1453
1454static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1455 struct net_device *dev)
1456{
1457 struct netdev_notifier_info info;
1458
1459 netdev_notifier_info_init(&info, dev);
1460 return nb->notifier_call(nb, val, &info);
1461}
1462
1463static int dev_boot_phase = 1;
1464
1465/**
1466 * register_netdevice_notifier - register a network notifier block
1467 * @nb: notifier
1468 *
1469 * Register a notifier to be called when network device events occur.
1470 * The notifier passed is linked into the kernel structures and must
1471 * not be reused until it has been unregistered. A negative errno code
1472 * is returned on a failure.
1473 *
1474 * When registered all registration and up events are replayed
1475 * to the new notifier to allow device to have a race free
1476 * view of the network device list.
1477 */
1478
1479int register_netdevice_notifier(struct notifier_block *nb)
1480{
1481 struct net_device *dev;
1482 struct net_device *last;
1483 struct net *net;
1484 int err;
1485
1486 rtnl_lock();
1487 err = raw_notifier_chain_register(&netdev_chain, nb);
1488 if (err)
1489 goto unlock;
1490 if (dev_boot_phase)
1491 goto unlock;
1492 for_each_net(net) {
1493 for_each_netdev(net, dev) {
1494 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1495 err = notifier_to_errno(err);
1496 if (err)
1497 goto rollback;
1498
1499 if (!(dev->flags & IFF_UP))
1500 continue;
1501
1502 call_netdevice_notifier(nb, NETDEV_UP, dev);
1503 }
1504 }
1505
1506unlock:
1507 rtnl_unlock();
1508 return err;
1509
1510rollback:
1511 last = dev;
1512 for_each_net(net) {
1513 for_each_netdev(net, dev) {
1514 if (dev == last)
1515 goto outroll;
1516
1517 if (dev->flags & IFF_UP) {
1518 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1519 dev);
1520 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1521 }
1522 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1523 }
1524 }
1525
1526outroll:
1527 raw_notifier_chain_unregister(&netdev_chain, nb);
1528 goto unlock;
1529}
1530EXPORT_SYMBOL(register_netdevice_notifier);
1531
1532/**
1533 * unregister_netdevice_notifier - unregister a network notifier block
1534 * @nb: notifier
1535 *
1536 * Unregister a notifier previously registered by
1537 * register_netdevice_notifier(). The notifier is unlinked into the
1538 * kernel structures and may then be reused. A negative errno code
1539 * is returned on a failure.
1540 *
1541 * After unregistering unregister and down device events are synthesized
1542 * for all devices on the device list to the removed notifier to remove
1543 * the need for special case cleanup code.
1544 */
1545
1546int unregister_netdevice_notifier(struct notifier_block *nb)
1547{
1548 struct net_device *dev;
1549 struct net *net;
1550 int err;
1551
1552 rtnl_lock();
1553 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1554 if (err)
1555 goto unlock;
1556
1557 for_each_net(net) {
1558 for_each_netdev(net, dev) {
1559 if (dev->flags & IFF_UP) {
1560 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1561 dev);
1562 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1563 }
1564 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1565 }
1566 }
1567unlock:
1568 rtnl_unlock();
1569 return err;
1570}
1571EXPORT_SYMBOL(unregister_netdevice_notifier);
1572
1573/**
1574 * call_netdevice_notifiers_info - call all network notifier blocks
1575 * @val: value passed unmodified to notifier function
1576 * @dev: net_device pointer passed unmodified to notifier function
1577 * @info: notifier information data
1578 *
1579 * Call all network notifier blocks. Parameters and return value
1580 * are as for raw_notifier_call_chain().
1581 */
1582
1583static int call_netdevice_notifiers_info(unsigned long val,
1584 struct net_device *dev,
1585 struct netdev_notifier_info *info)
1586{
1587 ASSERT_RTNL();
1588 netdev_notifier_info_init(info, dev);
1589 return raw_notifier_call_chain(&netdev_chain, val, info);
1590}
1591
1592/**
1593 * call_netdevice_notifiers - call all network notifier blocks
1594 * @val: value passed unmodified to notifier function
1595 * @dev: net_device pointer passed unmodified to notifier function
1596 *
1597 * Call all network notifier blocks. Parameters and return value
1598 * are as for raw_notifier_call_chain().
1599 */
1600
1601int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1602{
1603 struct netdev_notifier_info info;
1604
1605 return call_netdevice_notifiers_info(val, dev, &info);
1606}
1607EXPORT_SYMBOL(call_netdevice_notifiers);
1608
1609static struct static_key netstamp_needed __read_mostly;
1610#ifdef HAVE_JUMP_LABEL
1611/* We are not allowed to call static_key_slow_dec() from irq context
1612 * If net_disable_timestamp() is called from irq context, defer the
1613 * static_key_slow_dec() calls.
1614 */
1615static atomic_t netstamp_needed_deferred;
1616#endif
1617
1618void net_enable_timestamp(void)
1619{
1620#ifdef HAVE_JUMP_LABEL
1621 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1622
1623 if (deferred) {
1624 while (--deferred)
1625 static_key_slow_dec(&netstamp_needed);
1626 return;
1627 }
1628#endif
1629 static_key_slow_inc(&netstamp_needed);
1630}
1631EXPORT_SYMBOL(net_enable_timestamp);
1632
1633void net_disable_timestamp(void)
1634{
1635#ifdef HAVE_JUMP_LABEL
1636 if (in_interrupt()) {
1637 atomic_inc(&netstamp_needed_deferred);
1638 return;
1639 }
1640#endif
1641 static_key_slow_dec(&netstamp_needed);
1642}
1643EXPORT_SYMBOL(net_disable_timestamp);
1644
1645static inline void net_timestamp_set(struct sk_buff *skb)
1646{
1647 skb->tstamp.tv64 = 0;
1648 if (static_key_false(&netstamp_needed))
1649 __net_timestamp(skb);
1650}
1651
1652#define net_timestamp_check(COND, SKB) \
1653 if (static_key_false(&netstamp_needed)) { \
1654 if ((COND) && !(SKB)->tstamp.tv64) \
1655 __net_timestamp(SKB); \
1656 } \
1657
1658bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1659{
1660 unsigned int len;
1661
1662 if (!(dev->flags & IFF_UP))
1663 return false;
1664
1665 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1666 if (skb->len <= len)
1667 return true;
1668
1669 /* if TSO is enabled, we don't care about the length as the packet
1670 * could be forwarded without being segmented before
1671 */
1672 if (skb_is_gso(skb))
1673 return true;
1674
1675 return false;
1676}
1677EXPORT_SYMBOL_GPL(is_skb_forwardable);
1678
1679int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1680{
1681 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1682 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1683 atomic_long_inc(&dev->rx_dropped);
1684 kfree_skb(skb);
1685 return NET_RX_DROP;
1686 }
1687 }
1688
1689 if (unlikely(!is_skb_forwardable(dev, skb))) {
1690 atomic_long_inc(&dev->rx_dropped);
1691 kfree_skb(skb);
1692 return NET_RX_DROP;
1693 }
1694
1695 skb_scrub_packet(skb, true);
1696 skb->protocol = eth_type_trans(skb, dev);
1697 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1698
1699 return 0;
1700}
1701EXPORT_SYMBOL_GPL(__dev_forward_skb);
1702
1703/**
1704 * dev_forward_skb - loopback an skb to another netif
1705 *
1706 * @dev: destination network device
1707 * @skb: buffer to forward
1708 *
1709 * return values:
1710 * NET_RX_SUCCESS (no congestion)
1711 * NET_RX_DROP (packet was dropped, but freed)
1712 *
1713 * dev_forward_skb can be used for injecting an skb from the
1714 * start_xmit function of one device into the receive queue
1715 * of another device.
1716 *
1717 * The receiving device may be in another namespace, so
1718 * we have to clear all information in the skb that could
1719 * impact namespace isolation.
1720 */
1721int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1722{
1723 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1724}
1725EXPORT_SYMBOL_GPL(dev_forward_skb);
1726
1727static inline int deliver_skb(struct sk_buff *skb,
1728 struct packet_type *pt_prev,
1729 struct net_device *orig_dev)
1730{
1731 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1732 return -ENOMEM;
1733 atomic_inc(&skb->users);
1734 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1735}
1736
1737static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1738{
1739 if (!ptype->af_packet_priv || !skb->sk)
1740 return false;
1741
1742 if (ptype->id_match)
1743 return ptype->id_match(ptype, skb->sk);
1744 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1745 return true;
1746
1747 return false;
1748}
1749
1750/*
1751 * Support routine. Sends outgoing frames to any network
1752 * taps currently in use.
1753 */
1754
1755static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1756{
1757 struct packet_type *ptype;
1758 struct sk_buff *skb2 = NULL;
1759 struct packet_type *pt_prev = NULL;
1760
1761 rcu_read_lock();
1762 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1763 /* Never send packets back to the socket
1764 * they originated from - MvS (miquels@drinkel.ow.org)
1765 */
1766 if ((ptype->dev == dev || !ptype->dev) &&
1767 (!skb_loop_sk(ptype, skb))) {
1768 if (pt_prev) {
1769 deliver_skb(skb2, pt_prev, skb->dev);
1770 pt_prev = ptype;
1771 continue;
1772 }
1773
1774 skb2 = skb_clone(skb, GFP_ATOMIC);
1775 if (!skb2)
1776 break;
1777
1778 net_timestamp_set(skb2);
1779
1780 /* skb->nh should be correctly
1781 set by sender, so that the second statement is
1782 just protection against buggy protocols.
1783 */
1784 skb_reset_mac_header(skb2);
1785
1786 if (skb_network_header(skb2) < skb2->data ||
1787 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1788 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1789 ntohs(skb2->protocol),
1790 dev->name);
1791 skb_reset_network_header(skb2);
1792 }
1793
1794 skb2->transport_header = skb2->network_header;
1795 skb2->pkt_type = PACKET_OUTGOING;
1796 pt_prev = ptype;
1797 }
1798 }
1799 if (pt_prev)
1800 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1801 rcu_read_unlock();
1802}
1803
1804/**
1805 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1806 * @dev: Network device
1807 * @txq: number of queues available
1808 *
1809 * If real_num_tx_queues is changed the tc mappings may no longer be
1810 * valid. To resolve this verify the tc mapping remains valid and if
1811 * not NULL the mapping. With no priorities mapping to this
1812 * offset/count pair it will no longer be used. In the worst case TC0
1813 * is invalid nothing can be done so disable priority mappings. If is
1814 * expected that drivers will fix this mapping if they can before
1815 * calling netif_set_real_num_tx_queues.
1816 */
1817static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1818{
1819 int i;
1820 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1821
1822 /* If TC0 is invalidated disable TC mapping */
1823 if (tc->offset + tc->count > txq) {
1824 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1825 dev->num_tc = 0;
1826 return;
1827 }
1828
1829 /* Invalidated prio to tc mappings set to TC0 */
1830 for (i = 1; i < TC_BITMASK + 1; i++) {
1831 int q = netdev_get_prio_tc_map(dev, i);
1832
1833 tc = &dev->tc_to_txq[q];
1834 if (tc->offset + tc->count > txq) {
1835 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1836 i, q);
1837 netdev_set_prio_tc_map(dev, i, 0);
1838 }
1839 }
1840}
1841
1842#ifdef CONFIG_XPS
1843static DEFINE_MUTEX(xps_map_mutex);
1844#define xmap_dereference(P) \
1845 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1846
1847static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1848 int cpu, u16 index)
1849{
1850 struct xps_map *map = NULL;
1851 int pos;
1852
1853 if (dev_maps)
1854 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1855
1856 for (pos = 0; map && pos < map->len; pos++) {
1857 if (map->queues[pos] == index) {
1858 if (map->len > 1) {
1859 map->queues[pos] = map->queues[--map->len];
1860 } else {
1861 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1862 kfree_rcu(map, rcu);
1863 map = NULL;
1864 }
1865 break;
1866 }
1867 }
1868
1869 return map;
1870}
1871
1872static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1873{
1874 struct xps_dev_maps *dev_maps;
1875 int cpu, i;
1876 bool active = false;
1877
1878 mutex_lock(&xps_map_mutex);
1879 dev_maps = xmap_dereference(dev->xps_maps);
1880
1881 if (!dev_maps)
1882 goto out_no_maps;
1883
1884 for_each_possible_cpu(cpu) {
1885 for (i = index; i < dev->num_tx_queues; i++) {
1886 if (!remove_xps_queue(dev_maps, cpu, i))
1887 break;
1888 }
1889 if (i == dev->num_tx_queues)
1890 active = true;
1891 }
1892
1893 if (!active) {
1894 RCU_INIT_POINTER(dev->xps_maps, NULL);
1895 kfree_rcu(dev_maps, rcu);
1896 }
1897
1898 for (i = index; i < dev->num_tx_queues; i++)
1899 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1900 NUMA_NO_NODE);
1901
1902out_no_maps:
1903 mutex_unlock(&xps_map_mutex);
1904}
1905
1906static struct xps_map *expand_xps_map(struct xps_map *map,
1907 int cpu, u16 index)
1908{
1909 struct xps_map *new_map;
1910 int alloc_len = XPS_MIN_MAP_ALLOC;
1911 int i, pos;
1912
1913 for (pos = 0; map && pos < map->len; pos++) {
1914 if (map->queues[pos] != index)
1915 continue;
1916 return map;
1917 }
1918
1919 /* Need to add queue to this CPU's existing map */
1920 if (map) {
1921 if (pos < map->alloc_len)
1922 return map;
1923
1924 alloc_len = map->alloc_len * 2;
1925 }
1926
1927 /* Need to allocate new map to store queue on this CPU's map */
1928 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1929 cpu_to_node(cpu));
1930 if (!new_map)
1931 return NULL;
1932
1933 for (i = 0; i < pos; i++)
1934 new_map->queues[i] = map->queues[i];
1935 new_map->alloc_len = alloc_len;
1936 new_map->len = pos;
1937
1938 return new_map;
1939}
1940
1941int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1942 u16 index)
1943{
1944 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1945 struct xps_map *map, *new_map;
1946 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1947 int cpu, numa_node_id = -2;
1948 bool active = false;
1949
1950 mutex_lock(&xps_map_mutex);
1951
1952 dev_maps = xmap_dereference(dev->xps_maps);
1953
1954 /* allocate memory for queue storage */
1955 for_each_online_cpu(cpu) {
1956 if (!cpumask_test_cpu(cpu, mask))
1957 continue;
1958
1959 if (!new_dev_maps)
1960 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1961 if (!new_dev_maps) {
1962 mutex_unlock(&xps_map_mutex);
1963 return -ENOMEM;
1964 }
1965
1966 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1967 NULL;
1968
1969 map = expand_xps_map(map, cpu, index);
1970 if (!map)
1971 goto error;
1972
1973 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1974 }
1975
1976 if (!new_dev_maps)
1977 goto out_no_new_maps;
1978
1979 for_each_possible_cpu(cpu) {
1980 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1981 /* add queue to CPU maps */
1982 int pos = 0;
1983
1984 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1985 while ((pos < map->len) && (map->queues[pos] != index))
1986 pos++;
1987
1988 if (pos == map->len)
1989 map->queues[map->len++] = index;
1990#ifdef CONFIG_NUMA
1991 if (numa_node_id == -2)
1992 numa_node_id = cpu_to_node(cpu);
1993 else if (numa_node_id != cpu_to_node(cpu))
1994 numa_node_id = -1;
1995#endif
1996 } else if (dev_maps) {
1997 /* fill in the new device map from the old device map */
1998 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1999 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2000 }
2001
2002 }
2003
2004 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2005
2006 /* Cleanup old maps */
2007 if (dev_maps) {
2008 for_each_possible_cpu(cpu) {
2009 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2010 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2011 if (map && map != new_map)
2012 kfree_rcu(map, rcu);
2013 }
2014
2015 kfree_rcu(dev_maps, rcu);
2016 }
2017
2018 dev_maps = new_dev_maps;
2019 active = true;
2020
2021out_no_new_maps:
2022 /* update Tx queue numa node */
2023 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2024 (numa_node_id >= 0) ? numa_node_id :
2025 NUMA_NO_NODE);
2026
2027 if (!dev_maps)
2028 goto out_no_maps;
2029
2030 /* removes queue from unused CPUs */
2031 for_each_possible_cpu(cpu) {
2032 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2033 continue;
2034
2035 if (remove_xps_queue(dev_maps, cpu, index))
2036 active = true;
2037 }
2038
2039 /* free map if not active */
2040 if (!active) {
2041 RCU_INIT_POINTER(dev->xps_maps, NULL);
2042 kfree_rcu(dev_maps, rcu);
2043 }
2044
2045out_no_maps:
2046 mutex_unlock(&xps_map_mutex);
2047
2048 return 0;
2049error:
2050 /* remove any maps that we added */
2051 for_each_possible_cpu(cpu) {
2052 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2053 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2054 NULL;
2055 if (new_map && new_map != map)
2056 kfree(new_map);
2057 }
2058
2059 mutex_unlock(&xps_map_mutex);
2060
2061 kfree(new_dev_maps);
2062 return -ENOMEM;
2063}
2064EXPORT_SYMBOL(netif_set_xps_queue);
2065
2066#endif
2067/*
2068 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2069 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2070 */
2071int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2072{
2073 int rc;
2074
2075 if (txq < 1 || txq > dev->num_tx_queues)
2076 return -EINVAL;
2077
2078 if (dev->reg_state == NETREG_REGISTERED ||
2079 dev->reg_state == NETREG_UNREGISTERING) {
2080 ASSERT_RTNL();
2081
2082 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2083 txq);
2084 if (rc)
2085 return rc;
2086
2087 if (dev->num_tc)
2088 netif_setup_tc(dev, txq);
2089
2090 if (txq < dev->real_num_tx_queues) {
2091 qdisc_reset_all_tx_gt(dev, txq);
2092#ifdef CONFIG_XPS
2093 netif_reset_xps_queues_gt(dev, txq);
2094#endif
2095 }
2096 }
2097
2098 dev->real_num_tx_queues = txq;
2099 return 0;
2100}
2101EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2102
2103#ifdef CONFIG_SYSFS
2104/**
2105 * netif_set_real_num_rx_queues - set actual number of RX queues used
2106 * @dev: Network device
2107 * @rxq: Actual number of RX queues
2108 *
2109 * This must be called either with the rtnl_lock held or before
2110 * registration of the net device. Returns 0 on success, or a
2111 * negative error code. If called before registration, it always
2112 * succeeds.
2113 */
2114int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2115{
2116 int rc;
2117
2118 if (rxq < 1 || rxq > dev->num_rx_queues)
2119 return -EINVAL;
2120
2121 if (dev->reg_state == NETREG_REGISTERED) {
2122 ASSERT_RTNL();
2123
2124 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2125 rxq);
2126 if (rc)
2127 return rc;
2128 }
2129
2130 dev->real_num_rx_queues = rxq;
2131 return 0;
2132}
2133EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2134#endif
2135
2136/**
2137 * netif_get_num_default_rss_queues - default number of RSS queues
2138 *
2139 * This routine should set an upper limit on the number of RSS queues
2140 * used by default by multiqueue devices.
2141 */
2142int netif_get_num_default_rss_queues(void)
2143{
2144 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2145}
2146EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2147
2148static inline void __netif_reschedule(struct Qdisc *q)
2149{
2150 struct softnet_data *sd;
2151 unsigned long flags;
2152
2153 local_irq_save(flags);
2154 sd = this_cpu_ptr(&softnet_data);
2155 q->next_sched = NULL;
2156 *sd->output_queue_tailp = q;
2157 sd->output_queue_tailp = &q->next_sched;
2158 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2159 local_irq_restore(flags);
2160}
2161
2162void __netif_schedule(struct Qdisc *q)
2163{
2164 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2165 __netif_reschedule(q);
2166}
2167EXPORT_SYMBOL(__netif_schedule);
2168
2169struct dev_kfree_skb_cb {
2170 enum skb_free_reason reason;
2171};
2172
2173static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2174{
2175 return (struct dev_kfree_skb_cb *)skb->cb;
2176}
2177
2178void netif_schedule_queue(struct netdev_queue *txq)
2179{
2180 rcu_read_lock();
2181 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2182 struct Qdisc *q = rcu_dereference(txq->qdisc);
2183
2184 __netif_schedule(q);
2185 }
2186 rcu_read_unlock();
2187}
2188EXPORT_SYMBOL(netif_schedule_queue);
2189
2190/**
2191 * netif_wake_subqueue - allow sending packets on subqueue
2192 * @dev: network device
2193 * @queue_index: sub queue index
2194 *
2195 * Resume individual transmit queue of a device with multiple transmit queues.
2196 */
2197void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2198{
2199 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2200
2201 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2202 struct Qdisc *q;
2203
2204 rcu_read_lock();
2205 q = rcu_dereference(txq->qdisc);
2206 __netif_schedule(q);
2207 rcu_read_unlock();
2208 }
2209}
2210EXPORT_SYMBOL(netif_wake_subqueue);
2211
2212void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2213{
2214 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2215 struct Qdisc *q;
2216
2217 rcu_read_lock();
2218 q = rcu_dereference(dev_queue->qdisc);
2219 __netif_schedule(q);
2220 rcu_read_unlock();
2221 }
2222}
2223EXPORT_SYMBOL(netif_tx_wake_queue);
2224
2225void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2226{
2227 unsigned long flags;
2228
2229 if (likely(atomic_read(&skb->users) == 1)) {
2230 smp_rmb();
2231 atomic_set(&skb->users, 0);
2232 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2233 return;
2234 }
2235 get_kfree_skb_cb(skb)->reason = reason;
2236 local_irq_save(flags);
2237 skb->next = __this_cpu_read(softnet_data.completion_queue);
2238 __this_cpu_write(softnet_data.completion_queue, skb);
2239 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2240 local_irq_restore(flags);
2241}
2242EXPORT_SYMBOL(__dev_kfree_skb_irq);
2243
2244void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2245{
2246 if (in_irq() || irqs_disabled())
2247 __dev_kfree_skb_irq(skb, reason);
2248 else
2249 dev_kfree_skb(skb);
2250}
2251EXPORT_SYMBOL(__dev_kfree_skb_any);
2252
2253
2254/**
2255 * netif_device_detach - mark device as removed
2256 * @dev: network device
2257 *
2258 * Mark device as removed from system and therefore no longer available.
2259 */
2260void netif_device_detach(struct net_device *dev)
2261{
2262 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2263 netif_running(dev)) {
2264 netif_tx_stop_all_queues(dev);
2265 }
2266}
2267EXPORT_SYMBOL(netif_device_detach);
2268
2269/**
2270 * netif_device_attach - mark device as attached
2271 * @dev: network device
2272 *
2273 * Mark device as attached from system and restart if needed.
2274 */
2275void netif_device_attach(struct net_device *dev)
2276{
2277 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2278 netif_running(dev)) {
2279 netif_tx_wake_all_queues(dev);
2280 __netdev_watchdog_up(dev);
2281 }
2282}
2283EXPORT_SYMBOL(netif_device_attach);
2284
2285static void skb_warn_bad_offload(const struct sk_buff *skb)
2286{
2287 static const netdev_features_t null_features = 0;
2288 struct net_device *dev = skb->dev;
2289 const char *driver = "";
2290
2291 if (!net_ratelimit())
2292 return;
2293
2294 if (dev && dev->dev.parent)
2295 driver = dev_driver_string(dev->dev.parent);
2296
2297 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2298 "gso_type=%d ip_summed=%d\n",
2299 driver, dev ? &dev->features : &null_features,
2300 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2301 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2302 skb_shinfo(skb)->gso_type, skb->ip_summed);
2303}
2304
2305/*
2306 * Invalidate hardware checksum when packet is to be mangled, and
2307 * complete checksum manually on outgoing path.
2308 */
2309int skb_checksum_help(struct sk_buff *skb)
2310{
2311 __wsum csum;
2312 int ret = 0, offset;
2313
2314 if (skb->ip_summed == CHECKSUM_COMPLETE)
2315 goto out_set_summed;
2316
2317 if (unlikely(skb_shinfo(skb)->gso_size)) {
2318 skb_warn_bad_offload(skb);
2319 return -EINVAL;
2320 }
2321
2322 /* Before computing a checksum, we should make sure no frag could
2323 * be modified by an external entity : checksum could be wrong.
2324 */
2325 if (skb_has_shared_frag(skb)) {
2326 ret = __skb_linearize(skb);
2327 if (ret)
2328 goto out;
2329 }
2330
2331 offset = skb_checksum_start_offset(skb);
2332 BUG_ON(offset >= skb_headlen(skb));
2333 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2334
2335 offset += skb->csum_offset;
2336 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2337
2338 if (skb_cloned(skb) &&
2339 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2340 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2341 if (ret)
2342 goto out;
2343 }
2344
2345 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2346out_set_summed:
2347 skb->ip_summed = CHECKSUM_NONE;
2348out:
2349 return ret;
2350}
2351EXPORT_SYMBOL(skb_checksum_help);
2352
2353__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2354{
2355 unsigned int vlan_depth = skb->mac_len;
2356 __be16 type = skb->protocol;
2357
2358 /* Tunnel gso handlers can set protocol to ethernet. */
2359 if (type == htons(ETH_P_TEB)) {
2360 struct ethhdr *eth;
2361
2362 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2363 return 0;
2364
2365 eth = (struct ethhdr *)skb_mac_header(skb);
2366 type = eth->h_proto;
2367 }
2368
2369 /* if skb->protocol is 802.1Q/AD then the header should already be
2370 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2371 * ETH_HLEN otherwise
2372 */
2373 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2374 if (vlan_depth) {
2375 if (WARN_ON(vlan_depth < VLAN_HLEN))
2376 return 0;
2377 vlan_depth -= VLAN_HLEN;
2378 } else {
2379 vlan_depth = ETH_HLEN;
2380 }
2381 do {
2382 struct vlan_hdr *vh;
2383
2384 if (unlikely(!pskb_may_pull(skb,
2385 vlan_depth + VLAN_HLEN)))
2386 return 0;
2387
2388 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2389 type = vh->h_vlan_encapsulated_proto;
2390 vlan_depth += VLAN_HLEN;
2391 } while (type == htons(ETH_P_8021Q) ||
2392 type == htons(ETH_P_8021AD));
2393 }
2394
2395 *depth = vlan_depth;
2396
2397 return type;
2398}
2399
2400/**
2401 * skb_mac_gso_segment - mac layer segmentation handler.
2402 * @skb: buffer to segment
2403 * @features: features for the output path (see dev->features)
2404 */
2405struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2406 netdev_features_t features)
2407{
2408 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2409 struct packet_offload *ptype;
2410 int vlan_depth = skb->mac_len;
2411 __be16 type = skb_network_protocol(skb, &vlan_depth);
2412
2413 if (unlikely(!type))
2414 return ERR_PTR(-EINVAL);
2415
2416 __skb_pull(skb, vlan_depth);
2417
2418 rcu_read_lock();
2419 list_for_each_entry_rcu(ptype, &offload_base, list) {
2420 if (ptype->type == type && ptype->callbacks.gso_segment) {
2421 segs = ptype->callbacks.gso_segment(skb, features);
2422 break;
2423 }
2424 }
2425 rcu_read_unlock();
2426
2427 __skb_push(skb, skb->data - skb_mac_header(skb));
2428
2429 return segs;
2430}
2431EXPORT_SYMBOL(skb_mac_gso_segment);
2432
2433
2434/* openvswitch calls this on rx path, so we need a different check.
2435 */
2436static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2437{
2438 if (tx_path)
2439 return skb->ip_summed != CHECKSUM_PARTIAL;
2440 else
2441 return skb->ip_summed == CHECKSUM_NONE;
2442}
2443
2444/**
2445 * __skb_gso_segment - Perform segmentation on skb.
2446 * @skb: buffer to segment
2447 * @features: features for the output path (see dev->features)
2448 * @tx_path: whether it is called in TX path
2449 *
2450 * This function segments the given skb and returns a list of segments.
2451 *
2452 * It may return NULL if the skb requires no segmentation. This is
2453 * only possible when GSO is used for verifying header integrity.
2454 */
2455struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2456 netdev_features_t features, bool tx_path)
2457{
2458 if (unlikely(skb_needs_check(skb, tx_path))) {
2459 int err;
2460
2461 skb_warn_bad_offload(skb);
2462
2463 err = skb_cow_head(skb, 0);
2464 if (err < 0)
2465 return ERR_PTR(err);
2466 }
2467
2468 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2469 SKB_GSO_CB(skb)->encap_level = 0;
2470
2471 skb_reset_mac_header(skb);
2472 skb_reset_mac_len(skb);
2473
2474 return skb_mac_gso_segment(skb, features);
2475}
2476EXPORT_SYMBOL(__skb_gso_segment);
2477
2478/* Take action when hardware reception checksum errors are detected. */
2479#ifdef CONFIG_BUG
2480void netdev_rx_csum_fault(struct net_device *dev)
2481{
2482 if (net_ratelimit()) {
2483 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2484 dump_stack();
2485 }
2486}
2487EXPORT_SYMBOL(netdev_rx_csum_fault);
2488#endif
2489
2490/* Actually, we should eliminate this check as soon as we know, that:
2491 * 1. IOMMU is present and allows to map all the memory.
2492 * 2. No high memory really exists on this machine.
2493 */
2494
2495static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2496{
2497#ifdef CONFIG_HIGHMEM
2498 int i;
2499 if (!(dev->features & NETIF_F_HIGHDMA)) {
2500 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2501 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2502 if (PageHighMem(skb_frag_page(frag)))
2503 return 1;
2504 }
2505 }
2506
2507 if (PCI_DMA_BUS_IS_PHYS) {
2508 struct device *pdev = dev->dev.parent;
2509
2510 if (!pdev)
2511 return 0;
2512 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2514 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2515 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2516 return 1;
2517 }
2518 }
2519#endif
2520 return 0;
2521}
2522
2523/* If MPLS offload request, verify we are testing hardware MPLS features
2524 * instead of standard features for the netdev.
2525 */
2526#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2527static netdev_features_t net_mpls_features(struct sk_buff *skb,
2528 netdev_features_t features,
2529 __be16 type)
2530{
2531 if (eth_p_mpls(type))
2532 features &= skb->dev->mpls_features;
2533
2534 return features;
2535}
2536#else
2537static netdev_features_t net_mpls_features(struct sk_buff *skb,
2538 netdev_features_t features,
2539 __be16 type)
2540{
2541 return features;
2542}
2543#endif
2544
2545static netdev_features_t harmonize_features(struct sk_buff *skb,
2546 netdev_features_t features)
2547{
2548 int tmp;
2549 __be16 type;
2550
2551 type = skb_network_protocol(skb, &tmp);
2552 features = net_mpls_features(skb, features, type);
2553
2554 if (skb->ip_summed != CHECKSUM_NONE &&
2555 !can_checksum_protocol(features, type)) {
2556 features &= ~NETIF_F_ALL_CSUM;
2557 } else if (illegal_highdma(skb->dev, skb)) {
2558 features &= ~NETIF_F_SG;
2559 }
2560
2561 return features;
2562}
2563
2564netdev_features_t netif_skb_features(struct sk_buff *skb)
2565{
2566 struct net_device *dev = skb->dev;
2567 netdev_features_t features = dev->features;
2568 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2569 __be16 protocol = skb->protocol;
2570
2571 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2572 features &= ~NETIF_F_GSO_MASK;
2573
2574 /* If encapsulation offload request, verify we are testing
2575 * hardware encapsulation features instead of standard
2576 * features for the netdev
2577 */
2578 if (skb->encapsulation)
2579 features &= dev->hw_enc_features;
2580
2581 if (!vlan_tx_tag_present(skb)) {
2582 if (unlikely(protocol == htons(ETH_P_8021Q) ||
2583 protocol == htons(ETH_P_8021AD))) {
2584 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2585 protocol = veh->h_vlan_encapsulated_proto;
2586 } else {
2587 goto finalize;
2588 }
2589 }
2590
2591 features = netdev_intersect_features(features,
2592 dev->vlan_features |
2593 NETIF_F_HW_VLAN_CTAG_TX |
2594 NETIF_F_HW_VLAN_STAG_TX);
2595
2596 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2597 features = netdev_intersect_features(features,
2598 NETIF_F_SG |
2599 NETIF_F_HIGHDMA |
2600 NETIF_F_FRAGLIST |
2601 NETIF_F_GEN_CSUM |
2602 NETIF_F_HW_VLAN_CTAG_TX |
2603 NETIF_F_HW_VLAN_STAG_TX);
2604
2605finalize:
2606 if (dev->netdev_ops->ndo_features_check)
2607 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2608 features);
2609
2610 return harmonize_features(skb, features);
2611}
2612EXPORT_SYMBOL(netif_skb_features);
2613
2614static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2615 struct netdev_queue *txq, bool more)
2616{
2617 unsigned int len;
2618 int rc;
2619
2620 if (!list_empty(&ptype_all))
2621 dev_queue_xmit_nit(skb, dev);
2622
2623 len = skb->len;
2624 trace_net_dev_start_xmit(skb, dev);
2625 rc = netdev_start_xmit(skb, dev, txq, more);
2626 trace_net_dev_xmit(skb, rc, dev, len);
2627
2628 return rc;
2629}
2630
2631struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2632 struct netdev_queue *txq, int *ret)
2633{
2634 struct sk_buff *skb = first;
2635 int rc = NETDEV_TX_OK;
2636
2637 while (skb) {
2638 struct sk_buff *next = skb->next;
2639
2640 skb->next = NULL;
2641 rc = xmit_one(skb, dev, txq, next != NULL);
2642 if (unlikely(!dev_xmit_complete(rc))) {
2643 skb->next = next;
2644 goto out;
2645 }
2646
2647 skb = next;
2648 if (netif_xmit_stopped(txq) && skb) {
2649 rc = NETDEV_TX_BUSY;
2650 break;
2651 }
2652 }
2653
2654out:
2655 *ret = rc;
2656 return skb;
2657}
2658
2659static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2660 netdev_features_t features)
2661{
2662 if (vlan_tx_tag_present(skb) &&
2663 !vlan_hw_offload_capable(features, skb->vlan_proto))
2664 skb = __vlan_hwaccel_push_inside(skb);
2665 return skb;
2666}
2667
2668static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2669{
2670 netdev_features_t features;
2671
2672 if (skb->next)
2673 return skb;
2674
2675 features = netif_skb_features(skb);
2676 skb = validate_xmit_vlan(skb, features);
2677 if (unlikely(!skb))
2678 goto out_null;
2679
2680 if (netif_needs_gso(dev, skb, features)) {
2681 struct sk_buff *segs;
2682
2683 segs = skb_gso_segment(skb, features);
2684 if (IS_ERR(segs)) {
2685 goto out_kfree_skb;
2686 } else if (segs) {
2687 consume_skb(skb);
2688 skb = segs;
2689 }
2690 } else {
2691 if (skb_needs_linearize(skb, features) &&
2692 __skb_linearize(skb))
2693 goto out_kfree_skb;
2694
2695 /* If packet is not checksummed and device does not
2696 * support checksumming for this protocol, complete
2697 * checksumming here.
2698 */
2699 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2700 if (skb->encapsulation)
2701 skb_set_inner_transport_header(skb,
2702 skb_checksum_start_offset(skb));
2703 else
2704 skb_set_transport_header(skb,
2705 skb_checksum_start_offset(skb));
2706 if (!(features & NETIF_F_ALL_CSUM) &&
2707 skb_checksum_help(skb))
2708 goto out_kfree_skb;
2709 }
2710 }
2711
2712 return skb;
2713
2714out_kfree_skb:
2715 kfree_skb(skb);
2716out_null:
2717 return NULL;
2718}
2719
2720struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2721{
2722 struct sk_buff *next, *head = NULL, *tail;
2723
2724 for (; skb != NULL; skb = next) {
2725 next = skb->next;
2726 skb->next = NULL;
2727
2728 /* in case skb wont be segmented, point to itself */
2729 skb->prev = skb;
2730
2731 skb = validate_xmit_skb(skb, dev);
2732 if (!skb)
2733 continue;
2734
2735 if (!head)
2736 head = skb;
2737 else
2738 tail->next = skb;
2739 /* If skb was segmented, skb->prev points to
2740 * the last segment. If not, it still contains skb.
2741 */
2742 tail = skb->prev;
2743 }
2744 return head;
2745}
2746
2747static void qdisc_pkt_len_init(struct sk_buff *skb)
2748{
2749 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2750
2751 qdisc_skb_cb(skb)->pkt_len = skb->len;
2752
2753 /* To get more precise estimation of bytes sent on wire,
2754 * we add to pkt_len the headers size of all segments
2755 */
2756 if (shinfo->gso_size) {
2757 unsigned int hdr_len;
2758 u16 gso_segs = shinfo->gso_segs;
2759
2760 /* mac layer + network layer */
2761 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2762
2763 /* + transport layer */
2764 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2765 hdr_len += tcp_hdrlen(skb);
2766 else
2767 hdr_len += sizeof(struct udphdr);
2768
2769 if (shinfo->gso_type & SKB_GSO_DODGY)
2770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2771 shinfo->gso_size);
2772
2773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2774 }
2775}
2776
2777static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2778 struct net_device *dev,
2779 struct netdev_queue *txq)
2780{
2781 spinlock_t *root_lock = qdisc_lock(q);
2782 bool contended;
2783 int rc;
2784
2785 qdisc_pkt_len_init(skb);
2786 qdisc_calculate_pkt_len(skb, q);
2787 /*
2788 * Heuristic to force contended enqueues to serialize on a
2789 * separate lock before trying to get qdisc main lock.
2790 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2791 * often and dequeue packets faster.
2792 */
2793 contended = qdisc_is_running(q);
2794 if (unlikely(contended))
2795 spin_lock(&q->busylock);
2796
2797 spin_lock(root_lock);
2798 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2799 kfree_skb(skb);
2800 rc = NET_XMIT_DROP;
2801 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2802 qdisc_run_begin(q)) {
2803 /*
2804 * This is a work-conserving queue; there are no old skbs
2805 * waiting to be sent out; and the qdisc is not running -
2806 * xmit the skb directly.
2807 */
2808
2809 qdisc_bstats_update(q, skb);
2810
2811 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2812 if (unlikely(contended)) {
2813 spin_unlock(&q->busylock);
2814 contended = false;
2815 }
2816 __qdisc_run(q);
2817 } else
2818 qdisc_run_end(q);
2819
2820 rc = NET_XMIT_SUCCESS;
2821 } else {
2822 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2823 if (qdisc_run_begin(q)) {
2824 if (unlikely(contended)) {
2825 spin_unlock(&q->busylock);
2826 contended = false;
2827 }
2828 __qdisc_run(q);
2829 }
2830 }
2831 spin_unlock(root_lock);
2832 if (unlikely(contended))
2833 spin_unlock(&q->busylock);
2834 return rc;
2835}
2836
2837#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2838static void skb_update_prio(struct sk_buff *skb)
2839{
2840 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2841
2842 if (!skb->priority && skb->sk && map) {
2843 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2844
2845 if (prioidx < map->priomap_len)
2846 skb->priority = map->priomap[prioidx];
2847 }
2848}
2849#else
2850#define skb_update_prio(skb)
2851#endif
2852
2853static DEFINE_PER_CPU(int, xmit_recursion);
2854#define RECURSION_LIMIT 10
2855
2856/**
2857 * dev_loopback_xmit - loop back @skb
2858 * @skb: buffer to transmit
2859 */
2860int dev_loopback_xmit(struct sk_buff *skb)
2861{
2862 skb_reset_mac_header(skb);
2863 __skb_pull(skb, skb_network_offset(skb));
2864 skb->pkt_type = PACKET_LOOPBACK;
2865 skb->ip_summed = CHECKSUM_UNNECESSARY;
2866 WARN_ON(!skb_dst(skb));
2867 skb_dst_force(skb);
2868 netif_rx_ni(skb);
2869 return 0;
2870}
2871EXPORT_SYMBOL(dev_loopback_xmit);
2872
2873/**
2874 * __dev_queue_xmit - transmit a buffer
2875 * @skb: buffer to transmit
2876 * @accel_priv: private data used for L2 forwarding offload
2877 *
2878 * Queue a buffer for transmission to a network device. The caller must
2879 * have set the device and priority and built the buffer before calling
2880 * this function. The function can be called from an interrupt.
2881 *
2882 * A negative errno code is returned on a failure. A success does not
2883 * guarantee the frame will be transmitted as it may be dropped due
2884 * to congestion or traffic shaping.
2885 *
2886 * -----------------------------------------------------------------------------------
2887 * I notice this method can also return errors from the queue disciplines,
2888 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2889 * be positive.
2890 *
2891 * Regardless of the return value, the skb is consumed, so it is currently
2892 * difficult to retry a send to this method. (You can bump the ref count
2893 * before sending to hold a reference for retry if you are careful.)
2894 *
2895 * When calling this method, interrupts MUST be enabled. This is because
2896 * the BH enable code must have IRQs enabled so that it will not deadlock.
2897 * --BLG
2898 */
2899static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2900{
2901 struct net_device *dev = skb->dev;
2902 struct netdev_queue *txq;
2903 struct Qdisc *q;
2904 int rc = -ENOMEM;
2905
2906 skb_reset_mac_header(skb);
2907
2908 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2909 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2910
2911 /* Disable soft irqs for various locks below. Also
2912 * stops preemption for RCU.
2913 */
2914 rcu_read_lock_bh();
2915
2916 skb_update_prio(skb);
2917
2918 /* If device/qdisc don't need skb->dst, release it right now while
2919 * its hot in this cpu cache.
2920 */
2921 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2922 skb_dst_drop(skb);
2923 else
2924 skb_dst_force(skb);
2925
2926 txq = netdev_pick_tx(dev, skb, accel_priv);
2927 q = rcu_dereference_bh(txq->qdisc);
2928
2929#ifdef CONFIG_NET_CLS_ACT
2930 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2931#endif
2932 trace_net_dev_queue(skb);
2933 if (q->enqueue) {
2934 rc = __dev_xmit_skb(skb, q, dev, txq);
2935 goto out;
2936 }
2937
2938 /* The device has no queue. Common case for software devices:
2939 loopback, all the sorts of tunnels...
2940
2941 Really, it is unlikely that netif_tx_lock protection is necessary
2942 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2943 counters.)
2944 However, it is possible, that they rely on protection
2945 made by us here.
2946
2947 Check this and shot the lock. It is not prone from deadlocks.
2948 Either shot noqueue qdisc, it is even simpler 8)
2949 */
2950 if (dev->flags & IFF_UP) {
2951 int cpu = smp_processor_id(); /* ok because BHs are off */
2952
2953 if (txq->xmit_lock_owner != cpu) {
2954
2955 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2956 goto recursion_alert;
2957
2958 skb = validate_xmit_skb(skb, dev);
2959 if (!skb)
2960 goto drop;
2961
2962 HARD_TX_LOCK(dev, txq, cpu);
2963
2964 if (!netif_xmit_stopped(txq)) {
2965 __this_cpu_inc(xmit_recursion);
2966 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2967 __this_cpu_dec(xmit_recursion);
2968 if (dev_xmit_complete(rc)) {
2969 HARD_TX_UNLOCK(dev, txq);
2970 goto out;
2971 }
2972 }
2973 HARD_TX_UNLOCK(dev, txq);
2974 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2975 dev->name);
2976 } else {
2977 /* Recursion is detected! It is possible,
2978 * unfortunately
2979 */
2980recursion_alert:
2981 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2982 dev->name);
2983 }
2984 }
2985
2986 rc = -ENETDOWN;
2987drop:
2988 rcu_read_unlock_bh();
2989
2990 atomic_long_inc(&dev->tx_dropped);
2991 kfree_skb_list(skb);
2992 return rc;
2993out:
2994 rcu_read_unlock_bh();
2995 return rc;
2996}
2997
2998int dev_queue_xmit(struct sk_buff *skb)
2999{
3000 return __dev_queue_xmit(skb, NULL);
3001}
3002EXPORT_SYMBOL(dev_queue_xmit);
3003
3004int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3005{
3006 return __dev_queue_xmit(skb, accel_priv);
3007}
3008EXPORT_SYMBOL(dev_queue_xmit_accel);
3009
3010
3011/*=======================================================================
3012 Receiver routines
3013 =======================================================================*/
3014
3015int netdev_max_backlog __read_mostly = 1000;
3016EXPORT_SYMBOL(netdev_max_backlog);
3017
3018int netdev_tstamp_prequeue __read_mostly = 1;
3019int netdev_budget __read_mostly = 300;
3020int weight_p __read_mostly = 64; /* old backlog weight */
3021
3022/* Called with irq disabled */
3023static inline void ____napi_schedule(struct softnet_data *sd,
3024 struct napi_struct *napi)
3025{
3026 list_add_tail(&napi->poll_list, &sd->poll_list);
3027 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3028}
3029
3030#ifdef CONFIG_RPS
3031
3032/* One global table that all flow-based protocols share. */
3033struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3034EXPORT_SYMBOL(rps_sock_flow_table);
3035
3036struct static_key rps_needed __read_mostly;
3037
3038static struct rps_dev_flow *
3039set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3040 struct rps_dev_flow *rflow, u16 next_cpu)
3041{
3042 if (next_cpu != RPS_NO_CPU) {
3043#ifdef CONFIG_RFS_ACCEL
3044 struct netdev_rx_queue *rxqueue;
3045 struct rps_dev_flow_table *flow_table;
3046 struct rps_dev_flow *old_rflow;
3047 u32 flow_id;
3048 u16 rxq_index;
3049 int rc;
3050
3051 /* Should we steer this flow to a different hardware queue? */
3052 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3053 !(dev->features & NETIF_F_NTUPLE))
3054 goto out;
3055 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3056 if (rxq_index == skb_get_rx_queue(skb))
3057 goto out;
3058
3059 rxqueue = dev->_rx + rxq_index;
3060 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3061 if (!flow_table)
3062 goto out;
3063 flow_id = skb_get_hash(skb) & flow_table->mask;
3064 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3065 rxq_index, flow_id);
3066 if (rc < 0)
3067 goto out;
3068 old_rflow = rflow;
3069 rflow = &flow_table->flows[flow_id];
3070 rflow->filter = rc;
3071 if (old_rflow->filter == rflow->filter)
3072 old_rflow->filter = RPS_NO_FILTER;
3073 out:
3074#endif
3075 rflow->last_qtail =
3076 per_cpu(softnet_data, next_cpu).input_queue_head;
3077 }
3078
3079 rflow->cpu = next_cpu;
3080 return rflow;
3081}
3082
3083/*
3084 * get_rps_cpu is called from netif_receive_skb and returns the target
3085 * CPU from the RPS map of the receiving queue for a given skb.
3086 * rcu_read_lock must be held on entry.
3087 */
3088static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3089 struct rps_dev_flow **rflowp)
3090{
3091 struct netdev_rx_queue *rxqueue;
3092 struct rps_map *map;
3093 struct rps_dev_flow_table *flow_table;
3094 struct rps_sock_flow_table *sock_flow_table;
3095 int cpu = -1;
3096 u16 tcpu;
3097 u32 hash;
3098
3099 if (skb_rx_queue_recorded(skb)) {
3100 u16 index = skb_get_rx_queue(skb);
3101 if (unlikely(index >= dev->real_num_rx_queues)) {
3102 WARN_ONCE(dev->real_num_rx_queues > 1,
3103 "%s received packet on queue %u, but number "
3104 "of RX queues is %u\n",
3105 dev->name, index, dev->real_num_rx_queues);
3106 goto done;
3107 }
3108 rxqueue = dev->_rx + index;
3109 } else
3110 rxqueue = dev->_rx;
3111
3112 map = rcu_dereference(rxqueue->rps_map);
3113 if (map) {
3114 if (map->len == 1 &&
3115 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3116 tcpu = map->cpus[0];
3117 if (cpu_online(tcpu))
3118 cpu = tcpu;
3119 goto done;
3120 }
3121 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3122 goto done;
3123 }
3124
3125 skb_reset_network_header(skb);
3126 hash = skb_get_hash(skb);
3127 if (!hash)
3128 goto done;
3129
3130 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3131 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3132 if (flow_table && sock_flow_table) {
3133 u16 next_cpu;
3134 struct rps_dev_flow *rflow;
3135
3136 rflow = &flow_table->flows[hash & flow_table->mask];
3137 tcpu = rflow->cpu;
3138
3139 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3140
3141 /*
3142 * If the desired CPU (where last recvmsg was done) is
3143 * different from current CPU (one in the rx-queue flow
3144 * table entry), switch if one of the following holds:
3145 * - Current CPU is unset (equal to RPS_NO_CPU).
3146 * - Current CPU is offline.
3147 * - The current CPU's queue tail has advanced beyond the
3148 * last packet that was enqueued using this table entry.
3149 * This guarantees that all previous packets for the flow
3150 * have been dequeued, thus preserving in order delivery.
3151 */
3152 if (unlikely(tcpu != next_cpu) &&
3153 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3154 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3155 rflow->last_qtail)) >= 0)) {
3156 tcpu = next_cpu;
3157 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3158 }
3159
3160 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3161 *rflowp = rflow;
3162 cpu = tcpu;
3163 goto done;
3164 }
3165 }
3166
3167 if (map) {
3168 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3169 if (cpu_online(tcpu)) {
3170 cpu = tcpu;
3171 goto done;
3172 }
3173 }
3174
3175done:
3176 return cpu;
3177}
3178
3179#ifdef CONFIG_RFS_ACCEL
3180
3181/**
3182 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3183 * @dev: Device on which the filter was set
3184 * @rxq_index: RX queue index
3185 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3186 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3187 *
3188 * Drivers that implement ndo_rx_flow_steer() should periodically call
3189 * this function for each installed filter and remove the filters for
3190 * which it returns %true.
3191 */
3192bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3193 u32 flow_id, u16 filter_id)
3194{
3195 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3196 struct rps_dev_flow_table *flow_table;
3197 struct rps_dev_flow *rflow;
3198 bool expire = true;
3199 int cpu;
3200
3201 rcu_read_lock();
3202 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3203 if (flow_table && flow_id <= flow_table->mask) {
3204 rflow = &flow_table->flows[flow_id];
3205 cpu = ACCESS_ONCE(rflow->cpu);
3206 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3207 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3208 rflow->last_qtail) <
3209 (int)(10 * flow_table->mask)))
3210 expire = false;
3211 }
3212 rcu_read_unlock();
3213 return expire;
3214}
3215EXPORT_SYMBOL(rps_may_expire_flow);
3216
3217#endif /* CONFIG_RFS_ACCEL */
3218
3219/* Called from hardirq (IPI) context */
3220static void rps_trigger_softirq(void *data)
3221{
3222 struct softnet_data *sd = data;
3223
3224 ____napi_schedule(sd, &sd->backlog);
3225 sd->received_rps++;
3226}
3227
3228#endif /* CONFIG_RPS */
3229
3230/*
3231 * Check if this softnet_data structure is another cpu one
3232 * If yes, queue it to our IPI list and return 1
3233 * If no, return 0
3234 */
3235static int rps_ipi_queued(struct softnet_data *sd)
3236{
3237#ifdef CONFIG_RPS
3238 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3239
3240 if (sd != mysd) {
3241 sd->rps_ipi_next = mysd->rps_ipi_list;
3242 mysd->rps_ipi_list = sd;
3243
3244 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3245 return 1;
3246 }
3247#endif /* CONFIG_RPS */
3248 return 0;
3249}
3250
3251#ifdef CONFIG_NET_FLOW_LIMIT
3252int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3253#endif
3254
3255static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3256{
3257#ifdef CONFIG_NET_FLOW_LIMIT
3258 struct sd_flow_limit *fl;
3259 struct softnet_data *sd;
3260 unsigned int old_flow, new_flow;
3261
3262 if (qlen < (netdev_max_backlog >> 1))
3263 return false;
3264
3265 sd = this_cpu_ptr(&softnet_data);
3266
3267 rcu_read_lock();
3268 fl = rcu_dereference(sd->flow_limit);
3269 if (fl) {
3270 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3271 old_flow = fl->history[fl->history_head];
3272 fl->history[fl->history_head] = new_flow;
3273
3274 fl->history_head++;
3275 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3276
3277 if (likely(fl->buckets[old_flow]))
3278 fl->buckets[old_flow]--;
3279
3280 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3281 fl->count++;
3282 rcu_read_unlock();
3283 return true;
3284 }
3285 }
3286 rcu_read_unlock();
3287#endif
3288 return false;
3289}
3290
3291/*
3292 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3293 * queue (may be a remote CPU queue).
3294 */
3295static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3296 unsigned int *qtail)
3297{
3298 struct softnet_data *sd;
3299 unsigned long flags;
3300 unsigned int qlen;
3301
3302 sd = &per_cpu(softnet_data, cpu);
3303
3304 local_irq_save(flags);
3305
3306 rps_lock(sd);
3307 qlen = skb_queue_len(&sd->input_pkt_queue);
3308 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3309 if (qlen) {
3310enqueue:
3311 __skb_queue_tail(&sd->input_pkt_queue, skb);
3312 input_queue_tail_incr_save(sd, qtail);
3313 rps_unlock(sd);
3314 local_irq_restore(flags);
3315 return NET_RX_SUCCESS;
3316 }
3317
3318 /* Schedule NAPI for backlog device
3319 * We can use non atomic operation since we own the queue lock
3320 */
3321 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3322 if (!rps_ipi_queued(sd))
3323 ____napi_schedule(sd, &sd->backlog);
3324 }
3325 goto enqueue;
3326 }
3327
3328 sd->dropped++;
3329 rps_unlock(sd);
3330
3331 local_irq_restore(flags);
3332
3333 atomic_long_inc(&skb->dev->rx_dropped);
3334 kfree_skb(skb);
3335 return NET_RX_DROP;
3336}
3337
3338static int netif_rx_internal(struct sk_buff *skb)
3339{
3340 int ret;
3341
3342 net_timestamp_check(netdev_tstamp_prequeue, skb);
3343
3344 trace_netif_rx(skb);
3345#ifdef CONFIG_RPS
3346 if (static_key_false(&rps_needed)) {
3347 struct rps_dev_flow voidflow, *rflow = &voidflow;
3348 int cpu;
3349
3350 preempt_disable();
3351 rcu_read_lock();
3352
3353 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3354 if (cpu < 0)
3355 cpu = smp_processor_id();
3356
3357 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3358
3359 rcu_read_unlock();
3360 preempt_enable();
3361 } else
3362#endif
3363 {
3364 unsigned int qtail;
3365 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3366 put_cpu();
3367 }
3368 return ret;
3369}
3370
3371/**
3372 * netif_rx - post buffer to the network code
3373 * @skb: buffer to post
3374 *
3375 * This function receives a packet from a device driver and queues it for
3376 * the upper (protocol) levels to process. It always succeeds. The buffer
3377 * may be dropped during processing for congestion control or by the
3378 * protocol layers.
3379 *
3380 * return values:
3381 * NET_RX_SUCCESS (no congestion)
3382 * NET_RX_DROP (packet was dropped)
3383 *
3384 */
3385
3386int netif_rx(struct sk_buff *skb)
3387{
3388 trace_netif_rx_entry(skb);
3389
3390 return netif_rx_internal(skb);
3391}
3392EXPORT_SYMBOL(netif_rx);
3393
3394int netif_rx_ni(struct sk_buff *skb)
3395{
3396 int err;
3397
3398 trace_netif_rx_ni_entry(skb);
3399
3400 preempt_disable();
3401 err = netif_rx_internal(skb);
3402 if (local_softirq_pending())
3403 do_softirq();
3404 preempt_enable();
3405
3406 return err;
3407}
3408EXPORT_SYMBOL(netif_rx_ni);
3409
3410static void net_tx_action(struct softirq_action *h)
3411{
3412 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3413
3414 if (sd->completion_queue) {
3415 struct sk_buff *clist;
3416
3417 local_irq_disable();
3418 clist = sd->completion_queue;
3419 sd->completion_queue = NULL;
3420 local_irq_enable();
3421
3422 while (clist) {
3423 struct sk_buff *skb = clist;
3424 clist = clist->next;
3425
3426 WARN_ON(atomic_read(&skb->users));
3427 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3428 trace_consume_skb(skb);
3429 else
3430 trace_kfree_skb(skb, net_tx_action);
3431 __kfree_skb(skb);
3432 }
3433 }
3434
3435 if (sd->output_queue) {
3436 struct Qdisc *head;
3437
3438 local_irq_disable();
3439 head = sd->output_queue;
3440 sd->output_queue = NULL;
3441 sd->output_queue_tailp = &sd->output_queue;
3442 local_irq_enable();
3443
3444 while (head) {
3445 struct Qdisc *q = head;
3446 spinlock_t *root_lock;
3447
3448 head = head->next_sched;
3449
3450 root_lock = qdisc_lock(q);
3451 if (spin_trylock(root_lock)) {
3452 smp_mb__before_atomic();
3453 clear_bit(__QDISC_STATE_SCHED,
3454 &q->state);
3455 qdisc_run(q);
3456 spin_unlock(root_lock);
3457 } else {
3458 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3459 &q->state)) {
3460 __netif_reschedule(q);
3461 } else {
3462 smp_mb__before_atomic();
3463 clear_bit(__QDISC_STATE_SCHED,
3464 &q->state);
3465 }
3466 }
3467 }
3468 }
3469}
3470
3471#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3472 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3473/* This hook is defined here for ATM LANE */
3474int (*br_fdb_test_addr_hook)(struct net_device *dev,
3475 unsigned char *addr) __read_mostly;
3476EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3477#endif
3478
3479#ifdef CONFIG_NET_CLS_ACT
3480/* TODO: Maybe we should just force sch_ingress to be compiled in
3481 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3482 * a compare and 2 stores extra right now if we dont have it on
3483 * but have CONFIG_NET_CLS_ACT
3484 * NOTE: This doesn't stop any functionality; if you dont have
3485 * the ingress scheduler, you just can't add policies on ingress.
3486 *
3487 */
3488static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3489{
3490 struct net_device *dev = skb->dev;
3491 u32 ttl = G_TC_RTTL(skb->tc_verd);
3492 int result = TC_ACT_OK;
3493 struct Qdisc *q;
3494
3495 if (unlikely(MAX_RED_LOOP < ttl++)) {
3496 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3497 skb->skb_iif, dev->ifindex);
3498 return TC_ACT_SHOT;
3499 }
3500
3501 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3502 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3503
3504 q = rcu_dereference(rxq->qdisc);
3505 if (q != &noop_qdisc) {
3506 spin_lock(qdisc_lock(q));
3507 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3508 result = qdisc_enqueue_root(skb, q);
3509 spin_unlock(qdisc_lock(q));
3510 }
3511
3512 return result;
3513}
3514
3515static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3516 struct packet_type **pt_prev,
3517 int *ret, struct net_device *orig_dev)
3518{
3519 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3520
3521 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3522 goto out;
3523
3524 if (*pt_prev) {
3525 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3526 *pt_prev = NULL;
3527 }
3528
3529 switch (ing_filter(skb, rxq)) {
3530 case TC_ACT_SHOT:
3531 case TC_ACT_STOLEN:
3532 kfree_skb(skb);
3533 return NULL;
3534 }
3535
3536out:
3537 skb->tc_verd = 0;
3538 return skb;
3539}
3540#endif
3541
3542/**
3543 * netdev_rx_handler_register - register receive handler
3544 * @dev: device to register a handler for
3545 * @rx_handler: receive handler to register
3546 * @rx_handler_data: data pointer that is used by rx handler
3547 *
3548 * Register a receive handler for a device. This handler will then be
3549 * called from __netif_receive_skb. A negative errno code is returned
3550 * on a failure.
3551 *
3552 * The caller must hold the rtnl_mutex.
3553 *
3554 * For a general description of rx_handler, see enum rx_handler_result.
3555 */
3556int netdev_rx_handler_register(struct net_device *dev,
3557 rx_handler_func_t *rx_handler,
3558 void *rx_handler_data)
3559{
3560 ASSERT_RTNL();
3561
3562 if (dev->rx_handler)
3563 return -EBUSY;
3564
3565 /* Note: rx_handler_data must be set before rx_handler */
3566 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3567 rcu_assign_pointer(dev->rx_handler, rx_handler);
3568
3569 return 0;
3570}
3571EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3572
3573/**
3574 * netdev_rx_handler_unregister - unregister receive handler
3575 * @dev: device to unregister a handler from
3576 *
3577 * Unregister a receive handler from a device.
3578 *
3579 * The caller must hold the rtnl_mutex.
3580 */
3581void netdev_rx_handler_unregister(struct net_device *dev)
3582{
3583
3584 ASSERT_RTNL();
3585 RCU_INIT_POINTER(dev->rx_handler, NULL);
3586 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3587 * section has a guarantee to see a non NULL rx_handler_data
3588 * as well.
3589 */
3590 synchronize_net();
3591 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3592}
3593EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3594
3595/*
3596 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3597 * the special handling of PFMEMALLOC skbs.
3598 */
3599static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3600{
3601 switch (skb->protocol) {
3602 case htons(ETH_P_ARP):
3603 case htons(ETH_P_IP):
3604 case htons(ETH_P_IPV6):
3605 case htons(ETH_P_8021Q):
3606 case htons(ETH_P_8021AD):
3607 return true;
3608 default:
3609 return false;
3610 }
3611}
3612
3613static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3614{
3615 struct packet_type *ptype, *pt_prev;
3616 rx_handler_func_t *rx_handler;
3617 struct net_device *orig_dev;
3618 struct net_device *null_or_dev;
3619 bool deliver_exact = false;
3620 int ret = NET_RX_DROP;
3621 __be16 type;
3622
3623 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3624
3625 trace_netif_receive_skb(skb);
3626
3627 orig_dev = skb->dev;
3628
3629 skb_reset_network_header(skb);
3630 if (!skb_transport_header_was_set(skb))
3631 skb_reset_transport_header(skb);
3632 skb_reset_mac_len(skb);
3633
3634 pt_prev = NULL;
3635
3636 rcu_read_lock();
3637
3638another_round:
3639 skb->skb_iif = skb->dev->ifindex;
3640
3641 __this_cpu_inc(softnet_data.processed);
3642
3643 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3644 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3645 skb = skb_vlan_untag(skb);
3646 if (unlikely(!skb))
3647 goto unlock;
3648 }
3649
3650#ifdef CONFIG_NET_CLS_ACT
3651 if (skb->tc_verd & TC_NCLS) {
3652 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3653 goto ncls;
3654 }
3655#endif
3656
3657 if (pfmemalloc)
3658 goto skip_taps;
3659
3660 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3661 if (!ptype->dev || ptype->dev == skb->dev) {
3662 if (pt_prev)
3663 ret = deliver_skb(skb, pt_prev, orig_dev);
3664 pt_prev = ptype;
3665 }
3666 }
3667
3668skip_taps:
3669#ifdef CONFIG_NET_CLS_ACT
3670 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3671 if (!skb)
3672 goto unlock;
3673ncls:
3674#endif
3675
3676 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3677 goto drop;
3678
3679 if (vlan_tx_tag_present(skb)) {
3680 if (pt_prev) {
3681 ret = deliver_skb(skb, pt_prev, orig_dev);
3682 pt_prev = NULL;
3683 }
3684 if (vlan_do_receive(&skb))
3685 goto another_round;
3686 else if (unlikely(!skb))
3687 goto unlock;
3688 }
3689
3690 rx_handler = rcu_dereference(skb->dev->rx_handler);
3691 if (rx_handler) {
3692 if (pt_prev) {
3693 ret = deliver_skb(skb, pt_prev, orig_dev);
3694 pt_prev = NULL;
3695 }
3696 switch (rx_handler(&skb)) {
3697 case RX_HANDLER_CONSUMED:
3698 ret = NET_RX_SUCCESS;
3699 goto unlock;
3700 case RX_HANDLER_ANOTHER:
3701 goto another_round;
3702 case RX_HANDLER_EXACT:
3703 deliver_exact = true;
3704 case RX_HANDLER_PASS:
3705 break;
3706 default:
3707 BUG();
3708 }
3709 }
3710
3711 if (unlikely(vlan_tx_tag_present(skb))) {
3712 if (vlan_tx_tag_get_id(skb))
3713 skb->pkt_type = PACKET_OTHERHOST;
3714 /* Note: we might in the future use prio bits
3715 * and set skb->priority like in vlan_do_receive()
3716 * For the time being, just ignore Priority Code Point
3717 */
3718 skb->vlan_tci = 0;
3719 }
3720
3721 /* deliver only exact match when indicated */
3722 null_or_dev = deliver_exact ? skb->dev : NULL;
3723
3724 type = skb->protocol;
3725 list_for_each_entry_rcu(ptype,
3726 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3727 if (ptype->type == type &&
3728 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3729 ptype->dev == orig_dev)) {
3730 if (pt_prev)
3731 ret = deliver_skb(skb, pt_prev, orig_dev);
3732 pt_prev = ptype;
3733 }
3734 }
3735
3736 if (pt_prev) {
3737 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3738 goto drop;
3739 else
3740 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3741 } else {
3742drop:
3743 atomic_long_inc(&skb->dev->rx_dropped);
3744 kfree_skb(skb);
3745 /* Jamal, now you will not able to escape explaining
3746 * me how you were going to use this. :-)
3747 */
3748 ret = NET_RX_DROP;
3749 }
3750
3751unlock:
3752 rcu_read_unlock();
3753 return ret;
3754}
3755
3756static int __netif_receive_skb(struct sk_buff *skb)
3757{
3758 int ret;
3759
3760 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3761 unsigned long pflags = current->flags;
3762
3763 /*
3764 * PFMEMALLOC skbs are special, they should
3765 * - be delivered to SOCK_MEMALLOC sockets only
3766 * - stay away from userspace
3767 * - have bounded memory usage
3768 *
3769 * Use PF_MEMALLOC as this saves us from propagating the allocation
3770 * context down to all allocation sites.
3771 */
3772 current->flags |= PF_MEMALLOC;
3773 ret = __netif_receive_skb_core(skb, true);
3774 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3775 } else
3776 ret = __netif_receive_skb_core(skb, false);
3777
3778 return ret;
3779}
3780
3781static int netif_receive_skb_internal(struct sk_buff *skb)
3782{
3783 net_timestamp_check(netdev_tstamp_prequeue, skb);
3784
3785 if (skb_defer_rx_timestamp(skb))
3786 return NET_RX_SUCCESS;
3787
3788#ifdef CONFIG_RPS
3789 if (static_key_false(&rps_needed)) {
3790 struct rps_dev_flow voidflow, *rflow = &voidflow;
3791 int cpu, ret;
3792
3793 rcu_read_lock();
3794
3795 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3796
3797 if (cpu >= 0) {
3798 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3799 rcu_read_unlock();
3800 return ret;
3801 }
3802 rcu_read_unlock();
3803 }
3804#endif
3805 return __netif_receive_skb(skb);
3806}
3807
3808/**
3809 * netif_receive_skb - process receive buffer from network
3810 * @skb: buffer to process
3811 *
3812 * netif_receive_skb() is the main receive data processing function.
3813 * It always succeeds. The buffer may be dropped during processing
3814 * for congestion control or by the protocol layers.
3815 *
3816 * This function may only be called from softirq context and interrupts
3817 * should be enabled.
3818 *
3819 * Return values (usually ignored):
3820 * NET_RX_SUCCESS: no congestion
3821 * NET_RX_DROP: packet was dropped
3822 */
3823int netif_receive_skb(struct sk_buff *skb)
3824{
3825 trace_netif_receive_skb_entry(skb);
3826
3827 return netif_receive_skb_internal(skb);
3828}
3829EXPORT_SYMBOL(netif_receive_skb);
3830
3831/* Network device is going away, flush any packets still pending
3832 * Called with irqs disabled.
3833 */
3834static void flush_backlog(void *arg)
3835{
3836 struct net_device *dev = arg;
3837 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3838 struct sk_buff *skb, *tmp;
3839
3840 rps_lock(sd);
3841 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3842 if (skb->dev == dev) {
3843 __skb_unlink(skb, &sd->input_pkt_queue);
3844 kfree_skb(skb);
3845 input_queue_head_incr(sd);
3846 }
3847 }
3848 rps_unlock(sd);
3849
3850 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3851 if (skb->dev == dev) {
3852 __skb_unlink(skb, &sd->process_queue);
3853 kfree_skb(skb);
3854 input_queue_head_incr(sd);
3855 }
3856 }
3857}
3858
3859static int napi_gro_complete(struct sk_buff *skb)
3860{
3861 struct packet_offload *ptype;
3862 __be16 type = skb->protocol;
3863 struct list_head *head = &offload_base;
3864 int err = -ENOENT;
3865
3866 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3867
3868 if (NAPI_GRO_CB(skb)->count == 1) {
3869 skb_shinfo(skb)->gso_size = 0;
3870 goto out;
3871 }
3872
3873 rcu_read_lock();
3874 list_for_each_entry_rcu(ptype, head, list) {
3875 if (ptype->type != type || !ptype->callbacks.gro_complete)
3876 continue;
3877
3878 err = ptype->callbacks.gro_complete(skb, 0);
3879 break;
3880 }
3881 rcu_read_unlock();
3882
3883 if (err) {
3884 WARN_ON(&ptype->list == head);
3885 kfree_skb(skb);
3886 return NET_RX_SUCCESS;
3887 }
3888
3889out:
3890 return netif_receive_skb_internal(skb);
3891}
3892
3893/* napi->gro_list contains packets ordered by age.
3894 * youngest packets at the head of it.
3895 * Complete skbs in reverse order to reduce latencies.
3896 */
3897void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3898{
3899 struct sk_buff *skb, *prev = NULL;
3900
3901 /* scan list and build reverse chain */
3902 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3903 skb->prev = prev;
3904 prev = skb;
3905 }
3906
3907 for (skb = prev; skb; skb = prev) {
3908 skb->next = NULL;
3909
3910 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3911 return;
3912
3913 prev = skb->prev;
3914 napi_gro_complete(skb);
3915 napi->gro_count--;
3916 }
3917
3918 napi->gro_list = NULL;
3919}
3920EXPORT_SYMBOL(napi_gro_flush);
3921
3922static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3923{
3924 struct sk_buff *p;
3925 unsigned int maclen = skb->dev->hard_header_len;
3926 u32 hash = skb_get_hash_raw(skb);
3927
3928 for (p = napi->gro_list; p; p = p->next) {
3929 unsigned long diffs;
3930
3931 NAPI_GRO_CB(p)->flush = 0;
3932
3933 if (hash != skb_get_hash_raw(p)) {
3934 NAPI_GRO_CB(p)->same_flow = 0;
3935 continue;
3936 }
3937
3938 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3939 diffs |= p->vlan_tci ^ skb->vlan_tci;
3940 if (maclen == ETH_HLEN)
3941 diffs |= compare_ether_header(skb_mac_header(p),
3942 skb_mac_header(skb));
3943 else if (!diffs)
3944 diffs = memcmp(skb_mac_header(p),
3945 skb_mac_header(skb),
3946 maclen);
3947 NAPI_GRO_CB(p)->same_flow = !diffs;
3948 }
3949}
3950
3951static void skb_gro_reset_offset(struct sk_buff *skb)
3952{
3953 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3954 const skb_frag_t *frag0 = &pinfo->frags[0];
3955
3956 NAPI_GRO_CB(skb)->data_offset = 0;
3957 NAPI_GRO_CB(skb)->frag0 = NULL;
3958 NAPI_GRO_CB(skb)->frag0_len = 0;
3959
3960 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3961 pinfo->nr_frags &&
3962 !PageHighMem(skb_frag_page(frag0))) {
3963 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3964 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3965 }
3966}
3967
3968static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3969{
3970 struct skb_shared_info *pinfo = skb_shinfo(skb);
3971
3972 BUG_ON(skb->end - skb->tail < grow);
3973
3974 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3975
3976 skb->data_len -= grow;
3977 skb->tail += grow;
3978
3979 pinfo->frags[0].page_offset += grow;
3980 skb_frag_size_sub(&pinfo->frags[0], grow);
3981
3982 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3983 skb_frag_unref(skb, 0);
3984 memmove(pinfo->frags, pinfo->frags + 1,
3985 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3986 }
3987}
3988
3989static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3990{
3991 struct sk_buff **pp = NULL;
3992 struct packet_offload *ptype;
3993 __be16 type = skb->protocol;
3994 struct list_head *head = &offload_base;
3995 int same_flow;
3996 enum gro_result ret;
3997 int grow;
3998
3999 if (!(skb->dev->features & NETIF_F_GRO))
4000 goto normal;
4001
4002 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4003 goto normal;
4004
4005 gro_list_prepare(napi, skb);
4006
4007 rcu_read_lock();
4008 list_for_each_entry_rcu(ptype, head, list) {
4009 if (ptype->type != type || !ptype->callbacks.gro_receive)
4010 continue;
4011
4012 skb_set_network_header(skb, skb_gro_offset(skb));
4013 skb_reset_mac_len(skb);
4014 NAPI_GRO_CB(skb)->same_flow = 0;
4015 NAPI_GRO_CB(skb)->flush = 0;
4016 NAPI_GRO_CB(skb)->free = 0;
4017 NAPI_GRO_CB(skb)->udp_mark = 0;
4018
4019 /* Setup for GRO checksum validation */
4020 switch (skb->ip_summed) {
4021 case CHECKSUM_COMPLETE:
4022 NAPI_GRO_CB(skb)->csum = skb->csum;
4023 NAPI_GRO_CB(skb)->csum_valid = 1;
4024 NAPI_GRO_CB(skb)->csum_cnt = 0;
4025 break;
4026 case CHECKSUM_UNNECESSARY:
4027 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4028 NAPI_GRO_CB(skb)->csum_valid = 0;
4029 break;
4030 default:
4031 NAPI_GRO_CB(skb)->csum_cnt = 0;
4032 NAPI_GRO_CB(skb)->csum_valid = 0;
4033 }
4034
4035 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4036 break;
4037 }
4038 rcu_read_unlock();
4039
4040 if (&ptype->list == head)
4041 goto normal;
4042
4043 same_flow = NAPI_GRO_CB(skb)->same_flow;
4044 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4045
4046 if (pp) {
4047 struct sk_buff *nskb = *pp;
4048
4049 *pp = nskb->next;
4050 nskb->next = NULL;
4051 napi_gro_complete(nskb);
4052 napi->gro_count--;
4053 }
4054
4055 if (same_flow)
4056 goto ok;
4057
4058 if (NAPI_GRO_CB(skb)->flush)
4059 goto normal;
4060
4061 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4062 struct sk_buff *nskb = napi->gro_list;
4063
4064 /* locate the end of the list to select the 'oldest' flow */
4065 while (nskb->next) {
4066 pp = &nskb->next;
4067 nskb = *pp;
4068 }
4069 *pp = NULL;
4070 nskb->next = NULL;
4071 napi_gro_complete(nskb);
4072 } else {
4073 napi->gro_count++;
4074 }
4075 NAPI_GRO_CB(skb)->count = 1;
4076 NAPI_GRO_CB(skb)->age = jiffies;
4077 NAPI_GRO_CB(skb)->last = skb;
4078 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4079 skb->next = napi->gro_list;
4080 napi->gro_list = skb;
4081 ret = GRO_HELD;
4082
4083pull:
4084 grow = skb_gro_offset(skb) - skb_headlen(skb);
4085 if (grow > 0)
4086 gro_pull_from_frag0(skb, grow);
4087ok:
4088 return ret;
4089
4090normal:
4091 ret = GRO_NORMAL;
4092 goto pull;
4093}
4094
4095struct packet_offload *gro_find_receive_by_type(__be16 type)
4096{
4097 struct list_head *offload_head = &offload_base;
4098 struct packet_offload *ptype;
4099
4100 list_for_each_entry_rcu(ptype, offload_head, list) {
4101 if (ptype->type != type || !ptype->callbacks.gro_receive)
4102 continue;
4103 return ptype;
4104 }
4105 return NULL;
4106}
4107EXPORT_SYMBOL(gro_find_receive_by_type);
4108
4109struct packet_offload *gro_find_complete_by_type(__be16 type)
4110{
4111 struct list_head *offload_head = &offload_base;
4112 struct packet_offload *ptype;
4113
4114 list_for_each_entry_rcu(ptype, offload_head, list) {
4115 if (ptype->type != type || !ptype->callbacks.gro_complete)
4116 continue;
4117 return ptype;
4118 }
4119 return NULL;
4120}
4121EXPORT_SYMBOL(gro_find_complete_by_type);
4122
4123static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4124{
4125 switch (ret) {
4126 case GRO_NORMAL:
4127 if (netif_receive_skb_internal(skb))
4128 ret = GRO_DROP;
4129 break;
4130
4131 case GRO_DROP:
4132 kfree_skb(skb);
4133 break;
4134
4135 case GRO_MERGED_FREE:
4136 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4137 kmem_cache_free(skbuff_head_cache, skb);
4138 else
4139 __kfree_skb(skb);
4140 break;
4141
4142 case GRO_HELD:
4143 case GRO_MERGED:
4144 break;
4145 }
4146
4147 return ret;
4148}
4149
4150gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4151{
4152 trace_napi_gro_receive_entry(skb);
4153
4154 skb_gro_reset_offset(skb);
4155
4156 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4157}
4158EXPORT_SYMBOL(napi_gro_receive);
4159
4160static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4161{
4162 if (unlikely(skb->pfmemalloc)) {
4163 consume_skb(skb);
4164 return;
4165 }
4166 __skb_pull(skb, skb_headlen(skb));
4167 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4168 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4169 skb->vlan_tci = 0;
4170 skb->dev = napi->dev;
4171 skb->skb_iif = 0;
4172 skb->encapsulation = 0;
4173 skb_shinfo(skb)->gso_type = 0;
4174 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4175
4176 napi->skb = skb;
4177}
4178
4179struct sk_buff *napi_get_frags(struct napi_struct *napi)
4180{
4181 struct sk_buff *skb = napi->skb;
4182
4183 if (!skb) {
4184 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4185 napi->skb = skb;
4186 }
4187 return skb;
4188}
4189EXPORT_SYMBOL(napi_get_frags);
4190
4191static gro_result_t napi_frags_finish(struct napi_struct *napi,
4192 struct sk_buff *skb,
4193 gro_result_t ret)
4194{
4195 switch (ret) {
4196 case GRO_NORMAL:
4197 case GRO_HELD:
4198 __skb_push(skb, ETH_HLEN);
4199 skb->protocol = eth_type_trans(skb, skb->dev);
4200 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4201 ret = GRO_DROP;
4202 break;
4203
4204 case GRO_DROP:
4205 case GRO_MERGED_FREE:
4206 napi_reuse_skb(napi, skb);
4207 break;
4208
4209 case GRO_MERGED:
4210 break;
4211 }
4212
4213 return ret;
4214}
4215
4216/* Upper GRO stack assumes network header starts at gro_offset=0
4217 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4218 * We copy ethernet header into skb->data to have a common layout.
4219 */
4220static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4221{
4222 struct sk_buff *skb = napi->skb;
4223 const struct ethhdr *eth;
4224 unsigned int hlen = sizeof(*eth);
4225
4226 napi->skb = NULL;
4227
4228 skb_reset_mac_header(skb);
4229 skb_gro_reset_offset(skb);
4230
4231 eth = skb_gro_header_fast(skb, 0);
4232 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4233 eth = skb_gro_header_slow(skb, hlen, 0);
4234 if (unlikely(!eth)) {
4235 napi_reuse_skb(napi, skb);
4236 return NULL;
4237 }
4238 } else {
4239 gro_pull_from_frag0(skb, hlen);
4240 NAPI_GRO_CB(skb)->frag0 += hlen;
4241 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4242 }
4243 __skb_pull(skb, hlen);
4244
4245 /*
4246 * This works because the only protocols we care about don't require
4247 * special handling.
4248 * We'll fix it up properly in napi_frags_finish()
4249 */
4250 skb->protocol = eth->h_proto;
4251
4252 return skb;
4253}
4254
4255gro_result_t napi_gro_frags(struct napi_struct *napi)
4256{
4257 struct sk_buff *skb = napi_frags_skb(napi);
4258
4259 if (!skb)
4260 return GRO_DROP;
4261
4262 trace_napi_gro_frags_entry(skb);
4263
4264 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4265}
4266EXPORT_SYMBOL(napi_gro_frags);
4267
4268/* Compute the checksum from gro_offset and return the folded value
4269 * after adding in any pseudo checksum.
4270 */
4271__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4272{
4273 __wsum wsum;
4274 __sum16 sum;
4275
4276 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4277
4278 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4279 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4280 if (likely(!sum)) {
4281 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4282 !skb->csum_complete_sw)
4283 netdev_rx_csum_fault(skb->dev);
4284 }
4285
4286 NAPI_GRO_CB(skb)->csum = wsum;
4287 NAPI_GRO_CB(skb)->csum_valid = 1;
4288
4289 return sum;
4290}
4291EXPORT_SYMBOL(__skb_gro_checksum_complete);
4292
4293/*
4294 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4295 * Note: called with local irq disabled, but exits with local irq enabled.
4296 */
4297static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4298{
4299#ifdef CONFIG_RPS
4300 struct softnet_data *remsd = sd->rps_ipi_list;
4301
4302 if (remsd) {
4303 sd->rps_ipi_list = NULL;
4304
4305 local_irq_enable();
4306
4307 /* Send pending IPI's to kick RPS processing on remote cpus. */
4308 while (remsd) {
4309 struct softnet_data *next = remsd->rps_ipi_next;
4310
4311 if (cpu_online(remsd->cpu))
4312 smp_call_function_single_async(remsd->cpu,
4313 &remsd->csd);
4314 remsd = next;
4315 }
4316 } else
4317#endif
4318 local_irq_enable();
4319}
4320
4321static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4322{
4323#ifdef CONFIG_RPS
4324 return sd->rps_ipi_list != NULL;
4325#else
4326 return false;
4327#endif
4328}
4329
4330static int process_backlog(struct napi_struct *napi, int quota)
4331{
4332 int work = 0;
4333 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4334
4335 /* Check if we have pending ipi, its better to send them now,
4336 * not waiting net_rx_action() end.
4337 */
4338 if (sd_has_rps_ipi_waiting(sd)) {
4339 local_irq_disable();
4340 net_rps_action_and_irq_enable(sd);
4341 }
4342
4343 napi->weight = weight_p;
4344 local_irq_disable();
4345 while (1) {
4346 struct sk_buff *skb;
4347
4348 while ((skb = __skb_dequeue(&sd->process_queue))) {
4349 local_irq_enable();
4350 __netif_receive_skb(skb);
4351 local_irq_disable();
4352 input_queue_head_incr(sd);
4353 if (++work >= quota) {
4354 local_irq_enable();
4355 return work;
4356 }
4357 }
4358
4359 rps_lock(sd);
4360 if (skb_queue_empty(&sd->input_pkt_queue)) {
4361 /*
4362 * Inline a custom version of __napi_complete().
4363 * only current cpu owns and manipulates this napi,
4364 * and NAPI_STATE_SCHED is the only possible flag set
4365 * on backlog.
4366 * We can use a plain write instead of clear_bit(),
4367 * and we dont need an smp_mb() memory barrier.
4368 */
4369 napi->state = 0;
4370 rps_unlock(sd);
4371
4372 break;
4373 }
4374
4375 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4376 &sd->process_queue);
4377 rps_unlock(sd);
4378 }
4379 local_irq_enable();
4380
4381 return work;
4382}
4383
4384/**
4385 * __napi_schedule - schedule for receive
4386 * @n: entry to schedule
4387 *
4388 * The entry's receive function will be scheduled to run.
4389 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4390 */
4391void __napi_schedule(struct napi_struct *n)
4392{
4393 unsigned long flags;
4394
4395 local_irq_save(flags);
4396 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4397 local_irq_restore(flags);
4398}
4399EXPORT_SYMBOL(__napi_schedule);
4400
4401/**
4402 * __napi_schedule_irqoff - schedule for receive
4403 * @n: entry to schedule
4404 *
4405 * Variant of __napi_schedule() assuming hard irqs are masked
4406 */
4407void __napi_schedule_irqoff(struct napi_struct *n)
4408{
4409 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4410}
4411EXPORT_SYMBOL(__napi_schedule_irqoff);
4412
4413void __napi_complete(struct napi_struct *n)
4414{
4415 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4416
4417 list_del_init(&n->poll_list);
4418 smp_mb__before_atomic();
4419 clear_bit(NAPI_STATE_SCHED, &n->state);
4420}
4421EXPORT_SYMBOL(__napi_complete);
4422
4423void napi_complete_done(struct napi_struct *n, int work_done)
4424{
4425 unsigned long flags;
4426
4427 /*
4428 * don't let napi dequeue from the cpu poll list
4429 * just in case its running on a different cpu
4430 */
4431 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4432 return;
4433
4434 if (n->gro_list) {
4435 unsigned long timeout = 0;
4436
4437 if (work_done)
4438 timeout = n->dev->gro_flush_timeout;
4439
4440 if (timeout)
4441 hrtimer_start(&n->timer, ns_to_ktime(timeout),
4442 HRTIMER_MODE_REL_PINNED);
4443 else
4444 napi_gro_flush(n, false);
4445 }
4446 if (likely(list_empty(&n->poll_list))) {
4447 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4448 } else {
4449 /* If n->poll_list is not empty, we need to mask irqs */
4450 local_irq_save(flags);
4451 __napi_complete(n);
4452 local_irq_restore(flags);
4453 }
4454}
4455EXPORT_SYMBOL(napi_complete_done);
4456
4457/* must be called under rcu_read_lock(), as we dont take a reference */
4458struct napi_struct *napi_by_id(unsigned int napi_id)
4459{
4460 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4461 struct napi_struct *napi;
4462
4463 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4464 if (napi->napi_id == napi_id)
4465 return napi;
4466
4467 return NULL;
4468}
4469EXPORT_SYMBOL_GPL(napi_by_id);
4470
4471void napi_hash_add(struct napi_struct *napi)
4472{
4473 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4474
4475 spin_lock(&napi_hash_lock);
4476
4477 /* 0 is not a valid id, we also skip an id that is taken
4478 * we expect both events to be extremely rare
4479 */
4480 napi->napi_id = 0;
4481 while (!napi->napi_id) {
4482 napi->napi_id = ++napi_gen_id;
4483 if (napi_by_id(napi->napi_id))
4484 napi->napi_id = 0;
4485 }
4486
4487 hlist_add_head_rcu(&napi->napi_hash_node,
4488 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4489
4490 spin_unlock(&napi_hash_lock);
4491 }
4492}
4493EXPORT_SYMBOL_GPL(napi_hash_add);
4494
4495/* Warning : caller is responsible to make sure rcu grace period
4496 * is respected before freeing memory containing @napi
4497 */
4498void napi_hash_del(struct napi_struct *napi)
4499{
4500 spin_lock(&napi_hash_lock);
4501
4502 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4503 hlist_del_rcu(&napi->napi_hash_node);
4504
4505 spin_unlock(&napi_hash_lock);
4506}
4507EXPORT_SYMBOL_GPL(napi_hash_del);
4508
4509static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4510{
4511 struct napi_struct *napi;
4512
4513 napi = container_of(timer, struct napi_struct, timer);
4514 if (napi->gro_list)
4515 napi_schedule(napi);
4516
4517 return HRTIMER_NORESTART;
4518}
4519
4520void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4521 int (*poll)(struct napi_struct *, int), int weight)
4522{
4523 INIT_LIST_HEAD(&napi->poll_list);
4524 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4525 napi->timer.function = napi_watchdog;
4526 napi->gro_count = 0;
4527 napi->gro_list = NULL;
4528 napi->skb = NULL;
4529 napi->poll = poll;
4530 if (weight > NAPI_POLL_WEIGHT)
4531 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4532 weight, dev->name);
4533 napi->weight = weight;
4534 list_add(&napi->dev_list, &dev->napi_list);
4535 napi->dev = dev;
4536#ifdef CONFIG_NETPOLL
4537 spin_lock_init(&napi->poll_lock);
4538 napi->poll_owner = -1;
4539#endif
4540 set_bit(NAPI_STATE_SCHED, &napi->state);
4541}
4542EXPORT_SYMBOL(netif_napi_add);
4543
4544void napi_disable(struct napi_struct *n)
4545{
4546 might_sleep();
4547 set_bit(NAPI_STATE_DISABLE, &n->state);
4548
4549 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4550 msleep(1);
4551
4552 hrtimer_cancel(&n->timer);
4553
4554 clear_bit(NAPI_STATE_DISABLE, &n->state);
4555}
4556EXPORT_SYMBOL(napi_disable);
4557
4558void netif_napi_del(struct napi_struct *napi)
4559{
4560 list_del_init(&napi->dev_list);
4561 napi_free_frags(napi);
4562
4563 kfree_skb_list(napi->gro_list);
4564 napi->gro_list = NULL;
4565 napi->gro_count = 0;
4566}
4567EXPORT_SYMBOL(netif_napi_del);
4568
4569static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4570{
4571 void *have;
4572 int work, weight;
4573
4574 list_del_init(&n->poll_list);
4575
4576 have = netpoll_poll_lock(n);
4577
4578 weight = n->weight;
4579
4580 /* This NAPI_STATE_SCHED test is for avoiding a race
4581 * with netpoll's poll_napi(). Only the entity which
4582 * obtains the lock and sees NAPI_STATE_SCHED set will
4583 * actually make the ->poll() call. Therefore we avoid
4584 * accidentally calling ->poll() when NAPI is not scheduled.
4585 */
4586 work = 0;
4587 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4588 work = n->poll(n, weight);
4589 trace_napi_poll(n);
4590 }
4591
4592 WARN_ON_ONCE(work > weight);
4593
4594 if (likely(work < weight))
4595 goto out_unlock;
4596
4597 /* Drivers must not modify the NAPI state if they
4598 * consume the entire weight. In such cases this code
4599 * still "owns" the NAPI instance and therefore can
4600 * move the instance around on the list at-will.
4601 */
4602 if (unlikely(napi_disable_pending(n))) {
4603 napi_complete(n);
4604 goto out_unlock;
4605 }
4606
4607 if (n->gro_list) {
4608 /* flush too old packets
4609 * If HZ < 1000, flush all packets.
4610 */
4611 napi_gro_flush(n, HZ >= 1000);
4612 }
4613
4614 /* Some drivers may have called napi_schedule
4615 * prior to exhausting their budget.
4616 */
4617 if (unlikely(!list_empty(&n->poll_list))) {
4618 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4619 n->dev ? n->dev->name : "backlog");
4620 goto out_unlock;
4621 }
4622
4623 list_add_tail(&n->poll_list, repoll);
4624
4625out_unlock:
4626 netpoll_poll_unlock(have);
4627
4628 return work;
4629}
4630
4631static void net_rx_action(struct softirq_action *h)
4632{
4633 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4634 unsigned long time_limit = jiffies + 2;
4635 int budget = netdev_budget;
4636 LIST_HEAD(list);
4637 LIST_HEAD(repoll);
4638
4639 local_irq_disable();
4640 list_splice_init(&sd->poll_list, &list);
4641 local_irq_enable();
4642
4643 for (;;) {
4644 struct napi_struct *n;
4645
4646 if (list_empty(&list)) {
4647 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4648 return;
4649 break;
4650 }
4651
4652 n = list_first_entry(&list, struct napi_struct, poll_list);
4653 budget -= napi_poll(n, &repoll);
4654
4655 /* If softirq window is exhausted then punt.
4656 * Allow this to run for 2 jiffies since which will allow
4657 * an average latency of 1.5/HZ.
4658 */
4659 if (unlikely(budget <= 0 ||
4660 time_after_eq(jiffies, time_limit))) {
4661 sd->time_squeeze++;
4662 break;
4663 }
4664 }
4665
4666 local_irq_disable();
4667
4668 list_splice_tail_init(&sd->poll_list, &list);
4669 list_splice_tail(&repoll, &list);
4670 list_splice(&list, &sd->poll_list);
4671 if (!list_empty(&sd->poll_list))
4672 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4673
4674 net_rps_action_and_irq_enable(sd);
4675}
4676
4677struct netdev_adjacent {
4678 struct net_device *dev;
4679
4680 /* upper master flag, there can only be one master device per list */
4681 bool master;
4682
4683 /* counter for the number of times this device was added to us */
4684 u16 ref_nr;
4685
4686 /* private field for the users */
4687 void *private;
4688
4689 struct list_head list;
4690 struct rcu_head rcu;
4691};
4692
4693static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4694 struct net_device *adj_dev,
4695 struct list_head *adj_list)
4696{
4697 struct netdev_adjacent *adj;
4698
4699 list_for_each_entry(adj, adj_list, list) {
4700 if (adj->dev == adj_dev)
4701 return adj;
4702 }
4703 return NULL;
4704}
4705
4706/**
4707 * netdev_has_upper_dev - Check if device is linked to an upper device
4708 * @dev: device
4709 * @upper_dev: upper device to check
4710 *
4711 * Find out if a device is linked to specified upper device and return true
4712 * in case it is. Note that this checks only immediate upper device,
4713 * not through a complete stack of devices. The caller must hold the RTNL lock.
4714 */
4715bool netdev_has_upper_dev(struct net_device *dev,
4716 struct net_device *upper_dev)
4717{
4718 ASSERT_RTNL();
4719
4720 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4721}
4722EXPORT_SYMBOL(netdev_has_upper_dev);
4723
4724/**
4725 * netdev_has_any_upper_dev - Check if device is linked to some device
4726 * @dev: device
4727 *
4728 * Find out if a device is linked to an upper device and return true in case
4729 * it is. The caller must hold the RTNL lock.
4730 */
4731static bool netdev_has_any_upper_dev(struct net_device *dev)
4732{
4733 ASSERT_RTNL();
4734
4735 return !list_empty(&dev->all_adj_list.upper);
4736}
4737
4738/**
4739 * netdev_master_upper_dev_get - Get master upper device
4740 * @dev: device
4741 *
4742 * Find a master upper device and return pointer to it or NULL in case
4743 * it's not there. The caller must hold the RTNL lock.
4744 */
4745struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4746{
4747 struct netdev_adjacent *upper;
4748
4749 ASSERT_RTNL();
4750
4751 if (list_empty(&dev->adj_list.upper))
4752 return NULL;
4753
4754 upper = list_first_entry(&dev->adj_list.upper,
4755 struct netdev_adjacent, list);
4756 if (likely(upper->master))
4757 return upper->dev;
4758 return NULL;
4759}
4760EXPORT_SYMBOL(netdev_master_upper_dev_get);
4761
4762void *netdev_adjacent_get_private(struct list_head *adj_list)
4763{
4764 struct netdev_adjacent *adj;
4765
4766 adj = list_entry(adj_list, struct netdev_adjacent, list);
4767
4768 return adj->private;
4769}
4770EXPORT_SYMBOL(netdev_adjacent_get_private);
4771
4772/**
4773 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4774 * @dev: device
4775 * @iter: list_head ** of the current position
4776 *
4777 * Gets the next device from the dev's upper list, starting from iter
4778 * position. The caller must hold RCU read lock.
4779 */
4780struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4781 struct list_head **iter)
4782{
4783 struct netdev_adjacent *upper;
4784
4785 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4786
4787 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4788
4789 if (&upper->list == &dev->adj_list.upper)
4790 return NULL;
4791
4792 *iter = &upper->list;
4793
4794 return upper->dev;
4795}
4796EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4797
4798/**
4799 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4800 * @dev: device
4801 * @iter: list_head ** of the current position
4802 *
4803 * Gets the next device from the dev's upper list, starting from iter
4804 * position. The caller must hold RCU read lock.
4805 */
4806struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4807 struct list_head **iter)
4808{
4809 struct netdev_adjacent *upper;
4810
4811 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4812
4813 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4814
4815 if (&upper->list == &dev->all_adj_list.upper)
4816 return NULL;
4817
4818 *iter = &upper->list;
4819
4820 return upper->dev;
4821}
4822EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4823
4824/**
4825 * netdev_lower_get_next_private - Get the next ->private from the
4826 * lower neighbour list
4827 * @dev: device
4828 * @iter: list_head ** of the current position
4829 *
4830 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4831 * list, starting from iter position. The caller must hold either hold the
4832 * RTNL lock or its own locking that guarantees that the neighbour lower
4833 * list will remain unchainged.
4834 */
4835void *netdev_lower_get_next_private(struct net_device *dev,
4836 struct list_head **iter)
4837{
4838 struct netdev_adjacent *lower;
4839
4840 lower = list_entry(*iter, struct netdev_adjacent, list);
4841
4842 if (&lower->list == &dev->adj_list.lower)
4843 return NULL;
4844
4845 *iter = lower->list.next;
4846
4847 return lower->private;
4848}
4849EXPORT_SYMBOL(netdev_lower_get_next_private);
4850
4851/**
4852 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4853 * lower neighbour list, RCU
4854 * variant
4855 * @dev: device
4856 * @iter: list_head ** of the current position
4857 *
4858 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4859 * list, starting from iter position. The caller must hold RCU read lock.
4860 */
4861void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4862 struct list_head **iter)
4863{
4864 struct netdev_adjacent *lower;
4865
4866 WARN_ON_ONCE(!rcu_read_lock_held());
4867
4868 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4869
4870 if (&lower->list == &dev->adj_list.lower)
4871 return NULL;
4872
4873 *iter = &lower->list;
4874
4875 return lower->private;
4876}
4877EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4878
4879/**
4880 * netdev_lower_get_next - Get the next device from the lower neighbour
4881 * list
4882 * @dev: device
4883 * @iter: list_head ** of the current position
4884 *
4885 * Gets the next netdev_adjacent from the dev's lower neighbour
4886 * list, starting from iter position. The caller must hold RTNL lock or
4887 * its own locking that guarantees that the neighbour lower
4888 * list will remain unchainged.
4889 */
4890void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4891{
4892 struct netdev_adjacent *lower;
4893
4894 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4895
4896 if (&lower->list == &dev->adj_list.lower)
4897 return NULL;
4898
4899 *iter = &lower->list;
4900
4901 return lower->dev;
4902}
4903EXPORT_SYMBOL(netdev_lower_get_next);
4904
4905/**
4906 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4907 * lower neighbour list, RCU
4908 * variant
4909 * @dev: device
4910 *
4911 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4912 * list. The caller must hold RCU read lock.
4913 */
4914void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4915{
4916 struct netdev_adjacent *lower;
4917
4918 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4919 struct netdev_adjacent, list);
4920 if (lower)
4921 return lower->private;
4922 return NULL;
4923}
4924EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4925
4926/**
4927 * netdev_master_upper_dev_get_rcu - Get master upper device
4928 * @dev: device
4929 *
4930 * Find a master upper device and return pointer to it or NULL in case
4931 * it's not there. The caller must hold the RCU read lock.
4932 */
4933struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4934{
4935 struct netdev_adjacent *upper;
4936
4937 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4938 struct netdev_adjacent, list);
4939 if (upper && likely(upper->master))
4940 return upper->dev;
4941 return NULL;
4942}
4943EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4944
4945static int netdev_adjacent_sysfs_add(struct net_device *dev,
4946 struct net_device *adj_dev,
4947 struct list_head *dev_list)
4948{
4949 char linkname[IFNAMSIZ+7];
4950 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4951 "upper_%s" : "lower_%s", adj_dev->name);
4952 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4953 linkname);
4954}
4955static void netdev_adjacent_sysfs_del(struct net_device *dev,
4956 char *name,
4957 struct list_head *dev_list)
4958{
4959 char linkname[IFNAMSIZ+7];
4960 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4961 "upper_%s" : "lower_%s", name);
4962 sysfs_remove_link(&(dev->dev.kobj), linkname);
4963}
4964
4965static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4966 struct net_device *adj_dev,
4967 struct list_head *dev_list)
4968{
4969 return (dev_list == &dev->adj_list.upper ||
4970 dev_list == &dev->adj_list.lower) &&
4971 net_eq(dev_net(dev), dev_net(adj_dev));
4972}
4973
4974static int __netdev_adjacent_dev_insert(struct net_device *dev,
4975 struct net_device *adj_dev,
4976 struct list_head *dev_list,
4977 void *private, bool master)
4978{
4979 struct netdev_adjacent *adj;
4980 int ret;
4981
4982 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4983
4984 if (adj) {
4985 adj->ref_nr++;
4986 return 0;
4987 }
4988
4989 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4990 if (!adj)
4991 return -ENOMEM;
4992
4993 adj->dev = adj_dev;
4994 adj->master = master;
4995 adj->ref_nr = 1;
4996 adj->private = private;
4997 dev_hold(adj_dev);
4998
4999 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5000 adj_dev->name, dev->name, adj_dev->name);
5001
5002 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5003 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5004 if (ret)
5005 goto free_adj;
5006 }
5007
5008 /* Ensure that master link is always the first item in list. */
5009 if (master) {
5010 ret = sysfs_create_link(&(dev->dev.kobj),
5011 &(adj_dev->dev.kobj), "master");
5012 if (ret)
5013 goto remove_symlinks;
5014
5015 list_add_rcu(&adj->list, dev_list);
5016 } else {
5017 list_add_tail_rcu(&adj->list, dev_list);
5018 }
5019
5020 return 0;
5021
5022remove_symlinks:
5023 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5024 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5025free_adj:
5026 kfree(adj);
5027 dev_put(adj_dev);
5028
5029 return ret;
5030}
5031
5032static void __netdev_adjacent_dev_remove(struct net_device *dev,
5033 struct net_device *adj_dev,
5034 struct list_head *dev_list)
5035{
5036 struct netdev_adjacent *adj;
5037
5038 adj = __netdev_find_adj(dev, adj_dev, dev_list);
5039
5040 if (!adj) {
5041 pr_err("tried to remove device %s from %s\n",
5042 dev->name, adj_dev->name);
5043 BUG();
5044 }
5045
5046 if (adj->ref_nr > 1) {
5047 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5048 adj->ref_nr-1);
5049 adj->ref_nr--;
5050 return;
5051 }
5052
5053 if (adj->master)
5054 sysfs_remove_link(&(dev->dev.kobj), "master");
5055
5056 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5057 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5058
5059 list_del_rcu(&adj->list);
5060 pr_debug("dev_put for %s, because link removed from %s to %s\n",
5061 adj_dev->name, dev->name, adj_dev->name);
5062 dev_put(adj_dev);
5063 kfree_rcu(adj, rcu);
5064}
5065
5066static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5067 struct net_device *upper_dev,
5068 struct list_head *up_list,
5069 struct list_head *down_list,
5070 void *private, bool master)
5071{
5072 int ret;
5073
5074 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5075 master);
5076 if (ret)
5077 return ret;
5078
5079 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5080 false);
5081 if (ret) {
5082 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5083 return ret;
5084 }
5085
5086 return 0;
5087}
5088
5089static int __netdev_adjacent_dev_link(struct net_device *dev,
5090 struct net_device *upper_dev)
5091{
5092 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5093 &dev->all_adj_list.upper,
5094 &upper_dev->all_adj_list.lower,
5095 NULL, false);
5096}
5097
5098static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5099 struct net_device *upper_dev,
5100 struct list_head *up_list,
5101 struct list_head *down_list)
5102{
5103 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5104 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5105}
5106
5107static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5108 struct net_device *upper_dev)
5109{
5110 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5111 &dev->all_adj_list.upper,
5112 &upper_dev->all_adj_list.lower);
5113}
5114
5115static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5116 struct net_device *upper_dev,
5117 void *private, bool master)
5118{
5119 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5120
5121 if (ret)
5122 return ret;
5123
5124 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5125 &dev->adj_list.upper,
5126 &upper_dev->adj_list.lower,
5127 private, master);
5128 if (ret) {
5129 __netdev_adjacent_dev_unlink(dev, upper_dev);
5130 return ret;
5131 }
5132
5133 return 0;
5134}
5135
5136static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5137 struct net_device *upper_dev)
5138{
5139 __netdev_adjacent_dev_unlink(dev, upper_dev);
5140 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5141 &dev->adj_list.upper,
5142 &upper_dev->adj_list.lower);
5143}
5144
5145static int __netdev_upper_dev_link(struct net_device *dev,
5146 struct net_device *upper_dev, bool master,
5147 void *private)
5148{
5149 struct netdev_adjacent *i, *j, *to_i, *to_j;
5150 int ret = 0;
5151
5152 ASSERT_RTNL();
5153
5154 if (dev == upper_dev)
5155 return -EBUSY;
5156
5157 /* To prevent loops, check if dev is not upper device to upper_dev. */
5158 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5159 return -EBUSY;
5160
5161 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5162 return -EEXIST;
5163
5164 if (master && netdev_master_upper_dev_get(dev))
5165 return -EBUSY;
5166
5167 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5168 master);
5169 if (ret)
5170 return ret;
5171
5172 /* Now that we linked these devs, make all the upper_dev's
5173 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5174 * versa, and don't forget the devices itself. All of these
5175 * links are non-neighbours.
5176 */
5177 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5178 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5179 pr_debug("Interlinking %s with %s, non-neighbour\n",
5180 i->dev->name, j->dev->name);
5181 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5182 if (ret)
5183 goto rollback_mesh;
5184 }
5185 }
5186
5187 /* add dev to every upper_dev's upper device */
5188 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5189 pr_debug("linking %s's upper device %s with %s\n",
5190 upper_dev->name, i->dev->name, dev->name);
5191 ret = __netdev_adjacent_dev_link(dev, i->dev);
5192 if (ret)
5193 goto rollback_upper_mesh;
5194 }
5195
5196 /* add upper_dev to every dev's lower device */
5197 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5198 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5199 i->dev->name, upper_dev->name);
5200 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5201 if (ret)
5202 goto rollback_lower_mesh;
5203 }
5204
5205 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5206 return 0;
5207
5208rollback_lower_mesh:
5209 to_i = i;
5210 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5211 if (i == to_i)
5212 break;
5213 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5214 }
5215
5216 i = NULL;
5217
5218rollback_upper_mesh:
5219 to_i = i;
5220 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5221 if (i == to_i)
5222 break;
5223 __netdev_adjacent_dev_unlink(dev, i->dev);
5224 }
5225
5226 i = j = NULL;
5227
5228rollback_mesh:
5229 to_i = i;
5230 to_j = j;
5231 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5232 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5233 if (i == to_i && j == to_j)
5234 break;
5235 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5236 }
5237 if (i == to_i)
5238 break;
5239 }
5240
5241 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5242
5243 return ret;
5244}
5245
5246/**
5247 * netdev_upper_dev_link - Add a link to the upper device
5248 * @dev: device
5249 * @upper_dev: new upper device
5250 *
5251 * Adds a link to device which is upper to this one. The caller must hold
5252 * the RTNL lock. On a failure a negative errno code is returned.
5253 * On success the reference counts are adjusted and the function
5254 * returns zero.
5255 */
5256int netdev_upper_dev_link(struct net_device *dev,
5257 struct net_device *upper_dev)
5258{
5259 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5260}
5261EXPORT_SYMBOL(netdev_upper_dev_link);
5262
5263/**
5264 * netdev_master_upper_dev_link - Add a master link to the upper device
5265 * @dev: device
5266 * @upper_dev: new upper device
5267 *
5268 * Adds a link to device which is upper to this one. In this case, only
5269 * one master upper device can be linked, although other non-master devices
5270 * might be linked as well. The caller must hold the RTNL lock.
5271 * On a failure a negative errno code is returned. On success the reference
5272 * counts are adjusted and the function returns zero.
5273 */
5274int netdev_master_upper_dev_link(struct net_device *dev,
5275 struct net_device *upper_dev)
5276{
5277 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5278}
5279EXPORT_SYMBOL(netdev_master_upper_dev_link);
5280
5281int netdev_master_upper_dev_link_private(struct net_device *dev,
5282 struct net_device *upper_dev,
5283 void *private)
5284{
5285 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5286}
5287EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5288
5289/**
5290 * netdev_upper_dev_unlink - Removes a link to upper device
5291 * @dev: device
5292 * @upper_dev: new upper device
5293 *
5294 * Removes a link to device which is upper to this one. The caller must hold
5295 * the RTNL lock.
5296 */
5297void netdev_upper_dev_unlink(struct net_device *dev,
5298 struct net_device *upper_dev)
5299{
5300 struct netdev_adjacent *i, *j;
5301 ASSERT_RTNL();
5302
5303 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5304
5305 /* Here is the tricky part. We must remove all dev's lower
5306 * devices from all upper_dev's upper devices and vice
5307 * versa, to maintain the graph relationship.
5308 */
5309 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5310 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5311 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5312
5313 /* remove also the devices itself from lower/upper device
5314 * list
5315 */
5316 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5317 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5318
5319 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5320 __netdev_adjacent_dev_unlink(dev, i->dev);
5321
5322 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5323}
5324EXPORT_SYMBOL(netdev_upper_dev_unlink);
5325
5326void netdev_adjacent_add_links(struct net_device *dev)
5327{
5328 struct netdev_adjacent *iter;
5329
5330 struct net *net = dev_net(dev);
5331
5332 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5333 if (!net_eq(net,dev_net(iter->dev)))
5334 continue;
5335 netdev_adjacent_sysfs_add(iter->dev, dev,
5336 &iter->dev->adj_list.lower);
5337 netdev_adjacent_sysfs_add(dev, iter->dev,
5338 &dev->adj_list.upper);
5339 }
5340
5341 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5342 if (!net_eq(net,dev_net(iter->dev)))
5343 continue;
5344 netdev_adjacent_sysfs_add(iter->dev, dev,
5345 &iter->dev->adj_list.upper);
5346 netdev_adjacent_sysfs_add(dev, iter->dev,
5347 &dev->adj_list.lower);
5348 }
5349}
5350
5351void netdev_adjacent_del_links(struct net_device *dev)
5352{
5353 struct netdev_adjacent *iter;
5354
5355 struct net *net = dev_net(dev);
5356
5357 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5358 if (!net_eq(net,dev_net(iter->dev)))
5359 continue;
5360 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5361 &iter->dev->adj_list.lower);
5362 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5363 &dev->adj_list.upper);
5364 }
5365
5366 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5367 if (!net_eq(net,dev_net(iter->dev)))
5368 continue;
5369 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5370 &iter->dev->adj_list.upper);
5371 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5372 &dev->adj_list.lower);
5373 }
5374}
5375
5376void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5377{
5378 struct netdev_adjacent *iter;
5379
5380 struct net *net = dev_net(dev);
5381
5382 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5383 if (!net_eq(net,dev_net(iter->dev)))
5384 continue;
5385 netdev_adjacent_sysfs_del(iter->dev, oldname,
5386 &iter->dev->adj_list.lower);
5387 netdev_adjacent_sysfs_add(iter->dev, dev,
5388 &iter->dev->adj_list.lower);
5389 }
5390
5391 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5392 if (!net_eq(net,dev_net(iter->dev)))
5393 continue;
5394 netdev_adjacent_sysfs_del(iter->dev, oldname,
5395 &iter->dev->adj_list.upper);
5396 netdev_adjacent_sysfs_add(iter->dev, dev,
5397 &iter->dev->adj_list.upper);
5398 }
5399}
5400
5401void *netdev_lower_dev_get_private(struct net_device *dev,
5402 struct net_device *lower_dev)
5403{
5404 struct netdev_adjacent *lower;
5405
5406 if (!lower_dev)
5407 return NULL;
5408 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5409 if (!lower)
5410 return NULL;
5411
5412 return lower->private;
5413}
5414EXPORT_SYMBOL(netdev_lower_dev_get_private);
5415
5416
5417int dev_get_nest_level(struct net_device *dev,
5418 bool (*type_check)(struct net_device *dev))
5419{
5420 struct net_device *lower = NULL;
5421 struct list_head *iter;
5422 int max_nest = -1;
5423 int nest;
5424
5425 ASSERT_RTNL();
5426
5427 netdev_for_each_lower_dev(dev, lower, iter) {
5428 nest = dev_get_nest_level(lower, type_check);
5429 if (max_nest < nest)
5430 max_nest = nest;
5431 }
5432
5433 if (type_check(dev))
5434 max_nest++;
5435
5436 return max_nest;
5437}
5438EXPORT_SYMBOL(dev_get_nest_level);
5439
5440static void dev_change_rx_flags(struct net_device *dev, int flags)
5441{
5442 const struct net_device_ops *ops = dev->netdev_ops;
5443
5444 if (ops->ndo_change_rx_flags)
5445 ops->ndo_change_rx_flags(dev, flags);
5446}
5447
5448static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5449{
5450 unsigned int old_flags = dev->flags;
5451 kuid_t uid;
5452 kgid_t gid;
5453
5454 ASSERT_RTNL();
5455
5456 dev->flags |= IFF_PROMISC;
5457 dev->promiscuity += inc;
5458 if (dev->promiscuity == 0) {
5459 /*
5460 * Avoid overflow.
5461 * If inc causes overflow, untouch promisc and return error.
5462 */
5463 if (inc < 0)
5464 dev->flags &= ~IFF_PROMISC;
5465 else {
5466 dev->promiscuity -= inc;
5467 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5468 dev->name);
5469 return -EOVERFLOW;
5470 }
5471 }
5472 if (dev->flags != old_flags) {
5473 pr_info("device %s %s promiscuous mode\n",
5474 dev->name,
5475 dev->flags & IFF_PROMISC ? "entered" : "left");
5476 if (audit_enabled) {
5477 current_uid_gid(&uid, &gid);
5478 audit_log(current->audit_context, GFP_ATOMIC,
5479 AUDIT_ANOM_PROMISCUOUS,
5480 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5481 dev->name, (dev->flags & IFF_PROMISC),
5482 (old_flags & IFF_PROMISC),
5483 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5484 from_kuid(&init_user_ns, uid),
5485 from_kgid(&init_user_ns, gid),
5486 audit_get_sessionid(current));
5487 }
5488
5489 dev_change_rx_flags(dev, IFF_PROMISC);
5490 }
5491 if (notify)
5492 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5493 return 0;
5494}
5495
5496/**
5497 * dev_set_promiscuity - update promiscuity count on a device
5498 * @dev: device
5499 * @inc: modifier
5500 *
5501 * Add or remove promiscuity from a device. While the count in the device
5502 * remains above zero the interface remains promiscuous. Once it hits zero
5503 * the device reverts back to normal filtering operation. A negative inc
5504 * value is used to drop promiscuity on the device.
5505 * Return 0 if successful or a negative errno code on error.
5506 */
5507int dev_set_promiscuity(struct net_device *dev, int inc)
5508{
5509 unsigned int old_flags = dev->flags;
5510 int err;
5511
5512 err = __dev_set_promiscuity(dev, inc, true);
5513 if (err < 0)
5514 return err;
5515 if (dev->flags != old_flags)
5516 dev_set_rx_mode(dev);
5517 return err;
5518}
5519EXPORT_SYMBOL(dev_set_promiscuity);
5520
5521static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5522{
5523 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5524
5525 ASSERT_RTNL();
5526
5527 dev->flags |= IFF_ALLMULTI;
5528 dev->allmulti += inc;
5529 if (dev->allmulti == 0) {
5530 /*
5531 * Avoid overflow.
5532 * If inc causes overflow, untouch allmulti and return error.
5533 */
5534 if (inc < 0)
5535 dev->flags &= ~IFF_ALLMULTI;
5536 else {
5537 dev->allmulti -= inc;
5538 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5539 dev->name);
5540 return -EOVERFLOW;
5541 }
5542 }
5543 if (dev->flags ^ old_flags) {
5544 dev_change_rx_flags(dev, IFF_ALLMULTI);
5545 dev_set_rx_mode(dev);
5546 if (notify)
5547 __dev_notify_flags(dev, old_flags,
5548 dev->gflags ^ old_gflags);
5549 }
5550 return 0;
5551}
5552
5553/**
5554 * dev_set_allmulti - update allmulti count on a device
5555 * @dev: device
5556 * @inc: modifier
5557 *
5558 * Add or remove reception of all multicast frames to a device. While the
5559 * count in the device remains above zero the interface remains listening
5560 * to all interfaces. Once it hits zero the device reverts back to normal
5561 * filtering operation. A negative @inc value is used to drop the counter
5562 * when releasing a resource needing all multicasts.
5563 * Return 0 if successful or a negative errno code on error.
5564 */
5565
5566int dev_set_allmulti(struct net_device *dev, int inc)
5567{
5568 return __dev_set_allmulti(dev, inc, true);
5569}
5570EXPORT_SYMBOL(dev_set_allmulti);
5571
5572/*
5573 * Upload unicast and multicast address lists to device and
5574 * configure RX filtering. When the device doesn't support unicast
5575 * filtering it is put in promiscuous mode while unicast addresses
5576 * are present.
5577 */
5578void __dev_set_rx_mode(struct net_device *dev)
5579{
5580 const struct net_device_ops *ops = dev->netdev_ops;
5581
5582 /* dev_open will call this function so the list will stay sane. */
5583 if (!(dev->flags&IFF_UP))
5584 return;
5585
5586 if (!netif_device_present(dev))
5587 return;
5588
5589 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5590 /* Unicast addresses changes may only happen under the rtnl,
5591 * therefore calling __dev_set_promiscuity here is safe.
5592 */
5593 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5594 __dev_set_promiscuity(dev, 1, false);
5595 dev->uc_promisc = true;
5596 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5597 __dev_set_promiscuity(dev, -1, false);
5598 dev->uc_promisc = false;
5599 }
5600 }
5601
5602 if (ops->ndo_set_rx_mode)
5603 ops->ndo_set_rx_mode(dev);
5604}
5605
5606void dev_set_rx_mode(struct net_device *dev)
5607{
5608 netif_addr_lock_bh(dev);
5609 __dev_set_rx_mode(dev);
5610 netif_addr_unlock_bh(dev);
5611}
5612
5613/**
5614 * dev_get_flags - get flags reported to userspace
5615 * @dev: device
5616 *
5617 * Get the combination of flag bits exported through APIs to userspace.
5618 */
5619unsigned int dev_get_flags(const struct net_device *dev)
5620{
5621 unsigned int flags;
5622
5623 flags = (dev->flags & ~(IFF_PROMISC |
5624 IFF_ALLMULTI |
5625 IFF_RUNNING |
5626 IFF_LOWER_UP |
5627 IFF_DORMANT)) |
5628 (dev->gflags & (IFF_PROMISC |
5629 IFF_ALLMULTI));
5630
5631 if (netif_running(dev)) {
5632 if (netif_oper_up(dev))
5633 flags |= IFF_RUNNING;
5634 if (netif_carrier_ok(dev))
5635 flags |= IFF_LOWER_UP;
5636 if (netif_dormant(dev))
5637 flags |= IFF_DORMANT;
5638 }
5639
5640 return flags;
5641}
5642EXPORT_SYMBOL(dev_get_flags);
5643
5644int __dev_change_flags(struct net_device *dev, unsigned int flags)
5645{
5646 unsigned int old_flags = dev->flags;
5647 int ret;
5648
5649 ASSERT_RTNL();
5650
5651 /*
5652 * Set the flags on our device.
5653 */
5654
5655 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5656 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5657 IFF_AUTOMEDIA)) |
5658 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5659 IFF_ALLMULTI));
5660
5661 /*
5662 * Load in the correct multicast list now the flags have changed.
5663 */
5664
5665 if ((old_flags ^ flags) & IFF_MULTICAST)
5666 dev_change_rx_flags(dev, IFF_MULTICAST);
5667
5668 dev_set_rx_mode(dev);
5669
5670 /*
5671 * Have we downed the interface. We handle IFF_UP ourselves
5672 * according to user attempts to set it, rather than blindly
5673 * setting it.
5674 */
5675
5676 ret = 0;
5677 if ((old_flags ^ flags) & IFF_UP)
5678 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5679
5680 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5681 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5682 unsigned int old_flags = dev->flags;
5683
5684 dev->gflags ^= IFF_PROMISC;
5685
5686 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5687 if (dev->flags != old_flags)
5688 dev_set_rx_mode(dev);
5689 }
5690
5691 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5692 is important. Some (broken) drivers set IFF_PROMISC, when
5693 IFF_ALLMULTI is requested not asking us and not reporting.
5694 */
5695 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5696 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5697
5698 dev->gflags ^= IFF_ALLMULTI;
5699 __dev_set_allmulti(dev, inc, false);
5700 }
5701
5702 return ret;
5703}
5704
5705void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5706 unsigned int gchanges)
5707{
5708 unsigned int changes = dev->flags ^ old_flags;
5709
5710 if (gchanges)
5711 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5712
5713 if (changes & IFF_UP) {
5714 if (dev->flags & IFF_UP)
5715 call_netdevice_notifiers(NETDEV_UP, dev);
5716 else
5717 call_netdevice_notifiers(NETDEV_DOWN, dev);
5718 }
5719
5720 if (dev->flags & IFF_UP &&
5721 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5722 struct netdev_notifier_change_info change_info;
5723
5724 change_info.flags_changed = changes;
5725 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5726 &change_info.info);
5727 }
5728}
5729
5730/**
5731 * dev_change_flags - change device settings
5732 * @dev: device
5733 * @flags: device state flags
5734 *
5735 * Change settings on device based state flags. The flags are
5736 * in the userspace exported format.
5737 */
5738int dev_change_flags(struct net_device *dev, unsigned int flags)
5739{
5740 int ret;
5741 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5742
5743 ret = __dev_change_flags(dev, flags);
5744 if (ret < 0)
5745 return ret;
5746
5747 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5748 __dev_notify_flags(dev, old_flags, changes);
5749 return ret;
5750}
5751EXPORT_SYMBOL(dev_change_flags);
5752
5753static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5754{
5755 const struct net_device_ops *ops = dev->netdev_ops;
5756
5757 if (ops->ndo_change_mtu)
5758 return ops->ndo_change_mtu(dev, new_mtu);
5759
5760 dev->mtu = new_mtu;
5761 return 0;
5762}
5763
5764/**
5765 * dev_set_mtu - Change maximum transfer unit
5766 * @dev: device
5767 * @new_mtu: new transfer unit
5768 *
5769 * Change the maximum transfer size of the network device.
5770 */
5771int dev_set_mtu(struct net_device *dev, int new_mtu)
5772{
5773 int err, orig_mtu;
5774
5775 if (new_mtu == dev->mtu)
5776 return 0;
5777
5778 /* MTU must be positive. */
5779 if (new_mtu < 0)
5780 return -EINVAL;
5781
5782 if (!netif_device_present(dev))
5783 return -ENODEV;
5784
5785 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5786 err = notifier_to_errno(err);
5787 if (err)
5788 return err;
5789
5790 orig_mtu = dev->mtu;
5791 err = __dev_set_mtu(dev, new_mtu);
5792
5793 if (!err) {
5794 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5795 err = notifier_to_errno(err);
5796 if (err) {
5797 /* setting mtu back and notifying everyone again,
5798 * so that they have a chance to revert changes.
5799 */
5800 __dev_set_mtu(dev, orig_mtu);
5801 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5802 }
5803 }
5804 return err;
5805}
5806EXPORT_SYMBOL(dev_set_mtu);
5807
5808/**
5809 * dev_set_group - Change group this device belongs to
5810 * @dev: device
5811 * @new_group: group this device should belong to
5812 */
5813void dev_set_group(struct net_device *dev, int new_group)
5814{
5815 dev->group = new_group;
5816}
5817EXPORT_SYMBOL(dev_set_group);
5818
5819/**
5820 * dev_set_mac_address - Change Media Access Control Address
5821 * @dev: device
5822 * @sa: new address
5823 *
5824 * Change the hardware (MAC) address of the device
5825 */
5826int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5827{
5828 const struct net_device_ops *ops = dev->netdev_ops;
5829 int err;
5830
5831 if (!ops->ndo_set_mac_address)
5832 return -EOPNOTSUPP;
5833 if (sa->sa_family != dev->type)
5834 return -EINVAL;
5835 if (!netif_device_present(dev))
5836 return -ENODEV;
5837 err = ops->ndo_set_mac_address(dev, sa);
5838 if (err)
5839 return err;
5840 dev->addr_assign_type = NET_ADDR_SET;
5841 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5842 add_device_randomness(dev->dev_addr, dev->addr_len);
5843 return 0;
5844}
5845EXPORT_SYMBOL(dev_set_mac_address);
5846
5847/**
5848 * dev_change_carrier - Change device carrier
5849 * @dev: device
5850 * @new_carrier: new value
5851 *
5852 * Change device carrier
5853 */
5854int dev_change_carrier(struct net_device *dev, bool new_carrier)
5855{
5856 const struct net_device_ops *ops = dev->netdev_ops;
5857
5858 if (!ops->ndo_change_carrier)
5859 return -EOPNOTSUPP;
5860 if (!netif_device_present(dev))
5861 return -ENODEV;
5862 return ops->ndo_change_carrier(dev, new_carrier);
5863}
5864EXPORT_SYMBOL(dev_change_carrier);
5865
5866/**
5867 * dev_get_phys_port_id - Get device physical port ID
5868 * @dev: device
5869 * @ppid: port ID
5870 *
5871 * Get device physical port ID
5872 */
5873int dev_get_phys_port_id(struct net_device *dev,
5874 struct netdev_phys_item_id *ppid)
5875{
5876 const struct net_device_ops *ops = dev->netdev_ops;
5877
5878 if (!ops->ndo_get_phys_port_id)
5879 return -EOPNOTSUPP;
5880 return ops->ndo_get_phys_port_id(dev, ppid);
5881}
5882EXPORT_SYMBOL(dev_get_phys_port_id);
5883
5884/**
5885 * dev_new_index - allocate an ifindex
5886 * @net: the applicable net namespace
5887 *
5888 * Returns a suitable unique value for a new device interface
5889 * number. The caller must hold the rtnl semaphore or the
5890 * dev_base_lock to be sure it remains unique.
5891 */
5892static int dev_new_index(struct net *net)
5893{
5894 int ifindex = net->ifindex;
5895 for (;;) {
5896 if (++ifindex <= 0)
5897 ifindex = 1;
5898 if (!__dev_get_by_index(net, ifindex))
5899 return net->ifindex = ifindex;
5900 }
5901}
5902
5903/* Delayed registration/unregisteration */
5904static LIST_HEAD(net_todo_list);
5905DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5906
5907static void net_set_todo(struct net_device *dev)
5908{
5909 list_add_tail(&dev->todo_list, &net_todo_list);
5910 dev_net(dev)->dev_unreg_count++;
5911}
5912
5913static void rollback_registered_many(struct list_head *head)
5914{
5915 struct net_device *dev, *tmp;
5916 LIST_HEAD(close_head);
5917
5918 BUG_ON(dev_boot_phase);
5919 ASSERT_RTNL();
5920
5921 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5922 /* Some devices call without registering
5923 * for initialization unwind. Remove those
5924 * devices and proceed with the remaining.
5925 */
5926 if (dev->reg_state == NETREG_UNINITIALIZED) {
5927 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5928 dev->name, dev);
5929
5930 WARN_ON(1);
5931 list_del(&dev->unreg_list);
5932 continue;
5933 }
5934 dev->dismantle = true;
5935 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5936 }
5937
5938 /* If device is running, close it first. */
5939 list_for_each_entry(dev, head, unreg_list)
5940 list_add_tail(&dev->close_list, &close_head);
5941 dev_close_many(&close_head);
5942
5943 list_for_each_entry(dev, head, unreg_list) {
5944 /* And unlink it from device chain. */
5945 unlist_netdevice(dev);
5946
5947 dev->reg_state = NETREG_UNREGISTERING;
5948 }
5949
5950 synchronize_net();
5951
5952 list_for_each_entry(dev, head, unreg_list) {
5953 struct sk_buff *skb = NULL;
5954
5955 /* Shutdown queueing discipline. */
5956 dev_shutdown(dev);
5957
5958
5959 /* Notify protocols, that we are about to destroy
5960 this device. They should clean all the things.
5961 */
5962 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5963
5964 if (!dev->rtnl_link_ops ||
5965 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5966 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
5967 GFP_KERNEL);
5968
5969 /*
5970 * Flush the unicast and multicast chains
5971 */
5972 dev_uc_flush(dev);
5973 dev_mc_flush(dev);
5974
5975 if (dev->netdev_ops->ndo_uninit)
5976 dev->netdev_ops->ndo_uninit(dev);
5977
5978 if (skb)
5979 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
5980
5981 /* Notifier chain MUST detach us all upper devices. */
5982 WARN_ON(netdev_has_any_upper_dev(dev));
5983
5984 /* Remove entries from kobject tree */
5985 netdev_unregister_kobject(dev);
5986#ifdef CONFIG_XPS
5987 /* Remove XPS queueing entries */
5988 netif_reset_xps_queues_gt(dev, 0);
5989#endif
5990 }
5991
5992 synchronize_net();
5993
5994 list_for_each_entry(dev, head, unreg_list)
5995 dev_put(dev);
5996}
5997
5998static void rollback_registered(struct net_device *dev)
5999{
6000 LIST_HEAD(single);
6001
6002 list_add(&dev->unreg_list, &single);
6003 rollback_registered_many(&single);
6004 list_del(&single);
6005}
6006
6007static netdev_features_t netdev_fix_features(struct net_device *dev,
6008 netdev_features_t features)
6009{
6010 /* Fix illegal checksum combinations */
6011 if ((features & NETIF_F_HW_CSUM) &&
6012 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6013 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6014 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6015 }
6016
6017 /* TSO requires that SG is present as well. */
6018 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6019 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6020 features &= ~NETIF_F_ALL_TSO;
6021 }
6022
6023 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6024 !(features & NETIF_F_IP_CSUM)) {
6025 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6026 features &= ~NETIF_F_TSO;
6027 features &= ~NETIF_F_TSO_ECN;
6028 }
6029
6030 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6031 !(features & NETIF_F_IPV6_CSUM)) {
6032 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6033 features &= ~NETIF_F_TSO6;
6034 }
6035
6036 /* TSO ECN requires that TSO is present as well. */
6037 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6038 features &= ~NETIF_F_TSO_ECN;
6039
6040 /* Software GSO depends on SG. */
6041 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6042 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6043 features &= ~NETIF_F_GSO;
6044 }
6045
6046 /* UFO needs SG and checksumming */
6047 if (features & NETIF_F_UFO) {
6048 /* maybe split UFO into V4 and V6? */
6049 if (!((features & NETIF_F_GEN_CSUM) ||
6050 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6051 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6052 netdev_dbg(dev,
6053 "Dropping NETIF_F_UFO since no checksum offload features.\n");
6054 features &= ~NETIF_F_UFO;
6055 }
6056
6057 if (!(features & NETIF_F_SG)) {
6058 netdev_dbg(dev,
6059 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6060 features &= ~NETIF_F_UFO;
6061 }
6062 }
6063
6064#ifdef CONFIG_NET_RX_BUSY_POLL
6065 if (dev->netdev_ops->ndo_busy_poll)
6066 features |= NETIF_F_BUSY_POLL;
6067 else
6068#endif
6069 features &= ~NETIF_F_BUSY_POLL;
6070
6071 return features;
6072}
6073
6074int __netdev_update_features(struct net_device *dev)
6075{
6076 netdev_features_t features;
6077 int err = 0;
6078
6079 ASSERT_RTNL();
6080
6081 features = netdev_get_wanted_features(dev);
6082
6083 if (dev->netdev_ops->ndo_fix_features)
6084 features = dev->netdev_ops->ndo_fix_features(dev, features);
6085
6086 /* driver might be less strict about feature dependencies */
6087 features = netdev_fix_features(dev, features);
6088
6089 if (dev->features == features)
6090 return 0;
6091
6092 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6093 &dev->features, &features);
6094
6095 if (dev->netdev_ops->ndo_set_features)
6096 err = dev->netdev_ops->ndo_set_features(dev, features);
6097
6098 if (unlikely(err < 0)) {
6099 netdev_err(dev,
6100 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6101 err, &features, &dev->features);
6102 return -1;
6103 }
6104
6105 if (!err)
6106 dev->features = features;
6107
6108 return 1;
6109}
6110
6111/**
6112 * netdev_update_features - recalculate device features
6113 * @dev: the device to check
6114 *
6115 * Recalculate dev->features set and send notifications if it
6116 * has changed. Should be called after driver or hardware dependent
6117 * conditions might have changed that influence the features.
6118 */
6119void netdev_update_features(struct net_device *dev)
6120{
6121 if (__netdev_update_features(dev))
6122 netdev_features_change(dev);
6123}
6124EXPORT_SYMBOL(netdev_update_features);
6125
6126/**
6127 * netdev_change_features - recalculate device features
6128 * @dev: the device to check
6129 *
6130 * Recalculate dev->features set and send notifications even
6131 * if they have not changed. Should be called instead of
6132 * netdev_update_features() if also dev->vlan_features might
6133 * have changed to allow the changes to be propagated to stacked
6134 * VLAN devices.
6135 */
6136void netdev_change_features(struct net_device *dev)
6137{
6138 __netdev_update_features(dev);
6139 netdev_features_change(dev);
6140}
6141EXPORT_SYMBOL(netdev_change_features);
6142
6143/**
6144 * netif_stacked_transfer_operstate - transfer operstate
6145 * @rootdev: the root or lower level device to transfer state from
6146 * @dev: the device to transfer operstate to
6147 *
6148 * Transfer operational state from root to device. This is normally
6149 * called when a stacking relationship exists between the root
6150 * device and the device(a leaf device).
6151 */
6152void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6153 struct net_device *dev)
6154{
6155 if (rootdev->operstate == IF_OPER_DORMANT)
6156 netif_dormant_on(dev);
6157 else
6158 netif_dormant_off(dev);
6159
6160 if (netif_carrier_ok(rootdev)) {
6161 if (!netif_carrier_ok(dev))
6162 netif_carrier_on(dev);
6163 } else {
6164 if (netif_carrier_ok(dev))
6165 netif_carrier_off(dev);
6166 }
6167}
6168EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6169
6170#ifdef CONFIG_SYSFS
6171static int netif_alloc_rx_queues(struct net_device *dev)
6172{
6173 unsigned int i, count = dev->num_rx_queues;
6174 struct netdev_rx_queue *rx;
6175
6176 BUG_ON(count < 1);
6177
6178 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6179 if (!rx)
6180 return -ENOMEM;
6181
6182 dev->_rx = rx;
6183
6184 for (i = 0; i < count; i++)
6185 rx[i].dev = dev;
6186 return 0;
6187}
6188#endif
6189
6190static void netdev_init_one_queue(struct net_device *dev,
6191 struct netdev_queue *queue, void *_unused)
6192{
6193 /* Initialize queue lock */
6194 spin_lock_init(&queue->_xmit_lock);
6195 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6196 queue->xmit_lock_owner = -1;
6197 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6198 queue->dev = dev;
6199#ifdef CONFIG_BQL
6200 dql_init(&queue->dql, HZ);
6201#endif
6202}
6203
6204static void netif_free_tx_queues(struct net_device *dev)
6205{
6206 kvfree(dev->_tx);
6207}
6208
6209static int netif_alloc_netdev_queues(struct net_device *dev)
6210{
6211 unsigned int count = dev->num_tx_queues;
6212 struct netdev_queue *tx;
6213 size_t sz = count * sizeof(*tx);
6214
6215 BUG_ON(count < 1 || count > 0xffff);
6216
6217 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6218 if (!tx) {
6219 tx = vzalloc(sz);
6220 if (!tx)
6221 return -ENOMEM;
6222 }
6223 dev->_tx = tx;
6224
6225 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6226 spin_lock_init(&dev->tx_global_lock);
6227
6228 return 0;
6229}
6230
6231/**
6232 * register_netdevice - register a network device
6233 * @dev: device to register
6234 *
6235 * Take a completed network device structure and add it to the kernel
6236 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6237 * chain. 0 is returned on success. A negative errno code is returned
6238 * on a failure to set up the device, or if the name is a duplicate.
6239 *
6240 * Callers must hold the rtnl semaphore. You may want
6241 * register_netdev() instead of this.
6242 *
6243 * BUGS:
6244 * The locking appears insufficient to guarantee two parallel registers
6245 * will not get the same name.
6246 */
6247
6248int register_netdevice(struct net_device *dev)
6249{
6250 int ret;
6251 struct net *net = dev_net(dev);
6252
6253 BUG_ON(dev_boot_phase);
6254 ASSERT_RTNL();
6255
6256 might_sleep();
6257
6258 /* When net_device's are persistent, this will be fatal. */
6259 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6260 BUG_ON(!net);
6261
6262 spin_lock_init(&dev->addr_list_lock);
6263 netdev_set_addr_lockdep_class(dev);
6264
6265 dev->iflink = -1;
6266
6267 ret = dev_get_valid_name(net, dev, dev->name);
6268 if (ret < 0)
6269 goto out;
6270
6271 /* Init, if this function is available */
6272 if (dev->netdev_ops->ndo_init) {
6273 ret = dev->netdev_ops->ndo_init(dev);
6274 if (ret) {
6275 if (ret > 0)
6276 ret = -EIO;
6277 goto out;
6278 }
6279 }
6280
6281 if (((dev->hw_features | dev->features) &
6282 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6283 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6284 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6285 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6286 ret = -EINVAL;
6287 goto err_uninit;
6288 }
6289
6290 ret = -EBUSY;
6291 if (!dev->ifindex)
6292 dev->ifindex = dev_new_index(net);
6293 else if (__dev_get_by_index(net, dev->ifindex))
6294 goto err_uninit;
6295
6296 if (dev->iflink == -1)
6297 dev->iflink = dev->ifindex;
6298
6299 /* Transfer changeable features to wanted_features and enable
6300 * software offloads (GSO and GRO).
6301 */
6302 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6303 dev->features |= NETIF_F_SOFT_FEATURES;
6304 dev->wanted_features = dev->features & dev->hw_features;
6305
6306 if (!(dev->flags & IFF_LOOPBACK)) {
6307 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6308 }
6309
6310 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6311 */
6312 dev->vlan_features |= NETIF_F_HIGHDMA;
6313
6314 /* Make NETIF_F_SG inheritable to tunnel devices.
6315 */
6316 dev->hw_enc_features |= NETIF_F_SG;
6317
6318 /* Make NETIF_F_SG inheritable to MPLS.
6319 */
6320 dev->mpls_features |= NETIF_F_SG;
6321
6322 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6323 ret = notifier_to_errno(ret);
6324 if (ret)
6325 goto err_uninit;
6326
6327 ret = netdev_register_kobject(dev);
6328 if (ret)
6329 goto err_uninit;
6330 dev->reg_state = NETREG_REGISTERED;
6331
6332 __netdev_update_features(dev);
6333
6334 /*
6335 * Default initial state at registry is that the
6336 * device is present.
6337 */
6338
6339 set_bit(__LINK_STATE_PRESENT, &dev->state);
6340
6341 linkwatch_init_dev(dev);
6342
6343 dev_init_scheduler(dev);
6344 dev_hold(dev);
6345 list_netdevice(dev);
6346 add_device_randomness(dev->dev_addr, dev->addr_len);
6347
6348 /* If the device has permanent device address, driver should
6349 * set dev_addr and also addr_assign_type should be set to
6350 * NET_ADDR_PERM (default value).
6351 */
6352 if (dev->addr_assign_type == NET_ADDR_PERM)
6353 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6354
6355 /* Notify protocols, that a new device appeared. */
6356 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6357 ret = notifier_to_errno(ret);
6358 if (ret) {
6359 rollback_registered(dev);
6360 dev->reg_state = NETREG_UNREGISTERED;
6361 }
6362 /*
6363 * Prevent userspace races by waiting until the network
6364 * device is fully setup before sending notifications.
6365 */
6366 if (!dev->rtnl_link_ops ||
6367 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6368 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6369
6370out:
6371 return ret;
6372
6373err_uninit:
6374 if (dev->netdev_ops->ndo_uninit)
6375 dev->netdev_ops->ndo_uninit(dev);
6376 goto out;
6377}
6378EXPORT_SYMBOL(register_netdevice);
6379
6380/**
6381 * init_dummy_netdev - init a dummy network device for NAPI
6382 * @dev: device to init
6383 *
6384 * This takes a network device structure and initialize the minimum
6385 * amount of fields so it can be used to schedule NAPI polls without
6386 * registering a full blown interface. This is to be used by drivers
6387 * that need to tie several hardware interfaces to a single NAPI
6388 * poll scheduler due to HW limitations.
6389 */
6390int init_dummy_netdev(struct net_device *dev)
6391{
6392 /* Clear everything. Note we don't initialize spinlocks
6393 * are they aren't supposed to be taken by any of the
6394 * NAPI code and this dummy netdev is supposed to be
6395 * only ever used for NAPI polls
6396 */
6397 memset(dev, 0, sizeof(struct net_device));
6398
6399 /* make sure we BUG if trying to hit standard
6400 * register/unregister code path
6401 */
6402 dev->reg_state = NETREG_DUMMY;
6403
6404 /* NAPI wants this */
6405 INIT_LIST_HEAD(&dev->napi_list);
6406
6407 /* a dummy interface is started by default */
6408 set_bit(__LINK_STATE_PRESENT, &dev->state);
6409 set_bit(__LINK_STATE_START, &dev->state);
6410
6411 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6412 * because users of this 'device' dont need to change
6413 * its refcount.
6414 */
6415
6416 return 0;
6417}
6418EXPORT_SYMBOL_GPL(init_dummy_netdev);
6419
6420
6421/**
6422 * register_netdev - register a network device
6423 * @dev: device to register
6424 *
6425 * Take a completed network device structure and add it to the kernel
6426 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6427 * chain. 0 is returned on success. A negative errno code is returned
6428 * on a failure to set up the device, or if the name is a duplicate.
6429 *
6430 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6431 * and expands the device name if you passed a format string to
6432 * alloc_netdev.
6433 */
6434int register_netdev(struct net_device *dev)
6435{
6436 int err;
6437
6438 rtnl_lock();
6439 err = register_netdevice(dev);
6440 rtnl_unlock();
6441 return err;
6442}
6443EXPORT_SYMBOL(register_netdev);
6444
6445int netdev_refcnt_read(const struct net_device *dev)
6446{
6447 int i, refcnt = 0;
6448
6449 for_each_possible_cpu(i)
6450 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6451 return refcnt;
6452}
6453EXPORT_SYMBOL(netdev_refcnt_read);
6454
6455/**
6456 * netdev_wait_allrefs - wait until all references are gone.
6457 * @dev: target net_device
6458 *
6459 * This is called when unregistering network devices.
6460 *
6461 * Any protocol or device that holds a reference should register
6462 * for netdevice notification, and cleanup and put back the
6463 * reference if they receive an UNREGISTER event.
6464 * We can get stuck here if buggy protocols don't correctly
6465 * call dev_put.
6466 */
6467static void netdev_wait_allrefs(struct net_device *dev)
6468{
6469 unsigned long rebroadcast_time, warning_time;
6470 int refcnt;
6471
6472 linkwatch_forget_dev(dev);
6473
6474 rebroadcast_time = warning_time = jiffies;
6475 refcnt = netdev_refcnt_read(dev);
6476
6477 while (refcnt != 0) {
6478 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6479 rtnl_lock();
6480
6481 /* Rebroadcast unregister notification */
6482 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6483
6484 __rtnl_unlock();
6485 rcu_barrier();
6486 rtnl_lock();
6487
6488 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6489 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6490 &dev->state)) {
6491 /* We must not have linkwatch events
6492 * pending on unregister. If this
6493 * happens, we simply run the queue
6494 * unscheduled, resulting in a noop
6495 * for this device.
6496 */
6497 linkwatch_run_queue();
6498 }
6499
6500 __rtnl_unlock();
6501
6502 rebroadcast_time = jiffies;
6503 }
6504
6505 msleep(250);
6506
6507 refcnt = netdev_refcnt_read(dev);
6508
6509 if (time_after(jiffies, warning_time + 10 * HZ)) {
6510 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6511 dev->name, refcnt);
6512 warning_time = jiffies;
6513 }
6514 }
6515}
6516
6517/* The sequence is:
6518 *
6519 * rtnl_lock();
6520 * ...
6521 * register_netdevice(x1);
6522 * register_netdevice(x2);
6523 * ...
6524 * unregister_netdevice(y1);
6525 * unregister_netdevice(y2);
6526 * ...
6527 * rtnl_unlock();
6528 * free_netdev(y1);
6529 * free_netdev(y2);
6530 *
6531 * We are invoked by rtnl_unlock().
6532 * This allows us to deal with problems:
6533 * 1) We can delete sysfs objects which invoke hotplug
6534 * without deadlocking with linkwatch via keventd.
6535 * 2) Since we run with the RTNL semaphore not held, we can sleep
6536 * safely in order to wait for the netdev refcnt to drop to zero.
6537 *
6538 * We must not return until all unregister events added during
6539 * the interval the lock was held have been completed.
6540 */
6541void netdev_run_todo(void)
6542{
6543 struct list_head list;
6544
6545 /* Snapshot list, allow later requests */
6546 list_replace_init(&net_todo_list, &list);
6547
6548 __rtnl_unlock();
6549
6550
6551 /* Wait for rcu callbacks to finish before next phase */
6552 if (!list_empty(&list))
6553 rcu_barrier();
6554
6555 while (!list_empty(&list)) {
6556 struct net_device *dev
6557 = list_first_entry(&list, struct net_device, todo_list);
6558 list_del(&dev->todo_list);
6559
6560 rtnl_lock();
6561 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6562 __rtnl_unlock();
6563
6564 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6565 pr_err("network todo '%s' but state %d\n",
6566 dev->name, dev->reg_state);
6567 dump_stack();
6568 continue;
6569 }
6570
6571 dev->reg_state = NETREG_UNREGISTERED;
6572
6573 on_each_cpu(flush_backlog, dev, 1);
6574
6575 netdev_wait_allrefs(dev);
6576
6577 /* paranoia */
6578 BUG_ON(netdev_refcnt_read(dev));
6579 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6580 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6581 WARN_ON(dev->dn_ptr);
6582
6583 if (dev->destructor)
6584 dev->destructor(dev);
6585
6586 /* Report a network device has been unregistered */
6587 rtnl_lock();
6588 dev_net(dev)->dev_unreg_count--;
6589 __rtnl_unlock();
6590 wake_up(&netdev_unregistering_wq);
6591
6592 /* Free network device */
6593 kobject_put(&dev->dev.kobj);
6594 }
6595}
6596
6597/* Convert net_device_stats to rtnl_link_stats64. They have the same
6598 * fields in the same order, with only the type differing.
6599 */
6600void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6601 const struct net_device_stats *netdev_stats)
6602{
6603#if BITS_PER_LONG == 64
6604 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6605 memcpy(stats64, netdev_stats, sizeof(*stats64));
6606#else
6607 size_t i, n = sizeof(*stats64) / sizeof(u64);
6608 const unsigned long *src = (const unsigned long *)netdev_stats;
6609 u64 *dst = (u64 *)stats64;
6610
6611 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6612 sizeof(*stats64) / sizeof(u64));
6613 for (i = 0; i < n; i++)
6614 dst[i] = src[i];
6615#endif
6616}
6617EXPORT_SYMBOL(netdev_stats_to_stats64);
6618
6619/**
6620 * dev_get_stats - get network device statistics
6621 * @dev: device to get statistics from
6622 * @storage: place to store stats
6623 *
6624 * Get network statistics from device. Return @storage.
6625 * The device driver may provide its own method by setting
6626 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6627 * otherwise the internal statistics structure is used.
6628 */
6629struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6630 struct rtnl_link_stats64 *storage)
6631{
6632 const struct net_device_ops *ops = dev->netdev_ops;
6633
6634 if (ops->ndo_get_stats64) {
6635 memset(storage, 0, sizeof(*storage));
6636 ops->ndo_get_stats64(dev, storage);
6637 } else if (ops->ndo_get_stats) {
6638 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6639 } else {
6640 netdev_stats_to_stats64(storage, &dev->stats);
6641 }
6642 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6643 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6644 return storage;
6645}
6646EXPORT_SYMBOL(dev_get_stats);
6647
6648struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6649{
6650 struct netdev_queue *queue = dev_ingress_queue(dev);
6651
6652#ifdef CONFIG_NET_CLS_ACT
6653 if (queue)
6654 return queue;
6655 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6656 if (!queue)
6657 return NULL;
6658 netdev_init_one_queue(dev, queue, NULL);
6659 queue->qdisc = &noop_qdisc;
6660 queue->qdisc_sleeping = &noop_qdisc;
6661 rcu_assign_pointer(dev->ingress_queue, queue);
6662#endif
6663 return queue;
6664}
6665
6666static const struct ethtool_ops default_ethtool_ops;
6667
6668void netdev_set_default_ethtool_ops(struct net_device *dev,
6669 const struct ethtool_ops *ops)
6670{
6671 if (dev->ethtool_ops == &default_ethtool_ops)
6672 dev->ethtool_ops = ops;
6673}
6674EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6675
6676void netdev_freemem(struct net_device *dev)
6677{
6678 char *addr = (char *)dev - dev->padded;
6679
6680 kvfree(addr);
6681}
6682
6683/**
6684 * alloc_netdev_mqs - allocate network device
6685 * @sizeof_priv: size of private data to allocate space for
6686 * @name: device name format string
6687 * @name_assign_type: origin of device name
6688 * @setup: callback to initialize device
6689 * @txqs: the number of TX subqueues to allocate
6690 * @rxqs: the number of RX subqueues to allocate
6691 *
6692 * Allocates a struct net_device with private data area for driver use
6693 * and performs basic initialization. Also allocates subqueue structs
6694 * for each queue on the device.
6695 */
6696struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6697 unsigned char name_assign_type,
6698 void (*setup)(struct net_device *),
6699 unsigned int txqs, unsigned int rxqs)
6700{
6701 struct net_device *dev;
6702 size_t alloc_size;
6703 struct net_device *p;
6704
6705 BUG_ON(strlen(name) >= sizeof(dev->name));
6706
6707 if (txqs < 1) {
6708 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6709 return NULL;
6710 }
6711
6712#ifdef CONFIG_SYSFS
6713 if (rxqs < 1) {
6714 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6715 return NULL;
6716 }
6717#endif
6718
6719 alloc_size = sizeof(struct net_device);
6720 if (sizeof_priv) {
6721 /* ensure 32-byte alignment of private area */
6722 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6723 alloc_size += sizeof_priv;
6724 }
6725 /* ensure 32-byte alignment of whole construct */
6726 alloc_size += NETDEV_ALIGN - 1;
6727
6728 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6729 if (!p)
6730 p = vzalloc(alloc_size);
6731 if (!p)
6732 return NULL;
6733
6734 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6735 dev->padded = (char *)dev - (char *)p;
6736
6737 dev->pcpu_refcnt = alloc_percpu(int);
6738 if (!dev->pcpu_refcnt)
6739 goto free_dev;
6740
6741 if (dev_addr_init(dev))
6742 goto free_pcpu;
6743
6744 dev_mc_init(dev);
6745 dev_uc_init(dev);
6746
6747 dev_net_set(dev, &init_net);
6748
6749 dev->gso_max_size = GSO_MAX_SIZE;
6750 dev->gso_max_segs = GSO_MAX_SEGS;
6751 dev->gso_min_segs = 0;
6752
6753 INIT_LIST_HEAD(&dev->napi_list);
6754 INIT_LIST_HEAD(&dev->unreg_list);
6755 INIT_LIST_HEAD(&dev->close_list);
6756 INIT_LIST_HEAD(&dev->link_watch_list);
6757 INIT_LIST_HEAD(&dev->adj_list.upper);
6758 INIT_LIST_HEAD(&dev->adj_list.lower);
6759 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6760 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6761 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6762 setup(dev);
6763
6764 dev->num_tx_queues = txqs;
6765 dev->real_num_tx_queues = txqs;
6766 if (netif_alloc_netdev_queues(dev))
6767 goto free_all;
6768
6769#ifdef CONFIG_SYSFS
6770 dev->num_rx_queues = rxqs;
6771 dev->real_num_rx_queues = rxqs;
6772 if (netif_alloc_rx_queues(dev))
6773 goto free_all;
6774#endif
6775
6776 strcpy(dev->name, name);
6777 dev->name_assign_type = name_assign_type;
6778 dev->group = INIT_NETDEV_GROUP;
6779 if (!dev->ethtool_ops)
6780 dev->ethtool_ops = &default_ethtool_ops;
6781 return dev;
6782
6783free_all:
6784 free_netdev(dev);
6785 return NULL;
6786
6787free_pcpu:
6788 free_percpu(dev->pcpu_refcnt);
6789free_dev:
6790 netdev_freemem(dev);
6791 return NULL;
6792}
6793EXPORT_SYMBOL(alloc_netdev_mqs);
6794
6795/**
6796 * free_netdev - free network device
6797 * @dev: device
6798 *
6799 * This function does the last stage of destroying an allocated device
6800 * interface. The reference to the device object is released.
6801 * If this is the last reference then it will be freed.
6802 */
6803void free_netdev(struct net_device *dev)
6804{
6805 struct napi_struct *p, *n;
6806
6807 release_net(dev_net(dev));
6808
6809 netif_free_tx_queues(dev);
6810#ifdef CONFIG_SYSFS
6811 kfree(dev->_rx);
6812#endif
6813
6814 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6815
6816 /* Flush device addresses */
6817 dev_addr_flush(dev);
6818
6819 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6820 netif_napi_del(p);
6821
6822 free_percpu(dev->pcpu_refcnt);
6823 dev->pcpu_refcnt = NULL;
6824
6825 /* Compatibility with error handling in drivers */
6826 if (dev->reg_state == NETREG_UNINITIALIZED) {
6827 netdev_freemem(dev);
6828 return;
6829 }
6830
6831 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6832 dev->reg_state = NETREG_RELEASED;
6833
6834 /* will free via device release */
6835 put_device(&dev->dev);
6836}
6837EXPORT_SYMBOL(free_netdev);
6838
6839/**
6840 * synchronize_net - Synchronize with packet receive processing
6841 *
6842 * Wait for packets currently being received to be done.
6843 * Does not block later packets from starting.
6844 */
6845void synchronize_net(void)
6846{
6847 might_sleep();
6848 if (rtnl_is_locked())
6849 synchronize_rcu_expedited();
6850 else
6851 synchronize_rcu();
6852}
6853EXPORT_SYMBOL(synchronize_net);
6854
6855/**
6856 * unregister_netdevice_queue - remove device from the kernel
6857 * @dev: device
6858 * @head: list
6859 *
6860 * This function shuts down a device interface and removes it
6861 * from the kernel tables.
6862 * If head not NULL, device is queued to be unregistered later.
6863 *
6864 * Callers must hold the rtnl semaphore. You may want
6865 * unregister_netdev() instead of this.
6866 */
6867
6868void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6869{
6870 ASSERT_RTNL();
6871
6872 if (head) {
6873 list_move_tail(&dev->unreg_list, head);
6874 } else {
6875 rollback_registered(dev);
6876 /* Finish processing unregister after unlock */
6877 net_set_todo(dev);
6878 }
6879}
6880EXPORT_SYMBOL(unregister_netdevice_queue);
6881
6882/**
6883 * unregister_netdevice_many - unregister many devices
6884 * @head: list of devices
6885 *
6886 * Note: As most callers use a stack allocated list_head,
6887 * we force a list_del() to make sure stack wont be corrupted later.
6888 */
6889void unregister_netdevice_many(struct list_head *head)
6890{
6891 struct net_device *dev;
6892
6893 if (!list_empty(head)) {
6894 rollback_registered_many(head);
6895 list_for_each_entry(dev, head, unreg_list)
6896 net_set_todo(dev);
6897 list_del(head);
6898 }
6899}
6900EXPORT_SYMBOL(unregister_netdevice_many);
6901
6902/**
6903 * unregister_netdev - remove device from the kernel
6904 * @dev: device
6905 *
6906 * This function shuts down a device interface and removes it
6907 * from the kernel tables.
6908 *
6909 * This is just a wrapper for unregister_netdevice that takes
6910 * the rtnl semaphore. In general you want to use this and not
6911 * unregister_netdevice.
6912 */
6913void unregister_netdev(struct net_device *dev)
6914{
6915 rtnl_lock();
6916 unregister_netdevice(dev);
6917 rtnl_unlock();
6918}
6919EXPORT_SYMBOL(unregister_netdev);
6920
6921/**
6922 * dev_change_net_namespace - move device to different nethost namespace
6923 * @dev: device
6924 * @net: network namespace
6925 * @pat: If not NULL name pattern to try if the current device name
6926 * is already taken in the destination network namespace.
6927 *
6928 * This function shuts down a device interface and moves it
6929 * to a new network namespace. On success 0 is returned, on
6930 * a failure a netagive errno code is returned.
6931 *
6932 * Callers must hold the rtnl semaphore.
6933 */
6934
6935int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6936{
6937 int err;
6938
6939 ASSERT_RTNL();
6940
6941 /* Don't allow namespace local devices to be moved. */
6942 err = -EINVAL;
6943 if (dev->features & NETIF_F_NETNS_LOCAL)
6944 goto out;
6945
6946 /* Ensure the device has been registrered */
6947 if (dev->reg_state != NETREG_REGISTERED)
6948 goto out;
6949
6950 /* Get out if there is nothing todo */
6951 err = 0;
6952 if (net_eq(dev_net(dev), net))
6953 goto out;
6954
6955 /* Pick the destination device name, and ensure
6956 * we can use it in the destination network namespace.
6957 */
6958 err = -EEXIST;
6959 if (__dev_get_by_name(net, dev->name)) {
6960 /* We get here if we can't use the current device name */
6961 if (!pat)
6962 goto out;
6963 if (dev_get_valid_name(net, dev, pat) < 0)
6964 goto out;
6965 }
6966
6967 /*
6968 * And now a mini version of register_netdevice unregister_netdevice.
6969 */
6970
6971 /* If device is running close it first. */
6972 dev_close(dev);
6973
6974 /* And unlink it from device chain */
6975 err = -ENODEV;
6976 unlist_netdevice(dev);
6977
6978 synchronize_net();
6979
6980 /* Shutdown queueing discipline. */
6981 dev_shutdown(dev);
6982
6983 /* Notify protocols, that we are about to destroy
6984 this device. They should clean all the things.
6985
6986 Note that dev->reg_state stays at NETREG_REGISTERED.
6987 This is wanted because this way 8021q and macvlan know
6988 the device is just moving and can keep their slaves up.
6989 */
6990 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6991 rcu_barrier();
6992 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6993 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6994
6995 /*
6996 * Flush the unicast and multicast chains
6997 */
6998 dev_uc_flush(dev);
6999 dev_mc_flush(dev);
7000
7001 /* Send a netdev-removed uevent to the old namespace */
7002 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7003 netdev_adjacent_del_links(dev);
7004
7005 /* Actually switch the network namespace */
7006 dev_net_set(dev, net);
7007
7008 /* If there is an ifindex conflict assign a new one */
7009 if (__dev_get_by_index(net, dev->ifindex)) {
7010 int iflink = (dev->iflink == dev->ifindex);
7011 dev->ifindex = dev_new_index(net);
7012 if (iflink)
7013 dev->iflink = dev->ifindex;
7014 }
7015
7016 /* Send a netdev-add uevent to the new namespace */
7017 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7018 netdev_adjacent_add_links(dev);
7019
7020 /* Fixup kobjects */
7021 err = device_rename(&dev->dev, dev->name);
7022 WARN_ON(err);
7023
7024 /* Add the device back in the hashes */
7025 list_netdevice(dev);
7026
7027 /* Notify protocols, that a new device appeared. */
7028 call_netdevice_notifiers(NETDEV_REGISTER, dev);
7029
7030 /*
7031 * Prevent userspace races by waiting until the network
7032 * device is fully setup before sending notifications.
7033 */
7034 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7035
7036 synchronize_net();
7037 err = 0;
7038out:
7039 return err;
7040}
7041EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7042
7043static int dev_cpu_callback(struct notifier_block *nfb,
7044 unsigned long action,
7045 void *ocpu)
7046{
7047 struct sk_buff **list_skb;
7048 struct sk_buff *skb;
7049 unsigned int cpu, oldcpu = (unsigned long)ocpu;
7050 struct softnet_data *sd, *oldsd;
7051
7052 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7053 return NOTIFY_OK;
7054
7055 local_irq_disable();
7056 cpu = smp_processor_id();
7057 sd = &per_cpu(softnet_data, cpu);
7058 oldsd = &per_cpu(softnet_data, oldcpu);
7059
7060 /* Find end of our completion_queue. */
7061 list_skb = &sd->completion_queue;
7062 while (*list_skb)
7063 list_skb = &(*list_skb)->next;
7064 /* Append completion queue from offline CPU. */
7065 *list_skb = oldsd->completion_queue;
7066 oldsd->completion_queue = NULL;
7067
7068 /* Append output queue from offline CPU. */
7069 if (oldsd->output_queue) {
7070 *sd->output_queue_tailp = oldsd->output_queue;
7071 sd->output_queue_tailp = oldsd->output_queue_tailp;
7072 oldsd->output_queue = NULL;
7073 oldsd->output_queue_tailp = &oldsd->output_queue;
7074 }
7075 /* Append NAPI poll list from offline CPU. */
7076 if (!list_empty(&oldsd->poll_list)) {
7077 list_splice_init(&oldsd->poll_list, &sd->poll_list);
7078 raise_softirq_irqoff(NET_RX_SOFTIRQ);
7079 }
7080
7081 raise_softirq_irqoff(NET_TX_SOFTIRQ);
7082 local_irq_enable();
7083
7084 /* Process offline CPU's input_pkt_queue */
7085 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7086 netif_rx_internal(skb);
7087 input_queue_head_incr(oldsd);
7088 }
7089 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
7090 netif_rx_internal(skb);
7091 input_queue_head_incr(oldsd);
7092 }
7093
7094 return NOTIFY_OK;
7095}
7096
7097
7098/**
7099 * netdev_increment_features - increment feature set by one
7100 * @all: current feature set
7101 * @one: new feature set
7102 * @mask: mask feature set
7103 *
7104 * Computes a new feature set after adding a device with feature set
7105 * @one to the master device with current feature set @all. Will not
7106 * enable anything that is off in @mask. Returns the new feature set.
7107 */
7108netdev_features_t netdev_increment_features(netdev_features_t all,
7109 netdev_features_t one, netdev_features_t mask)
7110{
7111 if (mask & NETIF_F_GEN_CSUM)
7112 mask |= NETIF_F_ALL_CSUM;
7113 mask |= NETIF_F_VLAN_CHALLENGED;
7114
7115 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7116 all &= one | ~NETIF_F_ALL_FOR_ALL;
7117
7118 /* If one device supports hw checksumming, set for all. */
7119 if (all & NETIF_F_GEN_CSUM)
7120 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7121
7122 return all;
7123}
7124EXPORT_SYMBOL(netdev_increment_features);
7125
7126static struct hlist_head * __net_init netdev_create_hash(void)
7127{
7128 int i;
7129 struct hlist_head *hash;
7130
7131 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7132 if (hash != NULL)
7133 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7134 INIT_HLIST_HEAD(&hash[i]);
7135
7136 return hash;
7137}
7138
7139/* Initialize per network namespace state */
7140static int __net_init netdev_init(struct net *net)
7141{
7142 if (net != &init_net)
7143 INIT_LIST_HEAD(&net->dev_base_head);
7144
7145 net->dev_name_head = netdev_create_hash();
7146 if (net->dev_name_head == NULL)
7147 goto err_name;
7148
7149 net->dev_index_head = netdev_create_hash();
7150 if (net->dev_index_head == NULL)
7151 goto err_idx;
7152
7153 return 0;
7154
7155err_idx:
7156 kfree(net->dev_name_head);
7157err_name:
7158 return -ENOMEM;
7159}
7160
7161/**
7162 * netdev_drivername - network driver for the device
7163 * @dev: network device
7164 *
7165 * Determine network driver for device.
7166 */
7167const char *netdev_drivername(const struct net_device *dev)
7168{
7169 const struct device_driver *driver;
7170 const struct device *parent;
7171 const char *empty = "";
7172
7173 parent = dev->dev.parent;
7174 if (!parent)
7175 return empty;
7176
7177 driver = parent->driver;
7178 if (driver && driver->name)
7179 return driver->name;
7180 return empty;
7181}
7182
7183static void __netdev_printk(const char *level, const struct net_device *dev,
7184 struct va_format *vaf)
7185{
7186 if (dev && dev->dev.parent) {
7187 dev_printk_emit(level[1] - '0',
7188 dev->dev.parent,
7189 "%s %s %s%s: %pV",
7190 dev_driver_string(dev->dev.parent),
7191 dev_name(dev->dev.parent),
7192 netdev_name(dev), netdev_reg_state(dev),
7193 vaf);
7194 } else if (dev) {
7195 printk("%s%s%s: %pV",
7196 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7197 } else {
7198 printk("%s(NULL net_device): %pV", level, vaf);
7199 }
7200}
7201
7202void netdev_printk(const char *level, const struct net_device *dev,
7203 const char *format, ...)
7204{
7205 struct va_format vaf;
7206 va_list args;
7207
7208 va_start(args, format);
7209
7210 vaf.fmt = format;
7211 vaf.va = &args;
7212
7213 __netdev_printk(level, dev, &vaf);
7214
7215 va_end(args);
7216}
7217EXPORT_SYMBOL(netdev_printk);
7218
7219#define define_netdev_printk_level(func, level) \
7220void func(const struct net_device *dev, const char *fmt, ...) \
7221{ \
7222 struct va_format vaf; \
7223 va_list args; \
7224 \
7225 va_start(args, fmt); \
7226 \
7227 vaf.fmt = fmt; \
7228 vaf.va = &args; \
7229 \
7230 __netdev_printk(level, dev, &vaf); \
7231 \
7232 va_end(args); \
7233} \
7234EXPORT_SYMBOL(func);
7235
7236define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7237define_netdev_printk_level(netdev_alert, KERN_ALERT);
7238define_netdev_printk_level(netdev_crit, KERN_CRIT);
7239define_netdev_printk_level(netdev_err, KERN_ERR);
7240define_netdev_printk_level(netdev_warn, KERN_WARNING);
7241define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7242define_netdev_printk_level(netdev_info, KERN_INFO);
7243
7244static void __net_exit netdev_exit(struct net *net)
7245{
7246 kfree(net->dev_name_head);
7247 kfree(net->dev_index_head);
7248}
7249
7250static struct pernet_operations __net_initdata netdev_net_ops = {
7251 .init = netdev_init,
7252 .exit = netdev_exit,
7253};
7254
7255static void __net_exit default_device_exit(struct net *net)
7256{
7257 struct net_device *dev, *aux;
7258 /*
7259 * Push all migratable network devices back to the
7260 * initial network namespace
7261 */
7262 rtnl_lock();
7263 for_each_netdev_safe(net, dev, aux) {
7264 int err;
7265 char fb_name[IFNAMSIZ];
7266
7267 /* Ignore unmoveable devices (i.e. loopback) */
7268 if (dev->features & NETIF_F_NETNS_LOCAL)
7269 continue;
7270
7271 /* Leave virtual devices for the generic cleanup */
7272 if (dev->rtnl_link_ops)
7273 continue;
7274
7275 /* Push remaining network devices to init_net */
7276 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7277 err = dev_change_net_namespace(dev, &init_net, fb_name);
7278 if (err) {
7279 pr_emerg("%s: failed to move %s to init_net: %d\n",
7280 __func__, dev->name, err);
7281 BUG();
7282 }
7283 }
7284 rtnl_unlock();
7285}
7286
7287static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7288{
7289 /* Return with the rtnl_lock held when there are no network
7290 * devices unregistering in any network namespace in net_list.
7291 */
7292 struct net *net;
7293 bool unregistering;
7294 DEFINE_WAIT_FUNC(wait, woken_wake_function);
7295
7296 add_wait_queue(&netdev_unregistering_wq, &wait);
7297 for (;;) {
7298 unregistering = false;
7299 rtnl_lock();
7300 list_for_each_entry(net, net_list, exit_list) {
7301 if (net->dev_unreg_count > 0) {
7302 unregistering = true;
7303 break;
7304 }
7305 }
7306 if (!unregistering)
7307 break;
7308 __rtnl_unlock();
7309
7310 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7311 }
7312 remove_wait_queue(&netdev_unregistering_wq, &wait);
7313}
7314
7315static void __net_exit default_device_exit_batch(struct list_head *net_list)
7316{
7317 /* At exit all network devices most be removed from a network
7318 * namespace. Do this in the reverse order of registration.
7319 * Do this across as many network namespaces as possible to
7320 * improve batching efficiency.
7321 */
7322 struct net_device *dev;
7323 struct net *net;
7324 LIST_HEAD(dev_kill_list);
7325
7326 /* To prevent network device cleanup code from dereferencing
7327 * loopback devices or network devices that have been freed
7328 * wait here for all pending unregistrations to complete,
7329 * before unregistring the loopback device and allowing the
7330 * network namespace be freed.
7331 *
7332 * The netdev todo list containing all network devices
7333 * unregistrations that happen in default_device_exit_batch
7334 * will run in the rtnl_unlock() at the end of
7335 * default_device_exit_batch.
7336 */
7337 rtnl_lock_unregistering(net_list);
7338 list_for_each_entry(net, net_list, exit_list) {
7339 for_each_netdev_reverse(net, dev) {
7340 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7341 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7342 else
7343 unregister_netdevice_queue(dev, &dev_kill_list);
7344 }
7345 }
7346 unregister_netdevice_many(&dev_kill_list);
7347 rtnl_unlock();
7348}
7349
7350static struct pernet_operations __net_initdata default_device_ops = {
7351 .exit = default_device_exit,
7352 .exit_batch = default_device_exit_batch,
7353};
7354
7355/*
7356 * Initialize the DEV module. At boot time this walks the device list and
7357 * unhooks any devices that fail to initialise (normally hardware not
7358 * present) and leaves us with a valid list of present and active devices.
7359 *
7360 */
7361
7362/*
7363 * This is called single threaded during boot, so no need
7364 * to take the rtnl semaphore.
7365 */
7366static int __init net_dev_init(void)
7367{
7368 int i, rc = -ENOMEM;
7369
7370 BUG_ON(!dev_boot_phase);
7371
7372 if (dev_proc_init())
7373 goto out;
7374
7375 if (netdev_kobject_init())
7376 goto out;
7377
7378 INIT_LIST_HEAD(&ptype_all);
7379 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7380 INIT_LIST_HEAD(&ptype_base[i]);
7381
7382 INIT_LIST_HEAD(&offload_base);
7383
7384 if (register_pernet_subsys(&netdev_net_ops))
7385 goto out;
7386
7387 /*
7388 * Initialise the packet receive queues.
7389 */
7390
7391 for_each_possible_cpu(i) {
7392 struct softnet_data *sd = &per_cpu(softnet_data, i);
7393
7394 skb_queue_head_init(&sd->input_pkt_queue);
7395 skb_queue_head_init(&sd->process_queue);
7396 INIT_LIST_HEAD(&sd->poll_list);
7397 sd->output_queue_tailp = &sd->output_queue;
7398#ifdef CONFIG_RPS
7399 sd->csd.func = rps_trigger_softirq;
7400 sd->csd.info = sd;
7401 sd->cpu = i;
7402#endif
7403
7404 sd->backlog.poll = process_backlog;
7405 sd->backlog.weight = weight_p;
7406 }
7407
7408 dev_boot_phase = 0;
7409
7410 /* The loopback device is special if any other network devices
7411 * is present in a network namespace the loopback device must
7412 * be present. Since we now dynamically allocate and free the
7413 * loopback device ensure this invariant is maintained by
7414 * keeping the loopback device as the first device on the
7415 * list of network devices. Ensuring the loopback devices
7416 * is the first device that appears and the last network device
7417 * that disappears.
7418 */
7419 if (register_pernet_device(&loopback_net_ops))
7420 goto out;
7421
7422 if (register_pernet_device(&default_device_ops))
7423 goto out;
7424
7425 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7426 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7427
7428 hotcpu_notifier(dev_cpu_callback, 0);
7429 dst_init();
7430 rc = 0;
7431out:
7432 return rc;
7433}
7434
7435subsys_initcall(net_dev_init);