Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23
24struct mempolicy;
25struct anon_vma;
26struct anon_vma_chain;
27struct file_ra_state;
28struct user_struct;
29struct writeback_control;
30
31#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
32extern unsigned long max_mapnr;
33
34static inline void set_max_mapnr(unsigned long limit)
35{
36 max_mapnr = limit;
37}
38#else
39static inline void set_max_mapnr(unsigned long limit) { }
40#endif
41
42extern unsigned long totalram_pages;
43extern void * high_memory;
44extern int page_cluster;
45
46#ifdef CONFIG_SYSCTL
47extern int sysctl_legacy_va_layout;
48#else
49#define sysctl_legacy_va_layout 0
50#endif
51
52#include <asm/page.h>
53#include <asm/pgtable.h>
54#include <asm/processor.h>
55
56#ifndef __pa_symbol
57#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
58#endif
59
60/*
61 * To prevent common memory management code establishing
62 * a zero page mapping on a read fault.
63 * This macro should be defined within <asm/pgtable.h>.
64 * s390 does this to prevent multiplexing of hardware bits
65 * related to the physical page in case of virtualization.
66 */
67#ifndef mm_forbids_zeropage
68#define mm_forbids_zeropage(X) (0)
69#endif
70
71extern unsigned long sysctl_user_reserve_kbytes;
72extern unsigned long sysctl_admin_reserve_kbytes;
73
74extern int sysctl_overcommit_memory;
75extern int sysctl_overcommit_ratio;
76extern unsigned long sysctl_overcommit_kbytes;
77
78extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
79 size_t *, loff_t *);
80extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
81 size_t *, loff_t *);
82
83#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
84
85/* to align the pointer to the (next) page boundary */
86#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
87
88/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
89#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
90
91/*
92 * Linux kernel virtual memory manager primitives.
93 * The idea being to have a "virtual" mm in the same way
94 * we have a virtual fs - giving a cleaner interface to the
95 * mm details, and allowing different kinds of memory mappings
96 * (from shared memory to executable loading to arbitrary
97 * mmap() functions).
98 */
99
100extern struct kmem_cache *vm_area_cachep;
101
102#ifndef CONFIG_MMU
103extern struct rb_root nommu_region_tree;
104extern struct rw_semaphore nommu_region_sem;
105
106extern unsigned int kobjsize(const void *objp);
107#endif
108
109/*
110 * vm_flags in vm_area_struct, see mm_types.h.
111 */
112#define VM_NONE 0x00000000
113
114#define VM_READ 0x00000001 /* currently active flags */
115#define VM_WRITE 0x00000002
116#define VM_EXEC 0x00000004
117#define VM_SHARED 0x00000008
118
119/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
120#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
121#define VM_MAYWRITE 0x00000020
122#define VM_MAYEXEC 0x00000040
123#define VM_MAYSHARE 0x00000080
124
125#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
126#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
127#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
128
129#define VM_LOCKED 0x00002000
130#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
131
132 /* Used by sys_madvise() */
133#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
134#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
135
136#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
137#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
138#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
139#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
140#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
141#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
142#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
143#define VM_ARCH_2 0x02000000
144#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
145
146#ifdef CONFIG_MEM_SOFT_DIRTY
147# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
148#else
149# define VM_SOFTDIRTY 0
150#endif
151
152#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
153#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
154#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
155#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
156
157#if defined(CONFIG_X86)
158# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
159#elif defined(CONFIG_PPC)
160# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
161#elif defined(CONFIG_PARISC)
162# define VM_GROWSUP VM_ARCH_1
163#elif defined(CONFIG_METAG)
164# define VM_GROWSUP VM_ARCH_1
165#elif defined(CONFIG_IA64)
166# define VM_GROWSUP VM_ARCH_1
167#elif !defined(CONFIG_MMU)
168# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
169#endif
170
171#if defined(CONFIG_X86)
172/* MPX specific bounds table or bounds directory */
173# define VM_MPX VM_ARCH_2
174#endif
175
176#ifndef VM_GROWSUP
177# define VM_GROWSUP VM_NONE
178#endif
179
180/* Bits set in the VMA until the stack is in its final location */
181#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
182
183#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
184#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
185#endif
186
187#ifdef CONFIG_STACK_GROWSUP
188#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
189#else
190#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191#endif
192
193/*
194 * Special vmas that are non-mergable, non-mlock()able.
195 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
196 */
197#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
198
199/* This mask defines which mm->def_flags a process can inherit its parent */
200#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
201
202/*
203 * mapping from the currently active vm_flags protection bits (the
204 * low four bits) to a page protection mask..
205 */
206extern pgprot_t protection_map[16];
207
208#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
209#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
210#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
211#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
212#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
213#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
214#define FAULT_FLAG_TRIED 0x40 /* second try */
215#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
216
217/*
218 * vm_fault is filled by the the pagefault handler and passed to the vma's
219 * ->fault function. The vma's ->fault is responsible for returning a bitmask
220 * of VM_FAULT_xxx flags that give details about how the fault was handled.
221 *
222 * pgoff should be used in favour of virtual_address, if possible. If pgoff
223 * is used, one may implement ->remap_pages to get nonlinear mapping support.
224 */
225struct vm_fault {
226 unsigned int flags; /* FAULT_FLAG_xxx flags */
227 pgoff_t pgoff; /* Logical page offset based on vma */
228 void __user *virtual_address; /* Faulting virtual address */
229
230 struct page *page; /* ->fault handlers should return a
231 * page here, unless VM_FAULT_NOPAGE
232 * is set (which is also implied by
233 * VM_FAULT_ERROR).
234 */
235 /* for ->map_pages() only */
236 pgoff_t max_pgoff; /* map pages for offset from pgoff till
237 * max_pgoff inclusive */
238 pte_t *pte; /* pte entry associated with ->pgoff */
239};
240
241/*
242 * These are the virtual MM functions - opening of an area, closing and
243 * unmapping it (needed to keep files on disk up-to-date etc), pointer
244 * to the functions called when a no-page or a wp-page exception occurs.
245 */
246struct vm_operations_struct {
247 void (*open)(struct vm_area_struct * area);
248 void (*close)(struct vm_area_struct * area);
249 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
250 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
251
252 /* notification that a previously read-only page is about to become
253 * writable, if an error is returned it will cause a SIGBUS */
254 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
255
256 /* called by access_process_vm when get_user_pages() fails, typically
257 * for use by special VMAs that can switch between memory and hardware
258 */
259 int (*access)(struct vm_area_struct *vma, unsigned long addr,
260 void *buf, int len, int write);
261
262 /* Called by the /proc/PID/maps code to ask the vma whether it
263 * has a special name. Returning non-NULL will also cause this
264 * vma to be dumped unconditionally. */
265 const char *(*name)(struct vm_area_struct *vma);
266
267#ifdef CONFIG_NUMA
268 /*
269 * set_policy() op must add a reference to any non-NULL @new mempolicy
270 * to hold the policy upon return. Caller should pass NULL @new to
271 * remove a policy and fall back to surrounding context--i.e. do not
272 * install a MPOL_DEFAULT policy, nor the task or system default
273 * mempolicy.
274 */
275 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
276
277 /*
278 * get_policy() op must add reference [mpol_get()] to any policy at
279 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
280 * in mm/mempolicy.c will do this automatically.
281 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
282 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
283 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
284 * must return NULL--i.e., do not "fallback" to task or system default
285 * policy.
286 */
287 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
288 unsigned long addr);
289#endif
290 /* called by sys_remap_file_pages() to populate non-linear mapping */
291 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
292 unsigned long size, pgoff_t pgoff);
293};
294
295struct mmu_gather;
296struct inode;
297
298#define page_private(page) ((page)->private)
299#define set_page_private(page, v) ((page)->private = (v))
300
301/* It's valid only if the page is free path or free_list */
302static inline void set_freepage_migratetype(struct page *page, int migratetype)
303{
304 page->index = migratetype;
305}
306
307/* It's valid only if the page is free path or free_list */
308static inline int get_freepage_migratetype(struct page *page)
309{
310 return page->index;
311}
312
313/*
314 * FIXME: take this include out, include page-flags.h in
315 * files which need it (119 of them)
316 */
317#include <linux/page-flags.h>
318#include <linux/huge_mm.h>
319
320/*
321 * Methods to modify the page usage count.
322 *
323 * What counts for a page usage:
324 * - cache mapping (page->mapping)
325 * - private data (page->private)
326 * - page mapped in a task's page tables, each mapping
327 * is counted separately
328 *
329 * Also, many kernel routines increase the page count before a critical
330 * routine so they can be sure the page doesn't go away from under them.
331 */
332
333/*
334 * Drop a ref, return true if the refcount fell to zero (the page has no users)
335 */
336static inline int put_page_testzero(struct page *page)
337{
338 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
339 return atomic_dec_and_test(&page->_count);
340}
341
342/*
343 * Try to grab a ref unless the page has a refcount of zero, return false if
344 * that is the case.
345 * This can be called when MMU is off so it must not access
346 * any of the virtual mappings.
347 */
348static inline int get_page_unless_zero(struct page *page)
349{
350 return atomic_inc_not_zero(&page->_count);
351}
352
353/*
354 * Try to drop a ref unless the page has a refcount of one, return false if
355 * that is the case.
356 * This is to make sure that the refcount won't become zero after this drop.
357 * This can be called when MMU is off so it must not access
358 * any of the virtual mappings.
359 */
360static inline int put_page_unless_one(struct page *page)
361{
362 return atomic_add_unless(&page->_count, -1, 1);
363}
364
365extern int page_is_ram(unsigned long pfn);
366extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
367
368/* Support for virtually mapped pages */
369struct page *vmalloc_to_page(const void *addr);
370unsigned long vmalloc_to_pfn(const void *addr);
371
372/*
373 * Determine if an address is within the vmalloc range
374 *
375 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
376 * is no special casing required.
377 */
378static inline int is_vmalloc_addr(const void *x)
379{
380#ifdef CONFIG_MMU
381 unsigned long addr = (unsigned long)x;
382
383 return addr >= VMALLOC_START && addr < VMALLOC_END;
384#else
385 return 0;
386#endif
387}
388#ifdef CONFIG_MMU
389extern int is_vmalloc_or_module_addr(const void *x);
390#else
391static inline int is_vmalloc_or_module_addr(const void *x)
392{
393 return 0;
394}
395#endif
396
397extern void kvfree(const void *addr);
398
399static inline void compound_lock(struct page *page)
400{
401#ifdef CONFIG_TRANSPARENT_HUGEPAGE
402 VM_BUG_ON_PAGE(PageSlab(page), page);
403 bit_spin_lock(PG_compound_lock, &page->flags);
404#endif
405}
406
407static inline void compound_unlock(struct page *page)
408{
409#ifdef CONFIG_TRANSPARENT_HUGEPAGE
410 VM_BUG_ON_PAGE(PageSlab(page), page);
411 bit_spin_unlock(PG_compound_lock, &page->flags);
412#endif
413}
414
415static inline unsigned long compound_lock_irqsave(struct page *page)
416{
417 unsigned long uninitialized_var(flags);
418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 local_irq_save(flags);
420 compound_lock(page);
421#endif
422 return flags;
423}
424
425static inline void compound_unlock_irqrestore(struct page *page,
426 unsigned long flags)
427{
428#ifdef CONFIG_TRANSPARENT_HUGEPAGE
429 compound_unlock(page);
430 local_irq_restore(flags);
431#endif
432}
433
434static inline struct page *compound_head_by_tail(struct page *tail)
435{
436 struct page *head = tail->first_page;
437
438 /*
439 * page->first_page may be a dangling pointer to an old
440 * compound page, so recheck that it is still a tail
441 * page before returning.
442 */
443 smp_rmb();
444 if (likely(PageTail(tail)))
445 return head;
446 return tail;
447}
448
449static inline struct page *compound_head(struct page *page)
450{
451 if (unlikely(PageTail(page)))
452 return compound_head_by_tail(page);
453 return page;
454}
455
456/*
457 * The atomic page->_mapcount, starts from -1: so that transitions
458 * both from it and to it can be tracked, using atomic_inc_and_test
459 * and atomic_add_negative(-1).
460 */
461static inline void page_mapcount_reset(struct page *page)
462{
463 atomic_set(&(page)->_mapcount, -1);
464}
465
466static inline int page_mapcount(struct page *page)
467{
468 return atomic_read(&(page)->_mapcount) + 1;
469}
470
471static inline int page_count(struct page *page)
472{
473 return atomic_read(&compound_head(page)->_count);
474}
475
476#ifdef CONFIG_HUGETLB_PAGE
477extern int PageHeadHuge(struct page *page_head);
478#else /* CONFIG_HUGETLB_PAGE */
479static inline int PageHeadHuge(struct page *page_head)
480{
481 return 0;
482}
483#endif /* CONFIG_HUGETLB_PAGE */
484
485static inline bool __compound_tail_refcounted(struct page *page)
486{
487 return !PageSlab(page) && !PageHeadHuge(page);
488}
489
490/*
491 * This takes a head page as parameter and tells if the
492 * tail page reference counting can be skipped.
493 *
494 * For this to be safe, PageSlab and PageHeadHuge must remain true on
495 * any given page where they return true here, until all tail pins
496 * have been released.
497 */
498static inline bool compound_tail_refcounted(struct page *page)
499{
500 VM_BUG_ON_PAGE(!PageHead(page), page);
501 return __compound_tail_refcounted(page);
502}
503
504static inline void get_huge_page_tail(struct page *page)
505{
506 /*
507 * __split_huge_page_refcount() cannot run from under us.
508 */
509 VM_BUG_ON_PAGE(!PageTail(page), page);
510 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
511 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
512 if (compound_tail_refcounted(page->first_page))
513 atomic_inc(&page->_mapcount);
514}
515
516extern bool __get_page_tail(struct page *page);
517
518static inline void get_page(struct page *page)
519{
520 if (unlikely(PageTail(page)))
521 if (likely(__get_page_tail(page)))
522 return;
523 /*
524 * Getting a normal page or the head of a compound page
525 * requires to already have an elevated page->_count.
526 */
527 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
528 atomic_inc(&page->_count);
529}
530
531static inline struct page *virt_to_head_page(const void *x)
532{
533 struct page *page = virt_to_page(x);
534 return compound_head(page);
535}
536
537/*
538 * Setup the page count before being freed into the page allocator for
539 * the first time (boot or memory hotplug)
540 */
541static inline void init_page_count(struct page *page)
542{
543 atomic_set(&page->_count, 1);
544}
545
546/*
547 * PageBuddy() indicate that the page is free and in the buddy system
548 * (see mm/page_alloc.c).
549 *
550 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
551 * -2 so that an underflow of the page_mapcount() won't be mistaken
552 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
553 * efficiently by most CPU architectures.
554 */
555#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
556
557static inline int PageBuddy(struct page *page)
558{
559 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
560}
561
562static inline void __SetPageBuddy(struct page *page)
563{
564 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
565 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
566}
567
568static inline void __ClearPageBuddy(struct page *page)
569{
570 VM_BUG_ON_PAGE(!PageBuddy(page), page);
571 atomic_set(&page->_mapcount, -1);
572}
573
574#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
575
576static inline int PageBalloon(struct page *page)
577{
578 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
579}
580
581static inline void __SetPageBalloon(struct page *page)
582{
583 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
584 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
585}
586
587static inline void __ClearPageBalloon(struct page *page)
588{
589 VM_BUG_ON_PAGE(!PageBalloon(page), page);
590 atomic_set(&page->_mapcount, -1);
591}
592
593void put_page(struct page *page);
594void put_pages_list(struct list_head *pages);
595
596void split_page(struct page *page, unsigned int order);
597int split_free_page(struct page *page);
598
599/*
600 * Compound pages have a destructor function. Provide a
601 * prototype for that function and accessor functions.
602 * These are _only_ valid on the head of a PG_compound page.
603 */
604typedef void compound_page_dtor(struct page *);
605
606static inline void set_compound_page_dtor(struct page *page,
607 compound_page_dtor *dtor)
608{
609 page[1].lru.next = (void *)dtor;
610}
611
612static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
613{
614 return (compound_page_dtor *)page[1].lru.next;
615}
616
617static inline int compound_order(struct page *page)
618{
619 if (!PageHead(page))
620 return 0;
621 return (unsigned long)page[1].lru.prev;
622}
623
624static inline void set_compound_order(struct page *page, unsigned long order)
625{
626 page[1].lru.prev = (void *)order;
627}
628
629#ifdef CONFIG_MMU
630/*
631 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
632 * servicing faults for write access. In the normal case, do always want
633 * pte_mkwrite. But get_user_pages can cause write faults for mappings
634 * that do not have writing enabled, when used by access_process_vm.
635 */
636static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
637{
638 if (likely(vma->vm_flags & VM_WRITE))
639 pte = pte_mkwrite(pte);
640 return pte;
641}
642
643void do_set_pte(struct vm_area_struct *vma, unsigned long address,
644 struct page *page, pte_t *pte, bool write, bool anon);
645#endif
646
647/*
648 * Multiple processes may "see" the same page. E.g. for untouched
649 * mappings of /dev/null, all processes see the same page full of
650 * zeroes, and text pages of executables and shared libraries have
651 * only one copy in memory, at most, normally.
652 *
653 * For the non-reserved pages, page_count(page) denotes a reference count.
654 * page_count() == 0 means the page is free. page->lru is then used for
655 * freelist management in the buddy allocator.
656 * page_count() > 0 means the page has been allocated.
657 *
658 * Pages are allocated by the slab allocator in order to provide memory
659 * to kmalloc and kmem_cache_alloc. In this case, the management of the
660 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
661 * unless a particular usage is carefully commented. (the responsibility of
662 * freeing the kmalloc memory is the caller's, of course).
663 *
664 * A page may be used by anyone else who does a __get_free_page().
665 * In this case, page_count still tracks the references, and should only
666 * be used through the normal accessor functions. The top bits of page->flags
667 * and page->virtual store page management information, but all other fields
668 * are unused and could be used privately, carefully. The management of this
669 * page is the responsibility of the one who allocated it, and those who have
670 * subsequently been given references to it.
671 *
672 * The other pages (we may call them "pagecache pages") are completely
673 * managed by the Linux memory manager: I/O, buffers, swapping etc.
674 * The following discussion applies only to them.
675 *
676 * A pagecache page contains an opaque `private' member, which belongs to the
677 * page's address_space. Usually, this is the address of a circular list of
678 * the page's disk buffers. PG_private must be set to tell the VM to call
679 * into the filesystem to release these pages.
680 *
681 * A page may belong to an inode's memory mapping. In this case, page->mapping
682 * is the pointer to the inode, and page->index is the file offset of the page,
683 * in units of PAGE_CACHE_SIZE.
684 *
685 * If pagecache pages are not associated with an inode, they are said to be
686 * anonymous pages. These may become associated with the swapcache, and in that
687 * case PG_swapcache is set, and page->private is an offset into the swapcache.
688 *
689 * In either case (swapcache or inode backed), the pagecache itself holds one
690 * reference to the page. Setting PG_private should also increment the
691 * refcount. The each user mapping also has a reference to the page.
692 *
693 * The pagecache pages are stored in a per-mapping radix tree, which is
694 * rooted at mapping->page_tree, and indexed by offset.
695 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
696 * lists, we instead now tag pages as dirty/writeback in the radix tree.
697 *
698 * All pagecache pages may be subject to I/O:
699 * - inode pages may need to be read from disk,
700 * - inode pages which have been modified and are MAP_SHARED may need
701 * to be written back to the inode on disk,
702 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
703 * modified may need to be swapped out to swap space and (later) to be read
704 * back into memory.
705 */
706
707/*
708 * The zone field is never updated after free_area_init_core()
709 * sets it, so none of the operations on it need to be atomic.
710 */
711
712/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
713#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
714#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
715#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
716#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
717
718/*
719 * Define the bit shifts to access each section. For non-existent
720 * sections we define the shift as 0; that plus a 0 mask ensures
721 * the compiler will optimise away reference to them.
722 */
723#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
724#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
725#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
726#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
727
728/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
729#ifdef NODE_NOT_IN_PAGE_FLAGS
730#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
731#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
732 SECTIONS_PGOFF : ZONES_PGOFF)
733#else
734#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
735#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
736 NODES_PGOFF : ZONES_PGOFF)
737#endif
738
739#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
740
741#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
742#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
743#endif
744
745#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
746#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
747#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
748#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
749#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
750
751static inline enum zone_type page_zonenum(const struct page *page)
752{
753 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
754}
755
756#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
757#define SECTION_IN_PAGE_FLAGS
758#endif
759
760/*
761 * The identification function is mainly used by the buddy allocator for
762 * determining if two pages could be buddies. We are not really identifying
763 * the zone since we could be using the section number id if we do not have
764 * node id available in page flags.
765 * We only guarantee that it will return the same value for two combinable
766 * pages in a zone.
767 */
768static inline int page_zone_id(struct page *page)
769{
770 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
771}
772
773static inline int zone_to_nid(struct zone *zone)
774{
775#ifdef CONFIG_NUMA
776 return zone->node;
777#else
778 return 0;
779#endif
780}
781
782#ifdef NODE_NOT_IN_PAGE_FLAGS
783extern int page_to_nid(const struct page *page);
784#else
785static inline int page_to_nid(const struct page *page)
786{
787 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
788}
789#endif
790
791#ifdef CONFIG_NUMA_BALANCING
792static inline int cpu_pid_to_cpupid(int cpu, int pid)
793{
794 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
795}
796
797static inline int cpupid_to_pid(int cpupid)
798{
799 return cpupid & LAST__PID_MASK;
800}
801
802static inline int cpupid_to_cpu(int cpupid)
803{
804 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
805}
806
807static inline int cpupid_to_nid(int cpupid)
808{
809 return cpu_to_node(cpupid_to_cpu(cpupid));
810}
811
812static inline bool cpupid_pid_unset(int cpupid)
813{
814 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
815}
816
817static inline bool cpupid_cpu_unset(int cpupid)
818{
819 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
820}
821
822static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
823{
824 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
825}
826
827#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
828#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
829static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
830{
831 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
832}
833
834static inline int page_cpupid_last(struct page *page)
835{
836 return page->_last_cpupid;
837}
838static inline void page_cpupid_reset_last(struct page *page)
839{
840 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
841}
842#else
843static inline int page_cpupid_last(struct page *page)
844{
845 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
846}
847
848extern int page_cpupid_xchg_last(struct page *page, int cpupid);
849
850static inline void page_cpupid_reset_last(struct page *page)
851{
852 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
853
854 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
855 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
856}
857#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
858#else /* !CONFIG_NUMA_BALANCING */
859static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
860{
861 return page_to_nid(page); /* XXX */
862}
863
864static inline int page_cpupid_last(struct page *page)
865{
866 return page_to_nid(page); /* XXX */
867}
868
869static inline int cpupid_to_nid(int cpupid)
870{
871 return -1;
872}
873
874static inline int cpupid_to_pid(int cpupid)
875{
876 return -1;
877}
878
879static inline int cpupid_to_cpu(int cpupid)
880{
881 return -1;
882}
883
884static inline int cpu_pid_to_cpupid(int nid, int pid)
885{
886 return -1;
887}
888
889static inline bool cpupid_pid_unset(int cpupid)
890{
891 return 1;
892}
893
894static inline void page_cpupid_reset_last(struct page *page)
895{
896}
897
898static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
899{
900 return false;
901}
902#endif /* CONFIG_NUMA_BALANCING */
903
904static inline struct zone *page_zone(const struct page *page)
905{
906 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
907}
908
909#ifdef SECTION_IN_PAGE_FLAGS
910static inline void set_page_section(struct page *page, unsigned long section)
911{
912 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
913 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
914}
915
916static inline unsigned long page_to_section(const struct page *page)
917{
918 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
919}
920#endif
921
922static inline void set_page_zone(struct page *page, enum zone_type zone)
923{
924 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
925 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
926}
927
928static inline void set_page_node(struct page *page, unsigned long node)
929{
930 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
931 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
932}
933
934static inline void set_page_links(struct page *page, enum zone_type zone,
935 unsigned long node, unsigned long pfn)
936{
937 set_page_zone(page, zone);
938 set_page_node(page, node);
939#ifdef SECTION_IN_PAGE_FLAGS
940 set_page_section(page, pfn_to_section_nr(pfn));
941#endif
942}
943
944/*
945 * Some inline functions in vmstat.h depend on page_zone()
946 */
947#include <linux/vmstat.h>
948
949static __always_inline void *lowmem_page_address(const struct page *page)
950{
951 return __va(PFN_PHYS(page_to_pfn(page)));
952}
953
954#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
955#define HASHED_PAGE_VIRTUAL
956#endif
957
958#if defined(WANT_PAGE_VIRTUAL)
959static inline void *page_address(const struct page *page)
960{
961 return page->virtual;
962}
963static inline void set_page_address(struct page *page, void *address)
964{
965 page->virtual = address;
966}
967#define page_address_init() do { } while(0)
968#endif
969
970#if defined(HASHED_PAGE_VIRTUAL)
971void *page_address(const struct page *page);
972void set_page_address(struct page *page, void *virtual);
973void page_address_init(void);
974#endif
975
976#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
977#define page_address(page) lowmem_page_address(page)
978#define set_page_address(page, address) do { } while(0)
979#define page_address_init() do { } while(0)
980#endif
981
982/*
983 * On an anonymous page mapped into a user virtual memory area,
984 * page->mapping points to its anon_vma, not to a struct address_space;
985 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
986 *
987 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
988 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
989 * and then page->mapping points, not to an anon_vma, but to a private
990 * structure which KSM associates with that merged page. See ksm.h.
991 *
992 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
993 *
994 * Please note that, confusingly, "page_mapping" refers to the inode
995 * address_space which maps the page from disk; whereas "page_mapped"
996 * refers to user virtual address space into which the page is mapped.
997 */
998#define PAGE_MAPPING_ANON 1
999#define PAGE_MAPPING_KSM 2
1000#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1001
1002extern struct address_space *page_mapping(struct page *page);
1003
1004/* Neutral page->mapping pointer to address_space or anon_vma or other */
1005static inline void *page_rmapping(struct page *page)
1006{
1007 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
1008}
1009
1010extern struct address_space *__page_file_mapping(struct page *);
1011
1012static inline
1013struct address_space *page_file_mapping(struct page *page)
1014{
1015 if (unlikely(PageSwapCache(page)))
1016 return __page_file_mapping(page);
1017
1018 return page->mapping;
1019}
1020
1021static inline int PageAnon(struct page *page)
1022{
1023 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1024}
1025
1026/*
1027 * Return the pagecache index of the passed page. Regular pagecache pages
1028 * use ->index whereas swapcache pages use ->private
1029 */
1030static inline pgoff_t page_index(struct page *page)
1031{
1032 if (unlikely(PageSwapCache(page)))
1033 return page_private(page);
1034 return page->index;
1035}
1036
1037extern pgoff_t __page_file_index(struct page *page);
1038
1039/*
1040 * Return the file index of the page. Regular pagecache pages use ->index
1041 * whereas swapcache pages use swp_offset(->private)
1042 */
1043static inline pgoff_t page_file_index(struct page *page)
1044{
1045 if (unlikely(PageSwapCache(page)))
1046 return __page_file_index(page);
1047
1048 return page->index;
1049}
1050
1051/*
1052 * Return true if this page is mapped into pagetables.
1053 */
1054static inline int page_mapped(struct page *page)
1055{
1056 return atomic_read(&(page)->_mapcount) >= 0;
1057}
1058
1059/*
1060 * Different kinds of faults, as returned by handle_mm_fault().
1061 * Used to decide whether a process gets delivered SIGBUS or
1062 * just gets major/minor fault counters bumped up.
1063 */
1064
1065#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1066
1067#define VM_FAULT_OOM 0x0001
1068#define VM_FAULT_SIGBUS 0x0002
1069#define VM_FAULT_MAJOR 0x0004
1070#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1071#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1072#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1073
1074#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1075#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1076#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1077#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1078
1079#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1080
1081#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1082 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1083
1084/* Encode hstate index for a hwpoisoned large page */
1085#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1086#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1087
1088/*
1089 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1090 */
1091extern void pagefault_out_of_memory(void);
1092
1093#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1094
1095/*
1096 * Flags passed to show_mem() and show_free_areas() to suppress output in
1097 * various contexts.
1098 */
1099#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1100
1101extern void show_free_areas(unsigned int flags);
1102extern bool skip_free_areas_node(unsigned int flags, int nid);
1103
1104int shmem_zero_setup(struct vm_area_struct *);
1105#ifdef CONFIG_SHMEM
1106bool shmem_mapping(struct address_space *mapping);
1107#else
1108static inline bool shmem_mapping(struct address_space *mapping)
1109{
1110 return false;
1111}
1112#endif
1113
1114extern int can_do_mlock(void);
1115extern int user_shm_lock(size_t, struct user_struct *);
1116extern void user_shm_unlock(size_t, struct user_struct *);
1117
1118/*
1119 * Parameter block passed down to zap_pte_range in exceptional cases.
1120 */
1121struct zap_details {
1122 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1123 struct address_space *check_mapping; /* Check page->mapping if set */
1124 pgoff_t first_index; /* Lowest page->index to unmap */
1125 pgoff_t last_index; /* Highest page->index to unmap */
1126};
1127
1128struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1129 pte_t pte);
1130
1131int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1132 unsigned long size);
1133void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1134 unsigned long size, struct zap_details *);
1135void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1136 unsigned long start, unsigned long end);
1137
1138/**
1139 * mm_walk - callbacks for walk_page_range
1140 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1141 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1142 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1143 * this handler is required to be able to handle
1144 * pmd_trans_huge() pmds. They may simply choose to
1145 * split_huge_page() instead of handling it explicitly.
1146 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1147 * @pte_hole: if set, called for each hole at all levels
1148 * @hugetlb_entry: if set, called for each hugetlb entry
1149 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1150 * is used.
1151 *
1152 * (see walk_page_range for more details)
1153 */
1154struct mm_walk {
1155 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1156 unsigned long next, struct mm_walk *walk);
1157 int (*pud_entry)(pud_t *pud, unsigned long addr,
1158 unsigned long next, struct mm_walk *walk);
1159 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1160 unsigned long next, struct mm_walk *walk);
1161 int (*pte_entry)(pte_t *pte, unsigned long addr,
1162 unsigned long next, struct mm_walk *walk);
1163 int (*pte_hole)(unsigned long addr, unsigned long next,
1164 struct mm_walk *walk);
1165 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1166 unsigned long addr, unsigned long next,
1167 struct mm_walk *walk);
1168 struct mm_struct *mm;
1169 void *private;
1170};
1171
1172int walk_page_range(unsigned long addr, unsigned long end,
1173 struct mm_walk *walk);
1174void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1175 unsigned long end, unsigned long floor, unsigned long ceiling);
1176int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1177 struct vm_area_struct *vma);
1178void unmap_mapping_range(struct address_space *mapping,
1179 loff_t const holebegin, loff_t const holelen, int even_cows);
1180int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1181 unsigned long *pfn);
1182int follow_phys(struct vm_area_struct *vma, unsigned long address,
1183 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1184int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1185 void *buf, int len, int write);
1186
1187static inline void unmap_shared_mapping_range(struct address_space *mapping,
1188 loff_t const holebegin, loff_t const holelen)
1189{
1190 unmap_mapping_range(mapping, holebegin, holelen, 0);
1191}
1192
1193extern void truncate_pagecache(struct inode *inode, loff_t new);
1194extern void truncate_setsize(struct inode *inode, loff_t newsize);
1195void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1196void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1197int truncate_inode_page(struct address_space *mapping, struct page *page);
1198int generic_error_remove_page(struct address_space *mapping, struct page *page);
1199int invalidate_inode_page(struct page *page);
1200
1201#ifdef CONFIG_MMU
1202extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1203 unsigned long address, unsigned int flags);
1204extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1205 unsigned long address, unsigned int fault_flags);
1206#else
1207static inline int handle_mm_fault(struct mm_struct *mm,
1208 struct vm_area_struct *vma, unsigned long address,
1209 unsigned int flags)
1210{
1211 /* should never happen if there's no MMU */
1212 BUG();
1213 return VM_FAULT_SIGBUS;
1214}
1215static inline int fixup_user_fault(struct task_struct *tsk,
1216 struct mm_struct *mm, unsigned long address,
1217 unsigned int fault_flags)
1218{
1219 /* should never happen if there's no MMU */
1220 BUG();
1221 return -EFAULT;
1222}
1223#endif
1224
1225extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1226extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1227 void *buf, int len, int write);
1228
1229long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1230 unsigned long start, unsigned long nr_pages,
1231 unsigned int foll_flags, struct page **pages,
1232 struct vm_area_struct **vmas, int *nonblocking);
1233long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1234 unsigned long start, unsigned long nr_pages,
1235 int write, int force, struct page **pages,
1236 struct vm_area_struct **vmas);
1237int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1238 struct page **pages);
1239struct kvec;
1240int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1241 struct page **pages);
1242int get_kernel_page(unsigned long start, int write, struct page **pages);
1243struct page *get_dump_page(unsigned long addr);
1244
1245extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1246extern void do_invalidatepage(struct page *page, unsigned int offset,
1247 unsigned int length);
1248
1249int __set_page_dirty_nobuffers(struct page *page);
1250int __set_page_dirty_no_writeback(struct page *page);
1251int redirty_page_for_writepage(struct writeback_control *wbc,
1252 struct page *page);
1253void account_page_dirtied(struct page *page, struct address_space *mapping);
1254int set_page_dirty(struct page *page);
1255int set_page_dirty_lock(struct page *page);
1256int clear_page_dirty_for_io(struct page *page);
1257int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1258
1259/* Is the vma a continuation of the stack vma above it? */
1260static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1261{
1262 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1263}
1264
1265static inline int stack_guard_page_start(struct vm_area_struct *vma,
1266 unsigned long addr)
1267{
1268 return (vma->vm_flags & VM_GROWSDOWN) &&
1269 (vma->vm_start == addr) &&
1270 !vma_growsdown(vma->vm_prev, addr);
1271}
1272
1273/* Is the vma a continuation of the stack vma below it? */
1274static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1275{
1276 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1277}
1278
1279static inline int stack_guard_page_end(struct vm_area_struct *vma,
1280 unsigned long addr)
1281{
1282 return (vma->vm_flags & VM_GROWSUP) &&
1283 (vma->vm_end == addr) &&
1284 !vma_growsup(vma->vm_next, addr);
1285}
1286
1287extern struct task_struct *task_of_stack(struct task_struct *task,
1288 struct vm_area_struct *vma, bool in_group);
1289
1290extern unsigned long move_page_tables(struct vm_area_struct *vma,
1291 unsigned long old_addr, struct vm_area_struct *new_vma,
1292 unsigned long new_addr, unsigned long len,
1293 bool need_rmap_locks);
1294extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1295 unsigned long end, pgprot_t newprot,
1296 int dirty_accountable, int prot_numa);
1297extern int mprotect_fixup(struct vm_area_struct *vma,
1298 struct vm_area_struct **pprev, unsigned long start,
1299 unsigned long end, unsigned long newflags);
1300
1301/*
1302 * doesn't attempt to fault and will return short.
1303 */
1304int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1305 struct page **pages);
1306/*
1307 * per-process(per-mm_struct) statistics.
1308 */
1309static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1310{
1311 long val = atomic_long_read(&mm->rss_stat.count[member]);
1312
1313#ifdef SPLIT_RSS_COUNTING
1314 /*
1315 * counter is updated in asynchronous manner and may go to minus.
1316 * But it's never be expected number for users.
1317 */
1318 if (val < 0)
1319 val = 0;
1320#endif
1321 return (unsigned long)val;
1322}
1323
1324static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1325{
1326 atomic_long_add(value, &mm->rss_stat.count[member]);
1327}
1328
1329static inline void inc_mm_counter(struct mm_struct *mm, int member)
1330{
1331 atomic_long_inc(&mm->rss_stat.count[member]);
1332}
1333
1334static inline void dec_mm_counter(struct mm_struct *mm, int member)
1335{
1336 atomic_long_dec(&mm->rss_stat.count[member]);
1337}
1338
1339static inline unsigned long get_mm_rss(struct mm_struct *mm)
1340{
1341 return get_mm_counter(mm, MM_FILEPAGES) +
1342 get_mm_counter(mm, MM_ANONPAGES);
1343}
1344
1345static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1346{
1347 return max(mm->hiwater_rss, get_mm_rss(mm));
1348}
1349
1350static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1351{
1352 return max(mm->hiwater_vm, mm->total_vm);
1353}
1354
1355static inline void update_hiwater_rss(struct mm_struct *mm)
1356{
1357 unsigned long _rss = get_mm_rss(mm);
1358
1359 if ((mm)->hiwater_rss < _rss)
1360 (mm)->hiwater_rss = _rss;
1361}
1362
1363static inline void update_hiwater_vm(struct mm_struct *mm)
1364{
1365 if (mm->hiwater_vm < mm->total_vm)
1366 mm->hiwater_vm = mm->total_vm;
1367}
1368
1369static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1370 struct mm_struct *mm)
1371{
1372 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1373
1374 if (*maxrss < hiwater_rss)
1375 *maxrss = hiwater_rss;
1376}
1377
1378#if defined(SPLIT_RSS_COUNTING)
1379void sync_mm_rss(struct mm_struct *mm);
1380#else
1381static inline void sync_mm_rss(struct mm_struct *mm)
1382{
1383}
1384#endif
1385
1386int vma_wants_writenotify(struct vm_area_struct *vma);
1387
1388extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1389 spinlock_t **ptl);
1390static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1391 spinlock_t **ptl)
1392{
1393 pte_t *ptep;
1394 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1395 return ptep;
1396}
1397
1398#ifdef __PAGETABLE_PUD_FOLDED
1399static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1400 unsigned long address)
1401{
1402 return 0;
1403}
1404#else
1405int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1406#endif
1407
1408#ifdef __PAGETABLE_PMD_FOLDED
1409static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1410 unsigned long address)
1411{
1412 return 0;
1413}
1414#else
1415int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1416#endif
1417
1418int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1419 pmd_t *pmd, unsigned long address);
1420int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1421
1422/*
1423 * The following ifdef needed to get the 4level-fixup.h header to work.
1424 * Remove it when 4level-fixup.h has been removed.
1425 */
1426#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1427static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1428{
1429 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1430 NULL: pud_offset(pgd, address);
1431}
1432
1433static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1434{
1435 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1436 NULL: pmd_offset(pud, address);
1437}
1438#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1439
1440#if USE_SPLIT_PTE_PTLOCKS
1441#if ALLOC_SPLIT_PTLOCKS
1442void __init ptlock_cache_init(void);
1443extern bool ptlock_alloc(struct page *page);
1444extern void ptlock_free(struct page *page);
1445
1446static inline spinlock_t *ptlock_ptr(struct page *page)
1447{
1448 return page->ptl;
1449}
1450#else /* ALLOC_SPLIT_PTLOCKS */
1451static inline void ptlock_cache_init(void)
1452{
1453}
1454
1455static inline bool ptlock_alloc(struct page *page)
1456{
1457 return true;
1458}
1459
1460static inline void ptlock_free(struct page *page)
1461{
1462}
1463
1464static inline spinlock_t *ptlock_ptr(struct page *page)
1465{
1466 return &page->ptl;
1467}
1468#endif /* ALLOC_SPLIT_PTLOCKS */
1469
1470static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1471{
1472 return ptlock_ptr(pmd_page(*pmd));
1473}
1474
1475static inline bool ptlock_init(struct page *page)
1476{
1477 /*
1478 * prep_new_page() initialize page->private (and therefore page->ptl)
1479 * with 0. Make sure nobody took it in use in between.
1480 *
1481 * It can happen if arch try to use slab for page table allocation:
1482 * slab code uses page->slab_cache and page->first_page (for tail
1483 * pages), which share storage with page->ptl.
1484 */
1485 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1486 if (!ptlock_alloc(page))
1487 return false;
1488 spin_lock_init(ptlock_ptr(page));
1489 return true;
1490}
1491
1492/* Reset page->mapping so free_pages_check won't complain. */
1493static inline void pte_lock_deinit(struct page *page)
1494{
1495 page->mapping = NULL;
1496 ptlock_free(page);
1497}
1498
1499#else /* !USE_SPLIT_PTE_PTLOCKS */
1500/*
1501 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1502 */
1503static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1504{
1505 return &mm->page_table_lock;
1506}
1507static inline void ptlock_cache_init(void) {}
1508static inline bool ptlock_init(struct page *page) { return true; }
1509static inline void pte_lock_deinit(struct page *page) {}
1510#endif /* USE_SPLIT_PTE_PTLOCKS */
1511
1512static inline void pgtable_init(void)
1513{
1514 ptlock_cache_init();
1515 pgtable_cache_init();
1516}
1517
1518static inline bool pgtable_page_ctor(struct page *page)
1519{
1520 inc_zone_page_state(page, NR_PAGETABLE);
1521 return ptlock_init(page);
1522}
1523
1524static inline void pgtable_page_dtor(struct page *page)
1525{
1526 pte_lock_deinit(page);
1527 dec_zone_page_state(page, NR_PAGETABLE);
1528}
1529
1530#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1531({ \
1532 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1533 pte_t *__pte = pte_offset_map(pmd, address); \
1534 *(ptlp) = __ptl; \
1535 spin_lock(__ptl); \
1536 __pte; \
1537})
1538
1539#define pte_unmap_unlock(pte, ptl) do { \
1540 spin_unlock(ptl); \
1541 pte_unmap(pte); \
1542} while (0)
1543
1544#define pte_alloc_map(mm, vma, pmd, address) \
1545 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1546 pmd, address))? \
1547 NULL: pte_offset_map(pmd, address))
1548
1549#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1550 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1551 pmd, address))? \
1552 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1553
1554#define pte_alloc_kernel(pmd, address) \
1555 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1556 NULL: pte_offset_kernel(pmd, address))
1557
1558#if USE_SPLIT_PMD_PTLOCKS
1559
1560static struct page *pmd_to_page(pmd_t *pmd)
1561{
1562 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1563 return virt_to_page((void *)((unsigned long) pmd & mask));
1564}
1565
1566static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1567{
1568 return ptlock_ptr(pmd_to_page(pmd));
1569}
1570
1571static inline bool pgtable_pmd_page_ctor(struct page *page)
1572{
1573#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1574 page->pmd_huge_pte = NULL;
1575#endif
1576 return ptlock_init(page);
1577}
1578
1579static inline void pgtable_pmd_page_dtor(struct page *page)
1580{
1581#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1582 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1583#endif
1584 ptlock_free(page);
1585}
1586
1587#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1588
1589#else
1590
1591static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1592{
1593 return &mm->page_table_lock;
1594}
1595
1596static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1597static inline void pgtable_pmd_page_dtor(struct page *page) {}
1598
1599#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1600
1601#endif
1602
1603static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1604{
1605 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1606 spin_lock(ptl);
1607 return ptl;
1608}
1609
1610extern void free_area_init(unsigned long * zones_size);
1611extern void free_area_init_node(int nid, unsigned long * zones_size,
1612 unsigned long zone_start_pfn, unsigned long *zholes_size);
1613extern void free_initmem(void);
1614
1615/*
1616 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1617 * into the buddy system. The freed pages will be poisoned with pattern
1618 * "poison" if it's within range [0, UCHAR_MAX].
1619 * Return pages freed into the buddy system.
1620 */
1621extern unsigned long free_reserved_area(void *start, void *end,
1622 int poison, char *s);
1623
1624#ifdef CONFIG_HIGHMEM
1625/*
1626 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1627 * and totalram_pages.
1628 */
1629extern void free_highmem_page(struct page *page);
1630#endif
1631
1632extern void adjust_managed_page_count(struct page *page, long count);
1633extern void mem_init_print_info(const char *str);
1634
1635/* Free the reserved page into the buddy system, so it gets managed. */
1636static inline void __free_reserved_page(struct page *page)
1637{
1638 ClearPageReserved(page);
1639 init_page_count(page);
1640 __free_page(page);
1641}
1642
1643static inline void free_reserved_page(struct page *page)
1644{
1645 __free_reserved_page(page);
1646 adjust_managed_page_count(page, 1);
1647}
1648
1649static inline void mark_page_reserved(struct page *page)
1650{
1651 SetPageReserved(page);
1652 adjust_managed_page_count(page, -1);
1653}
1654
1655/*
1656 * Default method to free all the __init memory into the buddy system.
1657 * The freed pages will be poisoned with pattern "poison" if it's within
1658 * range [0, UCHAR_MAX].
1659 * Return pages freed into the buddy system.
1660 */
1661static inline unsigned long free_initmem_default(int poison)
1662{
1663 extern char __init_begin[], __init_end[];
1664
1665 return free_reserved_area(&__init_begin, &__init_end,
1666 poison, "unused kernel");
1667}
1668
1669static inline unsigned long get_num_physpages(void)
1670{
1671 int nid;
1672 unsigned long phys_pages = 0;
1673
1674 for_each_online_node(nid)
1675 phys_pages += node_present_pages(nid);
1676
1677 return phys_pages;
1678}
1679
1680#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1681/*
1682 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1683 * zones, allocate the backing mem_map and account for memory holes in a more
1684 * architecture independent manner. This is a substitute for creating the
1685 * zone_sizes[] and zholes_size[] arrays and passing them to
1686 * free_area_init_node()
1687 *
1688 * An architecture is expected to register range of page frames backed by
1689 * physical memory with memblock_add[_node]() before calling
1690 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1691 * usage, an architecture is expected to do something like
1692 *
1693 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1694 * max_highmem_pfn};
1695 * for_each_valid_physical_page_range()
1696 * memblock_add_node(base, size, nid)
1697 * free_area_init_nodes(max_zone_pfns);
1698 *
1699 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1700 * registered physical page range. Similarly
1701 * sparse_memory_present_with_active_regions() calls memory_present() for
1702 * each range when SPARSEMEM is enabled.
1703 *
1704 * See mm/page_alloc.c for more information on each function exposed by
1705 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1706 */
1707extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1708unsigned long node_map_pfn_alignment(void);
1709unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1710 unsigned long end_pfn);
1711extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1712 unsigned long end_pfn);
1713extern void get_pfn_range_for_nid(unsigned int nid,
1714 unsigned long *start_pfn, unsigned long *end_pfn);
1715extern unsigned long find_min_pfn_with_active_regions(void);
1716extern void free_bootmem_with_active_regions(int nid,
1717 unsigned long max_low_pfn);
1718extern void sparse_memory_present_with_active_regions(int nid);
1719
1720#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1721
1722#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1723 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1724static inline int __early_pfn_to_nid(unsigned long pfn)
1725{
1726 return 0;
1727}
1728#else
1729/* please see mm/page_alloc.c */
1730extern int __meminit early_pfn_to_nid(unsigned long pfn);
1731/* there is a per-arch backend function. */
1732extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1733#endif
1734
1735extern void set_dma_reserve(unsigned long new_dma_reserve);
1736extern void memmap_init_zone(unsigned long, int, unsigned long,
1737 unsigned long, enum memmap_context);
1738extern void setup_per_zone_wmarks(void);
1739extern int __meminit init_per_zone_wmark_min(void);
1740extern void mem_init(void);
1741extern void __init mmap_init(void);
1742extern void show_mem(unsigned int flags);
1743extern void si_meminfo(struct sysinfo * val);
1744extern void si_meminfo_node(struct sysinfo *val, int nid);
1745
1746extern __printf(3, 4)
1747void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1748
1749extern void setup_per_cpu_pageset(void);
1750
1751extern void zone_pcp_update(struct zone *zone);
1752extern void zone_pcp_reset(struct zone *zone);
1753
1754/* page_alloc.c */
1755extern int min_free_kbytes;
1756
1757/* nommu.c */
1758extern atomic_long_t mmap_pages_allocated;
1759extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1760
1761/* interval_tree.c */
1762void vma_interval_tree_insert(struct vm_area_struct *node,
1763 struct rb_root *root);
1764void vma_interval_tree_insert_after(struct vm_area_struct *node,
1765 struct vm_area_struct *prev,
1766 struct rb_root *root);
1767void vma_interval_tree_remove(struct vm_area_struct *node,
1768 struct rb_root *root);
1769struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1770 unsigned long start, unsigned long last);
1771struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1772 unsigned long start, unsigned long last);
1773
1774#define vma_interval_tree_foreach(vma, root, start, last) \
1775 for (vma = vma_interval_tree_iter_first(root, start, last); \
1776 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1777
1778static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1779 struct list_head *list)
1780{
1781 list_add_tail(&vma->shared.nonlinear, list);
1782}
1783
1784void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1785 struct rb_root *root);
1786void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1787 struct rb_root *root);
1788struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1789 struct rb_root *root, unsigned long start, unsigned long last);
1790struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1791 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1792#ifdef CONFIG_DEBUG_VM_RB
1793void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1794#endif
1795
1796#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1797 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1798 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1799
1800/* mmap.c */
1801extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1802extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1803 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1804extern struct vm_area_struct *vma_merge(struct mm_struct *,
1805 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1806 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1807 struct mempolicy *);
1808extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1809extern int split_vma(struct mm_struct *,
1810 struct vm_area_struct *, unsigned long addr, int new_below);
1811extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1812extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1813 struct rb_node **, struct rb_node *);
1814extern void unlink_file_vma(struct vm_area_struct *);
1815extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1816 unsigned long addr, unsigned long len, pgoff_t pgoff,
1817 bool *need_rmap_locks);
1818extern void exit_mmap(struct mm_struct *);
1819
1820static inline int check_data_rlimit(unsigned long rlim,
1821 unsigned long new,
1822 unsigned long start,
1823 unsigned long end_data,
1824 unsigned long start_data)
1825{
1826 if (rlim < RLIM_INFINITY) {
1827 if (((new - start) + (end_data - start_data)) > rlim)
1828 return -ENOSPC;
1829 }
1830
1831 return 0;
1832}
1833
1834extern int mm_take_all_locks(struct mm_struct *mm);
1835extern void mm_drop_all_locks(struct mm_struct *mm);
1836
1837extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1838extern struct file *get_mm_exe_file(struct mm_struct *mm);
1839
1840extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1841extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1842 unsigned long addr, unsigned long len,
1843 unsigned long flags,
1844 const struct vm_special_mapping *spec);
1845/* This is an obsolete alternative to _install_special_mapping. */
1846extern int install_special_mapping(struct mm_struct *mm,
1847 unsigned long addr, unsigned long len,
1848 unsigned long flags, struct page **pages);
1849
1850extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1851
1852extern unsigned long mmap_region(struct file *file, unsigned long addr,
1853 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1854extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1855 unsigned long len, unsigned long prot, unsigned long flags,
1856 unsigned long pgoff, unsigned long *populate);
1857extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1858
1859#ifdef CONFIG_MMU
1860extern int __mm_populate(unsigned long addr, unsigned long len,
1861 int ignore_errors);
1862static inline void mm_populate(unsigned long addr, unsigned long len)
1863{
1864 /* Ignore errors */
1865 (void) __mm_populate(addr, len, 1);
1866}
1867#else
1868static inline void mm_populate(unsigned long addr, unsigned long len) {}
1869#endif
1870
1871/* These take the mm semaphore themselves */
1872extern unsigned long vm_brk(unsigned long, unsigned long);
1873extern int vm_munmap(unsigned long, size_t);
1874extern unsigned long vm_mmap(struct file *, unsigned long,
1875 unsigned long, unsigned long,
1876 unsigned long, unsigned long);
1877
1878struct vm_unmapped_area_info {
1879#define VM_UNMAPPED_AREA_TOPDOWN 1
1880 unsigned long flags;
1881 unsigned long length;
1882 unsigned long low_limit;
1883 unsigned long high_limit;
1884 unsigned long align_mask;
1885 unsigned long align_offset;
1886};
1887
1888extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1889extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1890
1891/*
1892 * Search for an unmapped address range.
1893 *
1894 * We are looking for a range that:
1895 * - does not intersect with any VMA;
1896 * - is contained within the [low_limit, high_limit) interval;
1897 * - is at least the desired size.
1898 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1899 */
1900static inline unsigned long
1901vm_unmapped_area(struct vm_unmapped_area_info *info)
1902{
1903 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1904 return unmapped_area(info);
1905 else
1906 return unmapped_area_topdown(info);
1907}
1908
1909/* truncate.c */
1910extern void truncate_inode_pages(struct address_space *, loff_t);
1911extern void truncate_inode_pages_range(struct address_space *,
1912 loff_t lstart, loff_t lend);
1913extern void truncate_inode_pages_final(struct address_space *);
1914
1915/* generic vm_area_ops exported for stackable file systems */
1916extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1917extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1918extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1919
1920/* mm/page-writeback.c */
1921int write_one_page(struct page *page, int wait);
1922void task_dirty_inc(struct task_struct *tsk);
1923
1924/* readahead.c */
1925#define VM_MAX_READAHEAD 128 /* kbytes */
1926#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1927
1928int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1929 pgoff_t offset, unsigned long nr_to_read);
1930
1931void page_cache_sync_readahead(struct address_space *mapping,
1932 struct file_ra_state *ra,
1933 struct file *filp,
1934 pgoff_t offset,
1935 unsigned long size);
1936
1937void page_cache_async_readahead(struct address_space *mapping,
1938 struct file_ra_state *ra,
1939 struct file *filp,
1940 struct page *pg,
1941 pgoff_t offset,
1942 unsigned long size);
1943
1944unsigned long max_sane_readahead(unsigned long nr);
1945
1946/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1947extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1948
1949/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1950extern int expand_downwards(struct vm_area_struct *vma,
1951 unsigned long address);
1952#if VM_GROWSUP
1953extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1954#else
1955 #define expand_upwards(vma, address) do { } while (0)
1956#endif
1957
1958/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1959extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1960extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1961 struct vm_area_struct **pprev);
1962
1963/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1964 NULL if none. Assume start_addr < end_addr. */
1965static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1966{
1967 struct vm_area_struct * vma = find_vma(mm,start_addr);
1968
1969 if (vma && end_addr <= vma->vm_start)
1970 vma = NULL;
1971 return vma;
1972}
1973
1974static inline unsigned long vma_pages(struct vm_area_struct *vma)
1975{
1976 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1977}
1978
1979/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1980static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1981 unsigned long vm_start, unsigned long vm_end)
1982{
1983 struct vm_area_struct *vma = find_vma(mm, vm_start);
1984
1985 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1986 vma = NULL;
1987
1988 return vma;
1989}
1990
1991#ifdef CONFIG_MMU
1992pgprot_t vm_get_page_prot(unsigned long vm_flags);
1993void vma_set_page_prot(struct vm_area_struct *vma);
1994#else
1995static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1996{
1997 return __pgprot(0);
1998}
1999static inline void vma_set_page_prot(struct vm_area_struct *vma)
2000{
2001 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2002}
2003#endif
2004
2005#ifdef CONFIG_NUMA_BALANCING
2006unsigned long change_prot_numa(struct vm_area_struct *vma,
2007 unsigned long start, unsigned long end);
2008#endif
2009
2010struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2011int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2012 unsigned long pfn, unsigned long size, pgprot_t);
2013int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2014int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2015 unsigned long pfn);
2016int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2017 unsigned long pfn);
2018int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2019
2020
2021struct page *follow_page_mask(struct vm_area_struct *vma,
2022 unsigned long address, unsigned int foll_flags,
2023 unsigned int *page_mask);
2024
2025static inline struct page *follow_page(struct vm_area_struct *vma,
2026 unsigned long address, unsigned int foll_flags)
2027{
2028 unsigned int unused_page_mask;
2029 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2030}
2031
2032#define FOLL_WRITE 0x01 /* check pte is writable */
2033#define FOLL_TOUCH 0x02 /* mark page accessed */
2034#define FOLL_GET 0x04 /* do get_page on page */
2035#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2036#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2037#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2038 * and return without waiting upon it */
2039#define FOLL_MLOCK 0x40 /* mark page as mlocked */
2040#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2041#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2042#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2043#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2044#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2045
2046typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2047 void *data);
2048extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2049 unsigned long size, pte_fn_t fn, void *data);
2050
2051#ifdef CONFIG_PROC_FS
2052void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2053#else
2054static inline void vm_stat_account(struct mm_struct *mm,
2055 unsigned long flags, struct file *file, long pages)
2056{
2057 mm->total_vm += pages;
2058}
2059#endif /* CONFIG_PROC_FS */
2060
2061#ifdef CONFIG_DEBUG_PAGEALLOC
2062extern bool _debug_pagealloc_enabled;
2063extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2064
2065static inline bool debug_pagealloc_enabled(void)
2066{
2067 return _debug_pagealloc_enabled;
2068}
2069
2070static inline void
2071kernel_map_pages(struct page *page, int numpages, int enable)
2072{
2073 if (!debug_pagealloc_enabled())
2074 return;
2075
2076 __kernel_map_pages(page, numpages, enable);
2077}
2078#ifdef CONFIG_HIBERNATION
2079extern bool kernel_page_present(struct page *page);
2080#endif /* CONFIG_HIBERNATION */
2081#else
2082static inline void
2083kernel_map_pages(struct page *page, int numpages, int enable) {}
2084#ifdef CONFIG_HIBERNATION
2085static inline bool kernel_page_present(struct page *page) { return true; }
2086#endif /* CONFIG_HIBERNATION */
2087#endif
2088
2089#ifdef __HAVE_ARCH_GATE_AREA
2090extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2091extern int in_gate_area_no_mm(unsigned long addr);
2092extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2093#else
2094static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2095{
2096 return NULL;
2097}
2098static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2099static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2100{
2101 return 0;
2102}
2103#endif /* __HAVE_ARCH_GATE_AREA */
2104
2105#ifdef CONFIG_SYSCTL
2106extern int sysctl_drop_caches;
2107int drop_caches_sysctl_handler(struct ctl_table *, int,
2108 void __user *, size_t *, loff_t *);
2109#endif
2110
2111unsigned long shrink_node_slabs(gfp_t gfp_mask, int nid,
2112 unsigned long nr_scanned,
2113 unsigned long nr_eligible);
2114
2115#ifndef CONFIG_MMU
2116#define randomize_va_space 0
2117#else
2118extern int randomize_va_space;
2119#endif
2120
2121const char * arch_vma_name(struct vm_area_struct *vma);
2122void print_vma_addr(char *prefix, unsigned long rip);
2123
2124void sparse_mem_maps_populate_node(struct page **map_map,
2125 unsigned long pnum_begin,
2126 unsigned long pnum_end,
2127 unsigned long map_count,
2128 int nodeid);
2129
2130struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2131pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2132pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2133pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2134pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2135void *vmemmap_alloc_block(unsigned long size, int node);
2136void *vmemmap_alloc_block_buf(unsigned long size, int node);
2137void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2138int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2139 int node);
2140int vmemmap_populate(unsigned long start, unsigned long end, int node);
2141void vmemmap_populate_print_last(void);
2142#ifdef CONFIG_MEMORY_HOTPLUG
2143void vmemmap_free(unsigned long start, unsigned long end);
2144#endif
2145void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2146 unsigned long size);
2147
2148enum mf_flags {
2149 MF_COUNT_INCREASED = 1 << 0,
2150 MF_ACTION_REQUIRED = 1 << 1,
2151 MF_MUST_KILL = 1 << 2,
2152 MF_SOFT_OFFLINE = 1 << 3,
2153};
2154extern int memory_failure(unsigned long pfn, int trapno, int flags);
2155extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2156extern int unpoison_memory(unsigned long pfn);
2157extern int sysctl_memory_failure_early_kill;
2158extern int sysctl_memory_failure_recovery;
2159extern void shake_page(struct page *p, int access);
2160extern atomic_long_t num_poisoned_pages;
2161extern int soft_offline_page(struct page *page, int flags);
2162
2163#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2164extern void clear_huge_page(struct page *page,
2165 unsigned long addr,
2166 unsigned int pages_per_huge_page);
2167extern void copy_user_huge_page(struct page *dst, struct page *src,
2168 unsigned long addr, struct vm_area_struct *vma,
2169 unsigned int pages_per_huge_page);
2170#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2171
2172extern struct page_ext_operations debug_guardpage_ops;
2173extern struct page_ext_operations page_poisoning_ops;
2174
2175#ifdef CONFIG_DEBUG_PAGEALLOC
2176extern unsigned int _debug_guardpage_minorder;
2177extern bool _debug_guardpage_enabled;
2178
2179static inline unsigned int debug_guardpage_minorder(void)
2180{
2181 return _debug_guardpage_minorder;
2182}
2183
2184static inline bool debug_guardpage_enabled(void)
2185{
2186 return _debug_guardpage_enabled;
2187}
2188
2189static inline bool page_is_guard(struct page *page)
2190{
2191 struct page_ext *page_ext;
2192
2193 if (!debug_guardpage_enabled())
2194 return false;
2195
2196 page_ext = lookup_page_ext(page);
2197 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2198}
2199#else
2200static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2201static inline bool debug_guardpage_enabled(void) { return false; }
2202static inline bool page_is_guard(struct page *page) { return false; }
2203#endif /* CONFIG_DEBUG_PAGEALLOC */
2204
2205#if MAX_NUMNODES > 1
2206void __init setup_nr_node_ids(void);
2207#else
2208static inline void setup_nr_node_ids(void) {}
2209#endif
2210
2211#endif /* __KERNEL__ */
2212#endif /* _LINUX_MM_H */