Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <linux/bitops.h>
77#include <linux/capability.h>
78#include <linux/cpu.h>
79#include <linux/types.h>
80#include <linux/kernel.h>
81#include <linux/hash.h>
82#include <linux/slab.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/stat.h>
101#include <net/dst.h>
102#include <net/pkt_sched.h>
103#include <net/checksum.h>
104#include <net/xfrm.h>
105#include <linux/highmem.h>
106#include <linux/init.h>
107#include <linux/module.h>
108#include <linux/netpoll.h>
109#include <linux/rcupdate.h>
110#include <linux/delay.h>
111#include <net/iw_handler.h>
112#include <asm/current.h>
113#include <linux/audit.h>
114#include <linux/dmaengine.h>
115#include <linux/err.h>
116#include <linux/ctype.h>
117#include <linux/if_arp.h>
118#include <linux/if_vlan.h>
119#include <linux/ip.h>
120#include <net/ip.h>
121#include <linux/ipv6.h>
122#include <linux/in.h>
123#include <linux/jhash.h>
124#include <linux/random.h>
125#include <trace/events/napi.h>
126#include <trace/events/net.h>
127#include <trace/events/skb.h>
128#include <linux/pci.h>
129#include <linux/inetdevice.h>
130#include <linux/cpu_rmap.h>
131#include <linux/static_key.h>
132#include <linux/hashtable.h>
133#include <linux/vmalloc.h>
134#include <linux/if_macvlan.h>
135#include <linux/errqueue.h>
136
137#include "net-sysfs.h"
138
139/* Instead of increasing this, you should create a hash table. */
140#define MAX_GRO_SKBS 8
141
142/* This should be increased if a protocol with a bigger head is added. */
143#define GRO_MAX_HEAD (MAX_HEADER + 128)
144
145static DEFINE_SPINLOCK(ptype_lock);
146static DEFINE_SPINLOCK(offload_lock);
147struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
148struct list_head ptype_all __read_mostly; /* Taps */
149static struct list_head offload_base __read_mostly;
150
151static int netif_rx_internal(struct sk_buff *skb);
152static int call_netdevice_notifiers_info(unsigned long val,
153 struct net_device *dev,
154 struct netdev_notifier_info *info);
155
156/*
157 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
158 * semaphore.
159 *
160 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
161 *
162 * Writers must hold the rtnl semaphore while they loop through the
163 * dev_base_head list, and hold dev_base_lock for writing when they do the
164 * actual updates. This allows pure readers to access the list even
165 * while a writer is preparing to update it.
166 *
167 * To put it another way, dev_base_lock is held for writing only to
168 * protect against pure readers; the rtnl semaphore provides the
169 * protection against other writers.
170 *
171 * See, for example usages, register_netdevice() and
172 * unregister_netdevice(), which must be called with the rtnl
173 * semaphore held.
174 */
175DEFINE_RWLOCK(dev_base_lock);
176EXPORT_SYMBOL(dev_base_lock);
177
178/* protects napi_hash addition/deletion and napi_gen_id */
179static DEFINE_SPINLOCK(napi_hash_lock);
180
181static unsigned int napi_gen_id;
182static DEFINE_HASHTABLE(napi_hash, 8);
183
184static seqcount_t devnet_rename_seq;
185
186static inline void dev_base_seq_inc(struct net *net)
187{
188 while (++net->dev_base_seq == 0);
189}
190
191static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
192{
193 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
194
195 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
196}
197
198static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
199{
200 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
201}
202
203static inline void rps_lock(struct softnet_data *sd)
204{
205#ifdef CONFIG_RPS
206 spin_lock(&sd->input_pkt_queue.lock);
207#endif
208}
209
210static inline void rps_unlock(struct softnet_data *sd)
211{
212#ifdef CONFIG_RPS
213 spin_unlock(&sd->input_pkt_queue.lock);
214#endif
215}
216
217/* Device list insertion */
218static void list_netdevice(struct net_device *dev)
219{
220 struct net *net = dev_net(dev);
221
222 ASSERT_RTNL();
223
224 write_lock_bh(&dev_base_lock);
225 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
226 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
227 hlist_add_head_rcu(&dev->index_hlist,
228 dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230
231 dev_base_seq_inc(net);
232}
233
234/* Device list removal
235 * caller must respect a RCU grace period before freeing/reusing dev
236 */
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del_rcu(&dev->dev_list);
244 hlist_del_rcu(&dev->name_hlist);
245 hlist_del_rcu(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247
248 dev_base_seq_inc(dev_net(dev));
249}
250
251/*
252 * Our notifier list
253 */
254
255static RAW_NOTIFIER_HEAD(netdev_chain);
256
257/*
258 * Device drivers call our routines to queue packets here. We empty the
259 * queue in the local softnet handler.
260 */
261
262DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
263EXPORT_PER_CPU_SYMBOL(softnet_data);
264
265#ifdef CONFIG_LOCKDEP
266/*
267 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
268 * according to dev->type
269 */
270static const unsigned short netdev_lock_type[] =
271 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
272 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
273 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
274 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
275 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
276 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
277 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
278 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
279 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
280 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
281 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
282 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
283 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
284 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
285 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
286
287static const char *const netdev_lock_name[] =
288 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
289 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
290 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
291 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
292 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
293 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
294 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
295 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
296 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
297 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
298 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
299 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
300 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
301 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
302 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
303
304static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
305static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
306
307static inline unsigned short netdev_lock_pos(unsigned short dev_type)
308{
309 int i;
310
311 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
312 if (netdev_lock_type[i] == dev_type)
313 return i;
314 /* the last key is used by default */
315 return ARRAY_SIZE(netdev_lock_type) - 1;
316}
317
318static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
319 unsigned short dev_type)
320{
321 int i;
322
323 i = netdev_lock_pos(dev_type);
324 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
325 netdev_lock_name[i]);
326}
327
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330 int i;
331
332 i = netdev_lock_pos(dev->type);
333 lockdep_set_class_and_name(&dev->addr_list_lock,
334 &netdev_addr_lock_key[i],
335 netdev_lock_name[i]);
336}
337#else
338static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
339 unsigned short dev_type)
340{
341}
342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343{
344}
345#endif
346
347/*******************************************************************************
348
349 Protocol management and registration routines
350
351*******************************************************************************/
352
353/*
354 * Add a protocol ID to the list. Now that the input handler is
355 * smarter we can dispense with all the messy stuff that used to be
356 * here.
357 *
358 * BEWARE!!! Protocol handlers, mangling input packets,
359 * MUST BE last in hash buckets and checking protocol handlers
360 * MUST start from promiscuous ptype_all chain in net_bh.
361 * It is true now, do not change it.
362 * Explanation follows: if protocol handler, mangling packet, will
363 * be the first on list, it is not able to sense, that packet
364 * is cloned and should be copied-on-write, so that it will
365 * change it and subsequent readers will get broken packet.
366 * --ANK (980803)
367 */
368
369static inline struct list_head *ptype_head(const struct packet_type *pt)
370{
371 if (pt->type == htons(ETH_P_ALL))
372 return &ptype_all;
373 else
374 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
375}
376
377/**
378 * dev_add_pack - add packet handler
379 * @pt: packet type declaration
380 *
381 * Add a protocol handler to the networking stack. The passed &packet_type
382 * is linked into kernel lists and may not be freed until it has been
383 * removed from the kernel lists.
384 *
385 * This call does not sleep therefore it can not
386 * guarantee all CPU's that are in middle of receiving packets
387 * will see the new packet type (until the next received packet).
388 */
389
390void dev_add_pack(struct packet_type *pt)
391{
392 struct list_head *head = ptype_head(pt);
393
394 spin_lock(&ptype_lock);
395 list_add_rcu(&pt->list, head);
396 spin_unlock(&ptype_lock);
397}
398EXPORT_SYMBOL(dev_add_pack);
399
400/**
401 * __dev_remove_pack - remove packet handler
402 * @pt: packet type declaration
403 *
404 * Remove a protocol handler that was previously added to the kernel
405 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
406 * from the kernel lists and can be freed or reused once this function
407 * returns.
408 *
409 * The packet type might still be in use by receivers
410 * and must not be freed until after all the CPU's have gone
411 * through a quiescent state.
412 */
413void __dev_remove_pack(struct packet_type *pt)
414{
415 struct list_head *head = ptype_head(pt);
416 struct packet_type *pt1;
417
418 spin_lock(&ptype_lock);
419
420 list_for_each_entry(pt1, head, list) {
421 if (pt == pt1) {
422 list_del_rcu(&pt->list);
423 goto out;
424 }
425 }
426
427 pr_warn("dev_remove_pack: %p not found\n", pt);
428out:
429 spin_unlock(&ptype_lock);
430}
431EXPORT_SYMBOL(__dev_remove_pack);
432
433/**
434 * dev_remove_pack - remove packet handler
435 * @pt: packet type declaration
436 *
437 * Remove a protocol handler that was previously added to the kernel
438 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
439 * from the kernel lists and can be freed or reused once this function
440 * returns.
441 *
442 * This call sleeps to guarantee that no CPU is looking at the packet
443 * type after return.
444 */
445void dev_remove_pack(struct packet_type *pt)
446{
447 __dev_remove_pack(pt);
448
449 synchronize_net();
450}
451EXPORT_SYMBOL(dev_remove_pack);
452
453
454/**
455 * dev_add_offload - register offload handlers
456 * @po: protocol offload declaration
457 *
458 * Add protocol offload handlers to the networking stack. The passed
459 * &proto_offload is linked into kernel lists and may not be freed until
460 * it has been removed from the kernel lists.
461 *
462 * This call does not sleep therefore it can not
463 * guarantee all CPU's that are in middle of receiving packets
464 * will see the new offload handlers (until the next received packet).
465 */
466void dev_add_offload(struct packet_offload *po)
467{
468 struct list_head *head = &offload_base;
469
470 spin_lock(&offload_lock);
471 list_add_rcu(&po->list, head);
472 spin_unlock(&offload_lock);
473}
474EXPORT_SYMBOL(dev_add_offload);
475
476/**
477 * __dev_remove_offload - remove offload handler
478 * @po: packet offload declaration
479 *
480 * Remove a protocol offload handler that was previously added to the
481 * kernel offload handlers by dev_add_offload(). The passed &offload_type
482 * is removed from the kernel lists and can be freed or reused once this
483 * function returns.
484 *
485 * The packet type might still be in use by receivers
486 * and must not be freed until after all the CPU's have gone
487 * through a quiescent state.
488 */
489static void __dev_remove_offload(struct packet_offload *po)
490{
491 struct list_head *head = &offload_base;
492 struct packet_offload *po1;
493
494 spin_lock(&offload_lock);
495
496 list_for_each_entry(po1, head, list) {
497 if (po == po1) {
498 list_del_rcu(&po->list);
499 goto out;
500 }
501 }
502
503 pr_warn("dev_remove_offload: %p not found\n", po);
504out:
505 spin_unlock(&offload_lock);
506}
507
508/**
509 * dev_remove_offload - remove packet offload handler
510 * @po: packet offload declaration
511 *
512 * Remove a packet offload handler that was previously added to the kernel
513 * offload handlers by dev_add_offload(). The passed &offload_type is
514 * removed from the kernel lists and can be freed or reused once this
515 * function returns.
516 *
517 * This call sleeps to guarantee that no CPU is looking at the packet
518 * type after return.
519 */
520void dev_remove_offload(struct packet_offload *po)
521{
522 __dev_remove_offload(po);
523
524 synchronize_net();
525}
526EXPORT_SYMBOL(dev_remove_offload);
527
528/******************************************************************************
529
530 Device Boot-time Settings Routines
531
532*******************************************************************************/
533
534/* Boot time configuration table */
535static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
536
537/**
538 * netdev_boot_setup_add - add new setup entry
539 * @name: name of the device
540 * @map: configured settings for the device
541 *
542 * Adds new setup entry to the dev_boot_setup list. The function
543 * returns 0 on error and 1 on success. This is a generic routine to
544 * all netdevices.
545 */
546static int netdev_boot_setup_add(char *name, struct ifmap *map)
547{
548 struct netdev_boot_setup *s;
549 int i;
550
551 s = dev_boot_setup;
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
553 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
554 memset(s[i].name, 0, sizeof(s[i].name));
555 strlcpy(s[i].name, name, IFNAMSIZ);
556 memcpy(&s[i].map, map, sizeof(s[i].map));
557 break;
558 }
559 }
560
561 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
562}
563
564/**
565 * netdev_boot_setup_check - check boot time settings
566 * @dev: the netdevice
567 *
568 * Check boot time settings for the device.
569 * The found settings are set for the device to be used
570 * later in the device probing.
571 * Returns 0 if no settings found, 1 if they are.
572 */
573int netdev_boot_setup_check(struct net_device *dev)
574{
575 struct netdev_boot_setup *s = dev_boot_setup;
576 int i;
577
578 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
579 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
580 !strcmp(dev->name, s[i].name)) {
581 dev->irq = s[i].map.irq;
582 dev->base_addr = s[i].map.base_addr;
583 dev->mem_start = s[i].map.mem_start;
584 dev->mem_end = s[i].map.mem_end;
585 return 1;
586 }
587 }
588 return 0;
589}
590EXPORT_SYMBOL(netdev_boot_setup_check);
591
592
593/**
594 * netdev_boot_base - get address from boot time settings
595 * @prefix: prefix for network device
596 * @unit: id for network device
597 *
598 * Check boot time settings for the base address of device.
599 * The found settings are set for the device to be used
600 * later in the device probing.
601 * Returns 0 if no settings found.
602 */
603unsigned long netdev_boot_base(const char *prefix, int unit)
604{
605 const struct netdev_boot_setup *s = dev_boot_setup;
606 char name[IFNAMSIZ];
607 int i;
608
609 sprintf(name, "%s%d", prefix, unit);
610
611 /*
612 * If device already registered then return base of 1
613 * to indicate not to probe for this interface
614 */
615 if (__dev_get_by_name(&init_net, name))
616 return 1;
617
618 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
619 if (!strcmp(name, s[i].name))
620 return s[i].map.base_addr;
621 return 0;
622}
623
624/*
625 * Saves at boot time configured settings for any netdevice.
626 */
627int __init netdev_boot_setup(char *str)
628{
629 int ints[5];
630 struct ifmap map;
631
632 str = get_options(str, ARRAY_SIZE(ints), ints);
633 if (!str || !*str)
634 return 0;
635
636 /* Save settings */
637 memset(&map, 0, sizeof(map));
638 if (ints[0] > 0)
639 map.irq = ints[1];
640 if (ints[0] > 1)
641 map.base_addr = ints[2];
642 if (ints[0] > 2)
643 map.mem_start = ints[3];
644 if (ints[0] > 3)
645 map.mem_end = ints[4];
646
647 /* Add new entry to the list */
648 return netdev_boot_setup_add(str, &map);
649}
650
651__setup("netdev=", netdev_boot_setup);
652
653/*******************************************************************************
654
655 Device Interface Subroutines
656
657*******************************************************************************/
658
659/**
660 * __dev_get_by_name - find a device by its name
661 * @net: the applicable net namespace
662 * @name: name to find
663 *
664 * Find an interface by name. Must be called under RTNL semaphore
665 * or @dev_base_lock. If the name is found a pointer to the device
666 * is returned. If the name is not found then %NULL is returned. The
667 * reference counters are not incremented so the caller must be
668 * careful with locks.
669 */
670
671struct net_device *__dev_get_by_name(struct net *net, const char *name)
672{
673 struct net_device *dev;
674 struct hlist_head *head = dev_name_hash(net, name);
675
676 hlist_for_each_entry(dev, head, name_hlist)
677 if (!strncmp(dev->name, name, IFNAMSIZ))
678 return dev;
679
680 return NULL;
681}
682EXPORT_SYMBOL(__dev_get_by_name);
683
684/**
685 * dev_get_by_name_rcu - find a device by its name
686 * @net: the applicable net namespace
687 * @name: name to find
688 *
689 * Find an interface by name.
690 * If the name is found a pointer to the device is returned.
691 * If the name is not found then %NULL is returned.
692 * The reference counters are not incremented so the caller must be
693 * careful with locks. The caller must hold RCU lock.
694 */
695
696struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
697{
698 struct net_device *dev;
699 struct hlist_head *head = dev_name_hash(net, name);
700
701 hlist_for_each_entry_rcu(dev, head, name_hlist)
702 if (!strncmp(dev->name, name, IFNAMSIZ))
703 return dev;
704
705 return NULL;
706}
707EXPORT_SYMBOL(dev_get_by_name_rcu);
708
709/**
710 * dev_get_by_name - find a device by its name
711 * @net: the applicable net namespace
712 * @name: name to find
713 *
714 * Find an interface by name. This can be called from any
715 * context and does its own locking. The returned handle has
716 * the usage count incremented and the caller must use dev_put() to
717 * release it when it is no longer needed. %NULL is returned if no
718 * matching device is found.
719 */
720
721struct net_device *dev_get_by_name(struct net *net, const char *name)
722{
723 struct net_device *dev;
724
725 rcu_read_lock();
726 dev = dev_get_by_name_rcu(net, name);
727 if (dev)
728 dev_hold(dev);
729 rcu_read_unlock();
730 return dev;
731}
732EXPORT_SYMBOL(dev_get_by_name);
733
734/**
735 * __dev_get_by_index - find a device by its ifindex
736 * @net: the applicable net namespace
737 * @ifindex: index of device
738 *
739 * Search for an interface by index. Returns %NULL if the device
740 * is not found or a pointer to the device. The device has not
741 * had its reference counter increased so the caller must be careful
742 * about locking. The caller must hold either the RTNL semaphore
743 * or @dev_base_lock.
744 */
745
746struct net_device *__dev_get_by_index(struct net *net, int ifindex)
747{
748 struct net_device *dev;
749 struct hlist_head *head = dev_index_hash(net, ifindex);
750
751 hlist_for_each_entry(dev, head, index_hlist)
752 if (dev->ifindex == ifindex)
753 return dev;
754
755 return NULL;
756}
757EXPORT_SYMBOL(__dev_get_by_index);
758
759/**
760 * dev_get_by_index_rcu - find a device by its ifindex
761 * @net: the applicable net namespace
762 * @ifindex: index of device
763 *
764 * Search for an interface by index. Returns %NULL if the device
765 * is not found or a pointer to the device. The device has not
766 * had its reference counter increased so the caller must be careful
767 * about locking. The caller must hold RCU lock.
768 */
769
770struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
771{
772 struct net_device *dev;
773 struct hlist_head *head = dev_index_hash(net, ifindex);
774
775 hlist_for_each_entry_rcu(dev, head, index_hlist)
776 if (dev->ifindex == ifindex)
777 return dev;
778
779 return NULL;
780}
781EXPORT_SYMBOL(dev_get_by_index_rcu);
782
783
784/**
785 * dev_get_by_index - find a device by its ifindex
786 * @net: the applicable net namespace
787 * @ifindex: index of device
788 *
789 * Search for an interface by index. Returns NULL if the device
790 * is not found or a pointer to the device. The device returned has
791 * had a reference added and the pointer is safe until the user calls
792 * dev_put to indicate they have finished with it.
793 */
794
795struct net_device *dev_get_by_index(struct net *net, int ifindex)
796{
797 struct net_device *dev;
798
799 rcu_read_lock();
800 dev = dev_get_by_index_rcu(net, ifindex);
801 if (dev)
802 dev_hold(dev);
803 rcu_read_unlock();
804 return dev;
805}
806EXPORT_SYMBOL(dev_get_by_index);
807
808/**
809 * netdev_get_name - get a netdevice name, knowing its ifindex.
810 * @net: network namespace
811 * @name: a pointer to the buffer where the name will be stored.
812 * @ifindex: the ifindex of the interface to get the name from.
813 *
814 * The use of raw_seqcount_begin() and cond_resched() before
815 * retrying is required as we want to give the writers a chance
816 * to complete when CONFIG_PREEMPT is not set.
817 */
818int netdev_get_name(struct net *net, char *name, int ifindex)
819{
820 struct net_device *dev;
821 unsigned int seq;
822
823retry:
824 seq = raw_seqcount_begin(&devnet_rename_seq);
825 rcu_read_lock();
826 dev = dev_get_by_index_rcu(net, ifindex);
827 if (!dev) {
828 rcu_read_unlock();
829 return -ENODEV;
830 }
831
832 strcpy(name, dev->name);
833 rcu_read_unlock();
834 if (read_seqcount_retry(&devnet_rename_seq, seq)) {
835 cond_resched();
836 goto retry;
837 }
838
839 return 0;
840}
841
842/**
843 * dev_getbyhwaddr_rcu - find a device by its hardware address
844 * @net: the applicable net namespace
845 * @type: media type of device
846 * @ha: hardware address
847 *
848 * Search for an interface by MAC address. Returns NULL if the device
849 * is not found or a pointer to the device.
850 * The caller must hold RCU or RTNL.
851 * The returned device has not had its ref count increased
852 * and the caller must therefore be careful about locking
853 *
854 */
855
856struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
857 const char *ha)
858{
859 struct net_device *dev;
860
861 for_each_netdev_rcu(net, dev)
862 if (dev->type == type &&
863 !memcmp(dev->dev_addr, ha, dev->addr_len))
864 return dev;
865
866 return NULL;
867}
868EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
869
870struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
871{
872 struct net_device *dev;
873
874 ASSERT_RTNL();
875 for_each_netdev(net, dev)
876 if (dev->type == type)
877 return dev;
878
879 return NULL;
880}
881EXPORT_SYMBOL(__dev_getfirstbyhwtype);
882
883struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
884{
885 struct net_device *dev, *ret = NULL;
886
887 rcu_read_lock();
888 for_each_netdev_rcu(net, dev)
889 if (dev->type == type) {
890 dev_hold(dev);
891 ret = dev;
892 break;
893 }
894 rcu_read_unlock();
895 return ret;
896}
897EXPORT_SYMBOL(dev_getfirstbyhwtype);
898
899/**
900 * __dev_get_by_flags - find any device with given flags
901 * @net: the applicable net namespace
902 * @if_flags: IFF_* values
903 * @mask: bitmask of bits in if_flags to check
904 *
905 * Search for any interface with the given flags. Returns NULL if a device
906 * is not found or a pointer to the device. Must be called inside
907 * rtnl_lock(), and result refcount is unchanged.
908 */
909
910struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
911 unsigned short mask)
912{
913 struct net_device *dev, *ret;
914
915 ASSERT_RTNL();
916
917 ret = NULL;
918 for_each_netdev(net, dev) {
919 if (((dev->flags ^ if_flags) & mask) == 0) {
920 ret = dev;
921 break;
922 }
923 }
924 return ret;
925}
926EXPORT_SYMBOL(__dev_get_by_flags);
927
928/**
929 * dev_valid_name - check if name is okay for network device
930 * @name: name string
931 *
932 * Network device names need to be valid file names to
933 * to allow sysfs to work. We also disallow any kind of
934 * whitespace.
935 */
936bool dev_valid_name(const char *name)
937{
938 if (*name == '\0')
939 return false;
940 if (strlen(name) >= IFNAMSIZ)
941 return false;
942 if (!strcmp(name, ".") || !strcmp(name, ".."))
943 return false;
944
945 while (*name) {
946 if (*name == '/' || isspace(*name))
947 return false;
948 name++;
949 }
950 return true;
951}
952EXPORT_SYMBOL(dev_valid_name);
953
954/**
955 * __dev_alloc_name - allocate a name for a device
956 * @net: network namespace to allocate the device name in
957 * @name: name format string
958 * @buf: scratch buffer and result name string
959 *
960 * Passed a format string - eg "lt%d" it will try and find a suitable
961 * id. It scans list of devices to build up a free map, then chooses
962 * the first empty slot. The caller must hold the dev_base or rtnl lock
963 * while allocating the name and adding the device in order to avoid
964 * duplicates.
965 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
966 * Returns the number of the unit assigned or a negative errno code.
967 */
968
969static int __dev_alloc_name(struct net *net, const char *name, char *buf)
970{
971 int i = 0;
972 const char *p;
973 const int max_netdevices = 8*PAGE_SIZE;
974 unsigned long *inuse;
975 struct net_device *d;
976
977 p = strnchr(name, IFNAMSIZ-1, '%');
978 if (p) {
979 /*
980 * Verify the string as this thing may have come from
981 * the user. There must be either one "%d" and no other "%"
982 * characters.
983 */
984 if (p[1] != 'd' || strchr(p + 2, '%'))
985 return -EINVAL;
986
987 /* Use one page as a bit array of possible slots */
988 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
989 if (!inuse)
990 return -ENOMEM;
991
992 for_each_netdev(net, d) {
993 if (!sscanf(d->name, name, &i))
994 continue;
995 if (i < 0 || i >= max_netdevices)
996 continue;
997
998 /* avoid cases where sscanf is not exact inverse of printf */
999 snprintf(buf, IFNAMSIZ, name, i);
1000 if (!strncmp(buf, d->name, IFNAMSIZ))
1001 set_bit(i, inuse);
1002 }
1003
1004 i = find_first_zero_bit(inuse, max_netdevices);
1005 free_page((unsigned long) inuse);
1006 }
1007
1008 if (buf != name)
1009 snprintf(buf, IFNAMSIZ, name, i);
1010 if (!__dev_get_by_name(net, buf))
1011 return i;
1012
1013 /* It is possible to run out of possible slots
1014 * when the name is long and there isn't enough space left
1015 * for the digits, or if all bits are used.
1016 */
1017 return -ENFILE;
1018}
1019
1020/**
1021 * dev_alloc_name - allocate a name for a device
1022 * @dev: device
1023 * @name: name format string
1024 *
1025 * Passed a format string - eg "lt%d" it will try and find a suitable
1026 * id. It scans list of devices to build up a free map, then chooses
1027 * the first empty slot. The caller must hold the dev_base or rtnl lock
1028 * while allocating the name and adding the device in order to avoid
1029 * duplicates.
1030 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1031 * Returns the number of the unit assigned or a negative errno code.
1032 */
1033
1034int dev_alloc_name(struct net_device *dev, const char *name)
1035{
1036 char buf[IFNAMSIZ];
1037 struct net *net;
1038 int ret;
1039
1040 BUG_ON(!dev_net(dev));
1041 net = dev_net(dev);
1042 ret = __dev_alloc_name(net, name, buf);
1043 if (ret >= 0)
1044 strlcpy(dev->name, buf, IFNAMSIZ);
1045 return ret;
1046}
1047EXPORT_SYMBOL(dev_alloc_name);
1048
1049static int dev_alloc_name_ns(struct net *net,
1050 struct net_device *dev,
1051 const char *name)
1052{
1053 char buf[IFNAMSIZ];
1054 int ret;
1055
1056 ret = __dev_alloc_name(net, name, buf);
1057 if (ret >= 0)
1058 strlcpy(dev->name, buf, IFNAMSIZ);
1059 return ret;
1060}
1061
1062static int dev_get_valid_name(struct net *net,
1063 struct net_device *dev,
1064 const char *name)
1065{
1066 BUG_ON(!net);
1067
1068 if (!dev_valid_name(name))
1069 return -EINVAL;
1070
1071 if (strchr(name, '%'))
1072 return dev_alloc_name_ns(net, dev, name);
1073 else if (__dev_get_by_name(net, name))
1074 return -EEXIST;
1075 else if (dev->name != name)
1076 strlcpy(dev->name, name, IFNAMSIZ);
1077
1078 return 0;
1079}
1080
1081/**
1082 * dev_change_name - change name of a device
1083 * @dev: device
1084 * @newname: name (or format string) must be at least IFNAMSIZ
1085 *
1086 * Change name of a device, can pass format strings "eth%d".
1087 * for wildcarding.
1088 */
1089int dev_change_name(struct net_device *dev, const char *newname)
1090{
1091 unsigned char old_assign_type;
1092 char oldname[IFNAMSIZ];
1093 int err = 0;
1094 int ret;
1095 struct net *net;
1096
1097 ASSERT_RTNL();
1098 BUG_ON(!dev_net(dev));
1099
1100 net = dev_net(dev);
1101 if (dev->flags & IFF_UP)
1102 return -EBUSY;
1103
1104 write_seqcount_begin(&devnet_rename_seq);
1105
1106 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1107 write_seqcount_end(&devnet_rename_seq);
1108 return 0;
1109 }
1110
1111 memcpy(oldname, dev->name, IFNAMSIZ);
1112
1113 err = dev_get_valid_name(net, dev, newname);
1114 if (err < 0) {
1115 write_seqcount_end(&devnet_rename_seq);
1116 return err;
1117 }
1118
1119 if (oldname[0] && !strchr(oldname, '%'))
1120 netdev_info(dev, "renamed from %s\n", oldname);
1121
1122 old_assign_type = dev->name_assign_type;
1123 dev->name_assign_type = NET_NAME_RENAMED;
1124
1125rollback:
1126 ret = device_rename(&dev->dev, dev->name);
1127 if (ret) {
1128 memcpy(dev->name, oldname, IFNAMSIZ);
1129 dev->name_assign_type = old_assign_type;
1130 write_seqcount_end(&devnet_rename_seq);
1131 return ret;
1132 }
1133
1134 write_seqcount_end(&devnet_rename_seq);
1135
1136 netdev_adjacent_rename_links(dev, oldname);
1137
1138 write_lock_bh(&dev_base_lock);
1139 hlist_del_rcu(&dev->name_hlist);
1140 write_unlock_bh(&dev_base_lock);
1141
1142 synchronize_rcu();
1143
1144 write_lock_bh(&dev_base_lock);
1145 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1146 write_unlock_bh(&dev_base_lock);
1147
1148 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1149 ret = notifier_to_errno(ret);
1150
1151 if (ret) {
1152 /* err >= 0 after dev_alloc_name() or stores the first errno */
1153 if (err >= 0) {
1154 err = ret;
1155 write_seqcount_begin(&devnet_rename_seq);
1156 memcpy(dev->name, oldname, IFNAMSIZ);
1157 memcpy(oldname, newname, IFNAMSIZ);
1158 dev->name_assign_type = old_assign_type;
1159 old_assign_type = NET_NAME_RENAMED;
1160 goto rollback;
1161 } else {
1162 pr_err("%s: name change rollback failed: %d\n",
1163 dev->name, ret);
1164 }
1165 }
1166
1167 return err;
1168}
1169
1170/**
1171 * dev_set_alias - change ifalias of a device
1172 * @dev: device
1173 * @alias: name up to IFALIASZ
1174 * @len: limit of bytes to copy from info
1175 *
1176 * Set ifalias for a device,
1177 */
1178int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1179{
1180 char *new_ifalias;
1181
1182 ASSERT_RTNL();
1183
1184 if (len >= IFALIASZ)
1185 return -EINVAL;
1186
1187 if (!len) {
1188 kfree(dev->ifalias);
1189 dev->ifalias = NULL;
1190 return 0;
1191 }
1192
1193 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1194 if (!new_ifalias)
1195 return -ENOMEM;
1196 dev->ifalias = new_ifalias;
1197
1198 strlcpy(dev->ifalias, alias, len+1);
1199 return len;
1200}
1201
1202
1203/**
1204 * netdev_features_change - device changes features
1205 * @dev: device to cause notification
1206 *
1207 * Called to indicate a device has changed features.
1208 */
1209void netdev_features_change(struct net_device *dev)
1210{
1211 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1212}
1213EXPORT_SYMBOL(netdev_features_change);
1214
1215/**
1216 * netdev_state_change - device changes state
1217 * @dev: device to cause notification
1218 *
1219 * Called to indicate a device has changed state. This function calls
1220 * the notifier chains for netdev_chain and sends a NEWLINK message
1221 * to the routing socket.
1222 */
1223void netdev_state_change(struct net_device *dev)
1224{
1225 if (dev->flags & IFF_UP) {
1226 struct netdev_notifier_change_info change_info;
1227
1228 change_info.flags_changed = 0;
1229 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1230 &change_info.info);
1231 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1232 }
1233}
1234EXPORT_SYMBOL(netdev_state_change);
1235
1236/**
1237 * netdev_notify_peers - notify network peers about existence of @dev
1238 * @dev: network device
1239 *
1240 * Generate traffic such that interested network peers are aware of
1241 * @dev, such as by generating a gratuitous ARP. This may be used when
1242 * a device wants to inform the rest of the network about some sort of
1243 * reconfiguration such as a failover event or virtual machine
1244 * migration.
1245 */
1246void netdev_notify_peers(struct net_device *dev)
1247{
1248 rtnl_lock();
1249 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1250 rtnl_unlock();
1251}
1252EXPORT_SYMBOL(netdev_notify_peers);
1253
1254static int __dev_open(struct net_device *dev)
1255{
1256 const struct net_device_ops *ops = dev->netdev_ops;
1257 int ret;
1258
1259 ASSERT_RTNL();
1260
1261 if (!netif_device_present(dev))
1262 return -ENODEV;
1263
1264 /* Block netpoll from trying to do any rx path servicing.
1265 * If we don't do this there is a chance ndo_poll_controller
1266 * or ndo_poll may be running while we open the device
1267 */
1268 netpoll_poll_disable(dev);
1269
1270 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1271 ret = notifier_to_errno(ret);
1272 if (ret)
1273 return ret;
1274
1275 set_bit(__LINK_STATE_START, &dev->state);
1276
1277 if (ops->ndo_validate_addr)
1278 ret = ops->ndo_validate_addr(dev);
1279
1280 if (!ret && ops->ndo_open)
1281 ret = ops->ndo_open(dev);
1282
1283 netpoll_poll_enable(dev);
1284
1285 if (ret)
1286 clear_bit(__LINK_STATE_START, &dev->state);
1287 else {
1288 dev->flags |= IFF_UP;
1289 dev_set_rx_mode(dev);
1290 dev_activate(dev);
1291 add_device_randomness(dev->dev_addr, dev->addr_len);
1292 }
1293
1294 return ret;
1295}
1296
1297/**
1298 * dev_open - prepare an interface for use.
1299 * @dev: device to open
1300 *
1301 * Takes a device from down to up state. The device's private open
1302 * function is invoked and then the multicast lists are loaded. Finally
1303 * the device is moved into the up state and a %NETDEV_UP message is
1304 * sent to the netdev notifier chain.
1305 *
1306 * Calling this function on an active interface is a nop. On a failure
1307 * a negative errno code is returned.
1308 */
1309int dev_open(struct net_device *dev)
1310{
1311 int ret;
1312
1313 if (dev->flags & IFF_UP)
1314 return 0;
1315
1316 ret = __dev_open(dev);
1317 if (ret < 0)
1318 return ret;
1319
1320 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1321 call_netdevice_notifiers(NETDEV_UP, dev);
1322
1323 return ret;
1324}
1325EXPORT_SYMBOL(dev_open);
1326
1327static int __dev_close_many(struct list_head *head)
1328{
1329 struct net_device *dev;
1330
1331 ASSERT_RTNL();
1332 might_sleep();
1333
1334 list_for_each_entry(dev, head, close_list) {
1335 /* Temporarily disable netpoll until the interface is down */
1336 netpoll_poll_disable(dev);
1337
1338 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1339
1340 clear_bit(__LINK_STATE_START, &dev->state);
1341
1342 /* Synchronize to scheduled poll. We cannot touch poll list, it
1343 * can be even on different cpu. So just clear netif_running().
1344 *
1345 * dev->stop() will invoke napi_disable() on all of it's
1346 * napi_struct instances on this device.
1347 */
1348 smp_mb__after_atomic(); /* Commit netif_running(). */
1349 }
1350
1351 dev_deactivate_many(head);
1352
1353 list_for_each_entry(dev, head, close_list) {
1354 const struct net_device_ops *ops = dev->netdev_ops;
1355
1356 /*
1357 * Call the device specific close. This cannot fail.
1358 * Only if device is UP
1359 *
1360 * We allow it to be called even after a DETACH hot-plug
1361 * event.
1362 */
1363 if (ops->ndo_stop)
1364 ops->ndo_stop(dev);
1365
1366 dev->flags &= ~IFF_UP;
1367 netpoll_poll_enable(dev);
1368 }
1369
1370 return 0;
1371}
1372
1373static int __dev_close(struct net_device *dev)
1374{
1375 int retval;
1376 LIST_HEAD(single);
1377
1378 list_add(&dev->close_list, &single);
1379 retval = __dev_close_many(&single);
1380 list_del(&single);
1381
1382 return retval;
1383}
1384
1385static int dev_close_many(struct list_head *head)
1386{
1387 struct net_device *dev, *tmp;
1388
1389 /* Remove the devices that don't need to be closed */
1390 list_for_each_entry_safe(dev, tmp, head, close_list)
1391 if (!(dev->flags & IFF_UP))
1392 list_del_init(&dev->close_list);
1393
1394 __dev_close_many(head);
1395
1396 list_for_each_entry_safe(dev, tmp, head, close_list) {
1397 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1398 call_netdevice_notifiers(NETDEV_DOWN, dev);
1399 list_del_init(&dev->close_list);
1400 }
1401
1402 return 0;
1403}
1404
1405/**
1406 * dev_close - shutdown an interface.
1407 * @dev: device to shutdown
1408 *
1409 * This function moves an active device into down state. A
1410 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1411 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1412 * chain.
1413 */
1414int dev_close(struct net_device *dev)
1415{
1416 if (dev->flags & IFF_UP) {
1417 LIST_HEAD(single);
1418
1419 list_add(&dev->close_list, &single);
1420 dev_close_many(&single);
1421 list_del(&single);
1422 }
1423 return 0;
1424}
1425EXPORT_SYMBOL(dev_close);
1426
1427
1428/**
1429 * dev_disable_lro - disable Large Receive Offload on a device
1430 * @dev: device
1431 *
1432 * Disable Large Receive Offload (LRO) on a net device. Must be
1433 * called under RTNL. This is needed if received packets may be
1434 * forwarded to another interface.
1435 */
1436void dev_disable_lro(struct net_device *dev)
1437{
1438 /*
1439 * If we're trying to disable lro on a vlan device
1440 * use the underlying physical device instead
1441 */
1442 if (is_vlan_dev(dev))
1443 dev = vlan_dev_real_dev(dev);
1444
1445 /* the same for macvlan devices */
1446 if (netif_is_macvlan(dev))
1447 dev = macvlan_dev_real_dev(dev);
1448
1449 dev->wanted_features &= ~NETIF_F_LRO;
1450 netdev_update_features(dev);
1451
1452 if (unlikely(dev->features & NETIF_F_LRO))
1453 netdev_WARN(dev, "failed to disable LRO!\n");
1454}
1455EXPORT_SYMBOL(dev_disable_lro);
1456
1457static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1458 struct net_device *dev)
1459{
1460 struct netdev_notifier_info info;
1461
1462 netdev_notifier_info_init(&info, dev);
1463 return nb->notifier_call(nb, val, &info);
1464}
1465
1466static int dev_boot_phase = 1;
1467
1468/**
1469 * register_netdevice_notifier - register a network notifier block
1470 * @nb: notifier
1471 *
1472 * Register a notifier to be called when network device events occur.
1473 * The notifier passed is linked into the kernel structures and must
1474 * not be reused until it has been unregistered. A negative errno code
1475 * is returned on a failure.
1476 *
1477 * When registered all registration and up events are replayed
1478 * to the new notifier to allow device to have a race free
1479 * view of the network device list.
1480 */
1481
1482int register_netdevice_notifier(struct notifier_block *nb)
1483{
1484 struct net_device *dev;
1485 struct net_device *last;
1486 struct net *net;
1487 int err;
1488
1489 rtnl_lock();
1490 err = raw_notifier_chain_register(&netdev_chain, nb);
1491 if (err)
1492 goto unlock;
1493 if (dev_boot_phase)
1494 goto unlock;
1495 for_each_net(net) {
1496 for_each_netdev(net, dev) {
1497 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1498 err = notifier_to_errno(err);
1499 if (err)
1500 goto rollback;
1501
1502 if (!(dev->flags & IFF_UP))
1503 continue;
1504
1505 call_netdevice_notifier(nb, NETDEV_UP, dev);
1506 }
1507 }
1508
1509unlock:
1510 rtnl_unlock();
1511 return err;
1512
1513rollback:
1514 last = dev;
1515 for_each_net(net) {
1516 for_each_netdev(net, dev) {
1517 if (dev == last)
1518 goto outroll;
1519
1520 if (dev->flags & IFF_UP) {
1521 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1522 dev);
1523 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1524 }
1525 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1526 }
1527 }
1528
1529outroll:
1530 raw_notifier_chain_unregister(&netdev_chain, nb);
1531 goto unlock;
1532}
1533EXPORT_SYMBOL(register_netdevice_notifier);
1534
1535/**
1536 * unregister_netdevice_notifier - unregister a network notifier block
1537 * @nb: notifier
1538 *
1539 * Unregister a notifier previously registered by
1540 * register_netdevice_notifier(). The notifier is unlinked into the
1541 * kernel structures and may then be reused. A negative errno code
1542 * is returned on a failure.
1543 *
1544 * After unregistering unregister and down device events are synthesized
1545 * for all devices on the device list to the removed notifier to remove
1546 * the need for special case cleanup code.
1547 */
1548
1549int unregister_netdevice_notifier(struct notifier_block *nb)
1550{
1551 struct net_device *dev;
1552 struct net *net;
1553 int err;
1554
1555 rtnl_lock();
1556 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1557 if (err)
1558 goto unlock;
1559
1560 for_each_net(net) {
1561 for_each_netdev(net, dev) {
1562 if (dev->flags & IFF_UP) {
1563 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1564 dev);
1565 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1566 }
1567 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1568 }
1569 }
1570unlock:
1571 rtnl_unlock();
1572 return err;
1573}
1574EXPORT_SYMBOL(unregister_netdevice_notifier);
1575
1576/**
1577 * call_netdevice_notifiers_info - call all network notifier blocks
1578 * @val: value passed unmodified to notifier function
1579 * @dev: net_device pointer passed unmodified to notifier function
1580 * @info: notifier information data
1581 *
1582 * Call all network notifier blocks. Parameters and return value
1583 * are as for raw_notifier_call_chain().
1584 */
1585
1586static int call_netdevice_notifiers_info(unsigned long val,
1587 struct net_device *dev,
1588 struct netdev_notifier_info *info)
1589{
1590 ASSERT_RTNL();
1591 netdev_notifier_info_init(info, dev);
1592 return raw_notifier_call_chain(&netdev_chain, val, info);
1593}
1594
1595/**
1596 * call_netdevice_notifiers - call all network notifier blocks
1597 * @val: value passed unmodified to notifier function
1598 * @dev: net_device pointer passed unmodified to notifier function
1599 *
1600 * Call all network notifier blocks. Parameters and return value
1601 * are as for raw_notifier_call_chain().
1602 */
1603
1604int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1605{
1606 struct netdev_notifier_info info;
1607
1608 return call_netdevice_notifiers_info(val, dev, &info);
1609}
1610EXPORT_SYMBOL(call_netdevice_notifiers);
1611
1612static struct static_key netstamp_needed __read_mostly;
1613#ifdef HAVE_JUMP_LABEL
1614/* We are not allowed to call static_key_slow_dec() from irq context
1615 * If net_disable_timestamp() is called from irq context, defer the
1616 * static_key_slow_dec() calls.
1617 */
1618static atomic_t netstamp_needed_deferred;
1619#endif
1620
1621void net_enable_timestamp(void)
1622{
1623#ifdef HAVE_JUMP_LABEL
1624 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1625
1626 if (deferred) {
1627 while (--deferred)
1628 static_key_slow_dec(&netstamp_needed);
1629 return;
1630 }
1631#endif
1632 static_key_slow_inc(&netstamp_needed);
1633}
1634EXPORT_SYMBOL(net_enable_timestamp);
1635
1636void net_disable_timestamp(void)
1637{
1638#ifdef HAVE_JUMP_LABEL
1639 if (in_interrupt()) {
1640 atomic_inc(&netstamp_needed_deferred);
1641 return;
1642 }
1643#endif
1644 static_key_slow_dec(&netstamp_needed);
1645}
1646EXPORT_SYMBOL(net_disable_timestamp);
1647
1648static inline void net_timestamp_set(struct sk_buff *skb)
1649{
1650 skb->tstamp.tv64 = 0;
1651 if (static_key_false(&netstamp_needed))
1652 __net_timestamp(skb);
1653}
1654
1655#define net_timestamp_check(COND, SKB) \
1656 if (static_key_false(&netstamp_needed)) { \
1657 if ((COND) && !(SKB)->tstamp.tv64) \
1658 __net_timestamp(SKB); \
1659 } \
1660
1661bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1662{
1663 unsigned int len;
1664
1665 if (!(dev->flags & IFF_UP))
1666 return false;
1667
1668 len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1669 if (skb->len <= len)
1670 return true;
1671
1672 /* if TSO is enabled, we don't care about the length as the packet
1673 * could be forwarded without being segmented before
1674 */
1675 if (skb_is_gso(skb))
1676 return true;
1677
1678 return false;
1679}
1680EXPORT_SYMBOL_GPL(is_skb_forwardable);
1681
1682int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1683{
1684 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
1685 if (skb_copy_ubufs(skb, GFP_ATOMIC)) {
1686 atomic_long_inc(&dev->rx_dropped);
1687 kfree_skb(skb);
1688 return NET_RX_DROP;
1689 }
1690 }
1691
1692 if (unlikely(!is_skb_forwardable(dev, skb))) {
1693 atomic_long_inc(&dev->rx_dropped);
1694 kfree_skb(skb);
1695 return NET_RX_DROP;
1696 }
1697
1698 skb_scrub_packet(skb, true);
1699 skb->protocol = eth_type_trans(skb, dev);
1700
1701 return 0;
1702}
1703EXPORT_SYMBOL_GPL(__dev_forward_skb);
1704
1705/**
1706 * dev_forward_skb - loopback an skb to another netif
1707 *
1708 * @dev: destination network device
1709 * @skb: buffer to forward
1710 *
1711 * return values:
1712 * NET_RX_SUCCESS (no congestion)
1713 * NET_RX_DROP (packet was dropped, but freed)
1714 *
1715 * dev_forward_skb can be used for injecting an skb from the
1716 * start_xmit function of one device into the receive queue
1717 * of another device.
1718 *
1719 * The receiving device may be in another namespace, so
1720 * we have to clear all information in the skb that could
1721 * impact namespace isolation.
1722 */
1723int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1724{
1725 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1726}
1727EXPORT_SYMBOL_GPL(dev_forward_skb);
1728
1729static inline int deliver_skb(struct sk_buff *skb,
1730 struct packet_type *pt_prev,
1731 struct net_device *orig_dev)
1732{
1733 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1734 return -ENOMEM;
1735 atomic_inc(&skb->users);
1736 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1737}
1738
1739static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1740{
1741 if (!ptype->af_packet_priv || !skb->sk)
1742 return false;
1743
1744 if (ptype->id_match)
1745 return ptype->id_match(ptype, skb->sk);
1746 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1747 return true;
1748
1749 return false;
1750}
1751
1752/*
1753 * Support routine. Sends outgoing frames to any network
1754 * taps currently in use.
1755 */
1756
1757static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1758{
1759 struct packet_type *ptype;
1760 struct sk_buff *skb2 = NULL;
1761 struct packet_type *pt_prev = NULL;
1762
1763 rcu_read_lock();
1764 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1765 /* Never send packets back to the socket
1766 * they originated from - MvS (miquels@drinkel.ow.org)
1767 */
1768 if ((ptype->dev == dev || !ptype->dev) &&
1769 (!skb_loop_sk(ptype, skb))) {
1770 if (pt_prev) {
1771 deliver_skb(skb2, pt_prev, skb->dev);
1772 pt_prev = ptype;
1773 continue;
1774 }
1775
1776 skb2 = skb_clone(skb, GFP_ATOMIC);
1777 if (!skb2)
1778 break;
1779
1780 net_timestamp_set(skb2);
1781
1782 /* skb->nh should be correctly
1783 set by sender, so that the second statement is
1784 just protection against buggy protocols.
1785 */
1786 skb_reset_mac_header(skb2);
1787
1788 if (skb_network_header(skb2) < skb2->data ||
1789 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1790 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1791 ntohs(skb2->protocol),
1792 dev->name);
1793 skb_reset_network_header(skb2);
1794 }
1795
1796 skb2->transport_header = skb2->network_header;
1797 skb2->pkt_type = PACKET_OUTGOING;
1798 pt_prev = ptype;
1799 }
1800 }
1801 if (pt_prev)
1802 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1803 rcu_read_unlock();
1804}
1805
1806/**
1807 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1808 * @dev: Network device
1809 * @txq: number of queues available
1810 *
1811 * If real_num_tx_queues is changed the tc mappings may no longer be
1812 * valid. To resolve this verify the tc mapping remains valid and if
1813 * not NULL the mapping. With no priorities mapping to this
1814 * offset/count pair it will no longer be used. In the worst case TC0
1815 * is invalid nothing can be done so disable priority mappings. If is
1816 * expected that drivers will fix this mapping if they can before
1817 * calling netif_set_real_num_tx_queues.
1818 */
1819static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1820{
1821 int i;
1822 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1823
1824 /* If TC0 is invalidated disable TC mapping */
1825 if (tc->offset + tc->count > txq) {
1826 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1827 dev->num_tc = 0;
1828 return;
1829 }
1830
1831 /* Invalidated prio to tc mappings set to TC0 */
1832 for (i = 1; i < TC_BITMASK + 1; i++) {
1833 int q = netdev_get_prio_tc_map(dev, i);
1834
1835 tc = &dev->tc_to_txq[q];
1836 if (tc->offset + tc->count > txq) {
1837 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1838 i, q);
1839 netdev_set_prio_tc_map(dev, i, 0);
1840 }
1841 }
1842}
1843
1844#ifdef CONFIG_XPS
1845static DEFINE_MUTEX(xps_map_mutex);
1846#define xmap_dereference(P) \
1847 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1848
1849static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1850 int cpu, u16 index)
1851{
1852 struct xps_map *map = NULL;
1853 int pos;
1854
1855 if (dev_maps)
1856 map = xmap_dereference(dev_maps->cpu_map[cpu]);
1857
1858 for (pos = 0; map && pos < map->len; pos++) {
1859 if (map->queues[pos] == index) {
1860 if (map->len > 1) {
1861 map->queues[pos] = map->queues[--map->len];
1862 } else {
1863 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1864 kfree_rcu(map, rcu);
1865 map = NULL;
1866 }
1867 break;
1868 }
1869 }
1870
1871 return map;
1872}
1873
1874static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1875{
1876 struct xps_dev_maps *dev_maps;
1877 int cpu, i;
1878 bool active = false;
1879
1880 mutex_lock(&xps_map_mutex);
1881 dev_maps = xmap_dereference(dev->xps_maps);
1882
1883 if (!dev_maps)
1884 goto out_no_maps;
1885
1886 for_each_possible_cpu(cpu) {
1887 for (i = index; i < dev->num_tx_queues; i++) {
1888 if (!remove_xps_queue(dev_maps, cpu, i))
1889 break;
1890 }
1891 if (i == dev->num_tx_queues)
1892 active = true;
1893 }
1894
1895 if (!active) {
1896 RCU_INIT_POINTER(dev->xps_maps, NULL);
1897 kfree_rcu(dev_maps, rcu);
1898 }
1899
1900 for (i = index; i < dev->num_tx_queues; i++)
1901 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1902 NUMA_NO_NODE);
1903
1904out_no_maps:
1905 mutex_unlock(&xps_map_mutex);
1906}
1907
1908static struct xps_map *expand_xps_map(struct xps_map *map,
1909 int cpu, u16 index)
1910{
1911 struct xps_map *new_map;
1912 int alloc_len = XPS_MIN_MAP_ALLOC;
1913 int i, pos;
1914
1915 for (pos = 0; map && pos < map->len; pos++) {
1916 if (map->queues[pos] != index)
1917 continue;
1918 return map;
1919 }
1920
1921 /* Need to add queue to this CPU's existing map */
1922 if (map) {
1923 if (pos < map->alloc_len)
1924 return map;
1925
1926 alloc_len = map->alloc_len * 2;
1927 }
1928
1929 /* Need to allocate new map to store queue on this CPU's map */
1930 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1931 cpu_to_node(cpu));
1932 if (!new_map)
1933 return NULL;
1934
1935 for (i = 0; i < pos; i++)
1936 new_map->queues[i] = map->queues[i];
1937 new_map->alloc_len = alloc_len;
1938 new_map->len = pos;
1939
1940 return new_map;
1941}
1942
1943int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
1944 u16 index)
1945{
1946 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
1947 struct xps_map *map, *new_map;
1948 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
1949 int cpu, numa_node_id = -2;
1950 bool active = false;
1951
1952 mutex_lock(&xps_map_mutex);
1953
1954 dev_maps = xmap_dereference(dev->xps_maps);
1955
1956 /* allocate memory for queue storage */
1957 for_each_online_cpu(cpu) {
1958 if (!cpumask_test_cpu(cpu, mask))
1959 continue;
1960
1961 if (!new_dev_maps)
1962 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
1963 if (!new_dev_maps) {
1964 mutex_unlock(&xps_map_mutex);
1965 return -ENOMEM;
1966 }
1967
1968 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
1969 NULL;
1970
1971 map = expand_xps_map(map, cpu, index);
1972 if (!map)
1973 goto error;
1974
1975 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
1976 }
1977
1978 if (!new_dev_maps)
1979 goto out_no_new_maps;
1980
1981 for_each_possible_cpu(cpu) {
1982 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
1983 /* add queue to CPU maps */
1984 int pos = 0;
1985
1986 map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
1987 while ((pos < map->len) && (map->queues[pos] != index))
1988 pos++;
1989
1990 if (pos == map->len)
1991 map->queues[map->len++] = index;
1992#ifdef CONFIG_NUMA
1993 if (numa_node_id == -2)
1994 numa_node_id = cpu_to_node(cpu);
1995 else if (numa_node_id != cpu_to_node(cpu))
1996 numa_node_id = -1;
1997#endif
1998 } else if (dev_maps) {
1999 /* fill in the new device map from the old device map */
2000 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2001 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2002 }
2003
2004 }
2005
2006 rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2007
2008 /* Cleanup old maps */
2009 if (dev_maps) {
2010 for_each_possible_cpu(cpu) {
2011 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2012 map = xmap_dereference(dev_maps->cpu_map[cpu]);
2013 if (map && map != new_map)
2014 kfree_rcu(map, rcu);
2015 }
2016
2017 kfree_rcu(dev_maps, rcu);
2018 }
2019
2020 dev_maps = new_dev_maps;
2021 active = true;
2022
2023out_no_new_maps:
2024 /* update Tx queue numa node */
2025 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2026 (numa_node_id >= 0) ? numa_node_id :
2027 NUMA_NO_NODE);
2028
2029 if (!dev_maps)
2030 goto out_no_maps;
2031
2032 /* removes queue from unused CPUs */
2033 for_each_possible_cpu(cpu) {
2034 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2035 continue;
2036
2037 if (remove_xps_queue(dev_maps, cpu, index))
2038 active = true;
2039 }
2040
2041 /* free map if not active */
2042 if (!active) {
2043 RCU_INIT_POINTER(dev->xps_maps, NULL);
2044 kfree_rcu(dev_maps, rcu);
2045 }
2046
2047out_no_maps:
2048 mutex_unlock(&xps_map_mutex);
2049
2050 return 0;
2051error:
2052 /* remove any maps that we added */
2053 for_each_possible_cpu(cpu) {
2054 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2055 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2056 NULL;
2057 if (new_map && new_map != map)
2058 kfree(new_map);
2059 }
2060
2061 mutex_unlock(&xps_map_mutex);
2062
2063 kfree(new_dev_maps);
2064 return -ENOMEM;
2065}
2066EXPORT_SYMBOL(netif_set_xps_queue);
2067
2068#endif
2069/*
2070 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2071 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2072 */
2073int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2074{
2075 int rc;
2076
2077 if (txq < 1 || txq > dev->num_tx_queues)
2078 return -EINVAL;
2079
2080 if (dev->reg_state == NETREG_REGISTERED ||
2081 dev->reg_state == NETREG_UNREGISTERING) {
2082 ASSERT_RTNL();
2083
2084 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2085 txq);
2086 if (rc)
2087 return rc;
2088
2089 if (dev->num_tc)
2090 netif_setup_tc(dev, txq);
2091
2092 if (txq < dev->real_num_tx_queues) {
2093 qdisc_reset_all_tx_gt(dev, txq);
2094#ifdef CONFIG_XPS
2095 netif_reset_xps_queues_gt(dev, txq);
2096#endif
2097 }
2098 }
2099
2100 dev->real_num_tx_queues = txq;
2101 return 0;
2102}
2103EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2104
2105#ifdef CONFIG_SYSFS
2106/**
2107 * netif_set_real_num_rx_queues - set actual number of RX queues used
2108 * @dev: Network device
2109 * @rxq: Actual number of RX queues
2110 *
2111 * This must be called either with the rtnl_lock held or before
2112 * registration of the net device. Returns 0 on success, or a
2113 * negative error code. If called before registration, it always
2114 * succeeds.
2115 */
2116int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2117{
2118 int rc;
2119
2120 if (rxq < 1 || rxq > dev->num_rx_queues)
2121 return -EINVAL;
2122
2123 if (dev->reg_state == NETREG_REGISTERED) {
2124 ASSERT_RTNL();
2125
2126 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2127 rxq);
2128 if (rc)
2129 return rc;
2130 }
2131
2132 dev->real_num_rx_queues = rxq;
2133 return 0;
2134}
2135EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2136#endif
2137
2138/**
2139 * netif_get_num_default_rss_queues - default number of RSS queues
2140 *
2141 * This routine should set an upper limit on the number of RSS queues
2142 * used by default by multiqueue devices.
2143 */
2144int netif_get_num_default_rss_queues(void)
2145{
2146 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2147}
2148EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2149
2150static inline void __netif_reschedule(struct Qdisc *q)
2151{
2152 struct softnet_data *sd;
2153 unsigned long flags;
2154
2155 local_irq_save(flags);
2156 sd = this_cpu_ptr(&softnet_data);
2157 q->next_sched = NULL;
2158 *sd->output_queue_tailp = q;
2159 sd->output_queue_tailp = &q->next_sched;
2160 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2161 local_irq_restore(flags);
2162}
2163
2164void __netif_schedule(struct Qdisc *q)
2165{
2166 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2167 __netif_reschedule(q);
2168}
2169EXPORT_SYMBOL(__netif_schedule);
2170
2171struct dev_kfree_skb_cb {
2172 enum skb_free_reason reason;
2173};
2174
2175static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2176{
2177 return (struct dev_kfree_skb_cb *)skb->cb;
2178}
2179
2180void netif_schedule_queue(struct netdev_queue *txq)
2181{
2182 rcu_read_lock();
2183 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2184 struct Qdisc *q = rcu_dereference(txq->qdisc);
2185
2186 __netif_schedule(q);
2187 }
2188 rcu_read_unlock();
2189}
2190EXPORT_SYMBOL(netif_schedule_queue);
2191
2192/**
2193 * netif_wake_subqueue - allow sending packets on subqueue
2194 * @dev: network device
2195 * @queue_index: sub queue index
2196 *
2197 * Resume individual transmit queue of a device with multiple transmit queues.
2198 */
2199void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2200{
2201 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2202
2203 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2204 struct Qdisc *q;
2205
2206 rcu_read_lock();
2207 q = rcu_dereference(txq->qdisc);
2208 __netif_schedule(q);
2209 rcu_read_unlock();
2210 }
2211}
2212EXPORT_SYMBOL(netif_wake_subqueue);
2213
2214void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2215{
2216 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2217 struct Qdisc *q;
2218
2219 rcu_read_lock();
2220 q = rcu_dereference(dev_queue->qdisc);
2221 __netif_schedule(q);
2222 rcu_read_unlock();
2223 }
2224}
2225EXPORT_SYMBOL(netif_tx_wake_queue);
2226
2227void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2228{
2229 unsigned long flags;
2230
2231 if (likely(atomic_read(&skb->users) == 1)) {
2232 smp_rmb();
2233 atomic_set(&skb->users, 0);
2234 } else if (likely(!atomic_dec_and_test(&skb->users))) {
2235 return;
2236 }
2237 get_kfree_skb_cb(skb)->reason = reason;
2238 local_irq_save(flags);
2239 skb->next = __this_cpu_read(softnet_data.completion_queue);
2240 __this_cpu_write(softnet_data.completion_queue, skb);
2241 raise_softirq_irqoff(NET_TX_SOFTIRQ);
2242 local_irq_restore(flags);
2243}
2244EXPORT_SYMBOL(__dev_kfree_skb_irq);
2245
2246void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2247{
2248 if (in_irq() || irqs_disabled())
2249 __dev_kfree_skb_irq(skb, reason);
2250 else
2251 dev_kfree_skb(skb);
2252}
2253EXPORT_SYMBOL(__dev_kfree_skb_any);
2254
2255
2256/**
2257 * netif_device_detach - mark device as removed
2258 * @dev: network device
2259 *
2260 * Mark device as removed from system and therefore no longer available.
2261 */
2262void netif_device_detach(struct net_device *dev)
2263{
2264 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2265 netif_running(dev)) {
2266 netif_tx_stop_all_queues(dev);
2267 }
2268}
2269EXPORT_SYMBOL(netif_device_detach);
2270
2271/**
2272 * netif_device_attach - mark device as attached
2273 * @dev: network device
2274 *
2275 * Mark device as attached from system and restart if needed.
2276 */
2277void netif_device_attach(struct net_device *dev)
2278{
2279 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2280 netif_running(dev)) {
2281 netif_tx_wake_all_queues(dev);
2282 __netdev_watchdog_up(dev);
2283 }
2284}
2285EXPORT_SYMBOL(netif_device_attach);
2286
2287static void skb_warn_bad_offload(const struct sk_buff *skb)
2288{
2289 static const netdev_features_t null_features = 0;
2290 struct net_device *dev = skb->dev;
2291 const char *driver = "";
2292
2293 if (!net_ratelimit())
2294 return;
2295
2296 if (dev && dev->dev.parent)
2297 driver = dev_driver_string(dev->dev.parent);
2298
2299 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2300 "gso_type=%d ip_summed=%d\n",
2301 driver, dev ? &dev->features : &null_features,
2302 skb->sk ? &skb->sk->sk_route_caps : &null_features,
2303 skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2304 skb_shinfo(skb)->gso_type, skb->ip_summed);
2305}
2306
2307/*
2308 * Invalidate hardware checksum when packet is to be mangled, and
2309 * complete checksum manually on outgoing path.
2310 */
2311int skb_checksum_help(struct sk_buff *skb)
2312{
2313 __wsum csum;
2314 int ret = 0, offset;
2315
2316 if (skb->ip_summed == CHECKSUM_COMPLETE)
2317 goto out_set_summed;
2318
2319 if (unlikely(skb_shinfo(skb)->gso_size)) {
2320 skb_warn_bad_offload(skb);
2321 return -EINVAL;
2322 }
2323
2324 /* Before computing a checksum, we should make sure no frag could
2325 * be modified by an external entity : checksum could be wrong.
2326 */
2327 if (skb_has_shared_frag(skb)) {
2328 ret = __skb_linearize(skb);
2329 if (ret)
2330 goto out;
2331 }
2332
2333 offset = skb_checksum_start_offset(skb);
2334 BUG_ON(offset >= skb_headlen(skb));
2335 csum = skb_checksum(skb, offset, skb->len - offset, 0);
2336
2337 offset += skb->csum_offset;
2338 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2339
2340 if (skb_cloned(skb) &&
2341 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2342 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2343 if (ret)
2344 goto out;
2345 }
2346
2347 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2348out_set_summed:
2349 skb->ip_summed = CHECKSUM_NONE;
2350out:
2351 return ret;
2352}
2353EXPORT_SYMBOL(skb_checksum_help);
2354
2355__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2356{
2357 unsigned int vlan_depth = skb->mac_len;
2358 __be16 type = skb->protocol;
2359
2360 /* Tunnel gso handlers can set protocol to ethernet. */
2361 if (type == htons(ETH_P_TEB)) {
2362 struct ethhdr *eth;
2363
2364 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2365 return 0;
2366
2367 eth = (struct ethhdr *)skb_mac_header(skb);
2368 type = eth->h_proto;
2369 }
2370
2371 /* if skb->protocol is 802.1Q/AD then the header should already be
2372 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
2373 * ETH_HLEN otherwise
2374 */
2375 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) {
2376 if (vlan_depth) {
2377 if (WARN_ON(vlan_depth < VLAN_HLEN))
2378 return 0;
2379 vlan_depth -= VLAN_HLEN;
2380 } else {
2381 vlan_depth = ETH_HLEN;
2382 }
2383 do {
2384 struct vlan_hdr *vh;
2385
2386 if (unlikely(!pskb_may_pull(skb,
2387 vlan_depth + VLAN_HLEN)))
2388 return 0;
2389
2390 vh = (struct vlan_hdr *)(skb->data + vlan_depth);
2391 type = vh->h_vlan_encapsulated_proto;
2392 vlan_depth += VLAN_HLEN;
2393 } while (type == htons(ETH_P_8021Q) ||
2394 type == htons(ETH_P_8021AD));
2395 }
2396
2397 *depth = vlan_depth;
2398
2399 return type;
2400}
2401
2402/**
2403 * skb_mac_gso_segment - mac layer segmentation handler.
2404 * @skb: buffer to segment
2405 * @features: features for the output path (see dev->features)
2406 */
2407struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2408 netdev_features_t features)
2409{
2410 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2411 struct packet_offload *ptype;
2412 int vlan_depth = skb->mac_len;
2413 __be16 type = skb_network_protocol(skb, &vlan_depth);
2414
2415 if (unlikely(!type))
2416 return ERR_PTR(-EINVAL);
2417
2418 __skb_pull(skb, vlan_depth);
2419
2420 rcu_read_lock();
2421 list_for_each_entry_rcu(ptype, &offload_base, list) {
2422 if (ptype->type == type && ptype->callbacks.gso_segment) {
2423 segs = ptype->callbacks.gso_segment(skb, features);
2424 break;
2425 }
2426 }
2427 rcu_read_unlock();
2428
2429 __skb_push(skb, skb->data - skb_mac_header(skb));
2430
2431 return segs;
2432}
2433EXPORT_SYMBOL(skb_mac_gso_segment);
2434
2435
2436/* openvswitch calls this on rx path, so we need a different check.
2437 */
2438static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2439{
2440 if (tx_path)
2441 return skb->ip_summed != CHECKSUM_PARTIAL;
2442 else
2443 return skb->ip_summed == CHECKSUM_NONE;
2444}
2445
2446/**
2447 * __skb_gso_segment - Perform segmentation on skb.
2448 * @skb: buffer to segment
2449 * @features: features for the output path (see dev->features)
2450 * @tx_path: whether it is called in TX path
2451 *
2452 * This function segments the given skb and returns a list of segments.
2453 *
2454 * It may return NULL if the skb requires no segmentation. This is
2455 * only possible when GSO is used for verifying header integrity.
2456 */
2457struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2458 netdev_features_t features, bool tx_path)
2459{
2460 if (unlikely(skb_needs_check(skb, tx_path))) {
2461 int err;
2462
2463 skb_warn_bad_offload(skb);
2464
2465 err = skb_cow_head(skb, 0);
2466 if (err < 0)
2467 return ERR_PTR(err);
2468 }
2469
2470 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2471 SKB_GSO_CB(skb)->encap_level = 0;
2472
2473 skb_reset_mac_header(skb);
2474 skb_reset_mac_len(skb);
2475
2476 return skb_mac_gso_segment(skb, features);
2477}
2478EXPORT_SYMBOL(__skb_gso_segment);
2479
2480/* Take action when hardware reception checksum errors are detected. */
2481#ifdef CONFIG_BUG
2482void netdev_rx_csum_fault(struct net_device *dev)
2483{
2484 if (net_ratelimit()) {
2485 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2486 dump_stack();
2487 }
2488}
2489EXPORT_SYMBOL(netdev_rx_csum_fault);
2490#endif
2491
2492/* Actually, we should eliminate this check as soon as we know, that:
2493 * 1. IOMMU is present and allows to map all the memory.
2494 * 2. No high memory really exists on this machine.
2495 */
2496
2497static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2498{
2499#ifdef CONFIG_HIGHMEM
2500 int i;
2501 if (!(dev->features & NETIF_F_HIGHDMA)) {
2502 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2503 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2504 if (PageHighMem(skb_frag_page(frag)))
2505 return 1;
2506 }
2507 }
2508
2509 if (PCI_DMA_BUS_IS_PHYS) {
2510 struct device *pdev = dev->dev.parent;
2511
2512 if (!pdev)
2513 return 0;
2514 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2515 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2516 dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2517 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2518 return 1;
2519 }
2520 }
2521#endif
2522 return 0;
2523}
2524
2525/* If MPLS offload request, verify we are testing hardware MPLS features
2526 * instead of standard features for the netdev.
2527 */
2528#ifdef CONFIG_NET_MPLS_GSO
2529static netdev_features_t net_mpls_features(struct sk_buff *skb,
2530 netdev_features_t features,
2531 __be16 type)
2532{
2533 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC))
2534 features &= skb->dev->mpls_features;
2535
2536 return features;
2537}
2538#else
2539static netdev_features_t net_mpls_features(struct sk_buff *skb,
2540 netdev_features_t features,
2541 __be16 type)
2542{
2543 return features;
2544}
2545#endif
2546
2547static netdev_features_t harmonize_features(struct sk_buff *skb,
2548 netdev_features_t features)
2549{
2550 int tmp;
2551 __be16 type;
2552
2553 type = skb_network_protocol(skb, &tmp);
2554 features = net_mpls_features(skb, features, type);
2555
2556 if (skb->ip_summed != CHECKSUM_NONE &&
2557 !can_checksum_protocol(features, type)) {
2558 features &= ~NETIF_F_ALL_CSUM;
2559 } else if (illegal_highdma(skb->dev, skb)) {
2560 features &= ~NETIF_F_SG;
2561 }
2562
2563 return features;
2564}
2565
2566netdev_features_t netif_skb_features(struct sk_buff *skb)
2567{
2568 const struct net_device *dev = skb->dev;
2569 netdev_features_t features = dev->features;
2570 u16 gso_segs = skb_shinfo(skb)->gso_segs;
2571 __be16 protocol = skb->protocol;
2572
2573 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2574 features &= ~NETIF_F_GSO_MASK;
2575
2576 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) {
2577 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2578 protocol = veh->h_vlan_encapsulated_proto;
2579 } else if (!vlan_tx_tag_present(skb)) {
2580 return harmonize_features(skb, features);
2581 }
2582
2583 features = netdev_intersect_features(features,
2584 dev->vlan_features |
2585 NETIF_F_HW_VLAN_CTAG_TX |
2586 NETIF_F_HW_VLAN_STAG_TX);
2587
2588 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD))
2589 features = netdev_intersect_features(features,
2590 NETIF_F_SG |
2591 NETIF_F_HIGHDMA |
2592 NETIF_F_FRAGLIST |
2593 NETIF_F_GEN_CSUM |
2594 NETIF_F_HW_VLAN_CTAG_TX |
2595 NETIF_F_HW_VLAN_STAG_TX);
2596
2597 return harmonize_features(skb, features);
2598}
2599EXPORT_SYMBOL(netif_skb_features);
2600
2601static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2602 struct netdev_queue *txq, bool more)
2603{
2604 unsigned int len;
2605 int rc;
2606
2607 if (!list_empty(&ptype_all))
2608 dev_queue_xmit_nit(skb, dev);
2609
2610 len = skb->len;
2611 trace_net_dev_start_xmit(skb, dev);
2612 rc = netdev_start_xmit(skb, dev, txq, more);
2613 trace_net_dev_xmit(skb, rc, dev, len);
2614
2615 return rc;
2616}
2617
2618struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2619 struct netdev_queue *txq, int *ret)
2620{
2621 struct sk_buff *skb = first;
2622 int rc = NETDEV_TX_OK;
2623
2624 while (skb) {
2625 struct sk_buff *next = skb->next;
2626
2627 skb->next = NULL;
2628 rc = xmit_one(skb, dev, txq, next != NULL);
2629 if (unlikely(!dev_xmit_complete(rc))) {
2630 skb->next = next;
2631 goto out;
2632 }
2633
2634 skb = next;
2635 if (netif_xmit_stopped(txq) && skb) {
2636 rc = NETDEV_TX_BUSY;
2637 break;
2638 }
2639 }
2640
2641out:
2642 *ret = rc;
2643 return skb;
2644}
2645
2646static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2647 netdev_features_t features)
2648{
2649 if (vlan_tx_tag_present(skb) &&
2650 !vlan_hw_offload_capable(features, skb->vlan_proto)) {
2651 skb = __vlan_put_tag(skb, skb->vlan_proto,
2652 vlan_tx_tag_get(skb));
2653 if (skb)
2654 skb->vlan_tci = 0;
2655 }
2656 return skb;
2657}
2658
2659static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2660{
2661 netdev_features_t features;
2662
2663 if (skb->next)
2664 return skb;
2665
2666 features = netif_skb_features(skb);
2667 skb = validate_xmit_vlan(skb, features);
2668 if (unlikely(!skb))
2669 goto out_null;
2670
2671 /* If encapsulation offload request, verify we are testing
2672 * hardware encapsulation features instead of standard
2673 * features for the netdev
2674 */
2675 if (skb->encapsulation)
2676 features &= dev->hw_enc_features;
2677
2678 if (netif_needs_gso(dev, skb, features)) {
2679 struct sk_buff *segs;
2680
2681 segs = skb_gso_segment(skb, features);
2682 if (IS_ERR(segs)) {
2683 segs = NULL;
2684 } else if (segs) {
2685 consume_skb(skb);
2686 skb = segs;
2687 }
2688 } else {
2689 if (skb_needs_linearize(skb, features) &&
2690 __skb_linearize(skb))
2691 goto out_kfree_skb;
2692
2693 /* If packet is not checksummed and device does not
2694 * support checksumming for this protocol, complete
2695 * checksumming here.
2696 */
2697 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2698 if (skb->encapsulation)
2699 skb_set_inner_transport_header(skb,
2700 skb_checksum_start_offset(skb));
2701 else
2702 skb_set_transport_header(skb,
2703 skb_checksum_start_offset(skb));
2704 if (!(features & NETIF_F_ALL_CSUM) &&
2705 skb_checksum_help(skb))
2706 goto out_kfree_skb;
2707 }
2708 }
2709
2710 return skb;
2711
2712out_kfree_skb:
2713 kfree_skb(skb);
2714out_null:
2715 return NULL;
2716}
2717
2718struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2719{
2720 struct sk_buff *next, *head = NULL, *tail;
2721
2722 for (; skb != NULL; skb = next) {
2723 next = skb->next;
2724 skb->next = NULL;
2725
2726 /* in case skb wont be segmented, point to itself */
2727 skb->prev = skb;
2728
2729 skb = validate_xmit_skb(skb, dev);
2730 if (!skb)
2731 continue;
2732
2733 if (!head)
2734 head = skb;
2735 else
2736 tail->next = skb;
2737 /* If skb was segmented, skb->prev points to
2738 * the last segment. If not, it still contains skb.
2739 */
2740 tail = skb->prev;
2741 }
2742 return head;
2743}
2744
2745static void qdisc_pkt_len_init(struct sk_buff *skb)
2746{
2747 const struct skb_shared_info *shinfo = skb_shinfo(skb);
2748
2749 qdisc_skb_cb(skb)->pkt_len = skb->len;
2750
2751 /* To get more precise estimation of bytes sent on wire,
2752 * we add to pkt_len the headers size of all segments
2753 */
2754 if (shinfo->gso_size) {
2755 unsigned int hdr_len;
2756 u16 gso_segs = shinfo->gso_segs;
2757
2758 /* mac layer + network layer */
2759 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2760
2761 /* + transport layer */
2762 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2763 hdr_len += tcp_hdrlen(skb);
2764 else
2765 hdr_len += sizeof(struct udphdr);
2766
2767 if (shinfo->gso_type & SKB_GSO_DODGY)
2768 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2769 shinfo->gso_size);
2770
2771 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2772 }
2773}
2774
2775static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2776 struct net_device *dev,
2777 struct netdev_queue *txq)
2778{
2779 spinlock_t *root_lock = qdisc_lock(q);
2780 bool contended;
2781 int rc;
2782
2783 qdisc_pkt_len_init(skb);
2784 qdisc_calculate_pkt_len(skb, q);
2785 /*
2786 * Heuristic to force contended enqueues to serialize on a
2787 * separate lock before trying to get qdisc main lock.
2788 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2789 * often and dequeue packets faster.
2790 */
2791 contended = qdisc_is_running(q);
2792 if (unlikely(contended))
2793 spin_lock(&q->busylock);
2794
2795 spin_lock(root_lock);
2796 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2797 kfree_skb(skb);
2798 rc = NET_XMIT_DROP;
2799 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2800 qdisc_run_begin(q)) {
2801 /*
2802 * This is a work-conserving queue; there are no old skbs
2803 * waiting to be sent out; and the qdisc is not running -
2804 * xmit the skb directly.
2805 */
2806
2807 qdisc_bstats_update(q, skb);
2808
2809 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2810 if (unlikely(contended)) {
2811 spin_unlock(&q->busylock);
2812 contended = false;
2813 }
2814 __qdisc_run(q);
2815 } else
2816 qdisc_run_end(q);
2817
2818 rc = NET_XMIT_SUCCESS;
2819 } else {
2820 rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2821 if (qdisc_run_begin(q)) {
2822 if (unlikely(contended)) {
2823 spin_unlock(&q->busylock);
2824 contended = false;
2825 }
2826 __qdisc_run(q);
2827 }
2828 }
2829 spin_unlock(root_lock);
2830 if (unlikely(contended))
2831 spin_unlock(&q->busylock);
2832 return rc;
2833}
2834
2835#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2836static void skb_update_prio(struct sk_buff *skb)
2837{
2838 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2839
2840 if (!skb->priority && skb->sk && map) {
2841 unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2842
2843 if (prioidx < map->priomap_len)
2844 skb->priority = map->priomap[prioidx];
2845 }
2846}
2847#else
2848#define skb_update_prio(skb)
2849#endif
2850
2851static DEFINE_PER_CPU(int, xmit_recursion);
2852#define RECURSION_LIMIT 10
2853
2854/**
2855 * dev_loopback_xmit - loop back @skb
2856 * @skb: buffer to transmit
2857 */
2858int dev_loopback_xmit(struct sk_buff *skb)
2859{
2860 skb_reset_mac_header(skb);
2861 __skb_pull(skb, skb_network_offset(skb));
2862 skb->pkt_type = PACKET_LOOPBACK;
2863 skb->ip_summed = CHECKSUM_UNNECESSARY;
2864 WARN_ON(!skb_dst(skb));
2865 skb_dst_force(skb);
2866 netif_rx_ni(skb);
2867 return 0;
2868}
2869EXPORT_SYMBOL(dev_loopback_xmit);
2870
2871/**
2872 * __dev_queue_xmit - transmit a buffer
2873 * @skb: buffer to transmit
2874 * @accel_priv: private data used for L2 forwarding offload
2875 *
2876 * Queue a buffer for transmission to a network device. The caller must
2877 * have set the device and priority and built the buffer before calling
2878 * this function. The function can be called from an interrupt.
2879 *
2880 * A negative errno code is returned on a failure. A success does not
2881 * guarantee the frame will be transmitted as it may be dropped due
2882 * to congestion or traffic shaping.
2883 *
2884 * -----------------------------------------------------------------------------------
2885 * I notice this method can also return errors from the queue disciplines,
2886 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2887 * be positive.
2888 *
2889 * Regardless of the return value, the skb is consumed, so it is currently
2890 * difficult to retry a send to this method. (You can bump the ref count
2891 * before sending to hold a reference for retry if you are careful.)
2892 *
2893 * When calling this method, interrupts MUST be enabled. This is because
2894 * the BH enable code must have IRQs enabled so that it will not deadlock.
2895 * --BLG
2896 */
2897static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
2898{
2899 struct net_device *dev = skb->dev;
2900 struct netdev_queue *txq;
2901 struct Qdisc *q;
2902 int rc = -ENOMEM;
2903
2904 skb_reset_mac_header(skb);
2905
2906 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
2907 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
2908
2909 /* Disable soft irqs for various locks below. Also
2910 * stops preemption for RCU.
2911 */
2912 rcu_read_lock_bh();
2913
2914 skb_update_prio(skb);
2915
2916 /* If device/qdisc don't need skb->dst, release it right now while
2917 * its hot in this cpu cache.
2918 */
2919 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2920 skb_dst_drop(skb);
2921 else
2922 skb_dst_force(skb);
2923
2924 txq = netdev_pick_tx(dev, skb, accel_priv);
2925 q = rcu_dereference_bh(txq->qdisc);
2926
2927#ifdef CONFIG_NET_CLS_ACT
2928 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2929#endif
2930 trace_net_dev_queue(skb);
2931 if (q->enqueue) {
2932 rc = __dev_xmit_skb(skb, q, dev, txq);
2933 goto out;
2934 }
2935
2936 /* The device has no queue. Common case for software devices:
2937 loopback, all the sorts of tunnels...
2938
2939 Really, it is unlikely that netif_tx_lock protection is necessary
2940 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2941 counters.)
2942 However, it is possible, that they rely on protection
2943 made by us here.
2944
2945 Check this and shot the lock. It is not prone from deadlocks.
2946 Either shot noqueue qdisc, it is even simpler 8)
2947 */
2948 if (dev->flags & IFF_UP) {
2949 int cpu = smp_processor_id(); /* ok because BHs are off */
2950
2951 if (txq->xmit_lock_owner != cpu) {
2952
2953 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2954 goto recursion_alert;
2955
2956 skb = validate_xmit_skb(skb, dev);
2957 if (!skb)
2958 goto drop;
2959
2960 HARD_TX_LOCK(dev, txq, cpu);
2961
2962 if (!netif_xmit_stopped(txq)) {
2963 __this_cpu_inc(xmit_recursion);
2964 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
2965 __this_cpu_dec(xmit_recursion);
2966 if (dev_xmit_complete(rc)) {
2967 HARD_TX_UNLOCK(dev, txq);
2968 goto out;
2969 }
2970 }
2971 HARD_TX_UNLOCK(dev, txq);
2972 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
2973 dev->name);
2974 } else {
2975 /* Recursion is detected! It is possible,
2976 * unfortunately
2977 */
2978recursion_alert:
2979 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
2980 dev->name);
2981 }
2982 }
2983
2984 rc = -ENETDOWN;
2985drop:
2986 rcu_read_unlock_bh();
2987
2988 atomic_long_inc(&dev->tx_dropped);
2989 kfree_skb_list(skb);
2990 return rc;
2991out:
2992 rcu_read_unlock_bh();
2993 return rc;
2994}
2995
2996int dev_queue_xmit(struct sk_buff *skb)
2997{
2998 return __dev_queue_xmit(skb, NULL);
2999}
3000EXPORT_SYMBOL(dev_queue_xmit);
3001
3002int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3003{
3004 return __dev_queue_xmit(skb, accel_priv);
3005}
3006EXPORT_SYMBOL(dev_queue_xmit_accel);
3007
3008
3009/*=======================================================================
3010 Receiver routines
3011 =======================================================================*/
3012
3013int netdev_max_backlog __read_mostly = 1000;
3014EXPORT_SYMBOL(netdev_max_backlog);
3015
3016int netdev_tstamp_prequeue __read_mostly = 1;
3017int netdev_budget __read_mostly = 300;
3018int weight_p __read_mostly = 64; /* old backlog weight */
3019
3020/* Called with irq disabled */
3021static inline void ____napi_schedule(struct softnet_data *sd,
3022 struct napi_struct *napi)
3023{
3024 list_add_tail(&napi->poll_list, &sd->poll_list);
3025 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3026}
3027
3028#ifdef CONFIG_RPS
3029
3030/* One global table that all flow-based protocols share. */
3031struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3032EXPORT_SYMBOL(rps_sock_flow_table);
3033
3034struct static_key rps_needed __read_mostly;
3035
3036static struct rps_dev_flow *
3037set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3038 struct rps_dev_flow *rflow, u16 next_cpu)
3039{
3040 if (next_cpu != RPS_NO_CPU) {
3041#ifdef CONFIG_RFS_ACCEL
3042 struct netdev_rx_queue *rxqueue;
3043 struct rps_dev_flow_table *flow_table;
3044 struct rps_dev_flow *old_rflow;
3045 u32 flow_id;
3046 u16 rxq_index;
3047 int rc;
3048
3049 /* Should we steer this flow to a different hardware queue? */
3050 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3051 !(dev->features & NETIF_F_NTUPLE))
3052 goto out;
3053 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3054 if (rxq_index == skb_get_rx_queue(skb))
3055 goto out;
3056
3057 rxqueue = dev->_rx + rxq_index;
3058 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3059 if (!flow_table)
3060 goto out;
3061 flow_id = skb_get_hash(skb) & flow_table->mask;
3062 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3063 rxq_index, flow_id);
3064 if (rc < 0)
3065 goto out;
3066 old_rflow = rflow;
3067 rflow = &flow_table->flows[flow_id];
3068 rflow->filter = rc;
3069 if (old_rflow->filter == rflow->filter)
3070 old_rflow->filter = RPS_NO_FILTER;
3071 out:
3072#endif
3073 rflow->last_qtail =
3074 per_cpu(softnet_data, next_cpu).input_queue_head;
3075 }
3076
3077 rflow->cpu = next_cpu;
3078 return rflow;
3079}
3080
3081/*
3082 * get_rps_cpu is called from netif_receive_skb and returns the target
3083 * CPU from the RPS map of the receiving queue for a given skb.
3084 * rcu_read_lock must be held on entry.
3085 */
3086static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3087 struct rps_dev_flow **rflowp)
3088{
3089 struct netdev_rx_queue *rxqueue;
3090 struct rps_map *map;
3091 struct rps_dev_flow_table *flow_table;
3092 struct rps_sock_flow_table *sock_flow_table;
3093 int cpu = -1;
3094 u16 tcpu;
3095 u32 hash;
3096
3097 if (skb_rx_queue_recorded(skb)) {
3098 u16 index = skb_get_rx_queue(skb);
3099 if (unlikely(index >= dev->real_num_rx_queues)) {
3100 WARN_ONCE(dev->real_num_rx_queues > 1,
3101 "%s received packet on queue %u, but number "
3102 "of RX queues is %u\n",
3103 dev->name, index, dev->real_num_rx_queues);
3104 goto done;
3105 }
3106 rxqueue = dev->_rx + index;
3107 } else
3108 rxqueue = dev->_rx;
3109
3110 map = rcu_dereference(rxqueue->rps_map);
3111 if (map) {
3112 if (map->len == 1 &&
3113 !rcu_access_pointer(rxqueue->rps_flow_table)) {
3114 tcpu = map->cpus[0];
3115 if (cpu_online(tcpu))
3116 cpu = tcpu;
3117 goto done;
3118 }
3119 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) {
3120 goto done;
3121 }
3122
3123 skb_reset_network_header(skb);
3124 hash = skb_get_hash(skb);
3125 if (!hash)
3126 goto done;
3127
3128 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3129 sock_flow_table = rcu_dereference(rps_sock_flow_table);
3130 if (flow_table && sock_flow_table) {
3131 u16 next_cpu;
3132 struct rps_dev_flow *rflow;
3133
3134 rflow = &flow_table->flows[hash & flow_table->mask];
3135 tcpu = rflow->cpu;
3136
3137 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask];
3138
3139 /*
3140 * If the desired CPU (where last recvmsg was done) is
3141 * different from current CPU (one in the rx-queue flow
3142 * table entry), switch if one of the following holds:
3143 * - Current CPU is unset (equal to RPS_NO_CPU).
3144 * - Current CPU is offline.
3145 * - The current CPU's queue tail has advanced beyond the
3146 * last packet that was enqueued using this table entry.
3147 * This guarantees that all previous packets for the flow
3148 * have been dequeued, thus preserving in order delivery.
3149 */
3150 if (unlikely(tcpu != next_cpu) &&
3151 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
3152 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3153 rflow->last_qtail)) >= 0)) {
3154 tcpu = next_cpu;
3155 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3156 }
3157
3158 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
3159 *rflowp = rflow;
3160 cpu = tcpu;
3161 goto done;
3162 }
3163 }
3164
3165 if (map) {
3166 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3167 if (cpu_online(tcpu)) {
3168 cpu = tcpu;
3169 goto done;
3170 }
3171 }
3172
3173done:
3174 return cpu;
3175}
3176
3177#ifdef CONFIG_RFS_ACCEL
3178
3179/**
3180 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3181 * @dev: Device on which the filter was set
3182 * @rxq_index: RX queue index
3183 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3184 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3185 *
3186 * Drivers that implement ndo_rx_flow_steer() should periodically call
3187 * this function for each installed filter and remove the filters for
3188 * which it returns %true.
3189 */
3190bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3191 u32 flow_id, u16 filter_id)
3192{
3193 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3194 struct rps_dev_flow_table *flow_table;
3195 struct rps_dev_flow *rflow;
3196 bool expire = true;
3197 int cpu;
3198
3199 rcu_read_lock();
3200 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3201 if (flow_table && flow_id <= flow_table->mask) {
3202 rflow = &flow_table->flows[flow_id];
3203 cpu = ACCESS_ONCE(rflow->cpu);
3204 if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
3205 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3206 rflow->last_qtail) <
3207 (int)(10 * flow_table->mask)))
3208 expire = false;
3209 }
3210 rcu_read_unlock();
3211 return expire;
3212}
3213EXPORT_SYMBOL(rps_may_expire_flow);
3214
3215#endif /* CONFIG_RFS_ACCEL */
3216
3217/* Called from hardirq (IPI) context */
3218static void rps_trigger_softirq(void *data)
3219{
3220 struct softnet_data *sd = data;
3221
3222 ____napi_schedule(sd, &sd->backlog);
3223 sd->received_rps++;
3224}
3225
3226#endif /* CONFIG_RPS */
3227
3228/*
3229 * Check if this softnet_data structure is another cpu one
3230 * If yes, queue it to our IPI list and return 1
3231 * If no, return 0
3232 */
3233static int rps_ipi_queued(struct softnet_data *sd)
3234{
3235#ifdef CONFIG_RPS
3236 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3237
3238 if (sd != mysd) {
3239 sd->rps_ipi_next = mysd->rps_ipi_list;
3240 mysd->rps_ipi_list = sd;
3241
3242 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3243 return 1;
3244 }
3245#endif /* CONFIG_RPS */
3246 return 0;
3247}
3248
3249#ifdef CONFIG_NET_FLOW_LIMIT
3250int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3251#endif
3252
3253static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3254{
3255#ifdef CONFIG_NET_FLOW_LIMIT
3256 struct sd_flow_limit *fl;
3257 struct softnet_data *sd;
3258 unsigned int old_flow, new_flow;
3259
3260 if (qlen < (netdev_max_backlog >> 1))
3261 return false;
3262
3263 sd = this_cpu_ptr(&softnet_data);
3264
3265 rcu_read_lock();
3266 fl = rcu_dereference(sd->flow_limit);
3267 if (fl) {
3268 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3269 old_flow = fl->history[fl->history_head];
3270 fl->history[fl->history_head] = new_flow;
3271
3272 fl->history_head++;
3273 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3274
3275 if (likely(fl->buckets[old_flow]))
3276 fl->buckets[old_flow]--;
3277
3278 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3279 fl->count++;
3280 rcu_read_unlock();
3281 return true;
3282 }
3283 }
3284 rcu_read_unlock();
3285#endif
3286 return false;
3287}
3288
3289/*
3290 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3291 * queue (may be a remote CPU queue).
3292 */
3293static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3294 unsigned int *qtail)
3295{
3296 struct softnet_data *sd;
3297 unsigned long flags;
3298 unsigned int qlen;
3299
3300 sd = &per_cpu(softnet_data, cpu);
3301
3302 local_irq_save(flags);
3303
3304 rps_lock(sd);
3305 qlen = skb_queue_len(&sd->input_pkt_queue);
3306 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3307 if (skb_queue_len(&sd->input_pkt_queue)) {
3308enqueue:
3309 __skb_queue_tail(&sd->input_pkt_queue, skb);
3310 input_queue_tail_incr_save(sd, qtail);
3311 rps_unlock(sd);
3312 local_irq_restore(flags);
3313 return NET_RX_SUCCESS;
3314 }
3315
3316 /* Schedule NAPI for backlog device
3317 * We can use non atomic operation since we own the queue lock
3318 */
3319 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3320 if (!rps_ipi_queued(sd))
3321 ____napi_schedule(sd, &sd->backlog);
3322 }
3323 goto enqueue;
3324 }
3325
3326 sd->dropped++;
3327 rps_unlock(sd);
3328
3329 local_irq_restore(flags);
3330
3331 atomic_long_inc(&skb->dev->rx_dropped);
3332 kfree_skb(skb);
3333 return NET_RX_DROP;
3334}
3335
3336static int netif_rx_internal(struct sk_buff *skb)
3337{
3338 int ret;
3339
3340 net_timestamp_check(netdev_tstamp_prequeue, skb);
3341
3342 trace_netif_rx(skb);
3343#ifdef CONFIG_RPS
3344 if (static_key_false(&rps_needed)) {
3345 struct rps_dev_flow voidflow, *rflow = &voidflow;
3346 int cpu;
3347
3348 preempt_disable();
3349 rcu_read_lock();
3350
3351 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3352 if (cpu < 0)
3353 cpu = smp_processor_id();
3354
3355 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3356
3357 rcu_read_unlock();
3358 preempt_enable();
3359 } else
3360#endif
3361 {
3362 unsigned int qtail;
3363 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3364 put_cpu();
3365 }
3366 return ret;
3367}
3368
3369/**
3370 * netif_rx - post buffer to the network code
3371 * @skb: buffer to post
3372 *
3373 * This function receives a packet from a device driver and queues it for
3374 * the upper (protocol) levels to process. It always succeeds. The buffer
3375 * may be dropped during processing for congestion control or by the
3376 * protocol layers.
3377 *
3378 * return values:
3379 * NET_RX_SUCCESS (no congestion)
3380 * NET_RX_DROP (packet was dropped)
3381 *
3382 */
3383
3384int netif_rx(struct sk_buff *skb)
3385{
3386 trace_netif_rx_entry(skb);
3387
3388 return netif_rx_internal(skb);
3389}
3390EXPORT_SYMBOL(netif_rx);
3391
3392int netif_rx_ni(struct sk_buff *skb)
3393{
3394 int err;
3395
3396 trace_netif_rx_ni_entry(skb);
3397
3398 preempt_disable();
3399 err = netif_rx_internal(skb);
3400 if (local_softirq_pending())
3401 do_softirq();
3402 preempt_enable();
3403
3404 return err;
3405}
3406EXPORT_SYMBOL(netif_rx_ni);
3407
3408static void net_tx_action(struct softirq_action *h)
3409{
3410 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3411
3412 if (sd->completion_queue) {
3413 struct sk_buff *clist;
3414
3415 local_irq_disable();
3416 clist = sd->completion_queue;
3417 sd->completion_queue = NULL;
3418 local_irq_enable();
3419
3420 while (clist) {
3421 struct sk_buff *skb = clist;
3422 clist = clist->next;
3423
3424 WARN_ON(atomic_read(&skb->users));
3425 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3426 trace_consume_skb(skb);
3427 else
3428 trace_kfree_skb(skb, net_tx_action);
3429 __kfree_skb(skb);
3430 }
3431 }
3432
3433 if (sd->output_queue) {
3434 struct Qdisc *head;
3435
3436 local_irq_disable();
3437 head = sd->output_queue;
3438 sd->output_queue = NULL;
3439 sd->output_queue_tailp = &sd->output_queue;
3440 local_irq_enable();
3441
3442 while (head) {
3443 struct Qdisc *q = head;
3444 spinlock_t *root_lock;
3445
3446 head = head->next_sched;
3447
3448 root_lock = qdisc_lock(q);
3449 if (spin_trylock(root_lock)) {
3450 smp_mb__before_atomic();
3451 clear_bit(__QDISC_STATE_SCHED,
3452 &q->state);
3453 qdisc_run(q);
3454 spin_unlock(root_lock);
3455 } else {
3456 if (!test_bit(__QDISC_STATE_DEACTIVATED,
3457 &q->state)) {
3458 __netif_reschedule(q);
3459 } else {
3460 smp_mb__before_atomic();
3461 clear_bit(__QDISC_STATE_SCHED,
3462 &q->state);
3463 }
3464 }
3465 }
3466 }
3467}
3468
3469#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3470 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3471/* This hook is defined here for ATM LANE */
3472int (*br_fdb_test_addr_hook)(struct net_device *dev,
3473 unsigned char *addr) __read_mostly;
3474EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3475#endif
3476
3477#ifdef CONFIG_NET_CLS_ACT
3478/* TODO: Maybe we should just force sch_ingress to be compiled in
3479 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
3480 * a compare and 2 stores extra right now if we dont have it on
3481 * but have CONFIG_NET_CLS_ACT
3482 * NOTE: This doesn't stop any functionality; if you dont have
3483 * the ingress scheduler, you just can't add policies on ingress.
3484 *
3485 */
3486static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
3487{
3488 struct net_device *dev = skb->dev;
3489 u32 ttl = G_TC_RTTL(skb->tc_verd);
3490 int result = TC_ACT_OK;
3491 struct Qdisc *q;
3492
3493 if (unlikely(MAX_RED_LOOP < ttl++)) {
3494 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n",
3495 skb->skb_iif, dev->ifindex);
3496 return TC_ACT_SHOT;
3497 }
3498
3499 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
3500 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3501
3502 q = rcu_dereference(rxq->qdisc);
3503 if (q != &noop_qdisc) {
3504 spin_lock(qdisc_lock(q));
3505 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
3506 result = qdisc_enqueue_root(skb, q);
3507 spin_unlock(qdisc_lock(q));
3508 }
3509
3510 return result;
3511}
3512
3513static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3514 struct packet_type **pt_prev,
3515 int *ret, struct net_device *orig_dev)
3516{
3517 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
3518
3519 if (!rxq || rcu_access_pointer(rxq->qdisc) == &noop_qdisc)
3520 goto out;
3521
3522 if (*pt_prev) {
3523 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3524 *pt_prev = NULL;
3525 }
3526
3527 switch (ing_filter(skb, rxq)) {
3528 case TC_ACT_SHOT:
3529 case TC_ACT_STOLEN:
3530 kfree_skb(skb);
3531 return NULL;
3532 }
3533
3534out:
3535 skb->tc_verd = 0;
3536 return skb;
3537}
3538#endif
3539
3540/**
3541 * netdev_rx_handler_register - register receive handler
3542 * @dev: device to register a handler for
3543 * @rx_handler: receive handler to register
3544 * @rx_handler_data: data pointer that is used by rx handler
3545 *
3546 * Register a receive handler for a device. This handler will then be
3547 * called from __netif_receive_skb. A negative errno code is returned
3548 * on a failure.
3549 *
3550 * The caller must hold the rtnl_mutex.
3551 *
3552 * For a general description of rx_handler, see enum rx_handler_result.
3553 */
3554int netdev_rx_handler_register(struct net_device *dev,
3555 rx_handler_func_t *rx_handler,
3556 void *rx_handler_data)
3557{
3558 ASSERT_RTNL();
3559
3560 if (dev->rx_handler)
3561 return -EBUSY;
3562
3563 /* Note: rx_handler_data must be set before rx_handler */
3564 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3565 rcu_assign_pointer(dev->rx_handler, rx_handler);
3566
3567 return 0;
3568}
3569EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3570
3571/**
3572 * netdev_rx_handler_unregister - unregister receive handler
3573 * @dev: device to unregister a handler from
3574 *
3575 * Unregister a receive handler from a device.
3576 *
3577 * The caller must hold the rtnl_mutex.
3578 */
3579void netdev_rx_handler_unregister(struct net_device *dev)
3580{
3581
3582 ASSERT_RTNL();
3583 RCU_INIT_POINTER(dev->rx_handler, NULL);
3584 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3585 * section has a guarantee to see a non NULL rx_handler_data
3586 * as well.
3587 */
3588 synchronize_net();
3589 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3590}
3591EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3592
3593/*
3594 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3595 * the special handling of PFMEMALLOC skbs.
3596 */
3597static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3598{
3599 switch (skb->protocol) {
3600 case htons(ETH_P_ARP):
3601 case htons(ETH_P_IP):
3602 case htons(ETH_P_IPV6):
3603 case htons(ETH_P_8021Q):
3604 case htons(ETH_P_8021AD):
3605 return true;
3606 default:
3607 return false;
3608 }
3609}
3610
3611static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3612{
3613 struct packet_type *ptype, *pt_prev;
3614 rx_handler_func_t *rx_handler;
3615 struct net_device *orig_dev;
3616 struct net_device *null_or_dev;
3617 bool deliver_exact = false;
3618 int ret = NET_RX_DROP;
3619 __be16 type;
3620
3621 net_timestamp_check(!netdev_tstamp_prequeue, skb);
3622
3623 trace_netif_receive_skb(skb);
3624
3625 orig_dev = skb->dev;
3626
3627 skb_reset_network_header(skb);
3628 if (!skb_transport_header_was_set(skb))
3629 skb_reset_transport_header(skb);
3630 skb_reset_mac_len(skb);
3631
3632 pt_prev = NULL;
3633
3634 rcu_read_lock();
3635
3636another_round:
3637 skb->skb_iif = skb->dev->ifindex;
3638
3639 __this_cpu_inc(softnet_data.processed);
3640
3641 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3642 skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3643 skb = skb_vlan_untag(skb);
3644 if (unlikely(!skb))
3645 goto unlock;
3646 }
3647
3648#ifdef CONFIG_NET_CLS_ACT
3649 if (skb->tc_verd & TC_NCLS) {
3650 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3651 goto ncls;
3652 }
3653#endif
3654
3655 if (pfmemalloc)
3656 goto skip_taps;
3657
3658 list_for_each_entry_rcu(ptype, &ptype_all, list) {
3659 if (!ptype->dev || ptype->dev == skb->dev) {
3660 if (pt_prev)
3661 ret = deliver_skb(skb, pt_prev, orig_dev);
3662 pt_prev = ptype;
3663 }
3664 }
3665
3666skip_taps:
3667#ifdef CONFIG_NET_CLS_ACT
3668 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3669 if (!skb)
3670 goto unlock;
3671ncls:
3672#endif
3673
3674 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3675 goto drop;
3676
3677 if (vlan_tx_tag_present(skb)) {
3678 if (pt_prev) {
3679 ret = deliver_skb(skb, pt_prev, orig_dev);
3680 pt_prev = NULL;
3681 }
3682 if (vlan_do_receive(&skb))
3683 goto another_round;
3684 else if (unlikely(!skb))
3685 goto unlock;
3686 }
3687
3688 rx_handler = rcu_dereference(skb->dev->rx_handler);
3689 if (rx_handler) {
3690 if (pt_prev) {
3691 ret = deliver_skb(skb, pt_prev, orig_dev);
3692 pt_prev = NULL;
3693 }
3694 switch (rx_handler(&skb)) {
3695 case RX_HANDLER_CONSUMED:
3696 ret = NET_RX_SUCCESS;
3697 goto unlock;
3698 case RX_HANDLER_ANOTHER:
3699 goto another_round;
3700 case RX_HANDLER_EXACT:
3701 deliver_exact = true;
3702 case RX_HANDLER_PASS:
3703 break;
3704 default:
3705 BUG();
3706 }
3707 }
3708
3709 if (unlikely(vlan_tx_tag_present(skb))) {
3710 if (vlan_tx_tag_get_id(skb))
3711 skb->pkt_type = PACKET_OTHERHOST;
3712 /* Note: we might in the future use prio bits
3713 * and set skb->priority like in vlan_do_receive()
3714 * For the time being, just ignore Priority Code Point
3715 */
3716 skb->vlan_tci = 0;
3717 }
3718
3719 /* deliver only exact match when indicated */
3720 null_or_dev = deliver_exact ? skb->dev : NULL;
3721
3722 type = skb->protocol;
3723 list_for_each_entry_rcu(ptype,
3724 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3725 if (ptype->type == type &&
3726 (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3727 ptype->dev == orig_dev)) {
3728 if (pt_prev)
3729 ret = deliver_skb(skb, pt_prev, orig_dev);
3730 pt_prev = ptype;
3731 }
3732 }
3733
3734 if (pt_prev) {
3735 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3736 goto drop;
3737 else
3738 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3739 } else {
3740drop:
3741 atomic_long_inc(&skb->dev->rx_dropped);
3742 kfree_skb(skb);
3743 /* Jamal, now you will not able to escape explaining
3744 * me how you were going to use this. :-)
3745 */
3746 ret = NET_RX_DROP;
3747 }
3748
3749unlock:
3750 rcu_read_unlock();
3751 return ret;
3752}
3753
3754static int __netif_receive_skb(struct sk_buff *skb)
3755{
3756 int ret;
3757
3758 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3759 unsigned long pflags = current->flags;
3760
3761 /*
3762 * PFMEMALLOC skbs are special, they should
3763 * - be delivered to SOCK_MEMALLOC sockets only
3764 * - stay away from userspace
3765 * - have bounded memory usage
3766 *
3767 * Use PF_MEMALLOC as this saves us from propagating the allocation
3768 * context down to all allocation sites.
3769 */
3770 current->flags |= PF_MEMALLOC;
3771 ret = __netif_receive_skb_core(skb, true);
3772 tsk_restore_flags(current, pflags, PF_MEMALLOC);
3773 } else
3774 ret = __netif_receive_skb_core(skb, false);
3775
3776 return ret;
3777}
3778
3779static int netif_receive_skb_internal(struct sk_buff *skb)
3780{
3781 net_timestamp_check(netdev_tstamp_prequeue, skb);
3782
3783 if (skb_defer_rx_timestamp(skb))
3784 return NET_RX_SUCCESS;
3785
3786#ifdef CONFIG_RPS
3787 if (static_key_false(&rps_needed)) {
3788 struct rps_dev_flow voidflow, *rflow = &voidflow;
3789 int cpu, ret;
3790
3791 rcu_read_lock();
3792
3793 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3794
3795 if (cpu >= 0) {
3796 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3797 rcu_read_unlock();
3798 return ret;
3799 }
3800 rcu_read_unlock();
3801 }
3802#endif
3803 return __netif_receive_skb(skb);
3804}
3805
3806/**
3807 * netif_receive_skb - process receive buffer from network
3808 * @skb: buffer to process
3809 *
3810 * netif_receive_skb() is the main receive data processing function.
3811 * It always succeeds. The buffer may be dropped during processing
3812 * for congestion control or by the protocol layers.
3813 *
3814 * This function may only be called from softirq context and interrupts
3815 * should be enabled.
3816 *
3817 * Return values (usually ignored):
3818 * NET_RX_SUCCESS: no congestion
3819 * NET_RX_DROP: packet was dropped
3820 */
3821int netif_receive_skb(struct sk_buff *skb)
3822{
3823 trace_netif_receive_skb_entry(skb);
3824
3825 return netif_receive_skb_internal(skb);
3826}
3827EXPORT_SYMBOL(netif_receive_skb);
3828
3829/* Network device is going away, flush any packets still pending
3830 * Called with irqs disabled.
3831 */
3832static void flush_backlog(void *arg)
3833{
3834 struct net_device *dev = arg;
3835 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3836 struct sk_buff *skb, *tmp;
3837
3838 rps_lock(sd);
3839 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3840 if (skb->dev == dev) {
3841 __skb_unlink(skb, &sd->input_pkt_queue);
3842 kfree_skb(skb);
3843 input_queue_head_incr(sd);
3844 }
3845 }
3846 rps_unlock(sd);
3847
3848 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3849 if (skb->dev == dev) {
3850 __skb_unlink(skb, &sd->process_queue);
3851 kfree_skb(skb);
3852 input_queue_head_incr(sd);
3853 }
3854 }
3855}
3856
3857static int napi_gro_complete(struct sk_buff *skb)
3858{
3859 struct packet_offload *ptype;
3860 __be16 type = skb->protocol;
3861 struct list_head *head = &offload_base;
3862 int err = -ENOENT;
3863
3864 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
3865
3866 if (NAPI_GRO_CB(skb)->count == 1) {
3867 skb_shinfo(skb)->gso_size = 0;
3868 goto out;
3869 }
3870
3871 rcu_read_lock();
3872 list_for_each_entry_rcu(ptype, head, list) {
3873 if (ptype->type != type || !ptype->callbacks.gro_complete)
3874 continue;
3875
3876 err = ptype->callbacks.gro_complete(skb, 0);
3877 break;
3878 }
3879 rcu_read_unlock();
3880
3881 if (err) {
3882 WARN_ON(&ptype->list == head);
3883 kfree_skb(skb);
3884 return NET_RX_SUCCESS;
3885 }
3886
3887out:
3888 return netif_receive_skb_internal(skb);
3889}
3890
3891/* napi->gro_list contains packets ordered by age.
3892 * youngest packets at the head of it.
3893 * Complete skbs in reverse order to reduce latencies.
3894 */
3895void napi_gro_flush(struct napi_struct *napi, bool flush_old)
3896{
3897 struct sk_buff *skb, *prev = NULL;
3898
3899 /* scan list and build reverse chain */
3900 for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
3901 skb->prev = prev;
3902 prev = skb;
3903 }
3904
3905 for (skb = prev; skb; skb = prev) {
3906 skb->next = NULL;
3907
3908 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
3909 return;
3910
3911 prev = skb->prev;
3912 napi_gro_complete(skb);
3913 napi->gro_count--;
3914 }
3915
3916 napi->gro_list = NULL;
3917}
3918EXPORT_SYMBOL(napi_gro_flush);
3919
3920static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
3921{
3922 struct sk_buff *p;
3923 unsigned int maclen = skb->dev->hard_header_len;
3924 u32 hash = skb_get_hash_raw(skb);
3925
3926 for (p = napi->gro_list; p; p = p->next) {
3927 unsigned long diffs;
3928
3929 NAPI_GRO_CB(p)->flush = 0;
3930
3931 if (hash != skb_get_hash_raw(p)) {
3932 NAPI_GRO_CB(p)->same_flow = 0;
3933 continue;
3934 }
3935
3936 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3937 diffs |= p->vlan_tci ^ skb->vlan_tci;
3938 if (maclen == ETH_HLEN)
3939 diffs |= compare_ether_header(skb_mac_header(p),
3940 skb_mac_header(skb));
3941 else if (!diffs)
3942 diffs = memcmp(skb_mac_header(p),
3943 skb_mac_header(skb),
3944 maclen);
3945 NAPI_GRO_CB(p)->same_flow = !diffs;
3946 }
3947}
3948
3949static void skb_gro_reset_offset(struct sk_buff *skb)
3950{
3951 const struct skb_shared_info *pinfo = skb_shinfo(skb);
3952 const skb_frag_t *frag0 = &pinfo->frags[0];
3953
3954 NAPI_GRO_CB(skb)->data_offset = 0;
3955 NAPI_GRO_CB(skb)->frag0 = NULL;
3956 NAPI_GRO_CB(skb)->frag0_len = 0;
3957
3958 if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
3959 pinfo->nr_frags &&
3960 !PageHighMem(skb_frag_page(frag0))) {
3961 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
3962 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
3963 }
3964}
3965
3966static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
3967{
3968 struct skb_shared_info *pinfo = skb_shinfo(skb);
3969
3970 BUG_ON(skb->end - skb->tail < grow);
3971
3972 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3973
3974 skb->data_len -= grow;
3975 skb->tail += grow;
3976
3977 pinfo->frags[0].page_offset += grow;
3978 skb_frag_size_sub(&pinfo->frags[0], grow);
3979
3980 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
3981 skb_frag_unref(skb, 0);
3982 memmove(pinfo->frags, pinfo->frags + 1,
3983 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
3984 }
3985}
3986
3987static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3988{
3989 struct sk_buff **pp = NULL;
3990 struct packet_offload *ptype;
3991 __be16 type = skb->protocol;
3992 struct list_head *head = &offload_base;
3993 int same_flow;
3994 enum gro_result ret;
3995 int grow;
3996
3997 if (!(skb->dev->features & NETIF_F_GRO))
3998 goto normal;
3999
4000 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4001 goto normal;
4002
4003 gro_list_prepare(napi, skb);
4004
4005 rcu_read_lock();
4006 list_for_each_entry_rcu(ptype, head, list) {
4007 if (ptype->type != type || !ptype->callbacks.gro_receive)
4008 continue;
4009
4010 skb_set_network_header(skb, skb_gro_offset(skb));
4011 skb_reset_mac_len(skb);
4012 NAPI_GRO_CB(skb)->same_flow = 0;
4013 NAPI_GRO_CB(skb)->flush = 0;
4014 NAPI_GRO_CB(skb)->free = 0;
4015 NAPI_GRO_CB(skb)->udp_mark = 0;
4016
4017 /* Setup for GRO checksum validation */
4018 switch (skb->ip_summed) {
4019 case CHECKSUM_COMPLETE:
4020 NAPI_GRO_CB(skb)->csum = skb->csum;
4021 NAPI_GRO_CB(skb)->csum_valid = 1;
4022 NAPI_GRO_CB(skb)->csum_cnt = 0;
4023 break;
4024 case CHECKSUM_UNNECESSARY:
4025 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4026 NAPI_GRO_CB(skb)->csum_valid = 0;
4027 break;
4028 default:
4029 NAPI_GRO_CB(skb)->csum_cnt = 0;
4030 NAPI_GRO_CB(skb)->csum_valid = 0;
4031 }
4032
4033 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4034 break;
4035 }
4036 rcu_read_unlock();
4037
4038 if (&ptype->list == head)
4039 goto normal;
4040
4041 same_flow = NAPI_GRO_CB(skb)->same_flow;
4042 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4043
4044 if (pp) {
4045 struct sk_buff *nskb = *pp;
4046
4047 *pp = nskb->next;
4048 nskb->next = NULL;
4049 napi_gro_complete(nskb);
4050 napi->gro_count--;
4051 }
4052
4053 if (same_flow)
4054 goto ok;
4055
4056 if (NAPI_GRO_CB(skb)->flush)
4057 goto normal;
4058
4059 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4060 struct sk_buff *nskb = napi->gro_list;
4061
4062 /* locate the end of the list to select the 'oldest' flow */
4063 while (nskb->next) {
4064 pp = &nskb->next;
4065 nskb = *pp;
4066 }
4067 *pp = NULL;
4068 nskb->next = NULL;
4069 napi_gro_complete(nskb);
4070 } else {
4071 napi->gro_count++;
4072 }
4073 NAPI_GRO_CB(skb)->count = 1;
4074 NAPI_GRO_CB(skb)->age = jiffies;
4075 NAPI_GRO_CB(skb)->last = skb;
4076 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4077 skb->next = napi->gro_list;
4078 napi->gro_list = skb;
4079 ret = GRO_HELD;
4080
4081pull:
4082 grow = skb_gro_offset(skb) - skb_headlen(skb);
4083 if (grow > 0)
4084 gro_pull_from_frag0(skb, grow);
4085ok:
4086 return ret;
4087
4088normal:
4089 ret = GRO_NORMAL;
4090 goto pull;
4091}
4092
4093struct packet_offload *gro_find_receive_by_type(__be16 type)
4094{
4095 struct list_head *offload_head = &offload_base;
4096 struct packet_offload *ptype;
4097
4098 list_for_each_entry_rcu(ptype, offload_head, list) {
4099 if (ptype->type != type || !ptype->callbacks.gro_receive)
4100 continue;
4101 return ptype;
4102 }
4103 return NULL;
4104}
4105EXPORT_SYMBOL(gro_find_receive_by_type);
4106
4107struct packet_offload *gro_find_complete_by_type(__be16 type)
4108{
4109 struct list_head *offload_head = &offload_base;
4110 struct packet_offload *ptype;
4111
4112 list_for_each_entry_rcu(ptype, offload_head, list) {
4113 if (ptype->type != type || !ptype->callbacks.gro_complete)
4114 continue;
4115 return ptype;
4116 }
4117 return NULL;
4118}
4119EXPORT_SYMBOL(gro_find_complete_by_type);
4120
4121static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4122{
4123 switch (ret) {
4124 case GRO_NORMAL:
4125 if (netif_receive_skb_internal(skb))
4126 ret = GRO_DROP;
4127 break;
4128
4129 case GRO_DROP:
4130 kfree_skb(skb);
4131 break;
4132
4133 case GRO_MERGED_FREE:
4134 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4135 kmem_cache_free(skbuff_head_cache, skb);
4136 else
4137 __kfree_skb(skb);
4138 break;
4139
4140 case GRO_HELD:
4141 case GRO_MERGED:
4142 break;
4143 }
4144
4145 return ret;
4146}
4147
4148gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4149{
4150 trace_napi_gro_receive_entry(skb);
4151
4152 skb_gro_reset_offset(skb);
4153
4154 return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4155}
4156EXPORT_SYMBOL(napi_gro_receive);
4157
4158static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4159{
4160 if (unlikely(skb->pfmemalloc)) {
4161 consume_skb(skb);
4162 return;
4163 }
4164 __skb_pull(skb, skb_headlen(skb));
4165 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4166 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4167 skb->vlan_tci = 0;
4168 skb->dev = napi->dev;
4169 skb->skb_iif = 0;
4170 skb->encapsulation = 0;
4171 skb_shinfo(skb)->gso_type = 0;
4172 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4173
4174 napi->skb = skb;
4175}
4176
4177struct sk_buff *napi_get_frags(struct napi_struct *napi)
4178{
4179 struct sk_buff *skb = napi->skb;
4180
4181 if (!skb) {
4182 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
4183 napi->skb = skb;
4184 }
4185 return skb;
4186}
4187EXPORT_SYMBOL(napi_get_frags);
4188
4189static gro_result_t napi_frags_finish(struct napi_struct *napi,
4190 struct sk_buff *skb,
4191 gro_result_t ret)
4192{
4193 switch (ret) {
4194 case GRO_NORMAL:
4195 case GRO_HELD:
4196 __skb_push(skb, ETH_HLEN);
4197 skb->protocol = eth_type_trans(skb, skb->dev);
4198 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4199 ret = GRO_DROP;
4200 break;
4201
4202 case GRO_DROP:
4203 case GRO_MERGED_FREE:
4204 napi_reuse_skb(napi, skb);
4205 break;
4206
4207 case GRO_MERGED:
4208 break;
4209 }
4210
4211 return ret;
4212}
4213
4214/* Upper GRO stack assumes network header starts at gro_offset=0
4215 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4216 * We copy ethernet header into skb->data to have a common layout.
4217 */
4218static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4219{
4220 struct sk_buff *skb = napi->skb;
4221 const struct ethhdr *eth;
4222 unsigned int hlen = sizeof(*eth);
4223
4224 napi->skb = NULL;
4225
4226 skb_reset_mac_header(skb);
4227 skb_gro_reset_offset(skb);
4228
4229 eth = skb_gro_header_fast(skb, 0);
4230 if (unlikely(skb_gro_header_hard(skb, hlen))) {
4231 eth = skb_gro_header_slow(skb, hlen, 0);
4232 if (unlikely(!eth)) {
4233 napi_reuse_skb(napi, skb);
4234 return NULL;
4235 }
4236 } else {
4237 gro_pull_from_frag0(skb, hlen);
4238 NAPI_GRO_CB(skb)->frag0 += hlen;
4239 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4240 }
4241 __skb_pull(skb, hlen);
4242
4243 /*
4244 * This works because the only protocols we care about don't require
4245 * special handling.
4246 * We'll fix it up properly in napi_frags_finish()
4247 */
4248 skb->protocol = eth->h_proto;
4249
4250 return skb;
4251}
4252
4253gro_result_t napi_gro_frags(struct napi_struct *napi)
4254{
4255 struct sk_buff *skb = napi_frags_skb(napi);
4256
4257 if (!skb)
4258 return GRO_DROP;
4259
4260 trace_napi_gro_frags_entry(skb);
4261
4262 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4263}
4264EXPORT_SYMBOL(napi_gro_frags);
4265
4266/* Compute the checksum from gro_offset and return the folded value
4267 * after adding in any pseudo checksum.
4268 */
4269__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4270{
4271 __wsum wsum;
4272 __sum16 sum;
4273
4274 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4275
4276 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4277 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4278 if (likely(!sum)) {
4279 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4280 !skb->csum_complete_sw)
4281 netdev_rx_csum_fault(skb->dev);
4282 }
4283
4284 NAPI_GRO_CB(skb)->csum = wsum;
4285 NAPI_GRO_CB(skb)->csum_valid = 1;
4286
4287 return sum;
4288}
4289EXPORT_SYMBOL(__skb_gro_checksum_complete);
4290
4291/*
4292 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4293 * Note: called with local irq disabled, but exits with local irq enabled.
4294 */
4295static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4296{
4297#ifdef CONFIG_RPS
4298 struct softnet_data *remsd = sd->rps_ipi_list;
4299
4300 if (remsd) {
4301 sd->rps_ipi_list = NULL;
4302
4303 local_irq_enable();
4304
4305 /* Send pending IPI's to kick RPS processing on remote cpus. */
4306 while (remsd) {
4307 struct softnet_data *next = remsd->rps_ipi_next;
4308
4309 if (cpu_online(remsd->cpu))
4310 smp_call_function_single_async(remsd->cpu,
4311 &remsd->csd);
4312 remsd = next;
4313 }
4314 } else
4315#endif
4316 local_irq_enable();
4317}
4318
4319static int process_backlog(struct napi_struct *napi, int quota)
4320{
4321 int work = 0;
4322 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4323
4324#ifdef CONFIG_RPS
4325 /* Check if we have pending ipi, its better to send them now,
4326 * not waiting net_rx_action() end.
4327 */
4328 if (sd->rps_ipi_list) {
4329 local_irq_disable();
4330 net_rps_action_and_irq_enable(sd);
4331 }
4332#endif
4333 napi->weight = weight_p;
4334 local_irq_disable();
4335 while (1) {
4336 struct sk_buff *skb;
4337
4338 while ((skb = __skb_dequeue(&sd->process_queue))) {
4339 local_irq_enable();
4340 __netif_receive_skb(skb);
4341 local_irq_disable();
4342 input_queue_head_incr(sd);
4343 if (++work >= quota) {
4344 local_irq_enable();
4345 return work;
4346 }
4347 }
4348
4349 rps_lock(sd);
4350 if (skb_queue_empty(&sd->input_pkt_queue)) {
4351 /*
4352 * Inline a custom version of __napi_complete().
4353 * only current cpu owns and manipulates this napi,
4354 * and NAPI_STATE_SCHED is the only possible flag set
4355 * on backlog.
4356 * We can use a plain write instead of clear_bit(),
4357 * and we dont need an smp_mb() memory barrier.
4358 */
4359 list_del(&napi->poll_list);
4360 napi->state = 0;
4361 rps_unlock(sd);
4362
4363 break;
4364 }
4365
4366 skb_queue_splice_tail_init(&sd->input_pkt_queue,
4367 &sd->process_queue);
4368 rps_unlock(sd);
4369 }
4370 local_irq_enable();
4371
4372 return work;
4373}
4374
4375/**
4376 * __napi_schedule - schedule for receive
4377 * @n: entry to schedule
4378 *
4379 * The entry's receive function will be scheduled to run
4380 */
4381void __napi_schedule(struct napi_struct *n)
4382{
4383 unsigned long flags;
4384
4385 local_irq_save(flags);
4386 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
4387 local_irq_restore(flags);
4388}
4389EXPORT_SYMBOL(__napi_schedule);
4390
4391void __napi_complete(struct napi_struct *n)
4392{
4393 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4394 BUG_ON(n->gro_list);
4395
4396 list_del(&n->poll_list);
4397 smp_mb__before_atomic();
4398 clear_bit(NAPI_STATE_SCHED, &n->state);
4399}
4400EXPORT_SYMBOL(__napi_complete);
4401
4402void napi_complete(struct napi_struct *n)
4403{
4404 unsigned long flags;
4405
4406 /*
4407 * don't let napi dequeue from the cpu poll list
4408 * just in case its running on a different cpu
4409 */
4410 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4411 return;
4412
4413 napi_gro_flush(n, false);
4414 local_irq_save(flags);
4415 __napi_complete(n);
4416 local_irq_restore(flags);
4417}
4418EXPORT_SYMBOL(napi_complete);
4419
4420/* must be called under rcu_read_lock(), as we dont take a reference */
4421struct napi_struct *napi_by_id(unsigned int napi_id)
4422{
4423 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4424 struct napi_struct *napi;
4425
4426 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4427 if (napi->napi_id == napi_id)
4428 return napi;
4429
4430 return NULL;
4431}
4432EXPORT_SYMBOL_GPL(napi_by_id);
4433
4434void napi_hash_add(struct napi_struct *napi)
4435{
4436 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4437
4438 spin_lock(&napi_hash_lock);
4439
4440 /* 0 is not a valid id, we also skip an id that is taken
4441 * we expect both events to be extremely rare
4442 */
4443 napi->napi_id = 0;
4444 while (!napi->napi_id) {
4445 napi->napi_id = ++napi_gen_id;
4446 if (napi_by_id(napi->napi_id))
4447 napi->napi_id = 0;
4448 }
4449
4450 hlist_add_head_rcu(&napi->napi_hash_node,
4451 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4452
4453 spin_unlock(&napi_hash_lock);
4454 }
4455}
4456EXPORT_SYMBOL_GPL(napi_hash_add);
4457
4458/* Warning : caller is responsible to make sure rcu grace period
4459 * is respected before freeing memory containing @napi
4460 */
4461void napi_hash_del(struct napi_struct *napi)
4462{
4463 spin_lock(&napi_hash_lock);
4464
4465 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4466 hlist_del_rcu(&napi->napi_hash_node);
4467
4468 spin_unlock(&napi_hash_lock);
4469}
4470EXPORT_SYMBOL_GPL(napi_hash_del);
4471
4472void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4473 int (*poll)(struct napi_struct *, int), int weight)
4474{
4475 INIT_LIST_HEAD(&napi->poll_list);
4476 napi->gro_count = 0;
4477 napi->gro_list = NULL;
4478 napi->skb = NULL;
4479 napi->poll = poll;
4480 if (weight > NAPI_POLL_WEIGHT)
4481 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4482 weight, dev->name);
4483 napi->weight = weight;
4484 list_add(&napi->dev_list, &dev->napi_list);
4485 napi->dev = dev;
4486#ifdef CONFIG_NETPOLL
4487 spin_lock_init(&napi->poll_lock);
4488 napi->poll_owner = -1;
4489#endif
4490 set_bit(NAPI_STATE_SCHED, &napi->state);
4491}
4492EXPORT_SYMBOL(netif_napi_add);
4493
4494void netif_napi_del(struct napi_struct *napi)
4495{
4496 list_del_init(&napi->dev_list);
4497 napi_free_frags(napi);
4498
4499 kfree_skb_list(napi->gro_list);
4500 napi->gro_list = NULL;
4501 napi->gro_count = 0;
4502}
4503EXPORT_SYMBOL(netif_napi_del);
4504
4505static void net_rx_action(struct softirq_action *h)
4506{
4507 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4508 unsigned long time_limit = jiffies + 2;
4509 int budget = netdev_budget;
4510 void *have;
4511
4512 local_irq_disable();
4513
4514 while (!list_empty(&sd->poll_list)) {
4515 struct napi_struct *n;
4516 int work, weight;
4517
4518 /* If softirq window is exhuasted then punt.
4519 * Allow this to run for 2 jiffies since which will allow
4520 * an average latency of 1.5/HZ.
4521 */
4522 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit)))
4523 goto softnet_break;
4524
4525 local_irq_enable();
4526
4527 /* Even though interrupts have been re-enabled, this
4528 * access is safe because interrupts can only add new
4529 * entries to the tail of this list, and only ->poll()
4530 * calls can remove this head entry from the list.
4531 */
4532 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
4533
4534 have = netpoll_poll_lock(n);
4535
4536 weight = n->weight;
4537
4538 /* This NAPI_STATE_SCHED test is for avoiding a race
4539 * with netpoll's poll_napi(). Only the entity which
4540 * obtains the lock and sees NAPI_STATE_SCHED set will
4541 * actually make the ->poll() call. Therefore we avoid
4542 * accidentally calling ->poll() when NAPI is not scheduled.
4543 */
4544 work = 0;
4545 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4546 work = n->poll(n, weight);
4547 trace_napi_poll(n);
4548 }
4549
4550 WARN_ON_ONCE(work > weight);
4551
4552 budget -= work;
4553
4554 local_irq_disable();
4555
4556 /* Drivers must not modify the NAPI state if they
4557 * consume the entire weight. In such cases this code
4558 * still "owns" the NAPI instance and therefore can
4559 * move the instance around on the list at-will.
4560 */
4561 if (unlikely(work == weight)) {
4562 if (unlikely(napi_disable_pending(n))) {
4563 local_irq_enable();
4564 napi_complete(n);
4565 local_irq_disable();
4566 } else {
4567 if (n->gro_list) {
4568 /* flush too old packets
4569 * If HZ < 1000, flush all packets.
4570 */
4571 local_irq_enable();
4572 napi_gro_flush(n, HZ >= 1000);
4573 local_irq_disable();
4574 }
4575 list_move_tail(&n->poll_list, &sd->poll_list);
4576 }
4577 }
4578
4579 netpoll_poll_unlock(have);
4580 }
4581out:
4582 net_rps_action_and_irq_enable(sd);
4583
4584 return;
4585
4586softnet_break:
4587 sd->time_squeeze++;
4588 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4589 goto out;
4590}
4591
4592struct netdev_adjacent {
4593 struct net_device *dev;
4594
4595 /* upper master flag, there can only be one master device per list */
4596 bool master;
4597
4598 /* counter for the number of times this device was added to us */
4599 u16 ref_nr;
4600
4601 /* private field for the users */
4602 void *private;
4603
4604 struct list_head list;
4605 struct rcu_head rcu;
4606};
4607
4608static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev,
4609 struct net_device *adj_dev,
4610 struct list_head *adj_list)
4611{
4612 struct netdev_adjacent *adj;
4613
4614 list_for_each_entry(adj, adj_list, list) {
4615 if (adj->dev == adj_dev)
4616 return adj;
4617 }
4618 return NULL;
4619}
4620
4621/**
4622 * netdev_has_upper_dev - Check if device is linked to an upper device
4623 * @dev: device
4624 * @upper_dev: upper device to check
4625 *
4626 * Find out if a device is linked to specified upper device and return true
4627 * in case it is. Note that this checks only immediate upper device,
4628 * not through a complete stack of devices. The caller must hold the RTNL lock.
4629 */
4630bool netdev_has_upper_dev(struct net_device *dev,
4631 struct net_device *upper_dev)
4632{
4633 ASSERT_RTNL();
4634
4635 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper);
4636}
4637EXPORT_SYMBOL(netdev_has_upper_dev);
4638
4639/**
4640 * netdev_has_any_upper_dev - Check if device is linked to some device
4641 * @dev: device
4642 *
4643 * Find out if a device is linked to an upper device and return true in case
4644 * it is. The caller must hold the RTNL lock.
4645 */
4646static bool netdev_has_any_upper_dev(struct net_device *dev)
4647{
4648 ASSERT_RTNL();
4649
4650 return !list_empty(&dev->all_adj_list.upper);
4651}
4652
4653/**
4654 * netdev_master_upper_dev_get - Get master upper device
4655 * @dev: device
4656 *
4657 * Find a master upper device and return pointer to it or NULL in case
4658 * it's not there. The caller must hold the RTNL lock.
4659 */
4660struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4661{
4662 struct netdev_adjacent *upper;
4663
4664 ASSERT_RTNL();
4665
4666 if (list_empty(&dev->adj_list.upper))
4667 return NULL;
4668
4669 upper = list_first_entry(&dev->adj_list.upper,
4670 struct netdev_adjacent, list);
4671 if (likely(upper->master))
4672 return upper->dev;
4673 return NULL;
4674}
4675EXPORT_SYMBOL(netdev_master_upper_dev_get);
4676
4677void *netdev_adjacent_get_private(struct list_head *adj_list)
4678{
4679 struct netdev_adjacent *adj;
4680
4681 adj = list_entry(adj_list, struct netdev_adjacent, list);
4682
4683 return adj->private;
4684}
4685EXPORT_SYMBOL(netdev_adjacent_get_private);
4686
4687/**
4688 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4689 * @dev: device
4690 * @iter: list_head ** of the current position
4691 *
4692 * Gets the next device from the dev's upper list, starting from iter
4693 * position. The caller must hold RCU read lock.
4694 */
4695struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4696 struct list_head **iter)
4697{
4698 struct netdev_adjacent *upper;
4699
4700 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4701
4702 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4703
4704 if (&upper->list == &dev->adj_list.upper)
4705 return NULL;
4706
4707 *iter = &upper->list;
4708
4709 return upper->dev;
4710}
4711EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4712
4713/**
4714 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4715 * @dev: device
4716 * @iter: list_head ** of the current position
4717 *
4718 * Gets the next device from the dev's upper list, starting from iter
4719 * position. The caller must hold RCU read lock.
4720 */
4721struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4722 struct list_head **iter)
4723{
4724 struct netdev_adjacent *upper;
4725
4726 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4727
4728 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4729
4730 if (&upper->list == &dev->all_adj_list.upper)
4731 return NULL;
4732
4733 *iter = &upper->list;
4734
4735 return upper->dev;
4736}
4737EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
4738
4739/**
4740 * netdev_lower_get_next_private - Get the next ->private from the
4741 * lower neighbour list
4742 * @dev: device
4743 * @iter: list_head ** of the current position
4744 *
4745 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4746 * list, starting from iter position. The caller must hold either hold the
4747 * RTNL lock or its own locking that guarantees that the neighbour lower
4748 * list will remain unchainged.
4749 */
4750void *netdev_lower_get_next_private(struct net_device *dev,
4751 struct list_head **iter)
4752{
4753 struct netdev_adjacent *lower;
4754
4755 lower = list_entry(*iter, struct netdev_adjacent, list);
4756
4757 if (&lower->list == &dev->adj_list.lower)
4758 return NULL;
4759
4760 *iter = lower->list.next;
4761
4762 return lower->private;
4763}
4764EXPORT_SYMBOL(netdev_lower_get_next_private);
4765
4766/**
4767 * netdev_lower_get_next_private_rcu - Get the next ->private from the
4768 * lower neighbour list, RCU
4769 * variant
4770 * @dev: device
4771 * @iter: list_head ** of the current position
4772 *
4773 * Gets the next netdev_adjacent->private from the dev's lower neighbour
4774 * list, starting from iter position. The caller must hold RCU read lock.
4775 */
4776void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4777 struct list_head **iter)
4778{
4779 struct netdev_adjacent *lower;
4780
4781 WARN_ON_ONCE(!rcu_read_lock_held());
4782
4783 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4784
4785 if (&lower->list == &dev->adj_list.lower)
4786 return NULL;
4787
4788 *iter = &lower->list;
4789
4790 return lower->private;
4791}
4792EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
4793
4794/**
4795 * netdev_lower_get_next - Get the next device from the lower neighbour
4796 * list
4797 * @dev: device
4798 * @iter: list_head ** of the current position
4799 *
4800 * Gets the next netdev_adjacent from the dev's lower neighbour
4801 * list, starting from iter position. The caller must hold RTNL lock or
4802 * its own locking that guarantees that the neighbour lower
4803 * list will remain unchainged.
4804 */
4805void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
4806{
4807 struct netdev_adjacent *lower;
4808
4809 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
4810
4811 if (&lower->list == &dev->adj_list.lower)
4812 return NULL;
4813
4814 *iter = &lower->list;
4815
4816 return lower->dev;
4817}
4818EXPORT_SYMBOL(netdev_lower_get_next);
4819
4820/**
4821 * netdev_lower_get_first_private_rcu - Get the first ->private from the
4822 * lower neighbour list, RCU
4823 * variant
4824 * @dev: device
4825 *
4826 * Gets the first netdev_adjacent->private from the dev's lower neighbour
4827 * list. The caller must hold RCU read lock.
4828 */
4829void *netdev_lower_get_first_private_rcu(struct net_device *dev)
4830{
4831 struct netdev_adjacent *lower;
4832
4833 lower = list_first_or_null_rcu(&dev->adj_list.lower,
4834 struct netdev_adjacent, list);
4835 if (lower)
4836 return lower->private;
4837 return NULL;
4838}
4839EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
4840
4841/**
4842 * netdev_master_upper_dev_get_rcu - Get master upper device
4843 * @dev: device
4844 *
4845 * Find a master upper device and return pointer to it or NULL in case
4846 * it's not there. The caller must hold the RCU read lock.
4847 */
4848struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
4849{
4850 struct netdev_adjacent *upper;
4851
4852 upper = list_first_or_null_rcu(&dev->adj_list.upper,
4853 struct netdev_adjacent, list);
4854 if (upper && likely(upper->master))
4855 return upper->dev;
4856 return NULL;
4857}
4858EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
4859
4860static int netdev_adjacent_sysfs_add(struct net_device *dev,
4861 struct net_device *adj_dev,
4862 struct list_head *dev_list)
4863{
4864 char linkname[IFNAMSIZ+7];
4865 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4866 "upper_%s" : "lower_%s", adj_dev->name);
4867 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
4868 linkname);
4869}
4870static void netdev_adjacent_sysfs_del(struct net_device *dev,
4871 char *name,
4872 struct list_head *dev_list)
4873{
4874 char linkname[IFNAMSIZ+7];
4875 sprintf(linkname, dev_list == &dev->adj_list.upper ?
4876 "upper_%s" : "lower_%s", name);
4877 sysfs_remove_link(&(dev->dev.kobj), linkname);
4878}
4879
4880static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
4881 struct net_device *adj_dev,
4882 struct list_head *dev_list)
4883{
4884 return (dev_list == &dev->adj_list.upper ||
4885 dev_list == &dev->adj_list.lower) &&
4886 net_eq(dev_net(dev), dev_net(adj_dev));
4887}
4888
4889static int __netdev_adjacent_dev_insert(struct net_device *dev,
4890 struct net_device *adj_dev,
4891 struct list_head *dev_list,
4892 void *private, bool master)
4893{
4894 struct netdev_adjacent *adj;
4895 int ret;
4896
4897 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4898
4899 if (adj) {
4900 adj->ref_nr++;
4901 return 0;
4902 }
4903
4904 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
4905 if (!adj)
4906 return -ENOMEM;
4907
4908 adj->dev = adj_dev;
4909 adj->master = master;
4910 adj->ref_nr = 1;
4911 adj->private = private;
4912 dev_hold(adj_dev);
4913
4914 pr_debug("dev_hold for %s, because of link added from %s to %s\n",
4915 adj_dev->name, dev->name, adj_dev->name);
4916
4917 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
4918 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
4919 if (ret)
4920 goto free_adj;
4921 }
4922
4923 /* Ensure that master link is always the first item in list. */
4924 if (master) {
4925 ret = sysfs_create_link(&(dev->dev.kobj),
4926 &(adj_dev->dev.kobj), "master");
4927 if (ret)
4928 goto remove_symlinks;
4929
4930 list_add_rcu(&adj->list, dev_list);
4931 } else {
4932 list_add_tail_rcu(&adj->list, dev_list);
4933 }
4934
4935 return 0;
4936
4937remove_symlinks:
4938 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4939 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4940free_adj:
4941 kfree(adj);
4942 dev_put(adj_dev);
4943
4944 return ret;
4945}
4946
4947static void __netdev_adjacent_dev_remove(struct net_device *dev,
4948 struct net_device *adj_dev,
4949 struct list_head *dev_list)
4950{
4951 struct netdev_adjacent *adj;
4952
4953 adj = __netdev_find_adj(dev, adj_dev, dev_list);
4954
4955 if (!adj) {
4956 pr_err("tried to remove device %s from %s\n",
4957 dev->name, adj_dev->name);
4958 BUG();
4959 }
4960
4961 if (adj->ref_nr > 1) {
4962 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
4963 adj->ref_nr-1);
4964 adj->ref_nr--;
4965 return;
4966 }
4967
4968 if (adj->master)
4969 sysfs_remove_link(&(dev->dev.kobj), "master");
4970
4971 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
4972 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
4973
4974 list_del_rcu(&adj->list);
4975 pr_debug("dev_put for %s, because link removed from %s to %s\n",
4976 adj_dev->name, dev->name, adj_dev->name);
4977 dev_put(adj_dev);
4978 kfree_rcu(adj, rcu);
4979}
4980
4981static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
4982 struct net_device *upper_dev,
4983 struct list_head *up_list,
4984 struct list_head *down_list,
4985 void *private, bool master)
4986{
4987 int ret;
4988
4989 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
4990 master);
4991 if (ret)
4992 return ret;
4993
4994 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
4995 false);
4996 if (ret) {
4997 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
4998 return ret;
4999 }
5000
5001 return 0;
5002}
5003
5004static int __netdev_adjacent_dev_link(struct net_device *dev,
5005 struct net_device *upper_dev)
5006{
5007 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5008 &dev->all_adj_list.upper,
5009 &upper_dev->all_adj_list.lower,
5010 NULL, false);
5011}
5012
5013static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5014 struct net_device *upper_dev,
5015 struct list_head *up_list,
5016 struct list_head *down_list)
5017{
5018 __netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5019 __netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5020}
5021
5022static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5023 struct net_device *upper_dev)
5024{
5025 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5026 &dev->all_adj_list.upper,
5027 &upper_dev->all_adj_list.lower);
5028}
5029
5030static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5031 struct net_device *upper_dev,
5032 void *private, bool master)
5033{
5034 int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5035
5036 if (ret)
5037 return ret;
5038
5039 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5040 &dev->adj_list.upper,
5041 &upper_dev->adj_list.lower,
5042 private, master);
5043 if (ret) {
5044 __netdev_adjacent_dev_unlink(dev, upper_dev);
5045 return ret;
5046 }
5047
5048 return 0;
5049}
5050
5051static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5052 struct net_device *upper_dev)
5053{
5054 __netdev_adjacent_dev_unlink(dev, upper_dev);
5055 __netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5056 &dev->adj_list.upper,
5057 &upper_dev->adj_list.lower);
5058}
5059
5060static int __netdev_upper_dev_link(struct net_device *dev,
5061 struct net_device *upper_dev, bool master,
5062 void *private)
5063{
5064 struct netdev_adjacent *i, *j, *to_i, *to_j;
5065 int ret = 0;
5066
5067 ASSERT_RTNL();
5068
5069 if (dev == upper_dev)
5070 return -EBUSY;
5071
5072 /* To prevent loops, check if dev is not upper device to upper_dev. */
5073 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper))
5074 return -EBUSY;
5075
5076 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper))
5077 return -EEXIST;
5078
5079 if (master && netdev_master_upper_dev_get(dev))
5080 return -EBUSY;
5081
5082 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5083 master);
5084 if (ret)
5085 return ret;
5086
5087 /* Now that we linked these devs, make all the upper_dev's
5088 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5089 * versa, and don't forget the devices itself. All of these
5090 * links are non-neighbours.
5091 */
5092 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5093 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5094 pr_debug("Interlinking %s with %s, non-neighbour\n",
5095 i->dev->name, j->dev->name);
5096 ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5097 if (ret)
5098 goto rollback_mesh;
5099 }
5100 }
5101
5102 /* add dev to every upper_dev's upper device */
5103 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5104 pr_debug("linking %s's upper device %s with %s\n",
5105 upper_dev->name, i->dev->name, dev->name);
5106 ret = __netdev_adjacent_dev_link(dev, i->dev);
5107 if (ret)
5108 goto rollback_upper_mesh;
5109 }
5110
5111 /* add upper_dev to every dev's lower device */
5112 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5113 pr_debug("linking %s's lower device %s with %s\n", dev->name,
5114 i->dev->name, upper_dev->name);
5115 ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5116 if (ret)
5117 goto rollback_lower_mesh;
5118 }
5119
5120 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5121 return 0;
5122
5123rollback_lower_mesh:
5124 to_i = i;
5125 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5126 if (i == to_i)
5127 break;
5128 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5129 }
5130
5131 i = NULL;
5132
5133rollback_upper_mesh:
5134 to_i = i;
5135 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5136 if (i == to_i)
5137 break;
5138 __netdev_adjacent_dev_unlink(dev, i->dev);
5139 }
5140
5141 i = j = NULL;
5142
5143rollback_mesh:
5144 to_i = i;
5145 to_j = j;
5146 list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5147 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5148 if (i == to_i && j == to_j)
5149 break;
5150 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5151 }
5152 if (i == to_i)
5153 break;
5154 }
5155
5156 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5157
5158 return ret;
5159}
5160
5161/**
5162 * netdev_upper_dev_link - Add a link to the upper device
5163 * @dev: device
5164 * @upper_dev: new upper device
5165 *
5166 * Adds a link to device which is upper to this one. The caller must hold
5167 * the RTNL lock. On a failure a negative errno code is returned.
5168 * On success the reference counts are adjusted and the function
5169 * returns zero.
5170 */
5171int netdev_upper_dev_link(struct net_device *dev,
5172 struct net_device *upper_dev)
5173{
5174 return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5175}
5176EXPORT_SYMBOL(netdev_upper_dev_link);
5177
5178/**
5179 * netdev_master_upper_dev_link - Add a master link to the upper device
5180 * @dev: device
5181 * @upper_dev: new upper device
5182 *
5183 * Adds a link to device which is upper to this one. In this case, only
5184 * one master upper device can be linked, although other non-master devices
5185 * might be linked as well. The caller must hold the RTNL lock.
5186 * On a failure a negative errno code is returned. On success the reference
5187 * counts are adjusted and the function returns zero.
5188 */
5189int netdev_master_upper_dev_link(struct net_device *dev,
5190 struct net_device *upper_dev)
5191{
5192 return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5193}
5194EXPORT_SYMBOL(netdev_master_upper_dev_link);
5195
5196int netdev_master_upper_dev_link_private(struct net_device *dev,
5197 struct net_device *upper_dev,
5198 void *private)
5199{
5200 return __netdev_upper_dev_link(dev, upper_dev, true, private);
5201}
5202EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5203
5204/**
5205 * netdev_upper_dev_unlink - Removes a link to upper device
5206 * @dev: device
5207 * @upper_dev: new upper device
5208 *
5209 * Removes a link to device which is upper to this one. The caller must hold
5210 * the RTNL lock.
5211 */
5212void netdev_upper_dev_unlink(struct net_device *dev,
5213 struct net_device *upper_dev)
5214{
5215 struct netdev_adjacent *i, *j;
5216 ASSERT_RTNL();
5217
5218 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5219
5220 /* Here is the tricky part. We must remove all dev's lower
5221 * devices from all upper_dev's upper devices and vice
5222 * versa, to maintain the graph relationship.
5223 */
5224 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5225 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5226 __netdev_adjacent_dev_unlink(i->dev, j->dev);
5227
5228 /* remove also the devices itself from lower/upper device
5229 * list
5230 */
5231 list_for_each_entry(i, &dev->all_adj_list.lower, list)
5232 __netdev_adjacent_dev_unlink(i->dev, upper_dev);
5233
5234 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5235 __netdev_adjacent_dev_unlink(dev, i->dev);
5236
5237 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev);
5238}
5239EXPORT_SYMBOL(netdev_upper_dev_unlink);
5240
5241void netdev_adjacent_add_links(struct net_device *dev)
5242{
5243 struct netdev_adjacent *iter;
5244
5245 struct net *net = dev_net(dev);
5246
5247 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5248 if (!net_eq(net,dev_net(iter->dev)))
5249 continue;
5250 netdev_adjacent_sysfs_add(iter->dev, dev,
5251 &iter->dev->adj_list.lower);
5252 netdev_adjacent_sysfs_add(dev, iter->dev,
5253 &dev->adj_list.upper);
5254 }
5255
5256 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5257 if (!net_eq(net,dev_net(iter->dev)))
5258 continue;
5259 netdev_adjacent_sysfs_add(iter->dev, dev,
5260 &iter->dev->adj_list.upper);
5261 netdev_adjacent_sysfs_add(dev, iter->dev,
5262 &dev->adj_list.lower);
5263 }
5264}
5265
5266void netdev_adjacent_del_links(struct net_device *dev)
5267{
5268 struct netdev_adjacent *iter;
5269
5270 struct net *net = dev_net(dev);
5271
5272 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5273 if (!net_eq(net,dev_net(iter->dev)))
5274 continue;
5275 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5276 &iter->dev->adj_list.lower);
5277 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5278 &dev->adj_list.upper);
5279 }
5280
5281 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5282 if (!net_eq(net,dev_net(iter->dev)))
5283 continue;
5284 netdev_adjacent_sysfs_del(iter->dev, dev->name,
5285 &iter->dev->adj_list.upper);
5286 netdev_adjacent_sysfs_del(dev, iter->dev->name,
5287 &dev->adj_list.lower);
5288 }
5289}
5290
5291void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5292{
5293 struct netdev_adjacent *iter;
5294
5295 struct net *net = dev_net(dev);
5296
5297 list_for_each_entry(iter, &dev->adj_list.upper, list) {
5298 if (!net_eq(net,dev_net(iter->dev)))
5299 continue;
5300 netdev_adjacent_sysfs_del(iter->dev, oldname,
5301 &iter->dev->adj_list.lower);
5302 netdev_adjacent_sysfs_add(iter->dev, dev,
5303 &iter->dev->adj_list.lower);
5304 }
5305
5306 list_for_each_entry(iter, &dev->adj_list.lower, list) {
5307 if (!net_eq(net,dev_net(iter->dev)))
5308 continue;
5309 netdev_adjacent_sysfs_del(iter->dev, oldname,
5310 &iter->dev->adj_list.upper);
5311 netdev_adjacent_sysfs_add(iter->dev, dev,
5312 &iter->dev->adj_list.upper);
5313 }
5314}
5315
5316void *netdev_lower_dev_get_private(struct net_device *dev,
5317 struct net_device *lower_dev)
5318{
5319 struct netdev_adjacent *lower;
5320
5321 if (!lower_dev)
5322 return NULL;
5323 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower);
5324 if (!lower)
5325 return NULL;
5326
5327 return lower->private;
5328}
5329EXPORT_SYMBOL(netdev_lower_dev_get_private);
5330
5331
5332int dev_get_nest_level(struct net_device *dev,
5333 bool (*type_check)(struct net_device *dev))
5334{
5335 struct net_device *lower = NULL;
5336 struct list_head *iter;
5337 int max_nest = -1;
5338 int nest;
5339
5340 ASSERT_RTNL();
5341
5342 netdev_for_each_lower_dev(dev, lower, iter) {
5343 nest = dev_get_nest_level(lower, type_check);
5344 if (max_nest < nest)
5345 max_nest = nest;
5346 }
5347
5348 if (type_check(dev))
5349 max_nest++;
5350
5351 return max_nest;
5352}
5353EXPORT_SYMBOL(dev_get_nest_level);
5354
5355static void dev_change_rx_flags(struct net_device *dev, int flags)
5356{
5357 const struct net_device_ops *ops = dev->netdev_ops;
5358
5359 if (ops->ndo_change_rx_flags)
5360 ops->ndo_change_rx_flags(dev, flags);
5361}
5362
5363static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5364{
5365 unsigned int old_flags = dev->flags;
5366 kuid_t uid;
5367 kgid_t gid;
5368
5369 ASSERT_RTNL();
5370
5371 dev->flags |= IFF_PROMISC;
5372 dev->promiscuity += inc;
5373 if (dev->promiscuity == 0) {
5374 /*
5375 * Avoid overflow.
5376 * If inc causes overflow, untouch promisc and return error.
5377 */
5378 if (inc < 0)
5379 dev->flags &= ~IFF_PROMISC;
5380 else {
5381 dev->promiscuity -= inc;
5382 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5383 dev->name);
5384 return -EOVERFLOW;
5385 }
5386 }
5387 if (dev->flags != old_flags) {
5388 pr_info("device %s %s promiscuous mode\n",
5389 dev->name,
5390 dev->flags & IFF_PROMISC ? "entered" : "left");
5391 if (audit_enabled) {
5392 current_uid_gid(&uid, &gid);
5393 audit_log(current->audit_context, GFP_ATOMIC,
5394 AUDIT_ANOM_PROMISCUOUS,
5395 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5396 dev->name, (dev->flags & IFF_PROMISC),
5397 (old_flags & IFF_PROMISC),
5398 from_kuid(&init_user_ns, audit_get_loginuid(current)),
5399 from_kuid(&init_user_ns, uid),
5400 from_kgid(&init_user_ns, gid),
5401 audit_get_sessionid(current));
5402 }
5403
5404 dev_change_rx_flags(dev, IFF_PROMISC);
5405 }
5406 if (notify)
5407 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
5408 return 0;
5409}
5410
5411/**
5412 * dev_set_promiscuity - update promiscuity count on a device
5413 * @dev: device
5414 * @inc: modifier
5415 *
5416 * Add or remove promiscuity from a device. While the count in the device
5417 * remains above zero the interface remains promiscuous. Once it hits zero
5418 * the device reverts back to normal filtering operation. A negative inc
5419 * value is used to drop promiscuity on the device.
5420 * Return 0 if successful or a negative errno code on error.
5421 */
5422int dev_set_promiscuity(struct net_device *dev, int inc)
5423{
5424 unsigned int old_flags = dev->flags;
5425 int err;
5426
5427 err = __dev_set_promiscuity(dev, inc, true);
5428 if (err < 0)
5429 return err;
5430 if (dev->flags != old_flags)
5431 dev_set_rx_mode(dev);
5432 return err;
5433}
5434EXPORT_SYMBOL(dev_set_promiscuity);
5435
5436static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5437{
5438 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5439
5440 ASSERT_RTNL();
5441
5442 dev->flags |= IFF_ALLMULTI;
5443 dev->allmulti += inc;
5444 if (dev->allmulti == 0) {
5445 /*
5446 * Avoid overflow.
5447 * If inc causes overflow, untouch allmulti and return error.
5448 */
5449 if (inc < 0)
5450 dev->flags &= ~IFF_ALLMULTI;
5451 else {
5452 dev->allmulti -= inc;
5453 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5454 dev->name);
5455 return -EOVERFLOW;
5456 }
5457 }
5458 if (dev->flags ^ old_flags) {
5459 dev_change_rx_flags(dev, IFF_ALLMULTI);
5460 dev_set_rx_mode(dev);
5461 if (notify)
5462 __dev_notify_flags(dev, old_flags,
5463 dev->gflags ^ old_gflags);
5464 }
5465 return 0;
5466}
5467
5468/**
5469 * dev_set_allmulti - update allmulti count on a device
5470 * @dev: device
5471 * @inc: modifier
5472 *
5473 * Add or remove reception of all multicast frames to a device. While the
5474 * count in the device remains above zero the interface remains listening
5475 * to all interfaces. Once it hits zero the device reverts back to normal
5476 * filtering operation. A negative @inc value is used to drop the counter
5477 * when releasing a resource needing all multicasts.
5478 * Return 0 if successful or a negative errno code on error.
5479 */
5480
5481int dev_set_allmulti(struct net_device *dev, int inc)
5482{
5483 return __dev_set_allmulti(dev, inc, true);
5484}
5485EXPORT_SYMBOL(dev_set_allmulti);
5486
5487/*
5488 * Upload unicast and multicast address lists to device and
5489 * configure RX filtering. When the device doesn't support unicast
5490 * filtering it is put in promiscuous mode while unicast addresses
5491 * are present.
5492 */
5493void __dev_set_rx_mode(struct net_device *dev)
5494{
5495 const struct net_device_ops *ops = dev->netdev_ops;
5496
5497 /* dev_open will call this function so the list will stay sane. */
5498 if (!(dev->flags&IFF_UP))
5499 return;
5500
5501 if (!netif_device_present(dev))
5502 return;
5503
5504 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5505 /* Unicast addresses changes may only happen under the rtnl,
5506 * therefore calling __dev_set_promiscuity here is safe.
5507 */
5508 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5509 __dev_set_promiscuity(dev, 1, false);
5510 dev->uc_promisc = true;
5511 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5512 __dev_set_promiscuity(dev, -1, false);
5513 dev->uc_promisc = false;
5514 }
5515 }
5516
5517 if (ops->ndo_set_rx_mode)
5518 ops->ndo_set_rx_mode(dev);
5519}
5520
5521void dev_set_rx_mode(struct net_device *dev)
5522{
5523 netif_addr_lock_bh(dev);
5524 __dev_set_rx_mode(dev);
5525 netif_addr_unlock_bh(dev);
5526}
5527
5528/**
5529 * dev_get_flags - get flags reported to userspace
5530 * @dev: device
5531 *
5532 * Get the combination of flag bits exported through APIs to userspace.
5533 */
5534unsigned int dev_get_flags(const struct net_device *dev)
5535{
5536 unsigned int flags;
5537
5538 flags = (dev->flags & ~(IFF_PROMISC |
5539 IFF_ALLMULTI |
5540 IFF_RUNNING |
5541 IFF_LOWER_UP |
5542 IFF_DORMANT)) |
5543 (dev->gflags & (IFF_PROMISC |
5544 IFF_ALLMULTI));
5545
5546 if (netif_running(dev)) {
5547 if (netif_oper_up(dev))
5548 flags |= IFF_RUNNING;
5549 if (netif_carrier_ok(dev))
5550 flags |= IFF_LOWER_UP;
5551 if (netif_dormant(dev))
5552 flags |= IFF_DORMANT;
5553 }
5554
5555 return flags;
5556}
5557EXPORT_SYMBOL(dev_get_flags);
5558
5559int __dev_change_flags(struct net_device *dev, unsigned int flags)
5560{
5561 unsigned int old_flags = dev->flags;
5562 int ret;
5563
5564 ASSERT_RTNL();
5565
5566 /*
5567 * Set the flags on our device.
5568 */
5569
5570 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5571 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5572 IFF_AUTOMEDIA)) |
5573 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5574 IFF_ALLMULTI));
5575
5576 /*
5577 * Load in the correct multicast list now the flags have changed.
5578 */
5579
5580 if ((old_flags ^ flags) & IFF_MULTICAST)
5581 dev_change_rx_flags(dev, IFF_MULTICAST);
5582
5583 dev_set_rx_mode(dev);
5584
5585 /*
5586 * Have we downed the interface. We handle IFF_UP ourselves
5587 * according to user attempts to set it, rather than blindly
5588 * setting it.
5589 */
5590
5591 ret = 0;
5592 if ((old_flags ^ flags) & IFF_UP)
5593 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5594
5595 if ((flags ^ dev->gflags) & IFF_PROMISC) {
5596 int inc = (flags & IFF_PROMISC) ? 1 : -1;
5597 unsigned int old_flags = dev->flags;
5598
5599 dev->gflags ^= IFF_PROMISC;
5600
5601 if (__dev_set_promiscuity(dev, inc, false) >= 0)
5602 if (dev->flags != old_flags)
5603 dev_set_rx_mode(dev);
5604 }
5605
5606 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5607 is important. Some (broken) drivers set IFF_PROMISC, when
5608 IFF_ALLMULTI is requested not asking us and not reporting.
5609 */
5610 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5611 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5612
5613 dev->gflags ^= IFF_ALLMULTI;
5614 __dev_set_allmulti(dev, inc, false);
5615 }
5616
5617 return ret;
5618}
5619
5620void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5621 unsigned int gchanges)
5622{
5623 unsigned int changes = dev->flags ^ old_flags;
5624
5625 if (gchanges)
5626 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5627
5628 if (changes & IFF_UP) {
5629 if (dev->flags & IFF_UP)
5630 call_netdevice_notifiers(NETDEV_UP, dev);
5631 else
5632 call_netdevice_notifiers(NETDEV_DOWN, dev);
5633 }
5634
5635 if (dev->flags & IFF_UP &&
5636 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5637 struct netdev_notifier_change_info change_info;
5638
5639 change_info.flags_changed = changes;
5640 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5641 &change_info.info);
5642 }
5643}
5644
5645/**
5646 * dev_change_flags - change device settings
5647 * @dev: device
5648 * @flags: device state flags
5649 *
5650 * Change settings on device based state flags. The flags are
5651 * in the userspace exported format.
5652 */
5653int dev_change_flags(struct net_device *dev, unsigned int flags)
5654{
5655 int ret;
5656 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5657
5658 ret = __dev_change_flags(dev, flags);
5659 if (ret < 0)
5660 return ret;
5661
5662 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5663 __dev_notify_flags(dev, old_flags, changes);
5664 return ret;
5665}
5666EXPORT_SYMBOL(dev_change_flags);
5667
5668static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5669{
5670 const struct net_device_ops *ops = dev->netdev_ops;
5671
5672 if (ops->ndo_change_mtu)
5673 return ops->ndo_change_mtu(dev, new_mtu);
5674
5675 dev->mtu = new_mtu;
5676 return 0;
5677}
5678
5679/**
5680 * dev_set_mtu - Change maximum transfer unit
5681 * @dev: device
5682 * @new_mtu: new transfer unit
5683 *
5684 * Change the maximum transfer size of the network device.
5685 */
5686int dev_set_mtu(struct net_device *dev, int new_mtu)
5687{
5688 int err, orig_mtu;
5689
5690 if (new_mtu == dev->mtu)
5691 return 0;
5692
5693 /* MTU must be positive. */
5694 if (new_mtu < 0)
5695 return -EINVAL;
5696
5697 if (!netif_device_present(dev))
5698 return -ENODEV;
5699
5700 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5701 err = notifier_to_errno(err);
5702 if (err)
5703 return err;
5704
5705 orig_mtu = dev->mtu;
5706 err = __dev_set_mtu(dev, new_mtu);
5707
5708 if (!err) {
5709 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5710 err = notifier_to_errno(err);
5711 if (err) {
5712 /* setting mtu back and notifying everyone again,
5713 * so that they have a chance to revert changes.
5714 */
5715 __dev_set_mtu(dev, orig_mtu);
5716 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
5717 }
5718 }
5719 return err;
5720}
5721EXPORT_SYMBOL(dev_set_mtu);
5722
5723/**
5724 * dev_set_group - Change group this device belongs to
5725 * @dev: device
5726 * @new_group: group this device should belong to
5727 */
5728void dev_set_group(struct net_device *dev, int new_group)
5729{
5730 dev->group = new_group;
5731}
5732EXPORT_SYMBOL(dev_set_group);
5733
5734/**
5735 * dev_set_mac_address - Change Media Access Control Address
5736 * @dev: device
5737 * @sa: new address
5738 *
5739 * Change the hardware (MAC) address of the device
5740 */
5741int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
5742{
5743 const struct net_device_ops *ops = dev->netdev_ops;
5744 int err;
5745
5746 if (!ops->ndo_set_mac_address)
5747 return -EOPNOTSUPP;
5748 if (sa->sa_family != dev->type)
5749 return -EINVAL;
5750 if (!netif_device_present(dev))
5751 return -ENODEV;
5752 err = ops->ndo_set_mac_address(dev, sa);
5753 if (err)
5754 return err;
5755 dev->addr_assign_type = NET_ADDR_SET;
5756 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
5757 add_device_randomness(dev->dev_addr, dev->addr_len);
5758 return 0;
5759}
5760EXPORT_SYMBOL(dev_set_mac_address);
5761
5762/**
5763 * dev_change_carrier - Change device carrier
5764 * @dev: device
5765 * @new_carrier: new value
5766 *
5767 * Change device carrier
5768 */
5769int dev_change_carrier(struct net_device *dev, bool new_carrier)
5770{
5771 const struct net_device_ops *ops = dev->netdev_ops;
5772
5773 if (!ops->ndo_change_carrier)
5774 return -EOPNOTSUPP;
5775 if (!netif_device_present(dev))
5776 return -ENODEV;
5777 return ops->ndo_change_carrier(dev, new_carrier);
5778}
5779EXPORT_SYMBOL(dev_change_carrier);
5780
5781/**
5782 * dev_get_phys_port_id - Get device physical port ID
5783 * @dev: device
5784 * @ppid: port ID
5785 *
5786 * Get device physical port ID
5787 */
5788int dev_get_phys_port_id(struct net_device *dev,
5789 struct netdev_phys_port_id *ppid)
5790{
5791 const struct net_device_ops *ops = dev->netdev_ops;
5792
5793 if (!ops->ndo_get_phys_port_id)
5794 return -EOPNOTSUPP;
5795 return ops->ndo_get_phys_port_id(dev, ppid);
5796}
5797EXPORT_SYMBOL(dev_get_phys_port_id);
5798
5799/**
5800 * dev_new_index - allocate an ifindex
5801 * @net: the applicable net namespace
5802 *
5803 * Returns a suitable unique value for a new device interface
5804 * number. The caller must hold the rtnl semaphore or the
5805 * dev_base_lock to be sure it remains unique.
5806 */
5807static int dev_new_index(struct net *net)
5808{
5809 int ifindex = net->ifindex;
5810 for (;;) {
5811 if (++ifindex <= 0)
5812 ifindex = 1;
5813 if (!__dev_get_by_index(net, ifindex))
5814 return net->ifindex = ifindex;
5815 }
5816}
5817
5818/* Delayed registration/unregisteration */
5819static LIST_HEAD(net_todo_list);
5820DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
5821
5822static void net_set_todo(struct net_device *dev)
5823{
5824 list_add_tail(&dev->todo_list, &net_todo_list);
5825 dev_net(dev)->dev_unreg_count++;
5826}
5827
5828static void rollback_registered_many(struct list_head *head)
5829{
5830 struct net_device *dev, *tmp;
5831 LIST_HEAD(close_head);
5832
5833 BUG_ON(dev_boot_phase);
5834 ASSERT_RTNL();
5835
5836 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5837 /* Some devices call without registering
5838 * for initialization unwind. Remove those
5839 * devices and proceed with the remaining.
5840 */
5841 if (dev->reg_state == NETREG_UNINITIALIZED) {
5842 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
5843 dev->name, dev);
5844
5845 WARN_ON(1);
5846 list_del(&dev->unreg_list);
5847 continue;
5848 }
5849 dev->dismantle = true;
5850 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5851 }
5852
5853 /* If device is running, close it first. */
5854 list_for_each_entry(dev, head, unreg_list)
5855 list_add_tail(&dev->close_list, &close_head);
5856 dev_close_many(&close_head);
5857
5858 list_for_each_entry(dev, head, unreg_list) {
5859 /* And unlink it from device chain. */
5860 unlist_netdevice(dev);
5861
5862 dev->reg_state = NETREG_UNREGISTERING;
5863 }
5864
5865 synchronize_net();
5866
5867 list_for_each_entry(dev, head, unreg_list) {
5868 /* Shutdown queueing discipline. */
5869 dev_shutdown(dev);
5870
5871
5872 /* Notify protocols, that we are about to destroy
5873 this device. They should clean all the things.
5874 */
5875 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5876
5877 /*
5878 * Flush the unicast and multicast chains
5879 */
5880 dev_uc_flush(dev);
5881 dev_mc_flush(dev);
5882
5883 if (dev->netdev_ops->ndo_uninit)
5884 dev->netdev_ops->ndo_uninit(dev);
5885
5886 if (!dev->rtnl_link_ops ||
5887 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5888 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
5889
5890 /* Notifier chain MUST detach us all upper devices. */
5891 WARN_ON(netdev_has_any_upper_dev(dev));
5892
5893 /* Remove entries from kobject tree */
5894 netdev_unregister_kobject(dev);
5895#ifdef CONFIG_XPS
5896 /* Remove XPS queueing entries */
5897 netif_reset_xps_queues_gt(dev, 0);
5898#endif
5899 }
5900
5901 synchronize_net();
5902
5903 list_for_each_entry(dev, head, unreg_list)
5904 dev_put(dev);
5905}
5906
5907static void rollback_registered(struct net_device *dev)
5908{
5909 LIST_HEAD(single);
5910
5911 list_add(&dev->unreg_list, &single);
5912 rollback_registered_many(&single);
5913 list_del(&single);
5914}
5915
5916static netdev_features_t netdev_fix_features(struct net_device *dev,
5917 netdev_features_t features)
5918{
5919 /* Fix illegal checksum combinations */
5920 if ((features & NETIF_F_HW_CSUM) &&
5921 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5922 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
5923 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5924 }
5925
5926 /* TSO requires that SG is present as well. */
5927 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
5928 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
5929 features &= ~NETIF_F_ALL_TSO;
5930 }
5931
5932 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
5933 !(features & NETIF_F_IP_CSUM)) {
5934 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
5935 features &= ~NETIF_F_TSO;
5936 features &= ~NETIF_F_TSO_ECN;
5937 }
5938
5939 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
5940 !(features & NETIF_F_IPV6_CSUM)) {
5941 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
5942 features &= ~NETIF_F_TSO6;
5943 }
5944
5945 /* TSO ECN requires that TSO is present as well. */
5946 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
5947 features &= ~NETIF_F_TSO_ECN;
5948
5949 /* Software GSO depends on SG. */
5950 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5951 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5952 features &= ~NETIF_F_GSO;
5953 }
5954
5955 /* UFO needs SG and checksumming */
5956 if (features & NETIF_F_UFO) {
5957 /* maybe split UFO into V4 and V6? */
5958 if (!((features & NETIF_F_GEN_CSUM) ||
5959 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5960 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5961 netdev_dbg(dev,
5962 "Dropping NETIF_F_UFO since no checksum offload features.\n");
5963 features &= ~NETIF_F_UFO;
5964 }
5965
5966 if (!(features & NETIF_F_SG)) {
5967 netdev_dbg(dev,
5968 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5969 features &= ~NETIF_F_UFO;
5970 }
5971 }
5972
5973#ifdef CONFIG_NET_RX_BUSY_POLL
5974 if (dev->netdev_ops->ndo_busy_poll)
5975 features |= NETIF_F_BUSY_POLL;
5976 else
5977#endif
5978 features &= ~NETIF_F_BUSY_POLL;
5979
5980 return features;
5981}
5982
5983int __netdev_update_features(struct net_device *dev)
5984{
5985 netdev_features_t features;
5986 int err = 0;
5987
5988 ASSERT_RTNL();
5989
5990 features = netdev_get_wanted_features(dev);
5991
5992 if (dev->netdev_ops->ndo_fix_features)
5993 features = dev->netdev_ops->ndo_fix_features(dev, features);
5994
5995 /* driver might be less strict about feature dependencies */
5996 features = netdev_fix_features(dev, features);
5997
5998 if (dev->features == features)
5999 return 0;
6000
6001 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6002 &dev->features, &features);
6003
6004 if (dev->netdev_ops->ndo_set_features)
6005 err = dev->netdev_ops->ndo_set_features(dev, features);
6006
6007 if (unlikely(err < 0)) {
6008 netdev_err(dev,
6009 "set_features() failed (%d); wanted %pNF, left %pNF\n",
6010 err, &features, &dev->features);
6011 return -1;
6012 }
6013
6014 if (!err)
6015 dev->features = features;
6016
6017 return 1;
6018}
6019
6020/**
6021 * netdev_update_features - recalculate device features
6022 * @dev: the device to check
6023 *
6024 * Recalculate dev->features set and send notifications if it
6025 * has changed. Should be called after driver or hardware dependent
6026 * conditions might have changed that influence the features.
6027 */
6028void netdev_update_features(struct net_device *dev)
6029{
6030 if (__netdev_update_features(dev))
6031 netdev_features_change(dev);
6032}
6033EXPORT_SYMBOL(netdev_update_features);
6034
6035/**
6036 * netdev_change_features - recalculate device features
6037 * @dev: the device to check
6038 *
6039 * Recalculate dev->features set and send notifications even
6040 * if they have not changed. Should be called instead of
6041 * netdev_update_features() if also dev->vlan_features might
6042 * have changed to allow the changes to be propagated to stacked
6043 * VLAN devices.
6044 */
6045void netdev_change_features(struct net_device *dev)
6046{
6047 __netdev_update_features(dev);
6048 netdev_features_change(dev);
6049}
6050EXPORT_SYMBOL(netdev_change_features);
6051
6052/**
6053 * netif_stacked_transfer_operstate - transfer operstate
6054 * @rootdev: the root or lower level device to transfer state from
6055 * @dev: the device to transfer operstate to
6056 *
6057 * Transfer operational state from root to device. This is normally
6058 * called when a stacking relationship exists between the root
6059 * device and the device(a leaf device).
6060 */
6061void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6062 struct net_device *dev)
6063{
6064 if (rootdev->operstate == IF_OPER_DORMANT)
6065 netif_dormant_on(dev);
6066 else
6067 netif_dormant_off(dev);
6068
6069 if (netif_carrier_ok(rootdev)) {
6070 if (!netif_carrier_ok(dev))
6071 netif_carrier_on(dev);
6072 } else {
6073 if (netif_carrier_ok(dev))
6074 netif_carrier_off(dev);
6075 }
6076}
6077EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6078
6079#ifdef CONFIG_SYSFS
6080static int netif_alloc_rx_queues(struct net_device *dev)
6081{
6082 unsigned int i, count = dev->num_rx_queues;
6083 struct netdev_rx_queue *rx;
6084
6085 BUG_ON(count < 1);
6086
6087 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
6088 if (!rx)
6089 return -ENOMEM;
6090
6091 dev->_rx = rx;
6092
6093 for (i = 0; i < count; i++)
6094 rx[i].dev = dev;
6095 return 0;
6096}
6097#endif
6098
6099static void netdev_init_one_queue(struct net_device *dev,
6100 struct netdev_queue *queue, void *_unused)
6101{
6102 /* Initialize queue lock */
6103 spin_lock_init(&queue->_xmit_lock);
6104 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6105 queue->xmit_lock_owner = -1;
6106 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6107 queue->dev = dev;
6108#ifdef CONFIG_BQL
6109 dql_init(&queue->dql, HZ);
6110#endif
6111}
6112
6113static void netif_free_tx_queues(struct net_device *dev)
6114{
6115 kvfree(dev->_tx);
6116}
6117
6118static int netif_alloc_netdev_queues(struct net_device *dev)
6119{
6120 unsigned int count = dev->num_tx_queues;
6121 struct netdev_queue *tx;
6122 size_t sz = count * sizeof(*tx);
6123
6124 BUG_ON(count < 1 || count > 0xffff);
6125
6126 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6127 if (!tx) {
6128 tx = vzalloc(sz);
6129 if (!tx)
6130 return -ENOMEM;
6131 }
6132 dev->_tx = tx;
6133
6134 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6135 spin_lock_init(&dev->tx_global_lock);
6136
6137 return 0;
6138}
6139
6140/**
6141 * register_netdevice - register a network device
6142 * @dev: device to register
6143 *
6144 * Take a completed network device structure and add it to the kernel
6145 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6146 * chain. 0 is returned on success. A negative errno code is returned
6147 * on a failure to set up the device, or if the name is a duplicate.
6148 *
6149 * Callers must hold the rtnl semaphore. You may want
6150 * register_netdev() instead of this.
6151 *
6152 * BUGS:
6153 * The locking appears insufficient to guarantee two parallel registers
6154 * will not get the same name.
6155 */
6156
6157int register_netdevice(struct net_device *dev)
6158{
6159 int ret;
6160 struct net *net = dev_net(dev);
6161
6162 BUG_ON(dev_boot_phase);
6163 ASSERT_RTNL();
6164
6165 might_sleep();
6166
6167 /* When net_device's are persistent, this will be fatal. */
6168 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6169 BUG_ON(!net);
6170
6171 spin_lock_init(&dev->addr_list_lock);
6172 netdev_set_addr_lockdep_class(dev);
6173
6174 dev->iflink = -1;
6175
6176 ret = dev_get_valid_name(net, dev, dev->name);
6177 if (ret < 0)
6178 goto out;
6179
6180 /* Init, if this function is available */
6181 if (dev->netdev_ops->ndo_init) {
6182 ret = dev->netdev_ops->ndo_init(dev);
6183 if (ret) {
6184 if (ret > 0)
6185 ret = -EIO;
6186 goto out;
6187 }
6188 }
6189
6190 if (((dev->hw_features | dev->features) &
6191 NETIF_F_HW_VLAN_CTAG_FILTER) &&
6192 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6193 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6194 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6195 ret = -EINVAL;
6196 goto err_uninit;
6197 }
6198
6199 ret = -EBUSY;
6200 if (!dev->ifindex)
6201 dev->ifindex = dev_new_index(net);
6202 else if (__dev_get_by_index(net, dev->ifindex))
6203 goto err_uninit;
6204
6205 if (dev->iflink == -1)
6206 dev->iflink = dev->ifindex;
6207
6208 /* Transfer changeable features to wanted_features and enable
6209 * software offloads (GSO and GRO).
6210 */
6211 dev->hw_features |= NETIF_F_SOFT_FEATURES;
6212 dev->features |= NETIF_F_SOFT_FEATURES;
6213 dev->wanted_features = dev->features & dev->hw_features;
6214
6215 if (!(dev->flags & IFF_LOOPBACK)) {
6216 dev->hw_features |= NETIF_F_NOCACHE_COPY;
6217 }
6218
6219 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6220 */
6221 dev->vlan_features |= NETIF_F_HIGHDMA;
6222
6223 /* Make NETIF_F_SG inheritable to tunnel devices.
6224 */
6225 dev->hw_enc_features |= NETIF_F_SG;
6226
6227 /* Make NETIF_F_SG inheritable to MPLS.
6228 */
6229 dev->mpls_features |= NETIF_F_SG;
6230
6231 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6232 ret = notifier_to_errno(ret);
6233 if (ret)
6234 goto err_uninit;
6235
6236 ret = netdev_register_kobject(dev);
6237 if (ret)
6238 goto err_uninit;
6239 dev->reg_state = NETREG_REGISTERED;
6240
6241 __netdev_update_features(dev);
6242
6243 /*
6244 * Default initial state at registry is that the
6245 * device is present.
6246 */
6247
6248 set_bit(__LINK_STATE_PRESENT, &dev->state);
6249
6250 linkwatch_init_dev(dev);
6251
6252 dev_init_scheduler(dev);
6253 dev_hold(dev);
6254 list_netdevice(dev);
6255 add_device_randomness(dev->dev_addr, dev->addr_len);
6256
6257 /* If the device has permanent device address, driver should
6258 * set dev_addr and also addr_assign_type should be set to
6259 * NET_ADDR_PERM (default value).
6260 */
6261 if (dev->addr_assign_type == NET_ADDR_PERM)
6262 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6263
6264 /* Notify protocols, that a new device appeared. */
6265 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6266 ret = notifier_to_errno(ret);
6267 if (ret) {
6268 rollback_registered(dev);
6269 dev->reg_state = NETREG_UNREGISTERED;
6270 }
6271 /*
6272 * Prevent userspace races by waiting until the network
6273 * device is fully setup before sending notifications.
6274 */
6275 if (!dev->rtnl_link_ops ||
6276 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6277 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6278
6279out:
6280 return ret;
6281
6282err_uninit:
6283 if (dev->netdev_ops->ndo_uninit)
6284 dev->netdev_ops->ndo_uninit(dev);
6285 goto out;
6286}
6287EXPORT_SYMBOL(register_netdevice);
6288
6289/**
6290 * init_dummy_netdev - init a dummy network device for NAPI
6291 * @dev: device to init
6292 *
6293 * This takes a network device structure and initialize the minimum
6294 * amount of fields so it can be used to schedule NAPI polls without
6295 * registering a full blown interface. This is to be used by drivers
6296 * that need to tie several hardware interfaces to a single NAPI
6297 * poll scheduler due to HW limitations.
6298 */
6299int init_dummy_netdev(struct net_device *dev)
6300{
6301 /* Clear everything. Note we don't initialize spinlocks
6302 * are they aren't supposed to be taken by any of the
6303 * NAPI code and this dummy netdev is supposed to be
6304 * only ever used for NAPI polls
6305 */
6306 memset(dev, 0, sizeof(struct net_device));
6307
6308 /* make sure we BUG if trying to hit standard
6309 * register/unregister code path
6310 */
6311 dev->reg_state = NETREG_DUMMY;
6312
6313 /* NAPI wants this */
6314 INIT_LIST_HEAD(&dev->napi_list);
6315
6316 /* a dummy interface is started by default */
6317 set_bit(__LINK_STATE_PRESENT, &dev->state);
6318 set_bit(__LINK_STATE_START, &dev->state);
6319
6320 /* Note : We dont allocate pcpu_refcnt for dummy devices,
6321 * because users of this 'device' dont need to change
6322 * its refcount.
6323 */
6324
6325 return 0;
6326}
6327EXPORT_SYMBOL_GPL(init_dummy_netdev);
6328
6329
6330/**
6331 * register_netdev - register a network device
6332 * @dev: device to register
6333 *
6334 * Take a completed network device structure and add it to the kernel
6335 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6336 * chain. 0 is returned on success. A negative errno code is returned
6337 * on a failure to set up the device, or if the name is a duplicate.
6338 *
6339 * This is a wrapper around register_netdevice that takes the rtnl semaphore
6340 * and expands the device name if you passed a format string to
6341 * alloc_netdev.
6342 */
6343int register_netdev(struct net_device *dev)
6344{
6345 int err;
6346
6347 rtnl_lock();
6348 err = register_netdevice(dev);
6349 rtnl_unlock();
6350 return err;
6351}
6352EXPORT_SYMBOL(register_netdev);
6353
6354int netdev_refcnt_read(const struct net_device *dev)
6355{
6356 int i, refcnt = 0;
6357
6358 for_each_possible_cpu(i)
6359 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6360 return refcnt;
6361}
6362EXPORT_SYMBOL(netdev_refcnt_read);
6363
6364/**
6365 * netdev_wait_allrefs - wait until all references are gone.
6366 * @dev: target net_device
6367 *
6368 * This is called when unregistering network devices.
6369 *
6370 * Any protocol or device that holds a reference should register
6371 * for netdevice notification, and cleanup and put back the
6372 * reference if they receive an UNREGISTER event.
6373 * We can get stuck here if buggy protocols don't correctly
6374 * call dev_put.
6375 */
6376static void netdev_wait_allrefs(struct net_device *dev)
6377{
6378 unsigned long rebroadcast_time, warning_time;
6379 int refcnt;
6380
6381 linkwatch_forget_dev(dev);
6382
6383 rebroadcast_time = warning_time = jiffies;
6384 refcnt = netdev_refcnt_read(dev);
6385
6386 while (refcnt != 0) {
6387 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6388 rtnl_lock();
6389
6390 /* Rebroadcast unregister notification */
6391 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6392
6393 __rtnl_unlock();
6394 rcu_barrier();
6395 rtnl_lock();
6396
6397 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6398 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6399 &dev->state)) {
6400 /* We must not have linkwatch events
6401 * pending on unregister. If this
6402 * happens, we simply run the queue
6403 * unscheduled, resulting in a noop
6404 * for this device.
6405 */
6406 linkwatch_run_queue();
6407 }
6408
6409 __rtnl_unlock();
6410
6411 rebroadcast_time = jiffies;
6412 }
6413
6414 msleep(250);
6415
6416 refcnt = netdev_refcnt_read(dev);
6417
6418 if (time_after(jiffies, warning_time + 10 * HZ)) {
6419 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6420 dev->name, refcnt);
6421 warning_time = jiffies;
6422 }
6423 }
6424}
6425
6426/* The sequence is:
6427 *
6428 * rtnl_lock();
6429 * ...
6430 * register_netdevice(x1);
6431 * register_netdevice(x2);
6432 * ...
6433 * unregister_netdevice(y1);
6434 * unregister_netdevice(y2);
6435 * ...
6436 * rtnl_unlock();
6437 * free_netdev(y1);
6438 * free_netdev(y2);
6439 *
6440 * We are invoked by rtnl_unlock().
6441 * This allows us to deal with problems:
6442 * 1) We can delete sysfs objects which invoke hotplug
6443 * without deadlocking with linkwatch via keventd.
6444 * 2) Since we run with the RTNL semaphore not held, we can sleep
6445 * safely in order to wait for the netdev refcnt to drop to zero.
6446 *
6447 * We must not return until all unregister events added during
6448 * the interval the lock was held have been completed.
6449 */
6450void netdev_run_todo(void)
6451{
6452 struct list_head list;
6453
6454 /* Snapshot list, allow later requests */
6455 list_replace_init(&net_todo_list, &list);
6456
6457 __rtnl_unlock();
6458
6459
6460 /* Wait for rcu callbacks to finish before next phase */
6461 if (!list_empty(&list))
6462 rcu_barrier();
6463
6464 while (!list_empty(&list)) {
6465 struct net_device *dev
6466 = list_first_entry(&list, struct net_device, todo_list);
6467 list_del(&dev->todo_list);
6468
6469 rtnl_lock();
6470 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6471 __rtnl_unlock();
6472
6473 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6474 pr_err("network todo '%s' but state %d\n",
6475 dev->name, dev->reg_state);
6476 dump_stack();
6477 continue;
6478 }
6479
6480 dev->reg_state = NETREG_UNREGISTERED;
6481
6482 on_each_cpu(flush_backlog, dev, 1);
6483
6484 netdev_wait_allrefs(dev);
6485
6486 /* paranoia */
6487 BUG_ON(netdev_refcnt_read(dev));
6488 WARN_ON(rcu_access_pointer(dev->ip_ptr));
6489 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6490 WARN_ON(dev->dn_ptr);
6491
6492 if (dev->destructor)
6493 dev->destructor(dev);
6494
6495 /* Report a network device has been unregistered */
6496 rtnl_lock();
6497 dev_net(dev)->dev_unreg_count--;
6498 __rtnl_unlock();
6499 wake_up(&netdev_unregistering_wq);
6500
6501 /* Free network device */
6502 kobject_put(&dev->dev.kobj);
6503 }
6504}
6505
6506/* Convert net_device_stats to rtnl_link_stats64. They have the same
6507 * fields in the same order, with only the type differing.
6508 */
6509void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6510 const struct net_device_stats *netdev_stats)
6511{
6512#if BITS_PER_LONG == 64
6513 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6514 memcpy(stats64, netdev_stats, sizeof(*stats64));
6515#else
6516 size_t i, n = sizeof(*stats64) / sizeof(u64);
6517 const unsigned long *src = (const unsigned long *)netdev_stats;
6518 u64 *dst = (u64 *)stats64;
6519
6520 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6521 sizeof(*stats64) / sizeof(u64));
6522 for (i = 0; i < n; i++)
6523 dst[i] = src[i];
6524#endif
6525}
6526EXPORT_SYMBOL(netdev_stats_to_stats64);
6527
6528/**
6529 * dev_get_stats - get network device statistics
6530 * @dev: device to get statistics from
6531 * @storage: place to store stats
6532 *
6533 * Get network statistics from device. Return @storage.
6534 * The device driver may provide its own method by setting
6535 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6536 * otherwise the internal statistics structure is used.
6537 */
6538struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6539 struct rtnl_link_stats64 *storage)
6540{
6541 const struct net_device_ops *ops = dev->netdev_ops;
6542
6543 if (ops->ndo_get_stats64) {
6544 memset(storage, 0, sizeof(*storage));
6545 ops->ndo_get_stats64(dev, storage);
6546 } else if (ops->ndo_get_stats) {
6547 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6548 } else {
6549 netdev_stats_to_stats64(storage, &dev->stats);
6550 }
6551 storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6552 storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6553 return storage;
6554}
6555EXPORT_SYMBOL(dev_get_stats);
6556
6557struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6558{
6559 struct netdev_queue *queue = dev_ingress_queue(dev);
6560
6561#ifdef CONFIG_NET_CLS_ACT
6562 if (queue)
6563 return queue;
6564 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6565 if (!queue)
6566 return NULL;
6567 netdev_init_one_queue(dev, queue, NULL);
6568 queue->qdisc = &noop_qdisc;
6569 queue->qdisc_sleeping = &noop_qdisc;
6570 rcu_assign_pointer(dev->ingress_queue, queue);
6571#endif
6572 return queue;
6573}
6574
6575static const struct ethtool_ops default_ethtool_ops;
6576
6577void netdev_set_default_ethtool_ops(struct net_device *dev,
6578 const struct ethtool_ops *ops)
6579{
6580 if (dev->ethtool_ops == &default_ethtool_ops)
6581 dev->ethtool_ops = ops;
6582}
6583EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6584
6585void netdev_freemem(struct net_device *dev)
6586{
6587 char *addr = (char *)dev - dev->padded;
6588
6589 kvfree(addr);
6590}
6591
6592/**
6593 * alloc_netdev_mqs - allocate network device
6594 * @sizeof_priv: size of private data to allocate space for
6595 * @name: device name format string
6596 * @name_assign_type: origin of device name
6597 * @setup: callback to initialize device
6598 * @txqs: the number of TX subqueues to allocate
6599 * @rxqs: the number of RX subqueues to allocate
6600 *
6601 * Allocates a struct net_device with private data area for driver use
6602 * and performs basic initialization. Also allocates subqueue structs
6603 * for each queue on the device.
6604 */
6605struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6606 unsigned char name_assign_type,
6607 void (*setup)(struct net_device *),
6608 unsigned int txqs, unsigned int rxqs)
6609{
6610 struct net_device *dev;
6611 size_t alloc_size;
6612 struct net_device *p;
6613
6614 BUG_ON(strlen(name) >= sizeof(dev->name));
6615
6616 if (txqs < 1) {
6617 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6618 return NULL;
6619 }
6620
6621#ifdef CONFIG_SYSFS
6622 if (rxqs < 1) {
6623 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6624 return NULL;
6625 }
6626#endif
6627
6628 alloc_size = sizeof(struct net_device);
6629 if (sizeof_priv) {
6630 /* ensure 32-byte alignment of private area */
6631 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6632 alloc_size += sizeof_priv;
6633 }
6634 /* ensure 32-byte alignment of whole construct */
6635 alloc_size += NETDEV_ALIGN - 1;
6636
6637 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6638 if (!p)
6639 p = vzalloc(alloc_size);
6640 if (!p)
6641 return NULL;
6642
6643 dev = PTR_ALIGN(p, NETDEV_ALIGN);
6644 dev->padded = (char *)dev - (char *)p;
6645
6646 dev->pcpu_refcnt = alloc_percpu(int);
6647 if (!dev->pcpu_refcnt)
6648 goto free_dev;
6649
6650 if (dev_addr_init(dev))
6651 goto free_pcpu;
6652
6653 dev_mc_init(dev);
6654 dev_uc_init(dev);
6655
6656 dev_net_set(dev, &init_net);
6657
6658 dev->gso_max_size = GSO_MAX_SIZE;
6659 dev->gso_max_segs = GSO_MAX_SEGS;
6660 dev->gso_min_segs = 0;
6661
6662 INIT_LIST_HEAD(&dev->napi_list);
6663 INIT_LIST_HEAD(&dev->unreg_list);
6664 INIT_LIST_HEAD(&dev->close_list);
6665 INIT_LIST_HEAD(&dev->link_watch_list);
6666 INIT_LIST_HEAD(&dev->adj_list.upper);
6667 INIT_LIST_HEAD(&dev->adj_list.lower);
6668 INIT_LIST_HEAD(&dev->all_adj_list.upper);
6669 INIT_LIST_HEAD(&dev->all_adj_list.lower);
6670 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
6671 setup(dev);
6672
6673 dev->num_tx_queues = txqs;
6674 dev->real_num_tx_queues = txqs;
6675 if (netif_alloc_netdev_queues(dev))
6676 goto free_all;
6677
6678#ifdef CONFIG_SYSFS
6679 dev->num_rx_queues = rxqs;
6680 dev->real_num_rx_queues = rxqs;
6681 if (netif_alloc_rx_queues(dev))
6682 goto free_all;
6683#endif
6684
6685 strcpy(dev->name, name);
6686 dev->name_assign_type = name_assign_type;
6687 dev->group = INIT_NETDEV_GROUP;
6688 if (!dev->ethtool_ops)
6689 dev->ethtool_ops = &default_ethtool_ops;
6690 return dev;
6691
6692free_all:
6693 free_netdev(dev);
6694 return NULL;
6695
6696free_pcpu:
6697 free_percpu(dev->pcpu_refcnt);
6698free_dev:
6699 netdev_freemem(dev);
6700 return NULL;
6701}
6702EXPORT_SYMBOL(alloc_netdev_mqs);
6703
6704/**
6705 * free_netdev - free network device
6706 * @dev: device
6707 *
6708 * This function does the last stage of destroying an allocated device
6709 * interface. The reference to the device object is released.
6710 * If this is the last reference then it will be freed.
6711 */
6712void free_netdev(struct net_device *dev)
6713{
6714 struct napi_struct *p, *n;
6715
6716 release_net(dev_net(dev));
6717
6718 netif_free_tx_queues(dev);
6719#ifdef CONFIG_SYSFS
6720 kfree(dev->_rx);
6721#endif
6722
6723 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
6724
6725 /* Flush device addresses */
6726 dev_addr_flush(dev);
6727
6728 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
6729 netif_napi_del(p);
6730
6731 free_percpu(dev->pcpu_refcnt);
6732 dev->pcpu_refcnt = NULL;
6733
6734 /* Compatibility with error handling in drivers */
6735 if (dev->reg_state == NETREG_UNINITIALIZED) {
6736 netdev_freemem(dev);
6737 return;
6738 }
6739
6740 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
6741 dev->reg_state = NETREG_RELEASED;
6742
6743 /* will free via device release */
6744 put_device(&dev->dev);
6745}
6746EXPORT_SYMBOL(free_netdev);
6747
6748/**
6749 * synchronize_net - Synchronize with packet receive processing
6750 *
6751 * Wait for packets currently being received to be done.
6752 * Does not block later packets from starting.
6753 */
6754void synchronize_net(void)
6755{
6756 might_sleep();
6757 if (rtnl_is_locked())
6758 synchronize_rcu_expedited();
6759 else
6760 synchronize_rcu();
6761}
6762EXPORT_SYMBOL(synchronize_net);
6763
6764/**
6765 * unregister_netdevice_queue - remove device from the kernel
6766 * @dev: device
6767 * @head: list
6768 *
6769 * This function shuts down a device interface and removes it
6770 * from the kernel tables.
6771 * If head not NULL, device is queued to be unregistered later.
6772 *
6773 * Callers must hold the rtnl semaphore. You may want
6774 * unregister_netdev() instead of this.
6775 */
6776
6777void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
6778{
6779 ASSERT_RTNL();
6780
6781 if (head) {
6782 list_move_tail(&dev->unreg_list, head);
6783 } else {
6784 rollback_registered(dev);
6785 /* Finish processing unregister after unlock */
6786 net_set_todo(dev);
6787 }
6788}
6789EXPORT_SYMBOL(unregister_netdevice_queue);
6790
6791/**
6792 * unregister_netdevice_many - unregister many devices
6793 * @head: list of devices
6794 *
6795 * Note: As most callers use a stack allocated list_head,
6796 * we force a list_del() to make sure stack wont be corrupted later.
6797 */
6798void unregister_netdevice_many(struct list_head *head)
6799{
6800 struct net_device *dev;
6801
6802 if (!list_empty(head)) {
6803 rollback_registered_many(head);
6804 list_for_each_entry(dev, head, unreg_list)
6805 net_set_todo(dev);
6806 list_del(head);
6807 }
6808}
6809EXPORT_SYMBOL(unregister_netdevice_many);
6810
6811/**
6812 * unregister_netdev - remove device from the kernel
6813 * @dev: device
6814 *
6815 * This function shuts down a device interface and removes it
6816 * from the kernel tables.
6817 *
6818 * This is just a wrapper for unregister_netdevice that takes
6819 * the rtnl semaphore. In general you want to use this and not
6820 * unregister_netdevice.
6821 */
6822void unregister_netdev(struct net_device *dev)
6823{
6824 rtnl_lock();
6825 unregister_netdevice(dev);
6826 rtnl_unlock();
6827}
6828EXPORT_SYMBOL(unregister_netdev);
6829
6830/**
6831 * dev_change_net_namespace - move device to different nethost namespace
6832 * @dev: device
6833 * @net: network namespace
6834 * @pat: If not NULL name pattern to try if the current device name
6835 * is already taken in the destination network namespace.
6836 *
6837 * This function shuts down a device interface and moves it
6838 * to a new network namespace. On success 0 is returned, on
6839 * a failure a netagive errno code is returned.
6840 *
6841 * Callers must hold the rtnl semaphore.
6842 */
6843
6844int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
6845{
6846 int err;
6847
6848 ASSERT_RTNL();
6849
6850 /* Don't allow namespace local devices to be moved. */
6851 err = -EINVAL;
6852 if (dev->features & NETIF_F_NETNS_LOCAL)
6853 goto out;
6854
6855 /* Ensure the device has been registrered */
6856 if (dev->reg_state != NETREG_REGISTERED)
6857 goto out;
6858
6859 /* Get out if there is nothing todo */
6860 err = 0;
6861 if (net_eq(dev_net(dev), net))
6862 goto out;
6863
6864 /* Pick the destination device name, and ensure
6865 * we can use it in the destination network namespace.
6866 */
6867 err = -EEXIST;
6868 if (__dev_get_by_name(net, dev->name)) {
6869 /* We get here if we can't use the current device name */
6870 if (!pat)
6871 goto out;
6872 if (dev_get_valid_name(net, dev, pat) < 0)
6873 goto out;
6874 }
6875
6876 /*
6877 * And now a mini version of register_netdevice unregister_netdevice.
6878 */
6879
6880 /* If device is running close it first. */
6881 dev_close(dev);
6882
6883 /* And unlink it from device chain */
6884 err = -ENODEV;
6885 unlist_netdevice(dev);
6886
6887 synchronize_net();
6888
6889 /* Shutdown queueing discipline. */
6890 dev_shutdown(dev);
6891
6892 /* Notify protocols, that we are about to destroy
6893 this device. They should clean all the things.
6894
6895 Note that dev->reg_state stays at NETREG_REGISTERED.
6896 This is wanted because this way 8021q and macvlan know
6897 the device is just moving and can keep their slaves up.
6898 */
6899 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6900 rcu_barrier();
6901 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6902 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
6903
6904 /*
6905 * Flush the unicast and multicast chains
6906 */
6907 dev_uc_flush(dev);
6908 dev_mc_flush(dev);
6909
6910 /* Send a netdev-removed uevent to the old namespace */
6911 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
6912 netdev_adjacent_del_links(dev);
6913
6914 /* Actually switch the network namespace */
6915 dev_net_set(dev, net);
6916
6917 /* If there is an ifindex conflict assign a new one */
6918 if (__dev_get_by_index(net, dev->ifindex)) {
6919 int iflink = (dev->iflink == dev->ifindex);
6920 dev->ifindex = dev_new_index(net);
6921 if (iflink)
6922 dev->iflink = dev->ifindex;
6923 }
6924
6925 /* Send a netdev-add uevent to the new namespace */
6926 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
6927 netdev_adjacent_add_links(dev);
6928
6929 /* Fixup kobjects */
6930 err = device_rename(&dev->dev, dev->name);
6931 WARN_ON(err);
6932
6933 /* Add the device back in the hashes */
6934 list_netdevice(dev);
6935
6936 /* Notify protocols, that a new device appeared. */
6937 call_netdevice_notifiers(NETDEV_REGISTER, dev);
6938
6939 /*
6940 * Prevent userspace races by waiting until the network
6941 * device is fully setup before sending notifications.
6942 */
6943 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6944
6945 synchronize_net();
6946 err = 0;
6947out:
6948 return err;
6949}
6950EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6951
6952static int dev_cpu_callback(struct notifier_block *nfb,
6953 unsigned long action,
6954 void *ocpu)
6955{
6956 struct sk_buff **list_skb;
6957 struct sk_buff *skb;
6958 unsigned int cpu, oldcpu = (unsigned long)ocpu;
6959 struct softnet_data *sd, *oldsd;
6960
6961 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6962 return NOTIFY_OK;
6963
6964 local_irq_disable();
6965 cpu = smp_processor_id();
6966 sd = &per_cpu(softnet_data, cpu);
6967 oldsd = &per_cpu(softnet_data, oldcpu);
6968
6969 /* Find end of our completion_queue. */
6970 list_skb = &sd->completion_queue;
6971 while (*list_skb)
6972 list_skb = &(*list_skb)->next;
6973 /* Append completion queue from offline CPU. */
6974 *list_skb = oldsd->completion_queue;
6975 oldsd->completion_queue = NULL;
6976
6977 /* Append output queue from offline CPU. */
6978 if (oldsd->output_queue) {
6979 *sd->output_queue_tailp = oldsd->output_queue;
6980 sd->output_queue_tailp = oldsd->output_queue_tailp;
6981 oldsd->output_queue = NULL;
6982 oldsd->output_queue_tailp = &oldsd->output_queue;
6983 }
6984 /* Append NAPI poll list from offline CPU. */
6985 if (!list_empty(&oldsd->poll_list)) {
6986 list_splice_init(&oldsd->poll_list, &sd->poll_list);
6987 raise_softirq_irqoff(NET_RX_SOFTIRQ);
6988 }
6989
6990 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6991 local_irq_enable();
6992
6993 /* Process offline CPU's input_pkt_queue */
6994 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6995 netif_rx_internal(skb);
6996 input_queue_head_incr(oldsd);
6997 }
6998 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6999 netif_rx_internal(skb);
7000 input_queue_head_incr(oldsd);
7001 }
7002
7003 return NOTIFY_OK;
7004}
7005
7006
7007/**
7008 * netdev_increment_features - increment feature set by one
7009 * @all: current feature set
7010 * @one: new feature set
7011 * @mask: mask feature set
7012 *
7013 * Computes a new feature set after adding a device with feature set
7014 * @one to the master device with current feature set @all. Will not
7015 * enable anything that is off in @mask. Returns the new feature set.
7016 */
7017netdev_features_t netdev_increment_features(netdev_features_t all,
7018 netdev_features_t one, netdev_features_t mask)
7019{
7020 if (mask & NETIF_F_GEN_CSUM)
7021 mask |= NETIF_F_ALL_CSUM;
7022 mask |= NETIF_F_VLAN_CHALLENGED;
7023
7024 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7025 all &= one | ~NETIF_F_ALL_FOR_ALL;
7026
7027 /* If one device supports hw checksumming, set for all. */
7028 if (all & NETIF_F_GEN_CSUM)
7029 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7030
7031 return all;
7032}
7033EXPORT_SYMBOL(netdev_increment_features);
7034
7035static struct hlist_head * __net_init netdev_create_hash(void)
7036{
7037 int i;
7038 struct hlist_head *hash;
7039
7040 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7041 if (hash != NULL)
7042 for (i = 0; i < NETDEV_HASHENTRIES; i++)
7043 INIT_HLIST_HEAD(&hash[i]);
7044
7045 return hash;
7046}
7047
7048/* Initialize per network namespace state */
7049static int __net_init netdev_init(struct net *net)
7050{
7051 if (net != &init_net)
7052 INIT_LIST_HEAD(&net->dev_base_head);
7053
7054 net->dev_name_head = netdev_create_hash();
7055 if (net->dev_name_head == NULL)
7056 goto err_name;
7057
7058 net->dev_index_head = netdev_create_hash();
7059 if (net->dev_index_head == NULL)
7060 goto err_idx;
7061
7062 return 0;
7063
7064err_idx:
7065 kfree(net->dev_name_head);
7066err_name:
7067 return -ENOMEM;
7068}
7069
7070/**
7071 * netdev_drivername - network driver for the device
7072 * @dev: network device
7073 *
7074 * Determine network driver for device.
7075 */
7076const char *netdev_drivername(const struct net_device *dev)
7077{
7078 const struct device_driver *driver;
7079 const struct device *parent;
7080 const char *empty = "";
7081
7082 parent = dev->dev.parent;
7083 if (!parent)
7084 return empty;
7085
7086 driver = parent->driver;
7087 if (driver && driver->name)
7088 return driver->name;
7089 return empty;
7090}
7091
7092static void __netdev_printk(const char *level, const struct net_device *dev,
7093 struct va_format *vaf)
7094{
7095 if (dev && dev->dev.parent) {
7096 dev_printk_emit(level[1] - '0',
7097 dev->dev.parent,
7098 "%s %s %s%s: %pV",
7099 dev_driver_string(dev->dev.parent),
7100 dev_name(dev->dev.parent),
7101 netdev_name(dev), netdev_reg_state(dev),
7102 vaf);
7103 } else if (dev) {
7104 printk("%s%s%s: %pV",
7105 level, netdev_name(dev), netdev_reg_state(dev), vaf);
7106 } else {
7107 printk("%s(NULL net_device): %pV", level, vaf);
7108 }
7109}
7110
7111void netdev_printk(const char *level, const struct net_device *dev,
7112 const char *format, ...)
7113{
7114 struct va_format vaf;
7115 va_list args;
7116
7117 va_start(args, format);
7118
7119 vaf.fmt = format;
7120 vaf.va = &args;
7121
7122 __netdev_printk(level, dev, &vaf);
7123
7124 va_end(args);
7125}
7126EXPORT_SYMBOL(netdev_printk);
7127
7128#define define_netdev_printk_level(func, level) \
7129void func(const struct net_device *dev, const char *fmt, ...) \
7130{ \
7131 struct va_format vaf; \
7132 va_list args; \
7133 \
7134 va_start(args, fmt); \
7135 \
7136 vaf.fmt = fmt; \
7137 vaf.va = &args; \
7138 \
7139 __netdev_printk(level, dev, &vaf); \
7140 \
7141 va_end(args); \
7142} \
7143EXPORT_SYMBOL(func);
7144
7145define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7146define_netdev_printk_level(netdev_alert, KERN_ALERT);
7147define_netdev_printk_level(netdev_crit, KERN_CRIT);
7148define_netdev_printk_level(netdev_err, KERN_ERR);
7149define_netdev_printk_level(netdev_warn, KERN_WARNING);
7150define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7151define_netdev_printk_level(netdev_info, KERN_INFO);
7152
7153static void __net_exit netdev_exit(struct net *net)
7154{
7155 kfree(net->dev_name_head);
7156 kfree(net->dev_index_head);
7157}
7158
7159static struct pernet_operations __net_initdata netdev_net_ops = {
7160 .init = netdev_init,
7161 .exit = netdev_exit,
7162};
7163
7164static void __net_exit default_device_exit(struct net *net)
7165{
7166 struct net_device *dev, *aux;
7167 /*
7168 * Push all migratable network devices back to the
7169 * initial network namespace
7170 */
7171 rtnl_lock();
7172 for_each_netdev_safe(net, dev, aux) {
7173 int err;
7174 char fb_name[IFNAMSIZ];
7175
7176 /* Ignore unmoveable devices (i.e. loopback) */
7177 if (dev->features & NETIF_F_NETNS_LOCAL)
7178 continue;
7179
7180 /* Leave virtual devices for the generic cleanup */
7181 if (dev->rtnl_link_ops)
7182 continue;
7183
7184 /* Push remaining network devices to init_net */
7185 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7186 err = dev_change_net_namespace(dev, &init_net, fb_name);
7187 if (err) {
7188 pr_emerg("%s: failed to move %s to init_net: %d\n",
7189 __func__, dev->name, err);
7190 BUG();
7191 }
7192 }
7193 rtnl_unlock();
7194}
7195
7196static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7197{
7198 /* Return with the rtnl_lock held when there are no network
7199 * devices unregistering in any network namespace in net_list.
7200 */
7201 struct net *net;
7202 bool unregistering;
7203 DEFINE_WAIT(wait);
7204
7205 for (;;) {
7206 prepare_to_wait(&netdev_unregistering_wq, &wait,
7207 TASK_UNINTERRUPTIBLE);
7208 unregistering = false;
7209 rtnl_lock();
7210 list_for_each_entry(net, net_list, exit_list) {
7211 if (net->dev_unreg_count > 0) {
7212 unregistering = true;
7213 break;
7214 }
7215 }
7216 if (!unregistering)
7217 break;
7218 __rtnl_unlock();
7219 schedule();
7220 }
7221 finish_wait(&netdev_unregistering_wq, &wait);
7222}
7223
7224static void __net_exit default_device_exit_batch(struct list_head *net_list)
7225{
7226 /* At exit all network devices most be removed from a network
7227 * namespace. Do this in the reverse order of registration.
7228 * Do this across as many network namespaces as possible to
7229 * improve batching efficiency.
7230 */
7231 struct net_device *dev;
7232 struct net *net;
7233 LIST_HEAD(dev_kill_list);
7234
7235 /* To prevent network device cleanup code from dereferencing
7236 * loopback devices or network devices that have been freed
7237 * wait here for all pending unregistrations to complete,
7238 * before unregistring the loopback device and allowing the
7239 * network namespace be freed.
7240 *
7241 * The netdev todo list containing all network devices
7242 * unregistrations that happen in default_device_exit_batch
7243 * will run in the rtnl_unlock() at the end of
7244 * default_device_exit_batch.
7245 */
7246 rtnl_lock_unregistering(net_list);
7247 list_for_each_entry(net, net_list, exit_list) {
7248 for_each_netdev_reverse(net, dev) {
7249 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7250 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7251 else
7252 unregister_netdevice_queue(dev, &dev_kill_list);
7253 }
7254 }
7255 unregister_netdevice_many(&dev_kill_list);
7256 rtnl_unlock();
7257}
7258
7259static struct pernet_operations __net_initdata default_device_ops = {
7260 .exit = default_device_exit,
7261 .exit_batch = default_device_exit_batch,
7262};
7263
7264/*
7265 * Initialize the DEV module. At boot time this walks the device list and
7266 * unhooks any devices that fail to initialise (normally hardware not
7267 * present) and leaves us with a valid list of present and active devices.
7268 *
7269 */
7270
7271/*
7272 * This is called single threaded during boot, so no need
7273 * to take the rtnl semaphore.
7274 */
7275static int __init net_dev_init(void)
7276{
7277 int i, rc = -ENOMEM;
7278
7279 BUG_ON(!dev_boot_phase);
7280
7281 if (dev_proc_init())
7282 goto out;
7283
7284 if (netdev_kobject_init())
7285 goto out;
7286
7287 INIT_LIST_HEAD(&ptype_all);
7288 for (i = 0; i < PTYPE_HASH_SIZE; i++)
7289 INIT_LIST_HEAD(&ptype_base[i]);
7290
7291 INIT_LIST_HEAD(&offload_base);
7292
7293 if (register_pernet_subsys(&netdev_net_ops))
7294 goto out;
7295
7296 /*
7297 * Initialise the packet receive queues.
7298 */
7299
7300 for_each_possible_cpu(i) {
7301 struct softnet_data *sd = &per_cpu(softnet_data, i);
7302
7303 skb_queue_head_init(&sd->input_pkt_queue);
7304 skb_queue_head_init(&sd->process_queue);
7305 INIT_LIST_HEAD(&sd->poll_list);
7306 sd->output_queue_tailp = &sd->output_queue;
7307#ifdef CONFIG_RPS
7308 sd->csd.func = rps_trigger_softirq;
7309 sd->csd.info = sd;
7310 sd->cpu = i;
7311#endif
7312
7313 sd->backlog.poll = process_backlog;
7314 sd->backlog.weight = weight_p;
7315 }
7316
7317 dev_boot_phase = 0;
7318
7319 /* The loopback device is special if any other network devices
7320 * is present in a network namespace the loopback device must
7321 * be present. Since we now dynamically allocate and free the
7322 * loopback device ensure this invariant is maintained by
7323 * keeping the loopback device as the first device on the
7324 * list of network devices. Ensuring the loopback devices
7325 * is the first device that appears and the last network device
7326 * that disappears.
7327 */
7328 if (register_pernet_device(&loopback_net_ops))
7329 goto out;
7330
7331 if (register_pernet_device(&default_device_ops))
7332 goto out;
7333
7334 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7335 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7336
7337 hotcpu_notifier(dev_cpu_callback, 0);
7338 dst_init();
7339 rc = 0;
7340out:
7341 return rc;
7342}
7343
7344subsys_initcall(net_dev_init);