at v3.18 96 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/hrtimer.h> 32#include <linux/dma-mapping.h> 33#include <linux/netdev_features.h> 34#include <linux/sched.h> 35#include <net/flow_keys.h> 36 37/* A. Checksumming of received packets by device. 38 * 39 * CHECKSUM_NONE: 40 * 41 * Device failed to checksum this packet e.g. due to lack of capabilities. 42 * The packet contains full (though not verified) checksum in packet but 43 * not in skb->csum. Thus, skb->csum is undefined in this case. 44 * 45 * CHECKSUM_UNNECESSARY: 46 * 47 * The hardware you're dealing with doesn't calculate the full checksum 48 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 49 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 50 * if their checksums are okay. skb->csum is still undefined in this case 51 * though. It is a bad option, but, unfortunately, nowadays most vendors do 52 * this. Apparently with the secret goal to sell you new devices, when you 53 * will add new protocol to your host, f.e. IPv6 8) 54 * 55 * CHECKSUM_UNNECESSARY is applicable to following protocols: 56 * TCP: IPv6 and IPv4. 57 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 58 * zero UDP checksum for either IPv4 or IPv6, the networking stack 59 * may perform further validation in this case. 60 * GRE: only if the checksum is present in the header. 61 * SCTP: indicates the CRC in SCTP header has been validated. 62 * 63 * skb->csum_level indicates the number of consecutive checksums found in 64 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 65 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 66 * and a device is able to verify the checksums for UDP (possibly zero), 67 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 68 * two. If the device were only able to verify the UDP checksum and not 69 * GRE, either because it doesn't support GRE checksum of because GRE 70 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 71 * not considered in this case). 72 * 73 * CHECKSUM_COMPLETE: 74 * 75 * This is the most generic way. The device supplied checksum of the _whole_ 76 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 77 * hardware doesn't need to parse L3/L4 headers to implement this. 78 * 79 * Note: Even if device supports only some protocols, but is able to produce 80 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 81 * 82 * CHECKSUM_PARTIAL: 83 * 84 * This is identical to the case for output below. This may occur on a packet 85 * received directly from another Linux OS, e.g., a virtualized Linux kernel 86 * on the same host. The packet can be treated in the same way as 87 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 88 * checksum must be filled in by the OS or the hardware. 89 * 90 * B. Checksumming on output. 91 * 92 * CHECKSUM_NONE: 93 * 94 * The skb was already checksummed by the protocol, or a checksum is not 95 * required. 96 * 97 * CHECKSUM_PARTIAL: 98 * 99 * The device is required to checksum the packet as seen by hard_start_xmit() 100 * from skb->csum_start up to the end, and to record/write the checksum at 101 * offset skb->csum_start + skb->csum_offset. 102 * 103 * The device must show its capabilities in dev->features, set up at device 104 * setup time, e.g. netdev_features.h: 105 * 106 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 107 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 108 * IPv4. Sigh. Vendors like this way for an unknown reason. 109 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 110 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 111 * NETIF_F_... - Well, you get the picture. 112 * 113 * CHECKSUM_UNNECESSARY: 114 * 115 * Normally, the device will do per protocol specific checksumming. Protocol 116 * implementations that do not want the NIC to perform the checksum 117 * calculation should use this flag in their outgoing skbs. 118 * 119 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 120 * offload. Correspondingly, the FCoE protocol driver 121 * stack should use CHECKSUM_UNNECESSARY. 122 * 123 * Any questions? No questions, good. --ANK 124 */ 125 126/* Don't change this without changing skb_csum_unnecessary! */ 127#define CHECKSUM_NONE 0 128#define CHECKSUM_UNNECESSARY 1 129#define CHECKSUM_COMPLETE 2 130#define CHECKSUM_PARTIAL 3 131 132/* Maximum value in skb->csum_level */ 133#define SKB_MAX_CSUM_LEVEL 3 134 135#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 136#define SKB_WITH_OVERHEAD(X) \ 137 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 138#define SKB_MAX_ORDER(X, ORDER) \ 139 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 140#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 141#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 142 143/* return minimum truesize of one skb containing X bytes of data */ 144#define SKB_TRUESIZE(X) ((X) + \ 145 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 146 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 147 148struct net_device; 149struct scatterlist; 150struct pipe_inode_info; 151 152#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 153struct nf_conntrack { 154 atomic_t use; 155}; 156#endif 157 158#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 159struct nf_bridge_info { 160 atomic_t use; 161 unsigned int mask; 162 struct net_device *physindev; 163 struct net_device *physoutdev; 164 unsigned long data[32 / sizeof(unsigned long)]; 165}; 166#endif 167 168struct sk_buff_head { 169 /* These two members must be first. */ 170 struct sk_buff *next; 171 struct sk_buff *prev; 172 173 __u32 qlen; 174 spinlock_t lock; 175}; 176 177struct sk_buff; 178 179/* To allow 64K frame to be packed as single skb without frag_list we 180 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 181 * buffers which do not start on a page boundary. 182 * 183 * Since GRO uses frags we allocate at least 16 regardless of page 184 * size. 185 */ 186#if (65536/PAGE_SIZE + 1) < 16 187#define MAX_SKB_FRAGS 16UL 188#else 189#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 190#endif 191 192typedef struct skb_frag_struct skb_frag_t; 193 194struct skb_frag_struct { 195 struct { 196 struct page *p; 197 } page; 198#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 199 __u32 page_offset; 200 __u32 size; 201#else 202 __u16 page_offset; 203 __u16 size; 204#endif 205}; 206 207static inline unsigned int skb_frag_size(const skb_frag_t *frag) 208{ 209 return frag->size; 210} 211 212static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 213{ 214 frag->size = size; 215} 216 217static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 218{ 219 frag->size += delta; 220} 221 222static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 223{ 224 frag->size -= delta; 225} 226 227#define HAVE_HW_TIME_STAMP 228 229/** 230 * struct skb_shared_hwtstamps - hardware time stamps 231 * @hwtstamp: hardware time stamp transformed into duration 232 * since arbitrary point in time 233 * 234 * Software time stamps generated by ktime_get_real() are stored in 235 * skb->tstamp. 236 * 237 * hwtstamps can only be compared against other hwtstamps from 238 * the same device. 239 * 240 * This structure is attached to packets as part of the 241 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 242 */ 243struct skb_shared_hwtstamps { 244 ktime_t hwtstamp; 245}; 246 247/* Definitions for tx_flags in struct skb_shared_info */ 248enum { 249 /* generate hardware time stamp */ 250 SKBTX_HW_TSTAMP = 1 << 0, 251 252 /* generate software time stamp when queueing packet to NIC */ 253 SKBTX_SW_TSTAMP = 1 << 1, 254 255 /* device driver is going to provide hardware time stamp */ 256 SKBTX_IN_PROGRESS = 1 << 2, 257 258 /* device driver supports TX zero-copy buffers */ 259 SKBTX_DEV_ZEROCOPY = 1 << 3, 260 261 /* generate wifi status information (where possible) */ 262 SKBTX_WIFI_STATUS = 1 << 4, 263 264 /* This indicates at least one fragment might be overwritten 265 * (as in vmsplice(), sendfile() ...) 266 * If we need to compute a TX checksum, we'll need to copy 267 * all frags to avoid possible bad checksum 268 */ 269 SKBTX_SHARED_FRAG = 1 << 5, 270 271 /* generate software time stamp when entering packet scheduling */ 272 SKBTX_SCHED_TSTAMP = 1 << 6, 273 274 /* generate software timestamp on peer data acknowledgment */ 275 SKBTX_ACK_TSTAMP = 1 << 7, 276}; 277 278#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 279 SKBTX_SCHED_TSTAMP | \ 280 SKBTX_ACK_TSTAMP) 281#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 282 283/* 284 * The callback notifies userspace to release buffers when skb DMA is done in 285 * lower device, the skb last reference should be 0 when calling this. 286 * The zerocopy_success argument is true if zero copy transmit occurred, 287 * false on data copy or out of memory error caused by data copy attempt. 288 * The ctx field is used to track device context. 289 * The desc field is used to track userspace buffer index. 290 */ 291struct ubuf_info { 292 void (*callback)(struct ubuf_info *, bool zerocopy_success); 293 void *ctx; 294 unsigned long desc; 295}; 296 297/* This data is invariant across clones and lives at 298 * the end of the header data, ie. at skb->end. 299 */ 300struct skb_shared_info { 301 unsigned char nr_frags; 302 __u8 tx_flags; 303 unsigned short gso_size; 304 /* Warning: this field is not always filled in (UFO)! */ 305 unsigned short gso_segs; 306 unsigned short gso_type; 307 struct sk_buff *frag_list; 308 struct skb_shared_hwtstamps hwtstamps; 309 u32 tskey; 310 __be32 ip6_frag_id; 311 312 /* 313 * Warning : all fields before dataref are cleared in __alloc_skb() 314 */ 315 atomic_t dataref; 316 317 /* Intermediate layers must ensure that destructor_arg 318 * remains valid until skb destructor */ 319 void * destructor_arg; 320 321 /* must be last field, see pskb_expand_head() */ 322 skb_frag_t frags[MAX_SKB_FRAGS]; 323}; 324 325/* We divide dataref into two halves. The higher 16 bits hold references 326 * to the payload part of skb->data. The lower 16 bits hold references to 327 * the entire skb->data. A clone of a headerless skb holds the length of 328 * the header in skb->hdr_len. 329 * 330 * All users must obey the rule that the skb->data reference count must be 331 * greater than or equal to the payload reference count. 332 * 333 * Holding a reference to the payload part means that the user does not 334 * care about modifications to the header part of skb->data. 335 */ 336#define SKB_DATAREF_SHIFT 16 337#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 338 339 340enum { 341 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 342 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 343 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 344 SKB_FCLONE_FREE, /* this companion fclone skb is available */ 345}; 346 347enum { 348 SKB_GSO_TCPV4 = 1 << 0, 349 SKB_GSO_UDP = 1 << 1, 350 351 /* This indicates the skb is from an untrusted source. */ 352 SKB_GSO_DODGY = 1 << 2, 353 354 /* This indicates the tcp segment has CWR set. */ 355 SKB_GSO_TCP_ECN = 1 << 3, 356 357 SKB_GSO_TCPV6 = 1 << 4, 358 359 SKB_GSO_FCOE = 1 << 5, 360 361 SKB_GSO_GRE = 1 << 6, 362 363 SKB_GSO_GRE_CSUM = 1 << 7, 364 365 SKB_GSO_IPIP = 1 << 8, 366 367 SKB_GSO_SIT = 1 << 9, 368 369 SKB_GSO_UDP_TUNNEL = 1 << 10, 370 371 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 372 373 SKB_GSO_MPLS = 1 << 12, 374 375}; 376 377#if BITS_PER_LONG > 32 378#define NET_SKBUFF_DATA_USES_OFFSET 1 379#endif 380 381#ifdef NET_SKBUFF_DATA_USES_OFFSET 382typedef unsigned int sk_buff_data_t; 383#else 384typedef unsigned char *sk_buff_data_t; 385#endif 386 387/** 388 * struct skb_mstamp - multi resolution time stamps 389 * @stamp_us: timestamp in us resolution 390 * @stamp_jiffies: timestamp in jiffies 391 */ 392struct skb_mstamp { 393 union { 394 u64 v64; 395 struct { 396 u32 stamp_us; 397 u32 stamp_jiffies; 398 }; 399 }; 400}; 401 402/** 403 * skb_mstamp_get - get current timestamp 404 * @cl: place to store timestamps 405 */ 406static inline void skb_mstamp_get(struct skb_mstamp *cl) 407{ 408 u64 val = local_clock(); 409 410 do_div(val, NSEC_PER_USEC); 411 cl->stamp_us = (u32)val; 412 cl->stamp_jiffies = (u32)jiffies; 413} 414 415/** 416 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 417 * @t1: pointer to newest sample 418 * @t0: pointer to oldest sample 419 */ 420static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 421 const struct skb_mstamp *t0) 422{ 423 s32 delta_us = t1->stamp_us - t0->stamp_us; 424 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 425 426 /* If delta_us is negative, this might be because interval is too big, 427 * or local_clock() drift is too big : fallback using jiffies. 428 */ 429 if (delta_us <= 0 || 430 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 431 432 delta_us = jiffies_to_usecs(delta_jiffies); 433 434 return delta_us; 435} 436 437 438/** 439 * struct sk_buff - socket buffer 440 * @next: Next buffer in list 441 * @prev: Previous buffer in list 442 * @tstamp: Time we arrived/left 443 * @sk: Socket we are owned by 444 * @dev: Device we arrived on/are leaving by 445 * @cb: Control buffer. Free for use by every layer. Put private vars here 446 * @_skb_refdst: destination entry (with norefcount bit) 447 * @sp: the security path, used for xfrm 448 * @len: Length of actual data 449 * @data_len: Data length 450 * @mac_len: Length of link layer header 451 * @hdr_len: writable header length of cloned skb 452 * @csum: Checksum (must include start/offset pair) 453 * @csum_start: Offset from skb->head where checksumming should start 454 * @csum_offset: Offset from csum_start where checksum should be stored 455 * @priority: Packet queueing priority 456 * @ignore_df: allow local fragmentation 457 * @cloned: Head may be cloned (check refcnt to be sure) 458 * @ip_summed: Driver fed us an IP checksum 459 * @nohdr: Payload reference only, must not modify header 460 * @nfctinfo: Relationship of this skb to the connection 461 * @pkt_type: Packet class 462 * @fclone: skbuff clone status 463 * @ipvs_property: skbuff is owned by ipvs 464 * @peeked: this packet has been seen already, so stats have been 465 * done for it, don't do them again 466 * @nf_trace: netfilter packet trace flag 467 * @protocol: Packet protocol from driver 468 * @destructor: Destruct function 469 * @nfct: Associated connection, if any 470 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 471 * @skb_iif: ifindex of device we arrived on 472 * @tc_index: Traffic control index 473 * @tc_verd: traffic control verdict 474 * @hash: the packet hash 475 * @queue_mapping: Queue mapping for multiqueue devices 476 * @xmit_more: More SKBs are pending for this queue 477 * @ndisc_nodetype: router type (from link layer) 478 * @ooo_okay: allow the mapping of a socket to a queue to be changed 479 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 480 * ports. 481 * @sw_hash: indicates hash was computed in software stack 482 * @wifi_acked_valid: wifi_acked was set 483 * @wifi_acked: whether frame was acked on wifi or not 484 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 485 * @napi_id: id of the NAPI struct this skb came from 486 * @secmark: security marking 487 * @mark: Generic packet mark 488 * @dropcount: total number of sk_receive_queue overflows 489 * @vlan_proto: vlan encapsulation protocol 490 * @vlan_tci: vlan tag control information 491 * @inner_protocol: Protocol (encapsulation) 492 * @inner_transport_header: Inner transport layer header (encapsulation) 493 * @inner_network_header: Network layer header (encapsulation) 494 * @inner_mac_header: Link layer header (encapsulation) 495 * @transport_header: Transport layer header 496 * @network_header: Network layer header 497 * @mac_header: Link layer header 498 * @tail: Tail pointer 499 * @end: End pointer 500 * @head: Head of buffer 501 * @data: Data head pointer 502 * @truesize: Buffer size 503 * @users: User count - see {datagram,tcp}.c 504 */ 505 506struct sk_buff { 507 /* These two members must be first. */ 508 struct sk_buff *next; 509 struct sk_buff *prev; 510 511 union { 512 ktime_t tstamp; 513 struct skb_mstamp skb_mstamp; 514 }; 515 516 struct sock *sk; 517 struct net_device *dev; 518 519 /* 520 * This is the control buffer. It is free to use for every 521 * layer. Please put your private variables there. If you 522 * want to keep them across layers you have to do a skb_clone() 523 * first. This is owned by whoever has the skb queued ATM. 524 */ 525 char cb[48] __aligned(8); 526 527 unsigned long _skb_refdst; 528 void (*destructor)(struct sk_buff *skb); 529#ifdef CONFIG_XFRM 530 struct sec_path *sp; 531#endif 532#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 533 struct nf_conntrack *nfct; 534#endif 535#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 536 struct nf_bridge_info *nf_bridge; 537#endif 538 unsigned int len, 539 data_len; 540 __u16 mac_len, 541 hdr_len; 542 543 /* Following fields are _not_ copied in __copy_skb_header() 544 * Note that queue_mapping is here mostly to fill a hole. 545 */ 546 kmemcheck_bitfield_begin(flags1); 547 __u16 queue_mapping; 548 __u8 cloned:1, 549 nohdr:1, 550 fclone:2, 551 peeked:1, 552 head_frag:1, 553 xmit_more:1; 554 /* one bit hole */ 555 kmemcheck_bitfield_end(flags1); 556 557 /* fields enclosed in headers_start/headers_end are copied 558 * using a single memcpy() in __copy_skb_header() 559 */ 560 /* private: */ 561 __u32 headers_start[0]; 562 /* public: */ 563 564/* if you move pkt_type around you also must adapt those constants */ 565#ifdef __BIG_ENDIAN_BITFIELD 566#define PKT_TYPE_MAX (7 << 5) 567#else 568#define PKT_TYPE_MAX 7 569#endif 570#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 571 572 __u8 __pkt_type_offset[0]; 573 __u8 pkt_type:3; 574 __u8 pfmemalloc:1; 575 __u8 ignore_df:1; 576 __u8 nfctinfo:3; 577 578 __u8 nf_trace:1; 579 __u8 ip_summed:2; 580 __u8 ooo_okay:1; 581 __u8 l4_hash:1; 582 __u8 sw_hash:1; 583 __u8 wifi_acked_valid:1; 584 __u8 wifi_acked:1; 585 586 __u8 no_fcs:1; 587 /* Indicates the inner headers are valid in the skbuff. */ 588 __u8 encapsulation:1; 589 __u8 encap_hdr_csum:1; 590 __u8 csum_valid:1; 591 __u8 csum_complete_sw:1; 592 __u8 csum_level:2; 593 __u8 csum_bad:1; 594 595#ifdef CONFIG_IPV6_NDISC_NODETYPE 596 __u8 ndisc_nodetype:2; 597#endif 598 __u8 ipvs_property:1; 599 __u8 inner_protocol_type:1; 600 /* 4 or 6 bit hole */ 601 602#ifdef CONFIG_NET_SCHED 603 __u16 tc_index; /* traffic control index */ 604#ifdef CONFIG_NET_CLS_ACT 605 __u16 tc_verd; /* traffic control verdict */ 606#endif 607#endif 608 609 union { 610 __wsum csum; 611 struct { 612 __u16 csum_start; 613 __u16 csum_offset; 614 }; 615 }; 616 __u32 priority; 617 int skb_iif; 618 __u32 hash; 619 __be16 vlan_proto; 620 __u16 vlan_tci; 621#ifdef CONFIG_NET_RX_BUSY_POLL 622 unsigned int napi_id; 623#endif 624#ifdef CONFIG_NETWORK_SECMARK 625 __u32 secmark; 626#endif 627 union { 628 __u32 mark; 629 __u32 dropcount; 630 __u32 reserved_tailroom; 631 }; 632 633 union { 634 __be16 inner_protocol; 635 __u8 inner_ipproto; 636 }; 637 638 __u16 inner_transport_header; 639 __u16 inner_network_header; 640 __u16 inner_mac_header; 641 642 __be16 protocol; 643 __u16 transport_header; 644 __u16 network_header; 645 __u16 mac_header; 646 647 /* private: */ 648 __u32 headers_end[0]; 649 /* public: */ 650 651 /* These elements must be at the end, see alloc_skb() for details. */ 652 sk_buff_data_t tail; 653 sk_buff_data_t end; 654 unsigned char *head, 655 *data; 656 unsigned int truesize; 657 atomic_t users; 658}; 659 660#ifdef __KERNEL__ 661/* 662 * Handling routines are only of interest to the kernel 663 */ 664#include <linux/slab.h> 665 666 667#define SKB_ALLOC_FCLONE 0x01 668#define SKB_ALLOC_RX 0x02 669 670/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 671static inline bool skb_pfmemalloc(const struct sk_buff *skb) 672{ 673 return unlikely(skb->pfmemalloc); 674} 675 676/* 677 * skb might have a dst pointer attached, refcounted or not. 678 * _skb_refdst low order bit is set if refcount was _not_ taken 679 */ 680#define SKB_DST_NOREF 1UL 681#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 682 683/** 684 * skb_dst - returns skb dst_entry 685 * @skb: buffer 686 * 687 * Returns skb dst_entry, regardless of reference taken or not. 688 */ 689static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 690{ 691 /* If refdst was not refcounted, check we still are in a 692 * rcu_read_lock section 693 */ 694 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 695 !rcu_read_lock_held() && 696 !rcu_read_lock_bh_held()); 697 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 698} 699 700/** 701 * skb_dst_set - sets skb dst 702 * @skb: buffer 703 * @dst: dst entry 704 * 705 * Sets skb dst, assuming a reference was taken on dst and should 706 * be released by skb_dst_drop() 707 */ 708static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 709{ 710 skb->_skb_refdst = (unsigned long)dst; 711} 712 713void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 714 bool force); 715 716/** 717 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 718 * @skb: buffer 719 * @dst: dst entry 720 * 721 * Sets skb dst, assuming a reference was not taken on dst. 722 * If dst entry is cached, we do not take reference and dst_release 723 * will be avoided by refdst_drop. If dst entry is not cached, we take 724 * reference, so that last dst_release can destroy the dst immediately. 725 */ 726static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 727{ 728 __skb_dst_set_noref(skb, dst, false); 729} 730 731/** 732 * skb_dst_set_noref_force - sets skb dst, without taking reference 733 * @skb: buffer 734 * @dst: dst entry 735 * 736 * Sets skb dst, assuming a reference was not taken on dst. 737 * No reference is taken and no dst_release will be called. While for 738 * cached dsts deferred reclaim is a basic feature, for entries that are 739 * not cached it is caller's job to guarantee that last dst_release for 740 * provided dst happens when nobody uses it, eg. after a RCU grace period. 741 */ 742static inline void skb_dst_set_noref_force(struct sk_buff *skb, 743 struct dst_entry *dst) 744{ 745 __skb_dst_set_noref(skb, dst, true); 746} 747 748/** 749 * skb_dst_is_noref - Test if skb dst isn't refcounted 750 * @skb: buffer 751 */ 752static inline bool skb_dst_is_noref(const struct sk_buff *skb) 753{ 754 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 755} 756 757static inline struct rtable *skb_rtable(const struct sk_buff *skb) 758{ 759 return (struct rtable *)skb_dst(skb); 760} 761 762void kfree_skb(struct sk_buff *skb); 763void kfree_skb_list(struct sk_buff *segs); 764void skb_tx_error(struct sk_buff *skb); 765void consume_skb(struct sk_buff *skb); 766void __kfree_skb(struct sk_buff *skb); 767extern struct kmem_cache *skbuff_head_cache; 768 769void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 770bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 771 bool *fragstolen, int *delta_truesize); 772 773struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 774 int node); 775struct sk_buff *build_skb(void *data, unsigned int frag_size); 776static inline struct sk_buff *alloc_skb(unsigned int size, 777 gfp_t priority) 778{ 779 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 780} 781 782struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 783 unsigned long data_len, 784 int max_page_order, 785 int *errcode, 786 gfp_t gfp_mask); 787 788/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 789struct sk_buff_fclones { 790 struct sk_buff skb1; 791 792 struct sk_buff skb2; 793 794 atomic_t fclone_ref; 795}; 796 797/** 798 * skb_fclone_busy - check if fclone is busy 799 * @skb: buffer 800 * 801 * Returns true is skb is a fast clone, and its clone is not freed. 802 * Some drivers call skb_orphan() in their ndo_start_xmit(), 803 * so we also check that this didnt happen. 804 */ 805static inline bool skb_fclone_busy(const struct sock *sk, 806 const struct sk_buff *skb) 807{ 808 const struct sk_buff_fclones *fclones; 809 810 fclones = container_of(skb, struct sk_buff_fclones, skb1); 811 812 return skb->fclone == SKB_FCLONE_ORIG && 813 fclones->skb2.fclone == SKB_FCLONE_CLONE && 814 fclones->skb2.sk == sk; 815} 816 817static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 818 gfp_t priority) 819{ 820 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 821} 822 823struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 824static inline struct sk_buff *alloc_skb_head(gfp_t priority) 825{ 826 return __alloc_skb_head(priority, -1); 827} 828 829struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 830int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 831struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 832struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 833struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 834 gfp_t gfp_mask, bool fclone); 835static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 836 gfp_t gfp_mask) 837{ 838 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 839} 840 841int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 842struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 843 unsigned int headroom); 844struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 845 int newtailroom, gfp_t priority); 846int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 847 int offset, int len); 848int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 849 int len); 850int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 851int skb_pad(struct sk_buff *skb, int pad); 852#define dev_kfree_skb(a) consume_skb(a) 853 854int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 855 int getfrag(void *from, char *to, int offset, 856 int len, int odd, struct sk_buff *skb), 857 void *from, int length); 858 859struct skb_seq_state { 860 __u32 lower_offset; 861 __u32 upper_offset; 862 __u32 frag_idx; 863 __u32 stepped_offset; 864 struct sk_buff *root_skb; 865 struct sk_buff *cur_skb; 866 __u8 *frag_data; 867}; 868 869void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 870 unsigned int to, struct skb_seq_state *st); 871unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 872 struct skb_seq_state *st); 873void skb_abort_seq_read(struct skb_seq_state *st); 874 875unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 876 unsigned int to, struct ts_config *config, 877 struct ts_state *state); 878 879/* 880 * Packet hash types specify the type of hash in skb_set_hash. 881 * 882 * Hash types refer to the protocol layer addresses which are used to 883 * construct a packet's hash. The hashes are used to differentiate or identify 884 * flows of the protocol layer for the hash type. Hash types are either 885 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 886 * 887 * Properties of hashes: 888 * 889 * 1) Two packets in different flows have different hash values 890 * 2) Two packets in the same flow should have the same hash value 891 * 892 * A hash at a higher layer is considered to be more specific. A driver should 893 * set the most specific hash possible. 894 * 895 * A driver cannot indicate a more specific hash than the layer at which a hash 896 * was computed. For instance an L3 hash cannot be set as an L4 hash. 897 * 898 * A driver may indicate a hash level which is less specific than the 899 * actual layer the hash was computed on. For instance, a hash computed 900 * at L4 may be considered an L3 hash. This should only be done if the 901 * driver can't unambiguously determine that the HW computed the hash at 902 * the higher layer. Note that the "should" in the second property above 903 * permits this. 904 */ 905enum pkt_hash_types { 906 PKT_HASH_TYPE_NONE, /* Undefined type */ 907 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 908 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 909 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 910}; 911 912static inline void 913skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 914{ 915 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 916 skb->sw_hash = 0; 917 skb->hash = hash; 918} 919 920void __skb_get_hash(struct sk_buff *skb); 921static inline __u32 skb_get_hash(struct sk_buff *skb) 922{ 923 if (!skb->l4_hash && !skb->sw_hash) 924 __skb_get_hash(skb); 925 926 return skb->hash; 927} 928 929static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 930{ 931 return skb->hash; 932} 933 934static inline void skb_clear_hash(struct sk_buff *skb) 935{ 936 skb->hash = 0; 937 skb->sw_hash = 0; 938 skb->l4_hash = 0; 939} 940 941static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 942{ 943 if (!skb->l4_hash) 944 skb_clear_hash(skb); 945} 946 947static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 948{ 949 to->hash = from->hash; 950 to->sw_hash = from->sw_hash; 951 to->l4_hash = from->l4_hash; 952}; 953 954#ifdef NET_SKBUFF_DATA_USES_OFFSET 955static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 956{ 957 return skb->head + skb->end; 958} 959 960static inline unsigned int skb_end_offset(const struct sk_buff *skb) 961{ 962 return skb->end; 963} 964#else 965static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 966{ 967 return skb->end; 968} 969 970static inline unsigned int skb_end_offset(const struct sk_buff *skb) 971{ 972 return skb->end - skb->head; 973} 974#endif 975 976/* Internal */ 977#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 978 979static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 980{ 981 return &skb_shinfo(skb)->hwtstamps; 982} 983 984/** 985 * skb_queue_empty - check if a queue is empty 986 * @list: queue head 987 * 988 * Returns true if the queue is empty, false otherwise. 989 */ 990static inline int skb_queue_empty(const struct sk_buff_head *list) 991{ 992 return list->next == (const struct sk_buff *) list; 993} 994 995/** 996 * skb_queue_is_last - check if skb is the last entry in the queue 997 * @list: queue head 998 * @skb: buffer 999 * 1000 * Returns true if @skb is the last buffer on the list. 1001 */ 1002static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1003 const struct sk_buff *skb) 1004{ 1005 return skb->next == (const struct sk_buff *) list; 1006} 1007 1008/** 1009 * skb_queue_is_first - check if skb is the first entry in the queue 1010 * @list: queue head 1011 * @skb: buffer 1012 * 1013 * Returns true if @skb is the first buffer on the list. 1014 */ 1015static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1016 const struct sk_buff *skb) 1017{ 1018 return skb->prev == (const struct sk_buff *) list; 1019} 1020 1021/** 1022 * skb_queue_next - return the next packet in the queue 1023 * @list: queue head 1024 * @skb: current buffer 1025 * 1026 * Return the next packet in @list after @skb. It is only valid to 1027 * call this if skb_queue_is_last() evaluates to false. 1028 */ 1029static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1030 const struct sk_buff *skb) 1031{ 1032 /* This BUG_ON may seem severe, but if we just return then we 1033 * are going to dereference garbage. 1034 */ 1035 BUG_ON(skb_queue_is_last(list, skb)); 1036 return skb->next; 1037} 1038 1039/** 1040 * skb_queue_prev - return the prev packet in the queue 1041 * @list: queue head 1042 * @skb: current buffer 1043 * 1044 * Return the prev packet in @list before @skb. It is only valid to 1045 * call this if skb_queue_is_first() evaluates to false. 1046 */ 1047static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1048 const struct sk_buff *skb) 1049{ 1050 /* This BUG_ON may seem severe, but if we just return then we 1051 * are going to dereference garbage. 1052 */ 1053 BUG_ON(skb_queue_is_first(list, skb)); 1054 return skb->prev; 1055} 1056 1057/** 1058 * skb_get - reference buffer 1059 * @skb: buffer to reference 1060 * 1061 * Makes another reference to a socket buffer and returns a pointer 1062 * to the buffer. 1063 */ 1064static inline struct sk_buff *skb_get(struct sk_buff *skb) 1065{ 1066 atomic_inc(&skb->users); 1067 return skb; 1068} 1069 1070/* 1071 * If users == 1, we are the only owner and are can avoid redundant 1072 * atomic change. 1073 */ 1074 1075/** 1076 * skb_cloned - is the buffer a clone 1077 * @skb: buffer to check 1078 * 1079 * Returns true if the buffer was generated with skb_clone() and is 1080 * one of multiple shared copies of the buffer. Cloned buffers are 1081 * shared data so must not be written to under normal circumstances. 1082 */ 1083static inline int skb_cloned(const struct sk_buff *skb) 1084{ 1085 return skb->cloned && 1086 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1087} 1088 1089static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1090{ 1091 might_sleep_if(pri & __GFP_WAIT); 1092 1093 if (skb_cloned(skb)) 1094 return pskb_expand_head(skb, 0, 0, pri); 1095 1096 return 0; 1097} 1098 1099/** 1100 * skb_header_cloned - is the header a clone 1101 * @skb: buffer to check 1102 * 1103 * Returns true if modifying the header part of the buffer requires 1104 * the data to be copied. 1105 */ 1106static inline int skb_header_cloned(const struct sk_buff *skb) 1107{ 1108 int dataref; 1109 1110 if (!skb->cloned) 1111 return 0; 1112 1113 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1114 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1115 return dataref != 1; 1116} 1117 1118/** 1119 * skb_header_release - release reference to header 1120 * @skb: buffer to operate on 1121 * 1122 * Drop a reference to the header part of the buffer. This is done 1123 * by acquiring a payload reference. You must not read from the header 1124 * part of skb->data after this. 1125 * Note : Check if you can use __skb_header_release() instead. 1126 */ 1127static inline void skb_header_release(struct sk_buff *skb) 1128{ 1129 BUG_ON(skb->nohdr); 1130 skb->nohdr = 1; 1131 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1132} 1133 1134/** 1135 * __skb_header_release - release reference to header 1136 * @skb: buffer to operate on 1137 * 1138 * Variant of skb_header_release() assuming skb is private to caller. 1139 * We can avoid one atomic operation. 1140 */ 1141static inline void __skb_header_release(struct sk_buff *skb) 1142{ 1143 skb->nohdr = 1; 1144 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1145} 1146 1147 1148/** 1149 * skb_shared - is the buffer shared 1150 * @skb: buffer to check 1151 * 1152 * Returns true if more than one person has a reference to this 1153 * buffer. 1154 */ 1155static inline int skb_shared(const struct sk_buff *skb) 1156{ 1157 return atomic_read(&skb->users) != 1; 1158} 1159 1160/** 1161 * skb_share_check - check if buffer is shared and if so clone it 1162 * @skb: buffer to check 1163 * @pri: priority for memory allocation 1164 * 1165 * If the buffer is shared the buffer is cloned and the old copy 1166 * drops a reference. A new clone with a single reference is returned. 1167 * If the buffer is not shared the original buffer is returned. When 1168 * being called from interrupt status or with spinlocks held pri must 1169 * be GFP_ATOMIC. 1170 * 1171 * NULL is returned on a memory allocation failure. 1172 */ 1173static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1174{ 1175 might_sleep_if(pri & __GFP_WAIT); 1176 if (skb_shared(skb)) { 1177 struct sk_buff *nskb = skb_clone(skb, pri); 1178 1179 if (likely(nskb)) 1180 consume_skb(skb); 1181 else 1182 kfree_skb(skb); 1183 skb = nskb; 1184 } 1185 return skb; 1186} 1187 1188/* 1189 * Copy shared buffers into a new sk_buff. We effectively do COW on 1190 * packets to handle cases where we have a local reader and forward 1191 * and a couple of other messy ones. The normal one is tcpdumping 1192 * a packet thats being forwarded. 1193 */ 1194 1195/** 1196 * skb_unshare - make a copy of a shared buffer 1197 * @skb: buffer to check 1198 * @pri: priority for memory allocation 1199 * 1200 * If the socket buffer is a clone then this function creates a new 1201 * copy of the data, drops a reference count on the old copy and returns 1202 * the new copy with the reference count at 1. If the buffer is not a clone 1203 * the original buffer is returned. When called with a spinlock held or 1204 * from interrupt state @pri must be %GFP_ATOMIC 1205 * 1206 * %NULL is returned on a memory allocation failure. 1207 */ 1208static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1209 gfp_t pri) 1210{ 1211 might_sleep_if(pri & __GFP_WAIT); 1212 if (skb_cloned(skb)) { 1213 struct sk_buff *nskb = skb_copy(skb, pri); 1214 1215 /* Free our shared copy */ 1216 if (likely(nskb)) 1217 consume_skb(skb); 1218 else 1219 kfree_skb(skb); 1220 skb = nskb; 1221 } 1222 return skb; 1223} 1224 1225/** 1226 * skb_peek - peek at the head of an &sk_buff_head 1227 * @list_: list to peek at 1228 * 1229 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1230 * be careful with this one. A peek leaves the buffer on the 1231 * list and someone else may run off with it. You must hold 1232 * the appropriate locks or have a private queue to do this. 1233 * 1234 * Returns %NULL for an empty list or a pointer to the head element. 1235 * The reference count is not incremented and the reference is therefore 1236 * volatile. Use with caution. 1237 */ 1238static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1239{ 1240 struct sk_buff *skb = list_->next; 1241 1242 if (skb == (struct sk_buff *)list_) 1243 skb = NULL; 1244 return skb; 1245} 1246 1247/** 1248 * skb_peek_next - peek skb following the given one from a queue 1249 * @skb: skb to start from 1250 * @list_: list to peek at 1251 * 1252 * Returns %NULL when the end of the list is met or a pointer to the 1253 * next element. The reference count is not incremented and the 1254 * reference is therefore volatile. Use with caution. 1255 */ 1256static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1257 const struct sk_buff_head *list_) 1258{ 1259 struct sk_buff *next = skb->next; 1260 1261 if (next == (struct sk_buff *)list_) 1262 next = NULL; 1263 return next; 1264} 1265 1266/** 1267 * skb_peek_tail - peek at the tail of an &sk_buff_head 1268 * @list_: list to peek at 1269 * 1270 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1271 * be careful with this one. A peek leaves the buffer on the 1272 * list and someone else may run off with it. You must hold 1273 * the appropriate locks or have a private queue to do this. 1274 * 1275 * Returns %NULL for an empty list or a pointer to the tail element. 1276 * The reference count is not incremented and the reference is therefore 1277 * volatile. Use with caution. 1278 */ 1279static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1280{ 1281 struct sk_buff *skb = list_->prev; 1282 1283 if (skb == (struct sk_buff *)list_) 1284 skb = NULL; 1285 return skb; 1286 1287} 1288 1289/** 1290 * skb_queue_len - get queue length 1291 * @list_: list to measure 1292 * 1293 * Return the length of an &sk_buff queue. 1294 */ 1295static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1296{ 1297 return list_->qlen; 1298} 1299 1300/** 1301 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1302 * @list: queue to initialize 1303 * 1304 * This initializes only the list and queue length aspects of 1305 * an sk_buff_head object. This allows to initialize the list 1306 * aspects of an sk_buff_head without reinitializing things like 1307 * the spinlock. It can also be used for on-stack sk_buff_head 1308 * objects where the spinlock is known to not be used. 1309 */ 1310static inline void __skb_queue_head_init(struct sk_buff_head *list) 1311{ 1312 list->prev = list->next = (struct sk_buff *)list; 1313 list->qlen = 0; 1314} 1315 1316/* 1317 * This function creates a split out lock class for each invocation; 1318 * this is needed for now since a whole lot of users of the skb-queue 1319 * infrastructure in drivers have different locking usage (in hardirq) 1320 * than the networking core (in softirq only). In the long run either the 1321 * network layer or drivers should need annotation to consolidate the 1322 * main types of usage into 3 classes. 1323 */ 1324static inline void skb_queue_head_init(struct sk_buff_head *list) 1325{ 1326 spin_lock_init(&list->lock); 1327 __skb_queue_head_init(list); 1328} 1329 1330static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1331 struct lock_class_key *class) 1332{ 1333 skb_queue_head_init(list); 1334 lockdep_set_class(&list->lock, class); 1335} 1336 1337/* 1338 * Insert an sk_buff on a list. 1339 * 1340 * The "__skb_xxxx()" functions are the non-atomic ones that 1341 * can only be called with interrupts disabled. 1342 */ 1343void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1344 struct sk_buff_head *list); 1345static inline void __skb_insert(struct sk_buff *newsk, 1346 struct sk_buff *prev, struct sk_buff *next, 1347 struct sk_buff_head *list) 1348{ 1349 newsk->next = next; 1350 newsk->prev = prev; 1351 next->prev = prev->next = newsk; 1352 list->qlen++; 1353} 1354 1355static inline void __skb_queue_splice(const struct sk_buff_head *list, 1356 struct sk_buff *prev, 1357 struct sk_buff *next) 1358{ 1359 struct sk_buff *first = list->next; 1360 struct sk_buff *last = list->prev; 1361 1362 first->prev = prev; 1363 prev->next = first; 1364 1365 last->next = next; 1366 next->prev = last; 1367} 1368 1369/** 1370 * skb_queue_splice - join two skb lists, this is designed for stacks 1371 * @list: the new list to add 1372 * @head: the place to add it in the first list 1373 */ 1374static inline void skb_queue_splice(const struct sk_buff_head *list, 1375 struct sk_buff_head *head) 1376{ 1377 if (!skb_queue_empty(list)) { 1378 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1379 head->qlen += list->qlen; 1380 } 1381} 1382 1383/** 1384 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1385 * @list: the new list to add 1386 * @head: the place to add it in the first list 1387 * 1388 * The list at @list is reinitialised 1389 */ 1390static inline void skb_queue_splice_init(struct sk_buff_head *list, 1391 struct sk_buff_head *head) 1392{ 1393 if (!skb_queue_empty(list)) { 1394 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1395 head->qlen += list->qlen; 1396 __skb_queue_head_init(list); 1397 } 1398} 1399 1400/** 1401 * skb_queue_splice_tail - join two skb lists, each list being a queue 1402 * @list: the new list to add 1403 * @head: the place to add it in the first list 1404 */ 1405static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1406 struct sk_buff_head *head) 1407{ 1408 if (!skb_queue_empty(list)) { 1409 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1410 head->qlen += list->qlen; 1411 } 1412} 1413 1414/** 1415 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1416 * @list: the new list to add 1417 * @head: the place to add it in the first list 1418 * 1419 * Each of the lists is a queue. 1420 * The list at @list is reinitialised 1421 */ 1422static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1423 struct sk_buff_head *head) 1424{ 1425 if (!skb_queue_empty(list)) { 1426 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1427 head->qlen += list->qlen; 1428 __skb_queue_head_init(list); 1429 } 1430} 1431 1432/** 1433 * __skb_queue_after - queue a buffer at the list head 1434 * @list: list to use 1435 * @prev: place after this buffer 1436 * @newsk: buffer to queue 1437 * 1438 * Queue a buffer int the middle of a list. This function takes no locks 1439 * and you must therefore hold required locks before calling it. 1440 * 1441 * A buffer cannot be placed on two lists at the same time. 1442 */ 1443static inline void __skb_queue_after(struct sk_buff_head *list, 1444 struct sk_buff *prev, 1445 struct sk_buff *newsk) 1446{ 1447 __skb_insert(newsk, prev, prev->next, list); 1448} 1449 1450void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1451 struct sk_buff_head *list); 1452 1453static inline void __skb_queue_before(struct sk_buff_head *list, 1454 struct sk_buff *next, 1455 struct sk_buff *newsk) 1456{ 1457 __skb_insert(newsk, next->prev, next, list); 1458} 1459 1460/** 1461 * __skb_queue_head - queue a buffer at the list head 1462 * @list: list to use 1463 * @newsk: buffer to queue 1464 * 1465 * Queue a buffer at the start of a list. This function takes no locks 1466 * and you must therefore hold required locks before calling it. 1467 * 1468 * A buffer cannot be placed on two lists at the same time. 1469 */ 1470void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1471static inline void __skb_queue_head(struct sk_buff_head *list, 1472 struct sk_buff *newsk) 1473{ 1474 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1475} 1476 1477/** 1478 * __skb_queue_tail - queue a buffer at the list tail 1479 * @list: list to use 1480 * @newsk: buffer to queue 1481 * 1482 * Queue a buffer at the end of a list. This function takes no locks 1483 * and you must therefore hold required locks before calling it. 1484 * 1485 * A buffer cannot be placed on two lists at the same time. 1486 */ 1487void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1488static inline void __skb_queue_tail(struct sk_buff_head *list, 1489 struct sk_buff *newsk) 1490{ 1491 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1492} 1493 1494/* 1495 * remove sk_buff from list. _Must_ be called atomically, and with 1496 * the list known.. 1497 */ 1498void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1499static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1500{ 1501 struct sk_buff *next, *prev; 1502 1503 list->qlen--; 1504 next = skb->next; 1505 prev = skb->prev; 1506 skb->next = skb->prev = NULL; 1507 next->prev = prev; 1508 prev->next = next; 1509} 1510 1511/** 1512 * __skb_dequeue - remove from the head of the queue 1513 * @list: list to dequeue from 1514 * 1515 * Remove the head of the list. This function does not take any locks 1516 * so must be used with appropriate locks held only. The head item is 1517 * returned or %NULL if the list is empty. 1518 */ 1519struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1520static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1521{ 1522 struct sk_buff *skb = skb_peek(list); 1523 if (skb) 1524 __skb_unlink(skb, list); 1525 return skb; 1526} 1527 1528/** 1529 * __skb_dequeue_tail - remove from the tail of the queue 1530 * @list: list to dequeue from 1531 * 1532 * Remove the tail of the list. This function does not take any locks 1533 * so must be used with appropriate locks held only. The tail item is 1534 * returned or %NULL if the list is empty. 1535 */ 1536struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1537static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1538{ 1539 struct sk_buff *skb = skb_peek_tail(list); 1540 if (skb) 1541 __skb_unlink(skb, list); 1542 return skb; 1543} 1544 1545 1546static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1547{ 1548 return skb->data_len; 1549} 1550 1551static inline unsigned int skb_headlen(const struct sk_buff *skb) 1552{ 1553 return skb->len - skb->data_len; 1554} 1555 1556static inline int skb_pagelen(const struct sk_buff *skb) 1557{ 1558 int i, len = 0; 1559 1560 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1561 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1562 return len + skb_headlen(skb); 1563} 1564 1565/** 1566 * __skb_fill_page_desc - initialise a paged fragment in an skb 1567 * @skb: buffer containing fragment to be initialised 1568 * @i: paged fragment index to initialise 1569 * @page: the page to use for this fragment 1570 * @off: the offset to the data with @page 1571 * @size: the length of the data 1572 * 1573 * Initialises the @i'th fragment of @skb to point to &size bytes at 1574 * offset @off within @page. 1575 * 1576 * Does not take any additional reference on the fragment. 1577 */ 1578static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1579 struct page *page, int off, int size) 1580{ 1581 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1582 1583 /* 1584 * Propagate page->pfmemalloc to the skb if we can. The problem is 1585 * that not all callers have unique ownership of the page. If 1586 * pfmemalloc is set, we check the mapping as a mapping implies 1587 * page->index is set (index and pfmemalloc share space). 1588 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1589 * do not lose pfmemalloc information as the pages would not be 1590 * allocated using __GFP_MEMALLOC. 1591 */ 1592 frag->page.p = page; 1593 frag->page_offset = off; 1594 skb_frag_size_set(frag, size); 1595 1596 page = compound_head(page); 1597 if (page->pfmemalloc && !page->mapping) 1598 skb->pfmemalloc = true; 1599} 1600 1601/** 1602 * skb_fill_page_desc - initialise a paged fragment in an skb 1603 * @skb: buffer containing fragment to be initialised 1604 * @i: paged fragment index to initialise 1605 * @page: the page to use for this fragment 1606 * @off: the offset to the data with @page 1607 * @size: the length of the data 1608 * 1609 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1610 * @skb to point to @size bytes at offset @off within @page. In 1611 * addition updates @skb such that @i is the last fragment. 1612 * 1613 * Does not take any additional reference on the fragment. 1614 */ 1615static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1616 struct page *page, int off, int size) 1617{ 1618 __skb_fill_page_desc(skb, i, page, off, size); 1619 skb_shinfo(skb)->nr_frags = i + 1; 1620} 1621 1622void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1623 int size, unsigned int truesize); 1624 1625void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1626 unsigned int truesize); 1627 1628#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1629#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1630#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1631 1632#ifdef NET_SKBUFF_DATA_USES_OFFSET 1633static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1634{ 1635 return skb->head + skb->tail; 1636} 1637 1638static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1639{ 1640 skb->tail = skb->data - skb->head; 1641} 1642 1643static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1644{ 1645 skb_reset_tail_pointer(skb); 1646 skb->tail += offset; 1647} 1648 1649#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1650static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1651{ 1652 return skb->tail; 1653} 1654 1655static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1656{ 1657 skb->tail = skb->data; 1658} 1659 1660static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1661{ 1662 skb->tail = skb->data + offset; 1663} 1664 1665#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1666 1667/* 1668 * Add data to an sk_buff 1669 */ 1670unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1671unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1672static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1673{ 1674 unsigned char *tmp = skb_tail_pointer(skb); 1675 SKB_LINEAR_ASSERT(skb); 1676 skb->tail += len; 1677 skb->len += len; 1678 return tmp; 1679} 1680 1681unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1682static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1683{ 1684 skb->data -= len; 1685 skb->len += len; 1686 return skb->data; 1687} 1688 1689unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1690static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1691{ 1692 skb->len -= len; 1693 BUG_ON(skb->len < skb->data_len); 1694 return skb->data += len; 1695} 1696 1697static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1698{ 1699 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1700} 1701 1702unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1703 1704static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1705{ 1706 if (len > skb_headlen(skb) && 1707 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1708 return NULL; 1709 skb->len -= len; 1710 return skb->data += len; 1711} 1712 1713static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1714{ 1715 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1716} 1717 1718static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1719{ 1720 if (likely(len <= skb_headlen(skb))) 1721 return 1; 1722 if (unlikely(len > skb->len)) 1723 return 0; 1724 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1725} 1726 1727/** 1728 * skb_headroom - bytes at buffer head 1729 * @skb: buffer to check 1730 * 1731 * Return the number of bytes of free space at the head of an &sk_buff. 1732 */ 1733static inline unsigned int skb_headroom(const struct sk_buff *skb) 1734{ 1735 return skb->data - skb->head; 1736} 1737 1738/** 1739 * skb_tailroom - bytes at buffer end 1740 * @skb: buffer to check 1741 * 1742 * Return the number of bytes of free space at the tail of an sk_buff 1743 */ 1744static inline int skb_tailroom(const struct sk_buff *skb) 1745{ 1746 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1747} 1748 1749/** 1750 * skb_availroom - bytes at buffer end 1751 * @skb: buffer to check 1752 * 1753 * Return the number of bytes of free space at the tail of an sk_buff 1754 * allocated by sk_stream_alloc() 1755 */ 1756static inline int skb_availroom(const struct sk_buff *skb) 1757{ 1758 if (skb_is_nonlinear(skb)) 1759 return 0; 1760 1761 return skb->end - skb->tail - skb->reserved_tailroom; 1762} 1763 1764/** 1765 * skb_reserve - adjust headroom 1766 * @skb: buffer to alter 1767 * @len: bytes to move 1768 * 1769 * Increase the headroom of an empty &sk_buff by reducing the tail 1770 * room. This is only allowed for an empty buffer. 1771 */ 1772static inline void skb_reserve(struct sk_buff *skb, int len) 1773{ 1774 skb->data += len; 1775 skb->tail += len; 1776} 1777 1778#define ENCAP_TYPE_ETHER 0 1779#define ENCAP_TYPE_IPPROTO 1 1780 1781static inline void skb_set_inner_protocol(struct sk_buff *skb, 1782 __be16 protocol) 1783{ 1784 skb->inner_protocol = protocol; 1785 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1786} 1787 1788static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1789 __u8 ipproto) 1790{ 1791 skb->inner_ipproto = ipproto; 1792 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1793} 1794 1795static inline void skb_reset_inner_headers(struct sk_buff *skb) 1796{ 1797 skb->inner_mac_header = skb->mac_header; 1798 skb->inner_network_header = skb->network_header; 1799 skb->inner_transport_header = skb->transport_header; 1800} 1801 1802static inline void skb_reset_mac_len(struct sk_buff *skb) 1803{ 1804 skb->mac_len = skb->network_header - skb->mac_header; 1805} 1806 1807static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1808 *skb) 1809{ 1810 return skb->head + skb->inner_transport_header; 1811} 1812 1813static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1814{ 1815 skb->inner_transport_header = skb->data - skb->head; 1816} 1817 1818static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1819 const int offset) 1820{ 1821 skb_reset_inner_transport_header(skb); 1822 skb->inner_transport_header += offset; 1823} 1824 1825static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1826{ 1827 return skb->head + skb->inner_network_header; 1828} 1829 1830static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1831{ 1832 skb->inner_network_header = skb->data - skb->head; 1833} 1834 1835static inline void skb_set_inner_network_header(struct sk_buff *skb, 1836 const int offset) 1837{ 1838 skb_reset_inner_network_header(skb); 1839 skb->inner_network_header += offset; 1840} 1841 1842static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1843{ 1844 return skb->head + skb->inner_mac_header; 1845} 1846 1847static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1848{ 1849 skb->inner_mac_header = skb->data - skb->head; 1850} 1851 1852static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1853 const int offset) 1854{ 1855 skb_reset_inner_mac_header(skb); 1856 skb->inner_mac_header += offset; 1857} 1858static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1859{ 1860 return skb->transport_header != (typeof(skb->transport_header))~0U; 1861} 1862 1863static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1864{ 1865 return skb->head + skb->transport_header; 1866} 1867 1868static inline void skb_reset_transport_header(struct sk_buff *skb) 1869{ 1870 skb->transport_header = skb->data - skb->head; 1871} 1872 1873static inline void skb_set_transport_header(struct sk_buff *skb, 1874 const int offset) 1875{ 1876 skb_reset_transport_header(skb); 1877 skb->transport_header += offset; 1878} 1879 1880static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1881{ 1882 return skb->head + skb->network_header; 1883} 1884 1885static inline void skb_reset_network_header(struct sk_buff *skb) 1886{ 1887 skb->network_header = skb->data - skb->head; 1888} 1889 1890static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1891{ 1892 skb_reset_network_header(skb); 1893 skb->network_header += offset; 1894} 1895 1896static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1897{ 1898 return skb->head + skb->mac_header; 1899} 1900 1901static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1902{ 1903 return skb->mac_header != (typeof(skb->mac_header))~0U; 1904} 1905 1906static inline void skb_reset_mac_header(struct sk_buff *skb) 1907{ 1908 skb->mac_header = skb->data - skb->head; 1909} 1910 1911static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1912{ 1913 skb_reset_mac_header(skb); 1914 skb->mac_header += offset; 1915} 1916 1917static inline void skb_pop_mac_header(struct sk_buff *skb) 1918{ 1919 skb->mac_header = skb->network_header; 1920} 1921 1922static inline void skb_probe_transport_header(struct sk_buff *skb, 1923 const int offset_hint) 1924{ 1925 struct flow_keys keys; 1926 1927 if (skb_transport_header_was_set(skb)) 1928 return; 1929 else if (skb_flow_dissect(skb, &keys)) 1930 skb_set_transport_header(skb, keys.thoff); 1931 else 1932 skb_set_transport_header(skb, offset_hint); 1933} 1934 1935static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1936{ 1937 if (skb_mac_header_was_set(skb)) { 1938 const unsigned char *old_mac = skb_mac_header(skb); 1939 1940 skb_set_mac_header(skb, -skb->mac_len); 1941 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1942 } 1943} 1944 1945static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1946{ 1947 return skb->csum_start - skb_headroom(skb); 1948} 1949 1950static inline int skb_transport_offset(const struct sk_buff *skb) 1951{ 1952 return skb_transport_header(skb) - skb->data; 1953} 1954 1955static inline u32 skb_network_header_len(const struct sk_buff *skb) 1956{ 1957 return skb->transport_header - skb->network_header; 1958} 1959 1960static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1961{ 1962 return skb->inner_transport_header - skb->inner_network_header; 1963} 1964 1965static inline int skb_network_offset(const struct sk_buff *skb) 1966{ 1967 return skb_network_header(skb) - skb->data; 1968} 1969 1970static inline int skb_inner_network_offset(const struct sk_buff *skb) 1971{ 1972 return skb_inner_network_header(skb) - skb->data; 1973} 1974 1975static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1976{ 1977 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1978} 1979 1980/* 1981 * CPUs often take a performance hit when accessing unaligned memory 1982 * locations. The actual performance hit varies, it can be small if the 1983 * hardware handles it or large if we have to take an exception and fix it 1984 * in software. 1985 * 1986 * Since an ethernet header is 14 bytes network drivers often end up with 1987 * the IP header at an unaligned offset. The IP header can be aligned by 1988 * shifting the start of the packet by 2 bytes. Drivers should do this 1989 * with: 1990 * 1991 * skb_reserve(skb, NET_IP_ALIGN); 1992 * 1993 * The downside to this alignment of the IP header is that the DMA is now 1994 * unaligned. On some architectures the cost of an unaligned DMA is high 1995 * and this cost outweighs the gains made by aligning the IP header. 1996 * 1997 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1998 * to be overridden. 1999 */ 2000#ifndef NET_IP_ALIGN 2001#define NET_IP_ALIGN 2 2002#endif 2003 2004/* 2005 * The networking layer reserves some headroom in skb data (via 2006 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2007 * the header has to grow. In the default case, if the header has to grow 2008 * 32 bytes or less we avoid the reallocation. 2009 * 2010 * Unfortunately this headroom changes the DMA alignment of the resulting 2011 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2012 * on some architectures. An architecture can override this value, 2013 * perhaps setting it to a cacheline in size (since that will maintain 2014 * cacheline alignment of the DMA). It must be a power of 2. 2015 * 2016 * Various parts of the networking layer expect at least 32 bytes of 2017 * headroom, you should not reduce this. 2018 * 2019 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2020 * to reduce average number of cache lines per packet. 2021 * get_rps_cpus() for example only access one 64 bytes aligned block : 2022 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2023 */ 2024#ifndef NET_SKB_PAD 2025#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2026#endif 2027 2028int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2029 2030static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2031{ 2032 if (unlikely(skb_is_nonlinear(skb))) { 2033 WARN_ON(1); 2034 return; 2035 } 2036 skb->len = len; 2037 skb_set_tail_pointer(skb, len); 2038} 2039 2040void skb_trim(struct sk_buff *skb, unsigned int len); 2041 2042static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2043{ 2044 if (skb->data_len) 2045 return ___pskb_trim(skb, len); 2046 __skb_trim(skb, len); 2047 return 0; 2048} 2049 2050static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2051{ 2052 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2053} 2054 2055/** 2056 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2057 * @skb: buffer to alter 2058 * @len: new length 2059 * 2060 * This is identical to pskb_trim except that the caller knows that 2061 * the skb is not cloned so we should never get an error due to out- 2062 * of-memory. 2063 */ 2064static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2065{ 2066 int err = pskb_trim(skb, len); 2067 BUG_ON(err); 2068} 2069 2070/** 2071 * skb_orphan - orphan a buffer 2072 * @skb: buffer to orphan 2073 * 2074 * If a buffer currently has an owner then we call the owner's 2075 * destructor function and make the @skb unowned. The buffer continues 2076 * to exist but is no longer charged to its former owner. 2077 */ 2078static inline void skb_orphan(struct sk_buff *skb) 2079{ 2080 if (skb->destructor) { 2081 skb->destructor(skb); 2082 skb->destructor = NULL; 2083 skb->sk = NULL; 2084 } else { 2085 BUG_ON(skb->sk); 2086 } 2087} 2088 2089/** 2090 * skb_orphan_frags - orphan the frags contained in a buffer 2091 * @skb: buffer to orphan frags from 2092 * @gfp_mask: allocation mask for replacement pages 2093 * 2094 * For each frag in the SKB which needs a destructor (i.e. has an 2095 * owner) create a copy of that frag and release the original 2096 * page by calling the destructor. 2097 */ 2098static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2099{ 2100 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2101 return 0; 2102 return skb_copy_ubufs(skb, gfp_mask); 2103} 2104 2105/** 2106 * __skb_queue_purge - empty a list 2107 * @list: list to empty 2108 * 2109 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2110 * the list and one reference dropped. This function does not take the 2111 * list lock and the caller must hold the relevant locks to use it. 2112 */ 2113void skb_queue_purge(struct sk_buff_head *list); 2114static inline void __skb_queue_purge(struct sk_buff_head *list) 2115{ 2116 struct sk_buff *skb; 2117 while ((skb = __skb_dequeue(list)) != NULL) 2118 kfree_skb(skb); 2119} 2120 2121#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2122#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2123#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2124 2125void *netdev_alloc_frag(unsigned int fragsz); 2126 2127struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2128 gfp_t gfp_mask); 2129 2130/** 2131 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2132 * @dev: network device to receive on 2133 * @length: length to allocate 2134 * 2135 * Allocate a new &sk_buff and assign it a usage count of one. The 2136 * buffer has unspecified headroom built in. Users should allocate 2137 * the headroom they think they need without accounting for the 2138 * built in space. The built in space is used for optimisations. 2139 * 2140 * %NULL is returned if there is no free memory. Although this function 2141 * allocates memory it can be called from an interrupt. 2142 */ 2143static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2144 unsigned int length) 2145{ 2146 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2147} 2148 2149/* legacy helper around __netdev_alloc_skb() */ 2150static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2151 gfp_t gfp_mask) 2152{ 2153 return __netdev_alloc_skb(NULL, length, gfp_mask); 2154} 2155 2156/* legacy helper around netdev_alloc_skb() */ 2157static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2158{ 2159 return netdev_alloc_skb(NULL, length); 2160} 2161 2162 2163static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2164 unsigned int length, gfp_t gfp) 2165{ 2166 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2167 2168 if (NET_IP_ALIGN && skb) 2169 skb_reserve(skb, NET_IP_ALIGN); 2170 return skb; 2171} 2172 2173static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2174 unsigned int length) 2175{ 2176 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2177} 2178 2179/** 2180 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2181 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2182 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2183 * @order: size of the allocation 2184 * 2185 * Allocate a new page. 2186 * 2187 * %NULL is returned if there is no free memory. 2188*/ 2189static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2190 struct sk_buff *skb, 2191 unsigned int order) 2192{ 2193 struct page *page; 2194 2195 gfp_mask |= __GFP_COLD; 2196 2197 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2198 gfp_mask |= __GFP_MEMALLOC; 2199 2200 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2201 if (skb && page && page->pfmemalloc) 2202 skb->pfmemalloc = true; 2203 2204 return page; 2205} 2206 2207/** 2208 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2209 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2210 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2211 * 2212 * Allocate a new page. 2213 * 2214 * %NULL is returned if there is no free memory. 2215 */ 2216static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2217 struct sk_buff *skb) 2218{ 2219 return __skb_alloc_pages(gfp_mask, skb, 0); 2220} 2221 2222/** 2223 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2224 * @page: The page that was allocated from skb_alloc_page 2225 * @skb: The skb that may need pfmemalloc set 2226 */ 2227static inline void skb_propagate_pfmemalloc(struct page *page, 2228 struct sk_buff *skb) 2229{ 2230 if (page && page->pfmemalloc) 2231 skb->pfmemalloc = true; 2232} 2233 2234/** 2235 * skb_frag_page - retrieve the page referred to by a paged fragment 2236 * @frag: the paged fragment 2237 * 2238 * Returns the &struct page associated with @frag. 2239 */ 2240static inline struct page *skb_frag_page(const skb_frag_t *frag) 2241{ 2242 return frag->page.p; 2243} 2244 2245/** 2246 * __skb_frag_ref - take an addition reference on a paged fragment. 2247 * @frag: the paged fragment 2248 * 2249 * Takes an additional reference on the paged fragment @frag. 2250 */ 2251static inline void __skb_frag_ref(skb_frag_t *frag) 2252{ 2253 get_page(skb_frag_page(frag)); 2254} 2255 2256/** 2257 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2258 * @skb: the buffer 2259 * @f: the fragment offset. 2260 * 2261 * Takes an additional reference on the @f'th paged fragment of @skb. 2262 */ 2263static inline void skb_frag_ref(struct sk_buff *skb, int f) 2264{ 2265 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2266} 2267 2268/** 2269 * __skb_frag_unref - release a reference on a paged fragment. 2270 * @frag: the paged fragment 2271 * 2272 * Releases a reference on the paged fragment @frag. 2273 */ 2274static inline void __skb_frag_unref(skb_frag_t *frag) 2275{ 2276 put_page(skb_frag_page(frag)); 2277} 2278 2279/** 2280 * skb_frag_unref - release a reference on a paged fragment of an skb. 2281 * @skb: the buffer 2282 * @f: the fragment offset 2283 * 2284 * Releases a reference on the @f'th paged fragment of @skb. 2285 */ 2286static inline void skb_frag_unref(struct sk_buff *skb, int f) 2287{ 2288 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2289} 2290 2291/** 2292 * skb_frag_address - gets the address of the data contained in a paged fragment 2293 * @frag: the paged fragment buffer 2294 * 2295 * Returns the address of the data within @frag. The page must already 2296 * be mapped. 2297 */ 2298static inline void *skb_frag_address(const skb_frag_t *frag) 2299{ 2300 return page_address(skb_frag_page(frag)) + frag->page_offset; 2301} 2302 2303/** 2304 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2305 * @frag: the paged fragment buffer 2306 * 2307 * Returns the address of the data within @frag. Checks that the page 2308 * is mapped and returns %NULL otherwise. 2309 */ 2310static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2311{ 2312 void *ptr = page_address(skb_frag_page(frag)); 2313 if (unlikely(!ptr)) 2314 return NULL; 2315 2316 return ptr + frag->page_offset; 2317} 2318 2319/** 2320 * __skb_frag_set_page - sets the page contained in a paged fragment 2321 * @frag: the paged fragment 2322 * @page: the page to set 2323 * 2324 * Sets the fragment @frag to contain @page. 2325 */ 2326static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2327{ 2328 frag->page.p = page; 2329} 2330 2331/** 2332 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2333 * @skb: the buffer 2334 * @f: the fragment offset 2335 * @page: the page to set 2336 * 2337 * Sets the @f'th fragment of @skb to contain @page. 2338 */ 2339static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2340 struct page *page) 2341{ 2342 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2343} 2344 2345bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2346 2347/** 2348 * skb_frag_dma_map - maps a paged fragment via the DMA API 2349 * @dev: the device to map the fragment to 2350 * @frag: the paged fragment to map 2351 * @offset: the offset within the fragment (starting at the 2352 * fragment's own offset) 2353 * @size: the number of bytes to map 2354 * @dir: the direction of the mapping (%PCI_DMA_*) 2355 * 2356 * Maps the page associated with @frag to @device. 2357 */ 2358static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2359 const skb_frag_t *frag, 2360 size_t offset, size_t size, 2361 enum dma_data_direction dir) 2362{ 2363 return dma_map_page(dev, skb_frag_page(frag), 2364 frag->page_offset + offset, size, dir); 2365} 2366 2367static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2368 gfp_t gfp_mask) 2369{ 2370 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2371} 2372 2373 2374static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2375 gfp_t gfp_mask) 2376{ 2377 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2378} 2379 2380 2381/** 2382 * skb_clone_writable - is the header of a clone writable 2383 * @skb: buffer to check 2384 * @len: length up to which to write 2385 * 2386 * Returns true if modifying the header part of the cloned buffer 2387 * does not requires the data to be copied. 2388 */ 2389static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2390{ 2391 return !skb_header_cloned(skb) && 2392 skb_headroom(skb) + len <= skb->hdr_len; 2393} 2394 2395static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2396 int cloned) 2397{ 2398 int delta = 0; 2399 2400 if (headroom > skb_headroom(skb)) 2401 delta = headroom - skb_headroom(skb); 2402 2403 if (delta || cloned) 2404 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2405 GFP_ATOMIC); 2406 return 0; 2407} 2408 2409/** 2410 * skb_cow - copy header of skb when it is required 2411 * @skb: buffer to cow 2412 * @headroom: needed headroom 2413 * 2414 * If the skb passed lacks sufficient headroom or its data part 2415 * is shared, data is reallocated. If reallocation fails, an error 2416 * is returned and original skb is not changed. 2417 * 2418 * The result is skb with writable area skb->head...skb->tail 2419 * and at least @headroom of space at head. 2420 */ 2421static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2422{ 2423 return __skb_cow(skb, headroom, skb_cloned(skb)); 2424} 2425 2426/** 2427 * skb_cow_head - skb_cow but only making the head writable 2428 * @skb: buffer to cow 2429 * @headroom: needed headroom 2430 * 2431 * This function is identical to skb_cow except that we replace the 2432 * skb_cloned check by skb_header_cloned. It should be used when 2433 * you only need to push on some header and do not need to modify 2434 * the data. 2435 */ 2436static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2437{ 2438 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2439} 2440 2441/** 2442 * skb_padto - pad an skbuff up to a minimal size 2443 * @skb: buffer to pad 2444 * @len: minimal length 2445 * 2446 * Pads up a buffer to ensure the trailing bytes exist and are 2447 * blanked. If the buffer already contains sufficient data it 2448 * is untouched. Otherwise it is extended. Returns zero on 2449 * success. The skb is freed on error. 2450 */ 2451 2452static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2453{ 2454 unsigned int size = skb->len; 2455 if (likely(size >= len)) 2456 return 0; 2457 return skb_pad(skb, len - size); 2458} 2459 2460static inline int skb_add_data(struct sk_buff *skb, 2461 char __user *from, int copy) 2462{ 2463 const int off = skb->len; 2464 2465 if (skb->ip_summed == CHECKSUM_NONE) { 2466 int err = 0; 2467 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2468 copy, 0, &err); 2469 if (!err) { 2470 skb->csum = csum_block_add(skb->csum, csum, off); 2471 return 0; 2472 } 2473 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2474 return 0; 2475 2476 __skb_trim(skb, off); 2477 return -EFAULT; 2478} 2479 2480static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2481 const struct page *page, int off) 2482{ 2483 if (i) { 2484 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2485 2486 return page == skb_frag_page(frag) && 2487 off == frag->page_offset + skb_frag_size(frag); 2488 } 2489 return false; 2490} 2491 2492static inline int __skb_linearize(struct sk_buff *skb) 2493{ 2494 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2495} 2496 2497/** 2498 * skb_linearize - convert paged skb to linear one 2499 * @skb: buffer to linarize 2500 * 2501 * If there is no free memory -ENOMEM is returned, otherwise zero 2502 * is returned and the old skb data released. 2503 */ 2504static inline int skb_linearize(struct sk_buff *skb) 2505{ 2506 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2507} 2508 2509/** 2510 * skb_has_shared_frag - can any frag be overwritten 2511 * @skb: buffer to test 2512 * 2513 * Return true if the skb has at least one frag that might be modified 2514 * by an external entity (as in vmsplice()/sendfile()) 2515 */ 2516static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2517{ 2518 return skb_is_nonlinear(skb) && 2519 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2520} 2521 2522/** 2523 * skb_linearize_cow - make sure skb is linear and writable 2524 * @skb: buffer to process 2525 * 2526 * If there is no free memory -ENOMEM is returned, otherwise zero 2527 * is returned and the old skb data released. 2528 */ 2529static inline int skb_linearize_cow(struct sk_buff *skb) 2530{ 2531 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2532 __skb_linearize(skb) : 0; 2533} 2534 2535/** 2536 * skb_postpull_rcsum - update checksum for received skb after pull 2537 * @skb: buffer to update 2538 * @start: start of data before pull 2539 * @len: length of data pulled 2540 * 2541 * After doing a pull on a received packet, you need to call this to 2542 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2543 * CHECKSUM_NONE so that it can be recomputed from scratch. 2544 */ 2545 2546static inline void skb_postpull_rcsum(struct sk_buff *skb, 2547 const void *start, unsigned int len) 2548{ 2549 if (skb->ip_summed == CHECKSUM_COMPLETE) 2550 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2551} 2552 2553unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2554 2555/** 2556 * pskb_trim_rcsum - trim received skb and update checksum 2557 * @skb: buffer to trim 2558 * @len: new length 2559 * 2560 * This is exactly the same as pskb_trim except that it ensures the 2561 * checksum of received packets are still valid after the operation. 2562 */ 2563 2564static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2565{ 2566 if (likely(len >= skb->len)) 2567 return 0; 2568 if (skb->ip_summed == CHECKSUM_COMPLETE) 2569 skb->ip_summed = CHECKSUM_NONE; 2570 return __pskb_trim(skb, len); 2571} 2572 2573#define skb_queue_walk(queue, skb) \ 2574 for (skb = (queue)->next; \ 2575 skb != (struct sk_buff *)(queue); \ 2576 skb = skb->next) 2577 2578#define skb_queue_walk_safe(queue, skb, tmp) \ 2579 for (skb = (queue)->next, tmp = skb->next; \ 2580 skb != (struct sk_buff *)(queue); \ 2581 skb = tmp, tmp = skb->next) 2582 2583#define skb_queue_walk_from(queue, skb) \ 2584 for (; skb != (struct sk_buff *)(queue); \ 2585 skb = skb->next) 2586 2587#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2588 for (tmp = skb->next; \ 2589 skb != (struct sk_buff *)(queue); \ 2590 skb = tmp, tmp = skb->next) 2591 2592#define skb_queue_reverse_walk(queue, skb) \ 2593 for (skb = (queue)->prev; \ 2594 skb != (struct sk_buff *)(queue); \ 2595 skb = skb->prev) 2596 2597#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2598 for (skb = (queue)->prev, tmp = skb->prev; \ 2599 skb != (struct sk_buff *)(queue); \ 2600 skb = tmp, tmp = skb->prev) 2601 2602#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2603 for (tmp = skb->prev; \ 2604 skb != (struct sk_buff *)(queue); \ 2605 skb = tmp, tmp = skb->prev) 2606 2607static inline bool skb_has_frag_list(const struct sk_buff *skb) 2608{ 2609 return skb_shinfo(skb)->frag_list != NULL; 2610} 2611 2612static inline void skb_frag_list_init(struct sk_buff *skb) 2613{ 2614 skb_shinfo(skb)->frag_list = NULL; 2615} 2616 2617static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2618{ 2619 frag->next = skb_shinfo(skb)->frag_list; 2620 skb_shinfo(skb)->frag_list = frag; 2621} 2622 2623#define skb_walk_frags(skb, iter) \ 2624 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2625 2626struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2627 int *peeked, int *off, int *err); 2628struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2629 int *err); 2630unsigned int datagram_poll(struct file *file, struct socket *sock, 2631 struct poll_table_struct *wait); 2632int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2633 struct iovec *to, int size); 2634int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2635 struct iovec *iov); 2636int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2637 const struct iovec *from, int from_offset, 2638 int len); 2639int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2640 int offset, size_t count); 2641int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2642 const struct iovec *to, int to_offset, 2643 int size); 2644void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2645void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2646int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2647int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2648int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2649__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2650 int len, __wsum csum); 2651int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2652 struct pipe_inode_info *pipe, unsigned int len, 2653 unsigned int flags); 2654void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2655unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2656int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2657 int len, int hlen); 2658void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2659int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2660void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2661unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2662struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2663struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2664 2665struct skb_checksum_ops { 2666 __wsum (*update)(const void *mem, int len, __wsum wsum); 2667 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2668}; 2669 2670__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2671 __wsum csum, const struct skb_checksum_ops *ops); 2672__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2673 __wsum csum); 2674 2675static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2676 int len, void *data, int hlen, void *buffer) 2677{ 2678 if (hlen - offset >= len) 2679 return data + offset; 2680 2681 if (!skb || 2682 skb_copy_bits(skb, offset, buffer, len) < 0) 2683 return NULL; 2684 2685 return buffer; 2686} 2687 2688static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2689 int len, void *buffer) 2690{ 2691 return __skb_header_pointer(skb, offset, len, skb->data, 2692 skb_headlen(skb), buffer); 2693} 2694 2695/** 2696 * skb_needs_linearize - check if we need to linearize a given skb 2697 * depending on the given device features. 2698 * @skb: socket buffer to check 2699 * @features: net device features 2700 * 2701 * Returns true if either: 2702 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2703 * 2. skb is fragmented and the device does not support SG. 2704 */ 2705static inline bool skb_needs_linearize(struct sk_buff *skb, 2706 netdev_features_t features) 2707{ 2708 return skb_is_nonlinear(skb) && 2709 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2710 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2711} 2712 2713static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2714 void *to, 2715 const unsigned int len) 2716{ 2717 memcpy(to, skb->data, len); 2718} 2719 2720static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2721 const int offset, void *to, 2722 const unsigned int len) 2723{ 2724 memcpy(to, skb->data + offset, len); 2725} 2726 2727static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2728 const void *from, 2729 const unsigned int len) 2730{ 2731 memcpy(skb->data, from, len); 2732} 2733 2734static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2735 const int offset, 2736 const void *from, 2737 const unsigned int len) 2738{ 2739 memcpy(skb->data + offset, from, len); 2740} 2741 2742void skb_init(void); 2743 2744static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2745{ 2746 return skb->tstamp; 2747} 2748 2749/** 2750 * skb_get_timestamp - get timestamp from a skb 2751 * @skb: skb to get stamp from 2752 * @stamp: pointer to struct timeval to store stamp in 2753 * 2754 * Timestamps are stored in the skb as offsets to a base timestamp. 2755 * This function converts the offset back to a struct timeval and stores 2756 * it in stamp. 2757 */ 2758static inline void skb_get_timestamp(const struct sk_buff *skb, 2759 struct timeval *stamp) 2760{ 2761 *stamp = ktime_to_timeval(skb->tstamp); 2762} 2763 2764static inline void skb_get_timestampns(const struct sk_buff *skb, 2765 struct timespec *stamp) 2766{ 2767 *stamp = ktime_to_timespec(skb->tstamp); 2768} 2769 2770static inline void __net_timestamp(struct sk_buff *skb) 2771{ 2772 skb->tstamp = ktime_get_real(); 2773} 2774 2775static inline ktime_t net_timedelta(ktime_t t) 2776{ 2777 return ktime_sub(ktime_get_real(), t); 2778} 2779 2780static inline ktime_t net_invalid_timestamp(void) 2781{ 2782 return ktime_set(0, 0); 2783} 2784 2785struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2786 2787#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2788 2789void skb_clone_tx_timestamp(struct sk_buff *skb); 2790bool skb_defer_rx_timestamp(struct sk_buff *skb); 2791 2792#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2793 2794static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2795{ 2796} 2797 2798static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2799{ 2800 return false; 2801} 2802 2803#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2804 2805/** 2806 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2807 * 2808 * PHY drivers may accept clones of transmitted packets for 2809 * timestamping via their phy_driver.txtstamp method. These drivers 2810 * must call this function to return the skb back to the stack, with 2811 * or without a timestamp. 2812 * 2813 * @skb: clone of the the original outgoing packet 2814 * @hwtstamps: hardware time stamps, may be NULL if not available 2815 * 2816 */ 2817void skb_complete_tx_timestamp(struct sk_buff *skb, 2818 struct skb_shared_hwtstamps *hwtstamps); 2819 2820void __skb_tstamp_tx(struct sk_buff *orig_skb, 2821 struct skb_shared_hwtstamps *hwtstamps, 2822 struct sock *sk, int tstype); 2823 2824/** 2825 * skb_tstamp_tx - queue clone of skb with send time stamps 2826 * @orig_skb: the original outgoing packet 2827 * @hwtstamps: hardware time stamps, may be NULL if not available 2828 * 2829 * If the skb has a socket associated, then this function clones the 2830 * skb (thus sharing the actual data and optional structures), stores 2831 * the optional hardware time stamping information (if non NULL) or 2832 * generates a software time stamp (otherwise), then queues the clone 2833 * to the error queue of the socket. Errors are silently ignored. 2834 */ 2835void skb_tstamp_tx(struct sk_buff *orig_skb, 2836 struct skb_shared_hwtstamps *hwtstamps); 2837 2838static inline void sw_tx_timestamp(struct sk_buff *skb) 2839{ 2840 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2841 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2842 skb_tstamp_tx(skb, NULL); 2843} 2844 2845/** 2846 * skb_tx_timestamp() - Driver hook for transmit timestamping 2847 * 2848 * Ethernet MAC Drivers should call this function in their hard_xmit() 2849 * function immediately before giving the sk_buff to the MAC hardware. 2850 * 2851 * Specifically, one should make absolutely sure that this function is 2852 * called before TX completion of this packet can trigger. Otherwise 2853 * the packet could potentially already be freed. 2854 * 2855 * @skb: A socket buffer. 2856 */ 2857static inline void skb_tx_timestamp(struct sk_buff *skb) 2858{ 2859 skb_clone_tx_timestamp(skb); 2860 sw_tx_timestamp(skb); 2861} 2862 2863/** 2864 * skb_complete_wifi_ack - deliver skb with wifi status 2865 * 2866 * @skb: the original outgoing packet 2867 * @acked: ack status 2868 * 2869 */ 2870void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2871 2872__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2873__sum16 __skb_checksum_complete(struct sk_buff *skb); 2874 2875static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2876{ 2877 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid); 2878} 2879 2880/** 2881 * skb_checksum_complete - Calculate checksum of an entire packet 2882 * @skb: packet to process 2883 * 2884 * This function calculates the checksum over the entire packet plus 2885 * the value of skb->csum. The latter can be used to supply the 2886 * checksum of a pseudo header as used by TCP/UDP. It returns the 2887 * checksum. 2888 * 2889 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2890 * this function can be used to verify that checksum on received 2891 * packets. In that case the function should return zero if the 2892 * checksum is correct. In particular, this function will return zero 2893 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2894 * hardware has already verified the correctness of the checksum. 2895 */ 2896static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2897{ 2898 return skb_csum_unnecessary(skb) ? 2899 0 : __skb_checksum_complete(skb); 2900} 2901 2902static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2903{ 2904 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2905 if (skb->csum_level == 0) 2906 skb->ip_summed = CHECKSUM_NONE; 2907 else 2908 skb->csum_level--; 2909 } 2910} 2911 2912static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2913{ 2914 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2915 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2916 skb->csum_level++; 2917 } else if (skb->ip_summed == CHECKSUM_NONE) { 2918 skb->ip_summed = CHECKSUM_UNNECESSARY; 2919 skb->csum_level = 0; 2920 } 2921} 2922 2923static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2924{ 2925 /* Mark current checksum as bad (typically called from GRO 2926 * path). In the case that ip_summed is CHECKSUM_NONE 2927 * this must be the first checksum encountered in the packet. 2928 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2929 * checksum after the last one validated. For UDP, a zero 2930 * checksum can not be marked as bad. 2931 */ 2932 2933 if (skb->ip_summed == CHECKSUM_NONE || 2934 skb->ip_summed == CHECKSUM_UNNECESSARY) 2935 skb->csum_bad = 1; 2936} 2937 2938/* Check if we need to perform checksum complete validation. 2939 * 2940 * Returns true if checksum complete is needed, false otherwise 2941 * (either checksum is unnecessary or zero checksum is allowed). 2942 */ 2943static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2944 bool zero_okay, 2945 __sum16 check) 2946{ 2947 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2948 skb->csum_valid = 1; 2949 __skb_decr_checksum_unnecessary(skb); 2950 return false; 2951 } 2952 2953 return true; 2954} 2955 2956/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 2957 * in checksum_init. 2958 */ 2959#define CHECKSUM_BREAK 76 2960 2961/* Validate (init) checksum based on checksum complete. 2962 * 2963 * Return values: 2964 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 2965 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 2966 * checksum is stored in skb->csum for use in __skb_checksum_complete 2967 * non-zero: value of invalid checksum 2968 * 2969 */ 2970static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 2971 bool complete, 2972 __wsum psum) 2973{ 2974 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2975 if (!csum_fold(csum_add(psum, skb->csum))) { 2976 skb->csum_valid = 1; 2977 return 0; 2978 } 2979 } else if (skb->csum_bad) { 2980 /* ip_summed == CHECKSUM_NONE in this case */ 2981 return 1; 2982 } 2983 2984 skb->csum = psum; 2985 2986 if (complete || skb->len <= CHECKSUM_BREAK) { 2987 __sum16 csum; 2988 2989 csum = __skb_checksum_complete(skb); 2990 skb->csum_valid = !csum; 2991 return csum; 2992 } 2993 2994 return 0; 2995} 2996 2997static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 2998{ 2999 return 0; 3000} 3001 3002/* Perform checksum validate (init). Note that this is a macro since we only 3003 * want to calculate the pseudo header which is an input function if necessary. 3004 * First we try to validate without any computation (checksum unnecessary) and 3005 * then calculate based on checksum complete calling the function to compute 3006 * pseudo header. 3007 * 3008 * Return values: 3009 * 0: checksum is validated or try to in skb_checksum_complete 3010 * non-zero: value of invalid checksum 3011 */ 3012#define __skb_checksum_validate(skb, proto, complete, \ 3013 zero_okay, check, compute_pseudo) \ 3014({ \ 3015 __sum16 __ret = 0; \ 3016 skb->csum_valid = 0; \ 3017 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3018 __ret = __skb_checksum_validate_complete(skb, \ 3019 complete, compute_pseudo(skb, proto)); \ 3020 __ret; \ 3021}) 3022 3023#define skb_checksum_init(skb, proto, compute_pseudo) \ 3024 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3025 3026#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3027 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3028 3029#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3030 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3031 3032#define skb_checksum_validate_zero_check(skb, proto, check, \ 3033 compute_pseudo) \ 3034 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo) 3035 3036#define skb_checksum_simple_validate(skb) \ 3037 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3038 3039static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3040{ 3041 return (skb->ip_summed == CHECKSUM_NONE && 3042 skb->csum_valid && !skb->csum_bad); 3043} 3044 3045static inline void __skb_checksum_convert(struct sk_buff *skb, 3046 __sum16 check, __wsum pseudo) 3047{ 3048 skb->csum = ~pseudo; 3049 skb->ip_summed = CHECKSUM_COMPLETE; 3050} 3051 3052#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3053do { \ 3054 if (__skb_checksum_convert_check(skb)) \ 3055 __skb_checksum_convert(skb, check, \ 3056 compute_pseudo(skb, proto)); \ 3057} while (0) 3058 3059#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3060void nf_conntrack_destroy(struct nf_conntrack *nfct); 3061static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3062{ 3063 if (nfct && atomic_dec_and_test(&nfct->use)) 3064 nf_conntrack_destroy(nfct); 3065} 3066static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3067{ 3068 if (nfct) 3069 atomic_inc(&nfct->use); 3070} 3071#endif 3072#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3073static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3074{ 3075 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3076 kfree(nf_bridge); 3077} 3078static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3079{ 3080 if (nf_bridge) 3081 atomic_inc(&nf_bridge->use); 3082} 3083#endif /* CONFIG_BRIDGE_NETFILTER */ 3084static inline void nf_reset(struct sk_buff *skb) 3085{ 3086#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3087 nf_conntrack_put(skb->nfct); 3088 skb->nfct = NULL; 3089#endif 3090#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3091 nf_bridge_put(skb->nf_bridge); 3092 skb->nf_bridge = NULL; 3093#endif 3094} 3095 3096static inline void nf_reset_trace(struct sk_buff *skb) 3097{ 3098#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3099 skb->nf_trace = 0; 3100#endif 3101} 3102 3103/* Note: This doesn't put any conntrack and bridge info in dst. */ 3104static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3105 bool copy) 3106{ 3107#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3108 dst->nfct = src->nfct; 3109 nf_conntrack_get(src->nfct); 3110 if (copy) 3111 dst->nfctinfo = src->nfctinfo; 3112#endif 3113#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3114 dst->nf_bridge = src->nf_bridge; 3115 nf_bridge_get(src->nf_bridge); 3116#endif 3117#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3118 if (copy) 3119 dst->nf_trace = src->nf_trace; 3120#endif 3121} 3122 3123static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3124{ 3125#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3126 nf_conntrack_put(dst->nfct); 3127#endif 3128#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3129 nf_bridge_put(dst->nf_bridge); 3130#endif 3131 __nf_copy(dst, src, true); 3132} 3133 3134#ifdef CONFIG_NETWORK_SECMARK 3135static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3136{ 3137 to->secmark = from->secmark; 3138} 3139 3140static inline void skb_init_secmark(struct sk_buff *skb) 3141{ 3142 skb->secmark = 0; 3143} 3144#else 3145static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3146{ } 3147 3148static inline void skb_init_secmark(struct sk_buff *skb) 3149{ } 3150#endif 3151 3152static inline bool skb_irq_freeable(const struct sk_buff *skb) 3153{ 3154 return !skb->destructor && 3155#if IS_ENABLED(CONFIG_XFRM) 3156 !skb->sp && 3157#endif 3158#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3159 !skb->nfct && 3160#endif 3161 !skb->_skb_refdst && 3162 !skb_has_frag_list(skb); 3163} 3164 3165static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3166{ 3167 skb->queue_mapping = queue_mapping; 3168} 3169 3170static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3171{ 3172 return skb->queue_mapping; 3173} 3174 3175static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3176{ 3177 to->queue_mapping = from->queue_mapping; 3178} 3179 3180static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3181{ 3182 skb->queue_mapping = rx_queue + 1; 3183} 3184 3185static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3186{ 3187 return skb->queue_mapping - 1; 3188} 3189 3190static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3191{ 3192 return skb->queue_mapping != 0; 3193} 3194 3195u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3196 unsigned int num_tx_queues); 3197 3198static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3199{ 3200#ifdef CONFIG_XFRM 3201 return skb->sp; 3202#else 3203 return NULL; 3204#endif 3205} 3206 3207/* Keeps track of mac header offset relative to skb->head. 3208 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3209 * For non-tunnel skb it points to skb_mac_header() and for 3210 * tunnel skb it points to outer mac header. 3211 * Keeps track of level of encapsulation of network headers. 3212 */ 3213struct skb_gso_cb { 3214 int mac_offset; 3215 int encap_level; 3216 __u16 csum_start; 3217}; 3218#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3219 3220static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3221{ 3222 return (skb_mac_header(inner_skb) - inner_skb->head) - 3223 SKB_GSO_CB(inner_skb)->mac_offset; 3224} 3225 3226static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3227{ 3228 int new_headroom, headroom; 3229 int ret; 3230 3231 headroom = skb_headroom(skb); 3232 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3233 if (ret) 3234 return ret; 3235 3236 new_headroom = skb_headroom(skb); 3237 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3238 return 0; 3239} 3240 3241/* Compute the checksum for a gso segment. First compute the checksum value 3242 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3243 * then add in skb->csum (checksum from csum_start to end of packet). 3244 * skb->csum and csum_start are then updated to reflect the checksum of the 3245 * resultant packet starting from the transport header-- the resultant checksum 3246 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3247 * header. 3248 */ 3249static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3250{ 3251 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3252 skb_transport_offset(skb); 3253 __u16 csum; 3254 3255 csum = csum_fold(csum_partial(skb_transport_header(skb), 3256 plen, skb->csum)); 3257 skb->csum = res; 3258 SKB_GSO_CB(skb)->csum_start -= plen; 3259 3260 return csum; 3261} 3262 3263static inline bool skb_is_gso(const struct sk_buff *skb) 3264{ 3265 return skb_shinfo(skb)->gso_size; 3266} 3267 3268/* Note: Should be called only if skb_is_gso(skb) is true */ 3269static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3270{ 3271 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3272} 3273 3274void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3275 3276static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3277{ 3278 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3279 * wanted then gso_type will be set. */ 3280 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3281 3282 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3283 unlikely(shinfo->gso_type == 0)) { 3284 __skb_warn_lro_forwarding(skb); 3285 return true; 3286 } 3287 return false; 3288} 3289 3290static inline void skb_forward_csum(struct sk_buff *skb) 3291{ 3292 /* Unfortunately we don't support this one. Any brave souls? */ 3293 if (skb->ip_summed == CHECKSUM_COMPLETE) 3294 skb->ip_summed = CHECKSUM_NONE; 3295} 3296 3297/** 3298 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3299 * @skb: skb to check 3300 * 3301 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3302 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3303 * use this helper, to document places where we make this assertion. 3304 */ 3305static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3306{ 3307#ifdef DEBUG 3308 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3309#endif 3310} 3311 3312bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3313 3314int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3315 3316u32 skb_get_poff(const struct sk_buff *skb); 3317u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3318 const struct flow_keys *keys, int hlen); 3319 3320/** 3321 * skb_head_is_locked - Determine if the skb->head is locked down 3322 * @skb: skb to check 3323 * 3324 * The head on skbs build around a head frag can be removed if they are 3325 * not cloned. This function returns true if the skb head is locked down 3326 * due to either being allocated via kmalloc, or by being a clone with 3327 * multiple references to the head. 3328 */ 3329static inline bool skb_head_is_locked(const struct sk_buff *skb) 3330{ 3331 return !skb->head_frag || skb_cloned(skb); 3332} 3333 3334/** 3335 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3336 * 3337 * @skb: GSO skb 3338 * 3339 * skb_gso_network_seglen is used to determine the real size of the 3340 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3341 * 3342 * The MAC/L2 header is not accounted for. 3343 */ 3344static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3345{ 3346 unsigned int hdr_len = skb_transport_header(skb) - 3347 skb_network_header(skb); 3348 return hdr_len + skb_gso_transport_seglen(skb); 3349} 3350#endif /* __KERNEL__ */ 3351#endif /* _LINUX_SKBUFF_H */