at v3.18 26 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <linux/workqueue.h> 56#include <asm/local.h> 57 58struct perf_callchain_entry { 59 __u64 nr; 60 __u64 ip[PERF_MAX_STACK_DEPTH]; 61}; 62 63struct perf_raw_record { 64 u32 size; 65 void *data; 66}; 67 68/* 69 * branch stack layout: 70 * nr: number of taken branches stored in entries[] 71 * 72 * Note that nr can vary from sample to sample 73 * branches (to, from) are stored from most recent 74 * to least recent, i.e., entries[0] contains the most 75 * recent branch. 76 */ 77struct perf_branch_stack { 78 __u64 nr; 79 struct perf_branch_entry entries[0]; 80}; 81 82struct perf_regs_user { 83 __u64 abi; 84 struct pt_regs *regs; 85}; 86 87struct task_struct; 88 89/* 90 * extra PMU register associated with an event 91 */ 92struct hw_perf_event_extra { 93 u64 config; /* register value */ 94 unsigned int reg; /* register address or index */ 95 int alloc; /* extra register already allocated */ 96 int idx; /* index in shared_regs->regs[] */ 97}; 98 99struct event_constraint; 100 101/** 102 * struct hw_perf_event - performance event hardware details: 103 */ 104struct hw_perf_event { 105#ifdef CONFIG_PERF_EVENTS 106 union { 107 struct { /* hardware */ 108 u64 config; 109 u64 last_tag; 110 unsigned long config_base; 111 unsigned long event_base; 112 int event_base_rdpmc; 113 int idx; 114 int last_cpu; 115 int flags; 116 117 struct hw_perf_event_extra extra_reg; 118 struct hw_perf_event_extra branch_reg; 119 120 struct event_constraint *constraint; 121 }; 122 struct { /* software */ 123 struct hrtimer hrtimer; 124 }; 125 struct { /* tracepoint */ 126 struct task_struct *tp_target; 127 /* for tp_event->class */ 128 struct list_head tp_list; 129 }; 130#ifdef CONFIG_HAVE_HW_BREAKPOINT 131 struct { /* breakpoint */ 132 /* 133 * Crufty hack to avoid the chicken and egg 134 * problem hw_breakpoint has with context 135 * creation and event initalization. 136 */ 137 struct task_struct *bp_target; 138 struct arch_hw_breakpoint info; 139 struct list_head bp_list; 140 }; 141#endif 142 }; 143 int state; 144 local64_t prev_count; 145 u64 sample_period; 146 u64 last_period; 147 local64_t period_left; 148 u64 interrupts_seq; 149 u64 interrupts; 150 151 u64 freq_time_stamp; 152 u64 freq_count_stamp; 153#endif 154}; 155 156/* 157 * hw_perf_event::state flags 158 */ 159#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 160#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 161#define PERF_HES_ARCH 0x04 162 163struct perf_event; 164 165/* 166 * Common implementation detail of pmu::{start,commit,cancel}_txn 167 */ 168#define PERF_EVENT_TXN 0x1 169 170/** 171 * pmu::capabilities flags 172 */ 173#define PERF_PMU_CAP_NO_INTERRUPT 0x01 174 175/** 176 * struct pmu - generic performance monitoring unit 177 */ 178struct pmu { 179 struct list_head entry; 180 181 struct module *module; 182 struct device *dev; 183 const struct attribute_group **attr_groups; 184 const char *name; 185 int type; 186 187 /* 188 * various common per-pmu feature flags 189 */ 190 int capabilities; 191 192 int * __percpu pmu_disable_count; 193 struct perf_cpu_context * __percpu pmu_cpu_context; 194 int task_ctx_nr; 195 int hrtimer_interval_ms; 196 197 /* 198 * Fully disable/enable this PMU, can be used to protect from the PMI 199 * as well as for lazy/batch writing of the MSRs. 200 */ 201 void (*pmu_enable) (struct pmu *pmu); /* optional */ 202 void (*pmu_disable) (struct pmu *pmu); /* optional */ 203 204 /* 205 * Try and initialize the event for this PMU. 206 * Should return -ENOENT when the @event doesn't match this PMU. 207 */ 208 int (*event_init) (struct perf_event *event); 209 210#define PERF_EF_START 0x01 /* start the counter when adding */ 211#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 212#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 213 214 /* 215 * Adds/Removes a counter to/from the PMU, can be done inside 216 * a transaction, see the ->*_txn() methods. 217 */ 218 int (*add) (struct perf_event *event, int flags); 219 void (*del) (struct perf_event *event, int flags); 220 221 /* 222 * Starts/Stops a counter present on the PMU. The PMI handler 223 * should stop the counter when perf_event_overflow() returns 224 * !0. ->start() will be used to continue. 225 */ 226 void (*start) (struct perf_event *event, int flags); 227 void (*stop) (struct perf_event *event, int flags); 228 229 /* 230 * Updates the counter value of the event. 231 */ 232 void (*read) (struct perf_event *event); 233 234 /* 235 * Group events scheduling is treated as a transaction, add 236 * group events as a whole and perform one schedulability test. 237 * If the test fails, roll back the whole group 238 * 239 * Start the transaction, after this ->add() doesn't need to 240 * do schedulability tests. 241 */ 242 void (*start_txn) (struct pmu *pmu); /* optional */ 243 /* 244 * If ->start_txn() disabled the ->add() schedulability test 245 * then ->commit_txn() is required to perform one. On success 246 * the transaction is closed. On error the transaction is kept 247 * open until ->cancel_txn() is called. 248 */ 249 int (*commit_txn) (struct pmu *pmu); /* optional */ 250 /* 251 * Will cancel the transaction, assumes ->del() is called 252 * for each successful ->add() during the transaction. 253 */ 254 void (*cancel_txn) (struct pmu *pmu); /* optional */ 255 256 /* 257 * Will return the value for perf_event_mmap_page::index for this event, 258 * if no implementation is provided it will default to: event->hw.idx + 1. 259 */ 260 int (*event_idx) (struct perf_event *event); /*optional */ 261 262 /* 263 * flush branch stack on context-switches (needed in cpu-wide mode) 264 */ 265 void (*flush_branch_stack) (void); 266}; 267 268/** 269 * enum perf_event_active_state - the states of a event 270 */ 271enum perf_event_active_state { 272 PERF_EVENT_STATE_EXIT = -3, 273 PERF_EVENT_STATE_ERROR = -2, 274 PERF_EVENT_STATE_OFF = -1, 275 PERF_EVENT_STATE_INACTIVE = 0, 276 PERF_EVENT_STATE_ACTIVE = 1, 277}; 278 279struct file; 280struct perf_sample_data; 281 282typedef void (*perf_overflow_handler_t)(struct perf_event *, 283 struct perf_sample_data *, 284 struct pt_regs *regs); 285 286enum perf_group_flag { 287 PERF_GROUP_SOFTWARE = 0x1, 288}; 289 290#define SWEVENT_HLIST_BITS 8 291#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 292 293struct swevent_hlist { 294 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 295 struct rcu_head rcu_head; 296}; 297 298#define PERF_ATTACH_CONTEXT 0x01 299#define PERF_ATTACH_GROUP 0x02 300#define PERF_ATTACH_TASK 0x04 301 302struct perf_cgroup; 303struct ring_buffer; 304 305/** 306 * struct perf_event - performance event kernel representation: 307 */ 308struct perf_event { 309#ifdef CONFIG_PERF_EVENTS 310 /* 311 * entry onto perf_event_context::event_list; 312 * modifications require ctx->lock 313 * RCU safe iterations. 314 */ 315 struct list_head event_entry; 316 317 /* 318 * XXX: group_entry and sibling_list should be mutually exclusive; 319 * either you're a sibling on a group, or you're the group leader. 320 * Rework the code to always use the same list element. 321 * 322 * Locked for modification by both ctx->mutex and ctx->lock; holding 323 * either sufficies for read. 324 */ 325 struct list_head group_entry; 326 struct list_head sibling_list; 327 328 /* 329 * We need storage to track the entries in perf_pmu_migrate_context; we 330 * cannot use the event_entry because of RCU and we want to keep the 331 * group in tact which avoids us using the other two entries. 332 */ 333 struct list_head migrate_entry; 334 335 struct hlist_node hlist_entry; 336 struct list_head active_entry; 337 int nr_siblings; 338 int group_flags; 339 struct perf_event *group_leader; 340 struct pmu *pmu; 341 342 enum perf_event_active_state state; 343 unsigned int attach_state; 344 local64_t count; 345 atomic64_t child_count; 346 347 /* 348 * These are the total time in nanoseconds that the event 349 * has been enabled (i.e. eligible to run, and the task has 350 * been scheduled in, if this is a per-task event) 351 * and running (scheduled onto the CPU), respectively. 352 * 353 * They are computed from tstamp_enabled, tstamp_running and 354 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 355 */ 356 u64 total_time_enabled; 357 u64 total_time_running; 358 359 /* 360 * These are timestamps used for computing total_time_enabled 361 * and total_time_running when the event is in INACTIVE or 362 * ACTIVE state, measured in nanoseconds from an arbitrary point 363 * in time. 364 * tstamp_enabled: the notional time when the event was enabled 365 * tstamp_running: the notional time when the event was scheduled on 366 * tstamp_stopped: in INACTIVE state, the notional time when the 367 * event was scheduled off. 368 */ 369 u64 tstamp_enabled; 370 u64 tstamp_running; 371 u64 tstamp_stopped; 372 373 /* 374 * timestamp shadows the actual context timing but it can 375 * be safely used in NMI interrupt context. It reflects the 376 * context time as it was when the event was last scheduled in. 377 * 378 * ctx_time already accounts for ctx->timestamp. Therefore to 379 * compute ctx_time for a sample, simply add perf_clock(). 380 */ 381 u64 shadow_ctx_time; 382 383 struct perf_event_attr attr; 384 u16 header_size; 385 u16 id_header_size; 386 u16 read_size; 387 struct hw_perf_event hw; 388 389 struct perf_event_context *ctx; 390 atomic_long_t refcount; 391 392 /* 393 * These accumulate total time (in nanoseconds) that children 394 * events have been enabled and running, respectively. 395 */ 396 atomic64_t child_total_time_enabled; 397 atomic64_t child_total_time_running; 398 399 /* 400 * Protect attach/detach and child_list: 401 */ 402 struct mutex child_mutex; 403 struct list_head child_list; 404 struct perf_event *parent; 405 406 int oncpu; 407 int cpu; 408 409 struct list_head owner_entry; 410 struct task_struct *owner; 411 412 /* mmap bits */ 413 struct mutex mmap_mutex; 414 atomic_t mmap_count; 415 416 struct ring_buffer *rb; 417 struct list_head rb_entry; 418 unsigned long rcu_batches; 419 int rcu_pending; 420 421 /* poll related */ 422 wait_queue_head_t waitq; 423 struct fasync_struct *fasync; 424 425 /* delayed work for NMIs and such */ 426 int pending_wakeup; 427 int pending_kill; 428 int pending_disable; 429 struct irq_work pending; 430 431 atomic_t event_limit; 432 433 void (*destroy)(struct perf_event *); 434 struct rcu_head rcu_head; 435 436 struct pid_namespace *ns; 437 u64 id; 438 439 perf_overflow_handler_t overflow_handler; 440 void *overflow_handler_context; 441 442#ifdef CONFIG_EVENT_TRACING 443 struct ftrace_event_call *tp_event; 444 struct event_filter *filter; 445#ifdef CONFIG_FUNCTION_TRACER 446 struct ftrace_ops ftrace_ops; 447#endif 448#endif 449 450#ifdef CONFIG_CGROUP_PERF 451 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 452 int cgrp_defer_enabled; 453#endif 454 455#endif /* CONFIG_PERF_EVENTS */ 456}; 457 458enum perf_event_context_type { 459 task_context, 460 cpu_context, 461}; 462 463/** 464 * struct perf_event_context - event context structure 465 * 466 * Used as a container for task events and CPU events as well: 467 */ 468struct perf_event_context { 469 struct pmu *pmu; 470 enum perf_event_context_type type; 471 /* 472 * Protect the states of the events in the list, 473 * nr_active, and the list: 474 */ 475 raw_spinlock_t lock; 476 /* 477 * Protect the list of events. Locking either mutex or lock 478 * is sufficient to ensure the list doesn't change; to change 479 * the list you need to lock both the mutex and the spinlock. 480 */ 481 struct mutex mutex; 482 483 struct list_head pinned_groups; 484 struct list_head flexible_groups; 485 struct list_head event_list; 486 int nr_events; 487 int nr_active; 488 int is_active; 489 int nr_stat; 490 int nr_freq; 491 int rotate_disable; 492 atomic_t refcount; 493 struct task_struct *task; 494 495 /* 496 * Context clock, runs when context enabled. 497 */ 498 u64 time; 499 u64 timestamp; 500 501 /* 502 * These fields let us detect when two contexts have both 503 * been cloned (inherited) from a common ancestor. 504 */ 505 struct perf_event_context *parent_ctx; 506 u64 parent_gen; 507 u64 generation; 508 int pin_count; 509 int nr_cgroups; /* cgroup evts */ 510 int nr_branch_stack; /* branch_stack evt */ 511 struct rcu_head rcu_head; 512 513 struct delayed_work orphans_remove; 514 bool orphans_remove_sched; 515}; 516 517/* 518 * Number of contexts where an event can trigger: 519 * task, softirq, hardirq, nmi. 520 */ 521#define PERF_NR_CONTEXTS 4 522 523/** 524 * struct perf_event_cpu_context - per cpu event context structure 525 */ 526struct perf_cpu_context { 527 struct perf_event_context ctx; 528 struct perf_event_context *task_ctx; 529 int active_oncpu; 530 int exclusive; 531 struct hrtimer hrtimer; 532 ktime_t hrtimer_interval; 533 struct list_head rotation_list; 534 struct pmu *unique_pmu; 535 struct perf_cgroup *cgrp; 536}; 537 538struct perf_output_handle { 539 struct perf_event *event; 540 struct ring_buffer *rb; 541 unsigned long wakeup; 542 unsigned long size; 543 void *addr; 544 int page; 545}; 546 547#ifdef CONFIG_PERF_EVENTS 548 549extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 550extern void perf_pmu_unregister(struct pmu *pmu); 551 552extern int perf_num_counters(void); 553extern const char *perf_pmu_name(void); 554extern void __perf_event_task_sched_in(struct task_struct *prev, 555 struct task_struct *task); 556extern void __perf_event_task_sched_out(struct task_struct *prev, 557 struct task_struct *next); 558extern int perf_event_init_task(struct task_struct *child); 559extern void perf_event_exit_task(struct task_struct *child); 560extern void perf_event_free_task(struct task_struct *task); 561extern void perf_event_delayed_put(struct task_struct *task); 562extern void perf_event_print_debug(void); 563extern void perf_pmu_disable(struct pmu *pmu); 564extern void perf_pmu_enable(struct pmu *pmu); 565extern int perf_event_task_disable(void); 566extern int perf_event_task_enable(void); 567extern int perf_event_refresh(struct perf_event *event, int refresh); 568extern void perf_event_update_userpage(struct perf_event *event); 569extern int perf_event_release_kernel(struct perf_event *event); 570extern struct perf_event * 571perf_event_create_kernel_counter(struct perf_event_attr *attr, 572 int cpu, 573 struct task_struct *task, 574 perf_overflow_handler_t callback, 575 void *context); 576extern void perf_pmu_migrate_context(struct pmu *pmu, 577 int src_cpu, int dst_cpu); 578extern u64 perf_event_read_value(struct perf_event *event, 579 u64 *enabled, u64 *running); 580 581 582struct perf_sample_data { 583 u64 type; 584 585 u64 ip; 586 struct { 587 u32 pid; 588 u32 tid; 589 } tid_entry; 590 u64 time; 591 u64 addr; 592 u64 id; 593 u64 stream_id; 594 struct { 595 u32 cpu; 596 u32 reserved; 597 } cpu_entry; 598 u64 period; 599 union perf_mem_data_src data_src; 600 struct perf_callchain_entry *callchain; 601 struct perf_raw_record *raw; 602 struct perf_branch_stack *br_stack; 603 struct perf_regs_user regs_user; 604 u64 stack_user_size; 605 u64 weight; 606 /* 607 * Transaction flags for abort events: 608 */ 609 u64 txn; 610}; 611 612/* default value for data source */ 613#define PERF_MEM_NA (PERF_MEM_S(OP, NA) |\ 614 PERF_MEM_S(LVL, NA) |\ 615 PERF_MEM_S(SNOOP, NA) |\ 616 PERF_MEM_S(LOCK, NA) |\ 617 PERF_MEM_S(TLB, NA)) 618 619static inline void perf_sample_data_init(struct perf_sample_data *data, 620 u64 addr, u64 period) 621{ 622 /* remaining struct members initialized in perf_prepare_sample() */ 623 data->addr = addr; 624 data->raw = NULL; 625 data->br_stack = NULL; 626 data->period = period; 627 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 628 data->regs_user.regs = NULL; 629 data->stack_user_size = 0; 630 data->weight = 0; 631 data->data_src.val = PERF_MEM_NA; 632 data->txn = 0; 633} 634 635extern void perf_output_sample(struct perf_output_handle *handle, 636 struct perf_event_header *header, 637 struct perf_sample_data *data, 638 struct perf_event *event); 639extern void perf_prepare_sample(struct perf_event_header *header, 640 struct perf_sample_data *data, 641 struct perf_event *event, 642 struct pt_regs *regs); 643 644extern int perf_event_overflow(struct perf_event *event, 645 struct perf_sample_data *data, 646 struct pt_regs *regs); 647 648static inline bool is_sampling_event(struct perf_event *event) 649{ 650 return event->attr.sample_period != 0; 651} 652 653/* 654 * Return 1 for a software event, 0 for a hardware event 655 */ 656static inline int is_software_event(struct perf_event *event) 657{ 658 return event->pmu->task_ctx_nr == perf_sw_context; 659} 660 661extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 662 663extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 664 665#ifndef perf_arch_fetch_caller_regs 666static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 667#endif 668 669/* 670 * Take a snapshot of the regs. Skip ip and frame pointer to 671 * the nth caller. We only need a few of the regs: 672 * - ip for PERF_SAMPLE_IP 673 * - cs for user_mode() tests 674 * - bp for callchains 675 * - eflags, for future purposes, just in case 676 */ 677static inline void perf_fetch_caller_regs(struct pt_regs *regs) 678{ 679 memset(regs, 0, sizeof(*regs)); 680 681 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 682} 683 684static __always_inline void 685perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 686{ 687 struct pt_regs hot_regs; 688 689 if (static_key_false(&perf_swevent_enabled[event_id])) { 690 if (!regs) { 691 perf_fetch_caller_regs(&hot_regs); 692 regs = &hot_regs; 693 } 694 __perf_sw_event(event_id, nr, regs, addr); 695 } 696} 697 698extern struct static_key_deferred perf_sched_events; 699 700static inline void perf_event_task_sched_in(struct task_struct *prev, 701 struct task_struct *task) 702{ 703 if (static_key_false(&perf_sched_events.key)) 704 __perf_event_task_sched_in(prev, task); 705} 706 707static inline void perf_event_task_sched_out(struct task_struct *prev, 708 struct task_struct *next) 709{ 710 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 711 712 if (static_key_false(&perf_sched_events.key)) 713 __perf_event_task_sched_out(prev, next); 714} 715 716extern void perf_event_mmap(struct vm_area_struct *vma); 717extern struct perf_guest_info_callbacks *perf_guest_cbs; 718extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 719extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 720 721extern void perf_event_exec(void); 722extern void perf_event_comm(struct task_struct *tsk, bool exec); 723extern void perf_event_fork(struct task_struct *tsk); 724 725/* Callchains */ 726DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 727 728extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 729extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 730 731static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 732{ 733 if (entry->nr < PERF_MAX_STACK_DEPTH) 734 entry->ip[entry->nr++] = ip; 735} 736 737extern int sysctl_perf_event_paranoid; 738extern int sysctl_perf_event_mlock; 739extern int sysctl_perf_event_sample_rate; 740extern int sysctl_perf_cpu_time_max_percent; 741 742extern void perf_sample_event_took(u64 sample_len_ns); 743 744extern int perf_proc_update_handler(struct ctl_table *table, int write, 745 void __user *buffer, size_t *lenp, 746 loff_t *ppos); 747extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 748 void __user *buffer, size_t *lenp, 749 loff_t *ppos); 750 751 752static inline bool perf_paranoid_tracepoint_raw(void) 753{ 754 return sysctl_perf_event_paranoid > -1; 755} 756 757static inline bool perf_paranoid_cpu(void) 758{ 759 return sysctl_perf_event_paranoid > 0; 760} 761 762static inline bool perf_paranoid_kernel(void) 763{ 764 return sysctl_perf_event_paranoid > 1; 765} 766 767extern void perf_event_init(void); 768extern void perf_tp_event(u64 addr, u64 count, void *record, 769 int entry_size, struct pt_regs *regs, 770 struct hlist_head *head, int rctx, 771 struct task_struct *task); 772extern void perf_bp_event(struct perf_event *event, void *data); 773 774#ifndef perf_misc_flags 775# define perf_misc_flags(regs) \ 776 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 777# define perf_instruction_pointer(regs) instruction_pointer(regs) 778#endif 779 780static inline bool has_branch_stack(struct perf_event *event) 781{ 782 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 783} 784 785extern int perf_output_begin(struct perf_output_handle *handle, 786 struct perf_event *event, unsigned int size); 787extern void perf_output_end(struct perf_output_handle *handle); 788extern unsigned int perf_output_copy(struct perf_output_handle *handle, 789 const void *buf, unsigned int len); 790extern unsigned int perf_output_skip(struct perf_output_handle *handle, 791 unsigned int len); 792extern int perf_swevent_get_recursion_context(void); 793extern void perf_swevent_put_recursion_context(int rctx); 794extern u64 perf_swevent_set_period(struct perf_event *event); 795extern void perf_event_enable(struct perf_event *event); 796extern void perf_event_disable(struct perf_event *event); 797extern int __perf_event_disable(void *info); 798extern void perf_event_task_tick(void); 799#else /* !CONFIG_PERF_EVENTS: */ 800static inline void 801perf_event_task_sched_in(struct task_struct *prev, 802 struct task_struct *task) { } 803static inline void 804perf_event_task_sched_out(struct task_struct *prev, 805 struct task_struct *next) { } 806static inline int perf_event_init_task(struct task_struct *child) { return 0; } 807static inline void perf_event_exit_task(struct task_struct *child) { } 808static inline void perf_event_free_task(struct task_struct *task) { } 809static inline void perf_event_delayed_put(struct task_struct *task) { } 810static inline void perf_event_print_debug(void) { } 811static inline int perf_event_task_disable(void) { return -EINVAL; } 812static inline int perf_event_task_enable(void) { return -EINVAL; } 813static inline int perf_event_refresh(struct perf_event *event, int refresh) 814{ 815 return -EINVAL; 816} 817 818static inline void 819perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 820static inline void 821perf_bp_event(struct perf_event *event, void *data) { } 822 823static inline int perf_register_guest_info_callbacks 824(struct perf_guest_info_callbacks *callbacks) { return 0; } 825static inline int perf_unregister_guest_info_callbacks 826(struct perf_guest_info_callbacks *callbacks) { return 0; } 827 828static inline void perf_event_mmap(struct vm_area_struct *vma) { } 829static inline void perf_event_exec(void) { } 830static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 831static inline void perf_event_fork(struct task_struct *tsk) { } 832static inline void perf_event_init(void) { } 833static inline int perf_swevent_get_recursion_context(void) { return -1; } 834static inline void perf_swevent_put_recursion_context(int rctx) { } 835static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 836static inline void perf_event_enable(struct perf_event *event) { } 837static inline void perf_event_disable(struct perf_event *event) { } 838static inline int __perf_event_disable(void *info) { return -1; } 839static inline void perf_event_task_tick(void) { } 840#endif 841 842#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 843extern bool perf_event_can_stop_tick(void); 844#else 845static inline bool perf_event_can_stop_tick(void) { return true; } 846#endif 847 848#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 849extern void perf_restore_debug_store(void); 850#else 851static inline void perf_restore_debug_store(void) { } 852#endif 853 854#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 855 856/* 857 * This has to have a higher priority than migration_notifier in sched/core.c. 858 */ 859#define perf_cpu_notifier(fn) \ 860do { \ 861 static struct notifier_block fn##_nb = \ 862 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 863 unsigned long cpu = smp_processor_id(); \ 864 unsigned long flags; \ 865 \ 866 cpu_notifier_register_begin(); \ 867 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 868 (void *)(unsigned long)cpu); \ 869 local_irq_save(flags); \ 870 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 871 (void *)(unsigned long)cpu); \ 872 local_irq_restore(flags); \ 873 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 874 (void *)(unsigned long)cpu); \ 875 __register_cpu_notifier(&fn##_nb); \ 876 cpu_notifier_register_done(); \ 877} while (0) 878 879/* 880 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 881 * callback for already online CPUs. 882 */ 883#define __perf_cpu_notifier(fn) \ 884do { \ 885 static struct notifier_block fn##_nb = \ 886 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 887 \ 888 __register_cpu_notifier(&fn##_nb); \ 889} while (0) 890 891struct perf_pmu_events_attr { 892 struct device_attribute attr; 893 u64 id; 894 const char *event_str; 895}; 896 897#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 898static struct perf_pmu_events_attr _var = { \ 899 .attr = __ATTR(_name, 0444, _show, NULL), \ 900 .id = _id, \ 901}; 902 903#define PMU_FORMAT_ATTR(_name, _format) \ 904static ssize_t \ 905_name##_show(struct device *dev, \ 906 struct device_attribute *attr, \ 907 char *page) \ 908{ \ 909 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 910 return sprintf(page, _format "\n"); \ 911} \ 912 \ 913static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 914 915#endif /* _LINUX_PERF_EVENT_H */