at v3.18 674 lines 20 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 20 * allocation mode flags. 21 */ 22enum mapping_flags { 23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 27 AS_EXITING = __GFP_BITS_SHIFT + 4, /* final truncate in progress */ 28}; 29 30static inline void mapping_set_error(struct address_space *mapping, int error) 31{ 32 if (unlikely(error)) { 33 if (error == -ENOSPC) 34 set_bit(AS_ENOSPC, &mapping->flags); 35 else 36 set_bit(AS_EIO, &mapping->flags); 37 } 38} 39 40static inline void mapping_set_unevictable(struct address_space *mapping) 41{ 42 set_bit(AS_UNEVICTABLE, &mapping->flags); 43} 44 45static inline void mapping_clear_unevictable(struct address_space *mapping) 46{ 47 clear_bit(AS_UNEVICTABLE, &mapping->flags); 48} 49 50static inline int mapping_unevictable(struct address_space *mapping) 51{ 52 if (mapping) 53 return test_bit(AS_UNEVICTABLE, &mapping->flags); 54 return !!mapping; 55} 56 57static inline void mapping_set_exiting(struct address_space *mapping) 58{ 59 set_bit(AS_EXITING, &mapping->flags); 60} 61 62static inline int mapping_exiting(struct address_space *mapping) 63{ 64 return test_bit(AS_EXITING, &mapping->flags); 65} 66 67static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 68{ 69 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 70} 71 72/* 73 * This is non-atomic. Only to be used before the mapping is activated. 74 * Probably needs a barrier... 75 */ 76static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 77{ 78 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 79 (__force unsigned long)mask; 80} 81 82/* 83 * The page cache can be done in larger chunks than 84 * one page, because it allows for more efficient 85 * throughput (it can then be mapped into user 86 * space in smaller chunks for same flexibility). 87 * 88 * Or rather, it _will_ be done in larger chunks. 89 */ 90#define PAGE_CACHE_SHIFT PAGE_SHIFT 91#define PAGE_CACHE_SIZE PAGE_SIZE 92#define PAGE_CACHE_MASK PAGE_MASK 93#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 94 95#define page_cache_get(page) get_page(page) 96#define page_cache_release(page) put_page(page) 97void release_pages(struct page **pages, int nr, bool cold); 98 99/* 100 * speculatively take a reference to a page. 101 * If the page is free (_count == 0), then _count is untouched, and 0 102 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 103 * 104 * This function must be called inside the same rcu_read_lock() section as has 105 * been used to lookup the page in the pagecache radix-tree (or page table): 106 * this allows allocators to use a synchronize_rcu() to stabilize _count. 107 * 108 * Unless an RCU grace period has passed, the count of all pages coming out 109 * of the allocator must be considered unstable. page_count may return higher 110 * than expected, and put_page must be able to do the right thing when the 111 * page has been finished with, no matter what it is subsequently allocated 112 * for (because put_page is what is used here to drop an invalid speculative 113 * reference). 114 * 115 * This is the interesting part of the lockless pagecache (and lockless 116 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 117 * has the following pattern: 118 * 1. find page in radix tree 119 * 2. conditionally increment refcount 120 * 3. check the page is still in pagecache (if no, goto 1) 121 * 122 * Remove-side that cares about stability of _count (eg. reclaim) has the 123 * following (with tree_lock held for write): 124 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 125 * B. remove page from pagecache 126 * C. free the page 127 * 128 * There are 2 critical interleavings that matter: 129 * - 2 runs before A: in this case, A sees elevated refcount and bails out 130 * - A runs before 2: in this case, 2 sees zero refcount and retries; 131 * subsequently, B will complete and 1 will find no page, causing the 132 * lookup to return NULL. 133 * 134 * It is possible that between 1 and 2, the page is removed then the exact same 135 * page is inserted into the same position in pagecache. That's OK: the 136 * old find_get_page using tree_lock could equally have run before or after 137 * such a re-insertion, depending on order that locks are granted. 138 * 139 * Lookups racing against pagecache insertion isn't a big problem: either 1 140 * will find the page or it will not. Likewise, the old find_get_page could run 141 * either before the insertion or afterwards, depending on timing. 142 */ 143static inline int page_cache_get_speculative(struct page *page) 144{ 145 VM_BUG_ON(in_interrupt()); 146 147#ifdef CONFIG_TINY_RCU 148# ifdef CONFIG_PREEMPT_COUNT 149 VM_BUG_ON(!in_atomic()); 150# endif 151 /* 152 * Preempt must be disabled here - we rely on rcu_read_lock doing 153 * this for us. 154 * 155 * Pagecache won't be truncated from interrupt context, so if we have 156 * found a page in the radix tree here, we have pinned its refcount by 157 * disabling preempt, and hence no need for the "speculative get" that 158 * SMP requires. 159 */ 160 VM_BUG_ON_PAGE(page_count(page) == 0, page); 161 atomic_inc(&page->_count); 162 163#else 164 if (unlikely(!get_page_unless_zero(page))) { 165 /* 166 * Either the page has been freed, or will be freed. 167 * In either case, retry here and the caller should 168 * do the right thing (see comments above). 169 */ 170 return 0; 171 } 172#endif 173 VM_BUG_ON_PAGE(PageTail(page), page); 174 175 return 1; 176} 177 178/* 179 * Same as above, but add instead of inc (could just be merged) 180 */ 181static inline int page_cache_add_speculative(struct page *page, int count) 182{ 183 VM_BUG_ON(in_interrupt()); 184 185#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 186# ifdef CONFIG_PREEMPT_COUNT 187 VM_BUG_ON(!in_atomic()); 188# endif 189 VM_BUG_ON_PAGE(page_count(page) == 0, page); 190 atomic_add(count, &page->_count); 191 192#else 193 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 194 return 0; 195#endif 196 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 197 198 return 1; 199} 200 201static inline int page_freeze_refs(struct page *page, int count) 202{ 203 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 204} 205 206static inline void page_unfreeze_refs(struct page *page, int count) 207{ 208 VM_BUG_ON_PAGE(page_count(page) != 0, page); 209 VM_BUG_ON(count == 0); 210 211 atomic_set(&page->_count, count); 212} 213 214#ifdef CONFIG_NUMA 215extern struct page *__page_cache_alloc(gfp_t gfp); 216#else 217static inline struct page *__page_cache_alloc(gfp_t gfp) 218{ 219 return alloc_pages(gfp, 0); 220} 221#endif 222 223static inline struct page *page_cache_alloc(struct address_space *x) 224{ 225 return __page_cache_alloc(mapping_gfp_mask(x)); 226} 227 228static inline struct page *page_cache_alloc_cold(struct address_space *x) 229{ 230 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 231} 232 233static inline struct page *page_cache_alloc_readahead(struct address_space *x) 234{ 235 return __page_cache_alloc(mapping_gfp_mask(x) | 236 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN); 237} 238 239typedef int filler_t(void *, struct page *); 240 241pgoff_t page_cache_next_hole(struct address_space *mapping, 242 pgoff_t index, unsigned long max_scan); 243pgoff_t page_cache_prev_hole(struct address_space *mapping, 244 pgoff_t index, unsigned long max_scan); 245 246#define FGP_ACCESSED 0x00000001 247#define FGP_LOCK 0x00000002 248#define FGP_CREAT 0x00000004 249#define FGP_WRITE 0x00000008 250#define FGP_NOFS 0x00000010 251#define FGP_NOWAIT 0x00000020 252 253struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 254 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask); 255 256/** 257 * find_get_page - find and get a page reference 258 * @mapping: the address_space to search 259 * @offset: the page index 260 * 261 * Looks up the page cache slot at @mapping & @offset. If there is a 262 * page cache page, it is returned with an increased refcount. 263 * 264 * Otherwise, %NULL is returned. 265 */ 266static inline struct page *find_get_page(struct address_space *mapping, 267 pgoff_t offset) 268{ 269 return pagecache_get_page(mapping, offset, 0, 0, 0); 270} 271 272static inline struct page *find_get_page_flags(struct address_space *mapping, 273 pgoff_t offset, int fgp_flags) 274{ 275 return pagecache_get_page(mapping, offset, fgp_flags, 0, 0); 276} 277 278/** 279 * find_lock_page - locate, pin and lock a pagecache page 280 * pagecache_get_page - find and get a page reference 281 * @mapping: the address_space to search 282 * @offset: the page index 283 * 284 * Looks up the page cache slot at @mapping & @offset. If there is a 285 * page cache page, it is returned locked and with an increased 286 * refcount. 287 * 288 * Otherwise, %NULL is returned. 289 * 290 * find_lock_page() may sleep. 291 */ 292static inline struct page *find_lock_page(struct address_space *mapping, 293 pgoff_t offset) 294{ 295 return pagecache_get_page(mapping, offset, FGP_LOCK, 0, 0); 296} 297 298/** 299 * find_or_create_page - locate or add a pagecache page 300 * @mapping: the page's address_space 301 * @index: the page's index into the mapping 302 * @gfp_mask: page allocation mode 303 * 304 * Looks up the page cache slot at @mapping & @offset. If there is a 305 * page cache page, it is returned locked and with an increased 306 * refcount. 307 * 308 * If the page is not present, a new page is allocated using @gfp_mask 309 * and added to the page cache and the VM's LRU list. The page is 310 * returned locked and with an increased refcount. 311 * 312 * On memory exhaustion, %NULL is returned. 313 * 314 * find_or_create_page() may sleep, even if @gfp_flags specifies an 315 * atomic allocation! 316 */ 317static inline struct page *find_or_create_page(struct address_space *mapping, 318 pgoff_t offset, gfp_t gfp_mask) 319{ 320 return pagecache_get_page(mapping, offset, 321 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 322 gfp_mask, gfp_mask & GFP_RECLAIM_MASK); 323} 324 325/** 326 * grab_cache_page_nowait - returns locked page at given index in given cache 327 * @mapping: target address_space 328 * @index: the page index 329 * 330 * Same as grab_cache_page(), but do not wait if the page is unavailable. 331 * This is intended for speculative data generators, where the data can 332 * be regenerated if the page couldn't be grabbed. This routine should 333 * be safe to call while holding the lock for another page. 334 * 335 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 336 * and deadlock against the caller's locked page. 337 */ 338static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 339 pgoff_t index) 340{ 341 return pagecache_get_page(mapping, index, 342 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 343 mapping_gfp_mask(mapping), 344 GFP_NOFS); 345} 346 347struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 348struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 349unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 350 unsigned int nr_entries, struct page **entries, 351 pgoff_t *indices); 352unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 353 unsigned int nr_pages, struct page **pages); 354unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 355 unsigned int nr_pages, struct page **pages); 356unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 357 int tag, unsigned int nr_pages, struct page **pages); 358 359struct page *grab_cache_page_write_begin(struct address_space *mapping, 360 pgoff_t index, unsigned flags); 361 362/* 363 * Returns locked page at given index in given cache, creating it if needed. 364 */ 365static inline struct page *grab_cache_page(struct address_space *mapping, 366 pgoff_t index) 367{ 368 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 369} 370 371extern struct page * read_cache_page(struct address_space *mapping, 372 pgoff_t index, filler_t *filler, void *data); 373extern struct page * read_cache_page_gfp(struct address_space *mapping, 374 pgoff_t index, gfp_t gfp_mask); 375extern int read_cache_pages(struct address_space *mapping, 376 struct list_head *pages, filler_t *filler, void *data); 377 378static inline struct page *read_mapping_page(struct address_space *mapping, 379 pgoff_t index, void *data) 380{ 381 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 382 return read_cache_page(mapping, index, filler, data); 383} 384 385/* 386 * Get the offset in PAGE_SIZE. 387 * (TODO: hugepage should have ->index in PAGE_SIZE) 388 */ 389static inline pgoff_t page_to_pgoff(struct page *page) 390{ 391 if (unlikely(PageHeadHuge(page))) 392 return page->index << compound_order(page); 393 else 394 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 395} 396 397/* 398 * Return byte-offset into filesystem object for page. 399 */ 400static inline loff_t page_offset(struct page *page) 401{ 402 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 403} 404 405static inline loff_t page_file_offset(struct page *page) 406{ 407 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT; 408} 409 410extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 411 unsigned long address); 412 413static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 414 unsigned long address) 415{ 416 pgoff_t pgoff; 417 if (unlikely(is_vm_hugetlb_page(vma))) 418 return linear_hugepage_index(vma, address); 419 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 420 pgoff += vma->vm_pgoff; 421 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 422} 423 424extern void __lock_page(struct page *page); 425extern int __lock_page_killable(struct page *page); 426extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 427 unsigned int flags); 428extern void unlock_page(struct page *page); 429 430static inline void __set_page_locked(struct page *page) 431{ 432 __set_bit(PG_locked, &page->flags); 433} 434 435static inline void __clear_page_locked(struct page *page) 436{ 437 __clear_bit(PG_locked, &page->flags); 438} 439 440static inline int trylock_page(struct page *page) 441{ 442 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 443} 444 445/* 446 * lock_page may only be called if we have the page's inode pinned. 447 */ 448static inline void lock_page(struct page *page) 449{ 450 might_sleep(); 451 if (!trylock_page(page)) 452 __lock_page(page); 453} 454 455/* 456 * lock_page_killable is like lock_page but can be interrupted by fatal 457 * signals. It returns 0 if it locked the page and -EINTR if it was 458 * killed while waiting. 459 */ 460static inline int lock_page_killable(struct page *page) 461{ 462 might_sleep(); 463 if (!trylock_page(page)) 464 return __lock_page_killable(page); 465 return 0; 466} 467 468/* 469 * lock_page_or_retry - Lock the page, unless this would block and the 470 * caller indicated that it can handle a retry. 471 * 472 * Return value and mmap_sem implications depend on flags; see 473 * __lock_page_or_retry(). 474 */ 475static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 476 unsigned int flags) 477{ 478 might_sleep(); 479 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 480} 481 482/* 483 * This is exported only for wait_on_page_locked/wait_on_page_writeback, 484 * and for filesystems which need to wait on PG_private. 485 */ 486extern void wait_on_page_bit(struct page *page, int bit_nr); 487 488extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 489extern int wait_on_page_bit_killable_timeout(struct page *page, 490 int bit_nr, unsigned long timeout); 491 492static inline int wait_on_page_locked_killable(struct page *page) 493{ 494 if (PageLocked(page)) 495 return wait_on_page_bit_killable(page, PG_locked); 496 return 0; 497} 498 499extern wait_queue_head_t *page_waitqueue(struct page *page); 500static inline void wake_up_page(struct page *page, int bit) 501{ 502 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 503} 504 505/* 506 * Wait for a page to be unlocked. 507 * 508 * This must be called with the caller "holding" the page, 509 * ie with increased "page->count" so that the page won't 510 * go away during the wait.. 511 */ 512static inline void wait_on_page_locked(struct page *page) 513{ 514 if (PageLocked(page)) 515 wait_on_page_bit(page, PG_locked); 516} 517 518/* 519 * Wait for a page to complete writeback 520 */ 521static inline void wait_on_page_writeback(struct page *page) 522{ 523 if (PageWriteback(page)) 524 wait_on_page_bit(page, PG_writeback); 525} 526 527extern void end_page_writeback(struct page *page); 528void wait_for_stable_page(struct page *page); 529 530void page_endio(struct page *page, int rw, int err); 531 532/* 533 * Add an arbitrary waiter to a page's wait queue 534 */ 535extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 536 537/* 538 * Fault a userspace page into pagetables. Return non-zero on a fault. 539 * 540 * This assumes that two userspace pages are always sufficient. That's 541 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 542 */ 543static inline int fault_in_pages_writeable(char __user *uaddr, int size) 544{ 545 int ret; 546 547 if (unlikely(size == 0)) 548 return 0; 549 550 /* 551 * Writing zeroes into userspace here is OK, because we know that if 552 * the zero gets there, we'll be overwriting it. 553 */ 554 ret = __put_user(0, uaddr); 555 if (ret == 0) { 556 char __user *end = uaddr + size - 1; 557 558 /* 559 * If the page was already mapped, this will get a cache miss 560 * for sure, so try to avoid doing it. 561 */ 562 if (((unsigned long)uaddr & PAGE_MASK) != 563 ((unsigned long)end & PAGE_MASK)) 564 ret = __put_user(0, end); 565 } 566 return ret; 567} 568 569static inline int fault_in_pages_readable(const char __user *uaddr, int size) 570{ 571 volatile char c; 572 int ret; 573 574 if (unlikely(size == 0)) 575 return 0; 576 577 ret = __get_user(c, uaddr); 578 if (ret == 0) { 579 const char __user *end = uaddr + size - 1; 580 581 if (((unsigned long)uaddr & PAGE_MASK) != 582 ((unsigned long)end & PAGE_MASK)) { 583 ret = __get_user(c, end); 584 (void)c; 585 } 586 } 587 return ret; 588} 589 590/* 591 * Multipage variants of the above prefault helpers, useful if more than 592 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above 593 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the 594 * filemap.c hotpaths. 595 */ 596static inline int fault_in_multipages_writeable(char __user *uaddr, int size) 597{ 598 int ret = 0; 599 char __user *end = uaddr + size - 1; 600 601 if (unlikely(size == 0)) 602 return ret; 603 604 /* 605 * Writing zeroes into userspace here is OK, because we know that if 606 * the zero gets there, we'll be overwriting it. 607 */ 608 while (uaddr <= end) { 609 ret = __put_user(0, uaddr); 610 if (ret != 0) 611 return ret; 612 uaddr += PAGE_SIZE; 613 } 614 615 /* Check whether the range spilled into the next page. */ 616 if (((unsigned long)uaddr & PAGE_MASK) == 617 ((unsigned long)end & PAGE_MASK)) 618 ret = __put_user(0, end); 619 620 return ret; 621} 622 623static inline int fault_in_multipages_readable(const char __user *uaddr, 624 int size) 625{ 626 volatile char c; 627 int ret = 0; 628 const char __user *end = uaddr + size - 1; 629 630 if (unlikely(size == 0)) 631 return ret; 632 633 while (uaddr <= end) { 634 ret = __get_user(c, uaddr); 635 if (ret != 0) 636 return ret; 637 uaddr += PAGE_SIZE; 638 } 639 640 /* Check whether the range spilled into the next page. */ 641 if (((unsigned long)uaddr & PAGE_MASK) == 642 ((unsigned long)end & PAGE_MASK)) { 643 ret = __get_user(c, end); 644 (void)c; 645 } 646 647 return ret; 648} 649 650int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 651 pgoff_t index, gfp_t gfp_mask); 652int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 653 pgoff_t index, gfp_t gfp_mask); 654extern void delete_from_page_cache(struct page *page); 655extern void __delete_from_page_cache(struct page *page, void *shadow); 656int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 657 658/* 659 * Like add_to_page_cache_locked, but used to add newly allocated pages: 660 * the page is new, so we can just run __set_page_locked() against it. 661 */ 662static inline int add_to_page_cache(struct page *page, 663 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 664{ 665 int error; 666 667 __set_page_locked(page); 668 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 669 if (unlikely(error)) 670 __clear_page_locked(page); 671 return error; 672} 673 674#endif /* _LINUX_PAGEMAP_H */