at v3.18 41 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66#ifdef CONFIG_CMA 67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68#else 69# define is_migrate_cma(migratetype) false 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81#define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86{ 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90} 91 92struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95}; 96 97struct pglist_data; 98 99/* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105#if defined(CONFIG_SMP) 106struct zone_padding { 107 char x[0]; 108} ____cacheline_internodealigned_in_smp; 109#define ZONE_PADDING(name) struct zone_padding name; 110#else 111#define ZONE_PADDING(name) 112#endif 113 114enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 147#ifdef CONFIG_NUMA 148 NUMA_HIT, /* allocated in intended node */ 149 NUMA_MISS, /* allocated in non intended node */ 150 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 152 NUMA_LOCAL, /* allocation from local node */ 153 NUMA_OTHER, /* allocation from other node */ 154#endif 155 WORKINGSET_REFAULT, 156 WORKINGSET_ACTIVATE, 157 WORKINGSET_NODERECLAIM, 158 NR_ANON_TRANSPARENT_HUGEPAGES, 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162/* 163 * We do arithmetic on the LRU lists in various places in the code, 164 * so it is important to keep the active lists LRU_ACTIVE higher in 165 * the array than the corresponding inactive lists, and to keep 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 167 * 168 * This has to be kept in sync with the statistics in zone_stat_item 169 * above and the descriptions in vmstat_text in mm/vmstat.c 170 */ 171#define LRU_BASE 0 172#define LRU_ACTIVE 1 173#define LRU_FILE 2 174 175enum lru_list { 176 LRU_INACTIVE_ANON = LRU_BASE, 177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 180 LRU_UNEVICTABLE, 181 NR_LRU_LISTS 182}; 183 184#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 185 186#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 187 188static inline int is_file_lru(enum lru_list lru) 189{ 190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 191} 192 193static inline int is_active_lru(enum lru_list lru) 194{ 195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 196} 197 198static inline int is_unevictable_lru(enum lru_list lru) 199{ 200 return (lru == LRU_UNEVICTABLE); 201} 202 203struct zone_reclaim_stat { 204 /* 205 * The pageout code in vmscan.c keeps track of how many of the 206 * mem/swap backed and file backed pages are referenced. 207 * The higher the rotated/scanned ratio, the more valuable 208 * that cache is. 209 * 210 * The anon LRU stats live in [0], file LRU stats in [1] 211 */ 212 unsigned long recent_rotated[2]; 213 unsigned long recent_scanned[2]; 214}; 215 216struct lruvec { 217 struct list_head lists[NR_LRU_LISTS]; 218 struct zone_reclaim_stat reclaim_stat; 219#ifdef CONFIG_MEMCG 220 struct zone *zone; 221#endif 222}; 223 224/* Mask used at gathering information at once (see memcontrol.c) */ 225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229/* Isolate clean file */ 230#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231/* Isolate unmapped file */ 232#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233/* Isolate for asynchronous migration */ 234#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235/* Isolate unevictable pages */ 236#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238/* LRU Isolation modes. */ 239typedef unsigned __bitwise__ isolate_mode_t; 240 241enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246}; 247 248#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259}; 260 261struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263#ifdef CONFIG_NUMA 264 s8 expire; 265#endif 266#ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269#endif 270}; 271 272#endif /* !__GENERATING_BOUNDS.H */ 273 274enum zone_type { 275#ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295#endif 296#ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303#endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310#ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320#endif 321 ZONE_MOVABLE, 322 __MAX_NR_ZONES 323}; 324 325#ifndef __GENERATING_BOUNDS_H 326 327struct zone { 328 /* Read-mostly fields */ 329 330 /* zone watermarks, access with *_wmark_pages(zone) macros */ 331 unsigned long watermark[NR_WMARK]; 332 333 /* 334 * We don't know if the memory that we're going to allocate will be freeable 335 * or/and it will be released eventually, so to avoid totally wasting several 336 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 337 * to run OOM on the lower zones despite there's tons of freeable ram 338 * on the higher zones). This array is recalculated at runtime if the 339 * sysctl_lowmem_reserve_ratio sysctl changes. 340 */ 341 long lowmem_reserve[MAX_NR_ZONES]; 342 343#ifdef CONFIG_NUMA 344 int node; 345#endif 346 347 /* 348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 349 * this zone's LRU. Maintained by the pageout code. 350 */ 351 unsigned int inactive_ratio; 352 353 struct pglist_data *zone_pgdat; 354 struct per_cpu_pageset __percpu *pageset; 355 356 /* 357 * This is a per-zone reserve of pages that should not be 358 * considered dirtyable memory. 359 */ 360 unsigned long dirty_balance_reserve; 361 362#ifndef CONFIG_SPARSEMEM 363 /* 364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 365 * In SPARSEMEM, this map is stored in struct mem_section 366 */ 367 unsigned long *pageblock_flags; 368#endif /* CONFIG_SPARSEMEM */ 369 370#ifdef CONFIG_NUMA 371 /* 372 * zone reclaim becomes active if more unmapped pages exist. 373 */ 374 unsigned long min_unmapped_pages; 375 unsigned long min_slab_pages; 376#endif /* CONFIG_NUMA */ 377 378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 379 unsigned long zone_start_pfn; 380 381 /* 382 * spanned_pages is the total pages spanned by the zone, including 383 * holes, which is calculated as: 384 * spanned_pages = zone_end_pfn - zone_start_pfn; 385 * 386 * present_pages is physical pages existing within the zone, which 387 * is calculated as: 388 * present_pages = spanned_pages - absent_pages(pages in holes); 389 * 390 * managed_pages is present pages managed by the buddy system, which 391 * is calculated as (reserved_pages includes pages allocated by the 392 * bootmem allocator): 393 * managed_pages = present_pages - reserved_pages; 394 * 395 * So present_pages may be used by memory hotplug or memory power 396 * management logic to figure out unmanaged pages by checking 397 * (present_pages - managed_pages). And managed_pages should be used 398 * by page allocator and vm scanner to calculate all kinds of watermarks 399 * and thresholds. 400 * 401 * Locking rules: 402 * 403 * zone_start_pfn and spanned_pages are protected by span_seqlock. 404 * It is a seqlock because it has to be read outside of zone->lock, 405 * and it is done in the main allocator path. But, it is written 406 * quite infrequently. 407 * 408 * The span_seq lock is declared along with zone->lock because it is 409 * frequently read in proximity to zone->lock. It's good to 410 * give them a chance of being in the same cacheline. 411 * 412 * Write access to present_pages at runtime should be protected by 413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 414 * present_pages should get_online_mems() to get a stable value. 415 * 416 * Read access to managed_pages should be safe because it's unsigned 417 * long. Write access to zone->managed_pages and totalram_pages are 418 * protected by managed_page_count_lock at runtime. Idealy only 419 * adjust_managed_page_count() should be used instead of directly 420 * touching zone->managed_pages and totalram_pages. 421 */ 422 unsigned long managed_pages; 423 unsigned long spanned_pages; 424 unsigned long present_pages; 425 426 const char *name; 427 428 /* 429 * Number of MIGRATE_RESEVE page block. To maintain for just 430 * optimization. Protected by zone->lock. 431 */ 432 int nr_migrate_reserve_block; 433 434#ifdef CONFIG_MEMORY_ISOLATION 435 /* 436 * Number of isolated pageblock. It is used to solve incorrect 437 * freepage counting problem due to racy retrieving migratetype 438 * of pageblock. Protected by zone->lock. 439 */ 440 unsigned long nr_isolate_pageblock; 441#endif 442 443#ifdef CONFIG_MEMORY_HOTPLUG 444 /* see spanned/present_pages for more description */ 445 seqlock_t span_seqlock; 446#endif 447 448 /* 449 * wait_table -- the array holding the hash table 450 * wait_table_hash_nr_entries -- the size of the hash table array 451 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 452 * 453 * The purpose of all these is to keep track of the people 454 * waiting for a page to become available and make them 455 * runnable again when possible. The trouble is that this 456 * consumes a lot of space, especially when so few things 457 * wait on pages at a given time. So instead of using 458 * per-page waitqueues, we use a waitqueue hash table. 459 * 460 * The bucket discipline is to sleep on the same queue when 461 * colliding and wake all in that wait queue when removing. 462 * When something wakes, it must check to be sure its page is 463 * truly available, a la thundering herd. The cost of a 464 * collision is great, but given the expected load of the 465 * table, they should be so rare as to be outweighed by the 466 * benefits from the saved space. 467 * 468 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 469 * primary users of these fields, and in mm/page_alloc.c 470 * free_area_init_core() performs the initialization of them. 471 */ 472 wait_queue_head_t *wait_table; 473 unsigned long wait_table_hash_nr_entries; 474 unsigned long wait_table_bits; 475 476 ZONE_PADDING(_pad1_) 477 478 /* Write-intensive fields used from the page allocator */ 479 spinlock_t lock; 480 481 /* free areas of different sizes */ 482 struct free_area free_area[MAX_ORDER]; 483 484 /* zone flags, see below */ 485 unsigned long flags; 486 487 ZONE_PADDING(_pad2_) 488 489 /* Write-intensive fields used by page reclaim */ 490 491 /* Fields commonly accessed by the page reclaim scanner */ 492 spinlock_t lru_lock; 493 struct lruvec lruvec; 494 495 /* Evictions & activations on the inactive file list */ 496 atomic_long_t inactive_age; 497 498 /* 499 * When free pages are below this point, additional steps are taken 500 * when reading the number of free pages to avoid per-cpu counter 501 * drift allowing watermarks to be breached 502 */ 503 unsigned long percpu_drift_mark; 504 505#if defined CONFIG_COMPACTION || defined CONFIG_CMA 506 /* pfn where compaction free scanner should start */ 507 unsigned long compact_cached_free_pfn; 508 /* pfn where async and sync compaction migration scanner should start */ 509 unsigned long compact_cached_migrate_pfn[2]; 510#endif 511 512#ifdef CONFIG_COMPACTION 513 /* 514 * On compaction failure, 1<<compact_defer_shift compactions 515 * are skipped before trying again. The number attempted since 516 * last failure is tracked with compact_considered. 517 */ 518 unsigned int compact_considered; 519 unsigned int compact_defer_shift; 520 int compact_order_failed; 521#endif 522 523#if defined CONFIG_COMPACTION || defined CONFIG_CMA 524 /* Set to true when the PG_migrate_skip bits should be cleared */ 525 bool compact_blockskip_flush; 526#endif 527 528 ZONE_PADDING(_pad3_) 529 /* Zone statistics */ 530 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 531} ____cacheline_internodealigned_in_smp; 532 533enum zone_flags { 534 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 535 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 536 ZONE_CONGESTED, /* zone has many dirty pages backed by 537 * a congested BDI 538 */ 539 ZONE_DIRTY, /* reclaim scanning has recently found 540 * many dirty file pages at the tail 541 * of the LRU. 542 */ 543 ZONE_WRITEBACK, /* reclaim scanning has recently found 544 * many pages under writeback 545 */ 546 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 547}; 548 549static inline unsigned long zone_end_pfn(const struct zone *zone) 550{ 551 return zone->zone_start_pfn + zone->spanned_pages; 552} 553 554static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 555{ 556 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 557} 558 559static inline bool zone_is_initialized(struct zone *zone) 560{ 561 return !!zone->wait_table; 562} 563 564static inline bool zone_is_empty(struct zone *zone) 565{ 566 return zone->spanned_pages == 0; 567} 568 569/* 570 * The "priority" of VM scanning is how much of the queues we will scan in one 571 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 572 * queues ("queue_length >> 12") during an aging round. 573 */ 574#define DEF_PRIORITY 12 575 576/* Maximum number of zones on a zonelist */ 577#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 578 579#ifdef CONFIG_NUMA 580 581/* 582 * The NUMA zonelists are doubled because we need zonelists that restrict the 583 * allocations to a single node for __GFP_THISNODE. 584 * 585 * [0] : Zonelist with fallback 586 * [1] : No fallback (__GFP_THISNODE) 587 */ 588#define MAX_ZONELISTS 2 589 590 591/* 592 * We cache key information from each zonelist for smaller cache 593 * footprint when scanning for free pages in get_page_from_freelist(). 594 * 595 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 596 * up short of free memory since the last time (last_fullzone_zap) 597 * we zero'd fullzones. 598 * 2) The array z_to_n[] maps each zone in the zonelist to its node 599 * id, so that we can efficiently evaluate whether that node is 600 * set in the current tasks mems_allowed. 601 * 602 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 603 * indexed by a zones offset in the zonelist zones[] array. 604 * 605 * The get_page_from_freelist() routine does two scans. During the 606 * first scan, we skip zones whose corresponding bit in 'fullzones' 607 * is set or whose corresponding node in current->mems_allowed (which 608 * comes from cpusets) is not set. During the second scan, we bypass 609 * this zonelist_cache, to ensure we look methodically at each zone. 610 * 611 * Once per second, we zero out (zap) fullzones, forcing us to 612 * reconsider nodes that might have regained more free memory. 613 * The field last_full_zap is the time we last zapped fullzones. 614 * 615 * This mechanism reduces the amount of time we waste repeatedly 616 * reexaming zones for free memory when they just came up low on 617 * memory momentarilly ago. 618 * 619 * The zonelist_cache struct members logically belong in struct 620 * zonelist. However, the mempolicy zonelists constructed for 621 * MPOL_BIND are intentionally variable length (and usually much 622 * shorter). A general purpose mechanism for handling structs with 623 * multiple variable length members is more mechanism than we want 624 * here. We resort to some special case hackery instead. 625 * 626 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 627 * part because they are shorter), so we put the fixed length stuff 628 * at the front of the zonelist struct, ending in a variable length 629 * zones[], as is needed by MPOL_BIND. 630 * 631 * Then we put the optional zonelist cache on the end of the zonelist 632 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 633 * the fixed length portion at the front of the struct. This pointer 634 * both enables us to find the zonelist cache, and in the case of 635 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 636 * to know that the zonelist cache is not there. 637 * 638 * The end result is that struct zonelists come in two flavors: 639 * 1) The full, fixed length version, shown below, and 640 * 2) The custom zonelists for MPOL_BIND. 641 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 642 * 643 * Even though there may be multiple CPU cores on a node modifying 644 * fullzones or last_full_zap in the same zonelist_cache at the same 645 * time, we don't lock it. This is just hint data - if it is wrong now 646 * and then, the allocator will still function, perhaps a bit slower. 647 */ 648 649 650struct zonelist_cache { 651 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 652 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 653 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 654}; 655#else 656#define MAX_ZONELISTS 1 657struct zonelist_cache; 658#endif 659 660/* 661 * This struct contains information about a zone in a zonelist. It is stored 662 * here to avoid dereferences into large structures and lookups of tables 663 */ 664struct zoneref { 665 struct zone *zone; /* Pointer to actual zone */ 666 int zone_idx; /* zone_idx(zoneref->zone) */ 667}; 668 669/* 670 * One allocation request operates on a zonelist. A zonelist 671 * is a list of zones, the first one is the 'goal' of the 672 * allocation, the other zones are fallback zones, in decreasing 673 * priority. 674 * 675 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 676 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 677 * * 678 * To speed the reading of the zonelist, the zonerefs contain the zone index 679 * of the entry being read. Helper functions to access information given 680 * a struct zoneref are 681 * 682 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 683 * zonelist_zone_idx() - Return the index of the zone for an entry 684 * zonelist_node_idx() - Return the index of the node for an entry 685 */ 686struct zonelist { 687 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 688 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 689#ifdef CONFIG_NUMA 690 struct zonelist_cache zlcache; // optional ... 691#endif 692}; 693 694#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 695struct node_active_region { 696 unsigned long start_pfn; 697 unsigned long end_pfn; 698 int nid; 699}; 700#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 701 702#ifndef CONFIG_DISCONTIGMEM 703/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 704extern struct page *mem_map; 705#endif 706 707/* 708 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 709 * (mostly NUMA machines?) to denote a higher-level memory zone than the 710 * zone denotes. 711 * 712 * On NUMA machines, each NUMA node would have a pg_data_t to describe 713 * it's memory layout. 714 * 715 * Memory statistics and page replacement data structures are maintained on a 716 * per-zone basis. 717 */ 718struct bootmem_data; 719typedef struct pglist_data { 720 struct zone node_zones[MAX_NR_ZONES]; 721 struct zonelist node_zonelists[MAX_ZONELISTS]; 722 int nr_zones; 723#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 724 struct page *node_mem_map; 725#ifdef CONFIG_MEMCG 726 struct page_cgroup *node_page_cgroup; 727#endif 728#endif 729#ifndef CONFIG_NO_BOOTMEM 730 struct bootmem_data *bdata; 731#endif 732#ifdef CONFIG_MEMORY_HOTPLUG 733 /* 734 * Must be held any time you expect node_start_pfn, node_present_pages 735 * or node_spanned_pages stay constant. Holding this will also 736 * guarantee that any pfn_valid() stays that way. 737 * 738 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 739 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 740 * 741 * Nests above zone->lock and zone->span_seqlock 742 */ 743 spinlock_t node_size_lock; 744#endif 745 unsigned long node_start_pfn; 746 unsigned long node_present_pages; /* total number of physical pages */ 747 unsigned long node_spanned_pages; /* total size of physical page 748 range, including holes */ 749 int node_id; 750 wait_queue_head_t kswapd_wait; 751 wait_queue_head_t pfmemalloc_wait; 752 struct task_struct *kswapd; /* Protected by 753 mem_hotplug_begin/end() */ 754 int kswapd_max_order; 755 enum zone_type classzone_idx; 756#ifdef CONFIG_NUMA_BALANCING 757 /* Lock serializing the migrate rate limiting window */ 758 spinlock_t numabalancing_migrate_lock; 759 760 /* Rate limiting time interval */ 761 unsigned long numabalancing_migrate_next_window; 762 763 /* Number of pages migrated during the rate limiting time interval */ 764 unsigned long numabalancing_migrate_nr_pages; 765#endif 766} pg_data_t; 767 768#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 769#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 770#ifdef CONFIG_FLAT_NODE_MEM_MAP 771#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 772#else 773#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 774#endif 775#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 776 777#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 778#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 779 780static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 781{ 782 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 783} 784 785static inline bool pgdat_is_empty(pg_data_t *pgdat) 786{ 787 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 788} 789 790#include <linux/memory_hotplug.h> 791 792extern struct mutex zonelists_mutex; 793void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 794void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 795bool zone_watermark_ok(struct zone *z, unsigned int order, 796 unsigned long mark, int classzone_idx, int alloc_flags); 797bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 798 unsigned long mark, int classzone_idx, int alloc_flags); 799enum memmap_context { 800 MEMMAP_EARLY, 801 MEMMAP_HOTPLUG, 802}; 803extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 804 unsigned long size, 805 enum memmap_context context); 806 807extern void lruvec_init(struct lruvec *lruvec); 808 809static inline struct zone *lruvec_zone(struct lruvec *lruvec) 810{ 811#ifdef CONFIG_MEMCG 812 return lruvec->zone; 813#else 814 return container_of(lruvec, struct zone, lruvec); 815#endif 816} 817 818#ifdef CONFIG_HAVE_MEMORY_PRESENT 819void memory_present(int nid, unsigned long start, unsigned long end); 820#else 821static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 822#endif 823 824#ifdef CONFIG_HAVE_MEMORYLESS_NODES 825int local_memory_node(int node_id); 826#else 827static inline int local_memory_node(int node_id) { return node_id; }; 828#endif 829 830#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 831unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 832#endif 833 834/* 835 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 836 */ 837#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 838 839static inline int populated_zone(struct zone *zone) 840{ 841 return (!!zone->present_pages); 842} 843 844extern int movable_zone; 845 846static inline int zone_movable_is_highmem(void) 847{ 848#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 849 return movable_zone == ZONE_HIGHMEM; 850#elif defined(CONFIG_HIGHMEM) 851 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 852#else 853 return 0; 854#endif 855} 856 857static inline int is_highmem_idx(enum zone_type idx) 858{ 859#ifdef CONFIG_HIGHMEM 860 return (idx == ZONE_HIGHMEM || 861 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 862#else 863 return 0; 864#endif 865} 866 867/** 868 * is_highmem - helper function to quickly check if a struct zone is a 869 * highmem zone or not. This is an attempt to keep references 870 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 871 * @zone - pointer to struct zone variable 872 */ 873static inline int is_highmem(struct zone *zone) 874{ 875#ifdef CONFIG_HIGHMEM 876 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 877 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 878 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 879 zone_movable_is_highmem()); 880#else 881 return 0; 882#endif 883} 884 885/* These two functions are used to setup the per zone pages min values */ 886struct ctl_table; 887int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 888 void __user *, size_t *, loff_t *); 889extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 890int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 891 void __user *, size_t *, loff_t *); 892int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 893 void __user *, size_t *, loff_t *); 894int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 895 void __user *, size_t *, loff_t *); 896int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 897 void __user *, size_t *, loff_t *); 898 899extern int numa_zonelist_order_handler(struct ctl_table *, int, 900 void __user *, size_t *, loff_t *); 901extern char numa_zonelist_order[]; 902#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 903 904#ifndef CONFIG_NEED_MULTIPLE_NODES 905 906extern struct pglist_data contig_page_data; 907#define NODE_DATA(nid) (&contig_page_data) 908#define NODE_MEM_MAP(nid) mem_map 909 910#else /* CONFIG_NEED_MULTIPLE_NODES */ 911 912#include <asm/mmzone.h> 913 914#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 915 916extern struct pglist_data *first_online_pgdat(void); 917extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 918extern struct zone *next_zone(struct zone *zone); 919 920/** 921 * for_each_online_pgdat - helper macro to iterate over all online nodes 922 * @pgdat - pointer to a pg_data_t variable 923 */ 924#define for_each_online_pgdat(pgdat) \ 925 for (pgdat = first_online_pgdat(); \ 926 pgdat; \ 927 pgdat = next_online_pgdat(pgdat)) 928/** 929 * for_each_zone - helper macro to iterate over all memory zones 930 * @zone - pointer to struct zone variable 931 * 932 * The user only needs to declare the zone variable, for_each_zone 933 * fills it in. 934 */ 935#define for_each_zone(zone) \ 936 for (zone = (first_online_pgdat())->node_zones; \ 937 zone; \ 938 zone = next_zone(zone)) 939 940#define for_each_populated_zone(zone) \ 941 for (zone = (first_online_pgdat())->node_zones; \ 942 zone; \ 943 zone = next_zone(zone)) \ 944 if (!populated_zone(zone)) \ 945 ; /* do nothing */ \ 946 else 947 948static inline struct zone *zonelist_zone(struct zoneref *zoneref) 949{ 950 return zoneref->zone; 951} 952 953static inline int zonelist_zone_idx(struct zoneref *zoneref) 954{ 955 return zoneref->zone_idx; 956} 957 958static inline int zonelist_node_idx(struct zoneref *zoneref) 959{ 960#ifdef CONFIG_NUMA 961 /* zone_to_nid not available in this context */ 962 return zoneref->zone->node; 963#else 964 return 0; 965#endif /* CONFIG_NUMA */ 966} 967 968/** 969 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 970 * @z - The cursor used as a starting point for the search 971 * @highest_zoneidx - The zone index of the highest zone to return 972 * @nodes - An optional nodemask to filter the zonelist with 973 * @zone - The first suitable zone found is returned via this parameter 974 * 975 * This function returns the next zone at or below a given zone index that is 976 * within the allowed nodemask using a cursor as the starting point for the 977 * search. The zoneref returned is a cursor that represents the current zone 978 * being examined. It should be advanced by one before calling 979 * next_zones_zonelist again. 980 */ 981struct zoneref *next_zones_zonelist(struct zoneref *z, 982 enum zone_type highest_zoneidx, 983 nodemask_t *nodes, 984 struct zone **zone); 985 986/** 987 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 988 * @zonelist - The zonelist to search for a suitable zone 989 * @highest_zoneidx - The zone index of the highest zone to return 990 * @nodes - An optional nodemask to filter the zonelist with 991 * @zone - The first suitable zone found is returned via this parameter 992 * 993 * This function returns the first zone at or below a given zone index that is 994 * within the allowed nodemask. The zoneref returned is a cursor that can be 995 * used to iterate the zonelist with next_zones_zonelist by advancing it by 996 * one before calling. 997 */ 998static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 999 enum zone_type highest_zoneidx, 1000 nodemask_t *nodes, 1001 struct zone **zone) 1002{ 1003 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 1004 zone); 1005} 1006 1007/** 1008 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1009 * @zone - The current zone in the iterator 1010 * @z - The current pointer within zonelist->zones being iterated 1011 * @zlist - The zonelist being iterated 1012 * @highidx - The zone index of the highest zone to return 1013 * @nodemask - Nodemask allowed by the allocator 1014 * 1015 * This iterator iterates though all zones at or below a given zone index and 1016 * within a given nodemask 1017 */ 1018#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1019 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1020 zone; \ 1021 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1022 1023/** 1024 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1025 * @zone - The current zone in the iterator 1026 * @z - The current pointer within zonelist->zones being iterated 1027 * @zlist - The zonelist being iterated 1028 * @highidx - The zone index of the highest zone to return 1029 * 1030 * This iterator iterates though all zones at or below a given zone index. 1031 */ 1032#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1033 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1034 1035#ifdef CONFIG_SPARSEMEM 1036#include <asm/sparsemem.h> 1037#endif 1038 1039#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1040 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1041static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1042{ 1043 return 0; 1044} 1045#endif 1046 1047#ifdef CONFIG_FLATMEM 1048#define pfn_to_nid(pfn) (0) 1049#endif 1050 1051#ifdef CONFIG_SPARSEMEM 1052 1053/* 1054 * SECTION_SHIFT #bits space required to store a section # 1055 * 1056 * PA_SECTION_SHIFT physical address to/from section number 1057 * PFN_SECTION_SHIFT pfn to/from section number 1058 */ 1059#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1060#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1061 1062#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1063 1064#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1065#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1066 1067#define SECTION_BLOCKFLAGS_BITS \ 1068 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1069 1070#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1071#error Allocator MAX_ORDER exceeds SECTION_SIZE 1072#endif 1073 1074#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1075#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1076 1077#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1078#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1079 1080struct page; 1081struct page_cgroup; 1082struct mem_section { 1083 /* 1084 * This is, logically, a pointer to an array of struct 1085 * pages. However, it is stored with some other magic. 1086 * (see sparse.c::sparse_init_one_section()) 1087 * 1088 * Additionally during early boot we encode node id of 1089 * the location of the section here to guide allocation. 1090 * (see sparse.c::memory_present()) 1091 * 1092 * Making it a UL at least makes someone do a cast 1093 * before using it wrong. 1094 */ 1095 unsigned long section_mem_map; 1096 1097 /* See declaration of similar field in struct zone */ 1098 unsigned long *pageblock_flags; 1099#ifdef CONFIG_MEMCG 1100 /* 1101 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1102 * section. (see memcontrol.h/page_cgroup.h about this.) 1103 */ 1104 struct page_cgroup *page_cgroup; 1105 unsigned long pad; 1106#endif 1107 /* 1108 * WARNING: mem_section must be a power-of-2 in size for the 1109 * calculation and use of SECTION_ROOT_MASK to make sense. 1110 */ 1111}; 1112 1113#ifdef CONFIG_SPARSEMEM_EXTREME 1114#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1115#else 1116#define SECTIONS_PER_ROOT 1 1117#endif 1118 1119#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1120#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1121#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1122 1123#ifdef CONFIG_SPARSEMEM_EXTREME 1124extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1125#else 1126extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1127#endif 1128 1129static inline struct mem_section *__nr_to_section(unsigned long nr) 1130{ 1131 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1132 return NULL; 1133 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1134} 1135extern int __section_nr(struct mem_section* ms); 1136extern unsigned long usemap_size(void); 1137 1138/* 1139 * We use the lower bits of the mem_map pointer to store 1140 * a little bit of information. There should be at least 1141 * 3 bits here due to 32-bit alignment. 1142 */ 1143#define SECTION_MARKED_PRESENT (1UL<<0) 1144#define SECTION_HAS_MEM_MAP (1UL<<1) 1145#define SECTION_MAP_LAST_BIT (1UL<<2) 1146#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1147#define SECTION_NID_SHIFT 2 1148 1149static inline struct page *__section_mem_map_addr(struct mem_section *section) 1150{ 1151 unsigned long map = section->section_mem_map; 1152 map &= SECTION_MAP_MASK; 1153 return (struct page *)map; 1154} 1155 1156static inline int present_section(struct mem_section *section) 1157{ 1158 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1159} 1160 1161static inline int present_section_nr(unsigned long nr) 1162{ 1163 return present_section(__nr_to_section(nr)); 1164} 1165 1166static inline int valid_section(struct mem_section *section) 1167{ 1168 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1169} 1170 1171static inline int valid_section_nr(unsigned long nr) 1172{ 1173 return valid_section(__nr_to_section(nr)); 1174} 1175 1176static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1177{ 1178 return __nr_to_section(pfn_to_section_nr(pfn)); 1179} 1180 1181#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1182static inline int pfn_valid(unsigned long pfn) 1183{ 1184 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1185 return 0; 1186 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1187} 1188#endif 1189 1190static inline int pfn_present(unsigned long pfn) 1191{ 1192 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1193 return 0; 1194 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1195} 1196 1197/* 1198 * These are _only_ used during initialisation, therefore they 1199 * can use __initdata ... They could have names to indicate 1200 * this restriction. 1201 */ 1202#ifdef CONFIG_NUMA 1203#define pfn_to_nid(pfn) \ 1204({ \ 1205 unsigned long __pfn_to_nid_pfn = (pfn); \ 1206 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1207}) 1208#else 1209#define pfn_to_nid(pfn) (0) 1210#endif 1211 1212#define early_pfn_valid(pfn) pfn_valid(pfn) 1213void sparse_init(void); 1214#else 1215#define sparse_init() do {} while (0) 1216#define sparse_index_init(_sec, _nid) do {} while (0) 1217#endif /* CONFIG_SPARSEMEM */ 1218 1219#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1220bool early_pfn_in_nid(unsigned long pfn, int nid); 1221#else 1222#define early_pfn_in_nid(pfn, nid) (1) 1223#endif 1224 1225#ifndef early_pfn_valid 1226#define early_pfn_valid(pfn) (1) 1227#endif 1228 1229void memory_present(int nid, unsigned long start, unsigned long end); 1230unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1231 1232/* 1233 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1234 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1235 * pfn_valid_within() should be used in this case; we optimise this away 1236 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1237 */ 1238#ifdef CONFIG_HOLES_IN_ZONE 1239#define pfn_valid_within(pfn) pfn_valid(pfn) 1240#else 1241#define pfn_valid_within(pfn) (1) 1242#endif 1243 1244#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1245/* 1246 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1247 * associated with it or not. In FLATMEM, it is expected that holes always 1248 * have valid memmap as long as there is valid PFNs either side of the hole. 1249 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1250 * entire section. 1251 * 1252 * However, an ARM, and maybe other embedded architectures in the future 1253 * free memmap backing holes to save memory on the assumption the memmap is 1254 * never used. The page_zone linkages are then broken even though pfn_valid() 1255 * returns true. A walker of the full memmap must then do this additional 1256 * check to ensure the memmap they are looking at is sane by making sure 1257 * the zone and PFN linkages are still valid. This is expensive, but walkers 1258 * of the full memmap are extremely rare. 1259 */ 1260int memmap_valid_within(unsigned long pfn, 1261 struct page *page, struct zone *zone); 1262#else 1263static inline int memmap_valid_within(unsigned long pfn, 1264 struct page *page, struct zone *zone) 1265{ 1266 return 1; 1267} 1268#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1269 1270#endif /* !__GENERATING_BOUNDS.H */ 1271#endif /* !__ASSEMBLY__ */ 1272#endif /* _LINUX_MMZONE_H */