Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
8#include <linux/mmdebug.h>
9#include <linux/gfp.h>
10#include <linux/bug.h>
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
14#include <linux/atomic.h>
15#include <linux/debug_locks.h>
16#include <linux/mm_types.h>
17#include <linux/range.h>
18#include <linux/pfn.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22
23struct mempolicy;
24struct anon_vma;
25struct anon_vma_chain;
26struct file_ra_state;
27struct user_struct;
28struct writeback_control;
29
30#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
31extern unsigned long max_mapnr;
32
33static inline void set_max_mapnr(unsigned long limit)
34{
35 max_mapnr = limit;
36}
37#else
38static inline void set_max_mapnr(unsigned long limit) { }
39#endif
40
41extern unsigned long totalram_pages;
42extern void * high_memory;
43extern int page_cluster;
44
45#ifdef CONFIG_SYSCTL
46extern int sysctl_legacy_va_layout;
47#else
48#define sysctl_legacy_va_layout 0
49#endif
50
51#include <asm/page.h>
52#include <asm/pgtable.h>
53#include <asm/processor.h>
54
55#ifndef __pa_symbol
56#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
57#endif
58
59extern unsigned long sysctl_user_reserve_kbytes;
60extern unsigned long sysctl_admin_reserve_kbytes;
61
62extern int sysctl_overcommit_memory;
63extern int sysctl_overcommit_ratio;
64extern unsigned long sysctl_overcommit_kbytes;
65
66extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
67 size_t *, loff_t *);
68extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
69 size_t *, loff_t *);
70
71#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
72
73/* to align the pointer to the (next) page boundary */
74#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
75
76/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
77#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
78
79/*
80 * Linux kernel virtual memory manager primitives.
81 * The idea being to have a "virtual" mm in the same way
82 * we have a virtual fs - giving a cleaner interface to the
83 * mm details, and allowing different kinds of memory mappings
84 * (from shared memory to executable loading to arbitrary
85 * mmap() functions).
86 */
87
88extern struct kmem_cache *vm_area_cachep;
89
90#ifndef CONFIG_MMU
91extern struct rb_root nommu_region_tree;
92extern struct rw_semaphore nommu_region_sem;
93
94extern unsigned int kobjsize(const void *objp);
95#endif
96
97/*
98 * vm_flags in vm_area_struct, see mm_types.h.
99 */
100#define VM_NONE 0x00000000
101
102#define VM_READ 0x00000001 /* currently active flags */
103#define VM_WRITE 0x00000002
104#define VM_EXEC 0x00000004
105#define VM_SHARED 0x00000008
106
107/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
108#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
109#define VM_MAYWRITE 0x00000020
110#define VM_MAYEXEC 0x00000040
111#define VM_MAYSHARE 0x00000080
112
113#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
114#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
115#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
116
117#define VM_LOCKED 0x00002000
118#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
119
120 /* Used by sys_madvise() */
121#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
122#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
123
124#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
125#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
126#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
127#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
128#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
129#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
130#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
131#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
132
133#ifdef CONFIG_MEM_SOFT_DIRTY
134# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
135#else
136# define VM_SOFTDIRTY 0
137#endif
138
139#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
140#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
141#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
142#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
143
144#if defined(CONFIG_X86)
145# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
146#elif defined(CONFIG_PPC)
147# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
148#elif defined(CONFIG_PARISC)
149# define VM_GROWSUP VM_ARCH_1
150#elif defined(CONFIG_METAG)
151# define VM_GROWSUP VM_ARCH_1
152#elif defined(CONFIG_IA64)
153# define VM_GROWSUP VM_ARCH_1
154#elif !defined(CONFIG_MMU)
155# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
156#endif
157
158#ifndef VM_GROWSUP
159# define VM_GROWSUP VM_NONE
160#endif
161
162/* Bits set in the VMA until the stack is in its final location */
163#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
164
165#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
166#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
167#endif
168
169#ifdef CONFIG_STACK_GROWSUP
170#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
171#else
172#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
173#endif
174
175/*
176 * Special vmas that are non-mergable, non-mlock()able.
177 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
178 */
179#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
180
181/* This mask defines which mm->def_flags a process can inherit its parent */
182#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
183
184/*
185 * mapping from the currently active vm_flags protection bits (the
186 * low four bits) to a page protection mask..
187 */
188extern pgprot_t protection_map[16];
189
190#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
191#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
192#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
193#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
194#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
195#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
196#define FAULT_FLAG_TRIED 0x40 /* second try */
197#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
198
199/*
200 * vm_fault is filled by the the pagefault handler and passed to the vma's
201 * ->fault function. The vma's ->fault is responsible for returning a bitmask
202 * of VM_FAULT_xxx flags that give details about how the fault was handled.
203 *
204 * pgoff should be used in favour of virtual_address, if possible. If pgoff
205 * is used, one may implement ->remap_pages to get nonlinear mapping support.
206 */
207struct vm_fault {
208 unsigned int flags; /* FAULT_FLAG_xxx flags */
209 pgoff_t pgoff; /* Logical page offset based on vma */
210 void __user *virtual_address; /* Faulting virtual address */
211
212 struct page *page; /* ->fault handlers should return a
213 * page here, unless VM_FAULT_NOPAGE
214 * is set (which is also implied by
215 * VM_FAULT_ERROR).
216 */
217 /* for ->map_pages() only */
218 pgoff_t max_pgoff; /* map pages for offset from pgoff till
219 * max_pgoff inclusive */
220 pte_t *pte; /* pte entry associated with ->pgoff */
221};
222
223/*
224 * These are the virtual MM functions - opening of an area, closing and
225 * unmapping it (needed to keep files on disk up-to-date etc), pointer
226 * to the functions called when a no-page or a wp-page exception occurs.
227 */
228struct vm_operations_struct {
229 void (*open)(struct vm_area_struct * area);
230 void (*close)(struct vm_area_struct * area);
231 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
232 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
233
234 /* notification that a previously read-only page is about to become
235 * writable, if an error is returned it will cause a SIGBUS */
236 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
237
238 /* called by access_process_vm when get_user_pages() fails, typically
239 * for use by special VMAs that can switch between memory and hardware
240 */
241 int (*access)(struct vm_area_struct *vma, unsigned long addr,
242 void *buf, int len, int write);
243
244 /* Called by the /proc/PID/maps code to ask the vma whether it
245 * has a special name. Returning non-NULL will also cause this
246 * vma to be dumped unconditionally. */
247 const char *(*name)(struct vm_area_struct *vma);
248
249#ifdef CONFIG_NUMA
250 /*
251 * set_policy() op must add a reference to any non-NULL @new mempolicy
252 * to hold the policy upon return. Caller should pass NULL @new to
253 * remove a policy and fall back to surrounding context--i.e. do not
254 * install a MPOL_DEFAULT policy, nor the task or system default
255 * mempolicy.
256 */
257 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
258
259 /*
260 * get_policy() op must add reference [mpol_get()] to any policy at
261 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
262 * in mm/mempolicy.c will do this automatically.
263 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
264 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
265 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
266 * must return NULL--i.e., do not "fallback" to task or system default
267 * policy.
268 */
269 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
270 unsigned long addr);
271 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
272 const nodemask_t *to, unsigned long flags);
273#endif
274 /* called by sys_remap_file_pages() to populate non-linear mapping */
275 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
276 unsigned long size, pgoff_t pgoff);
277};
278
279struct mmu_gather;
280struct inode;
281
282#define page_private(page) ((page)->private)
283#define set_page_private(page, v) ((page)->private = (v))
284
285/* It's valid only if the page is free path or free_list */
286static inline void set_freepage_migratetype(struct page *page, int migratetype)
287{
288 page->index = migratetype;
289}
290
291/* It's valid only if the page is free path or free_list */
292static inline int get_freepage_migratetype(struct page *page)
293{
294 return page->index;
295}
296
297/*
298 * FIXME: take this include out, include page-flags.h in
299 * files which need it (119 of them)
300 */
301#include <linux/page-flags.h>
302#include <linux/huge_mm.h>
303
304/*
305 * Methods to modify the page usage count.
306 *
307 * What counts for a page usage:
308 * - cache mapping (page->mapping)
309 * - private data (page->private)
310 * - page mapped in a task's page tables, each mapping
311 * is counted separately
312 *
313 * Also, many kernel routines increase the page count before a critical
314 * routine so they can be sure the page doesn't go away from under them.
315 */
316
317/*
318 * Drop a ref, return true if the refcount fell to zero (the page has no users)
319 */
320static inline int put_page_testzero(struct page *page)
321{
322 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
323 return atomic_dec_and_test(&page->_count);
324}
325
326/*
327 * Try to grab a ref unless the page has a refcount of zero, return false if
328 * that is the case.
329 * This can be called when MMU is off so it must not access
330 * any of the virtual mappings.
331 */
332static inline int get_page_unless_zero(struct page *page)
333{
334 return atomic_inc_not_zero(&page->_count);
335}
336
337/*
338 * Try to drop a ref unless the page has a refcount of one, return false if
339 * that is the case.
340 * This is to make sure that the refcount won't become zero after this drop.
341 * This can be called when MMU is off so it must not access
342 * any of the virtual mappings.
343 */
344static inline int put_page_unless_one(struct page *page)
345{
346 return atomic_add_unless(&page->_count, -1, 1);
347}
348
349extern int page_is_ram(unsigned long pfn);
350extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
351
352/* Support for virtually mapped pages */
353struct page *vmalloc_to_page(const void *addr);
354unsigned long vmalloc_to_pfn(const void *addr);
355
356/*
357 * Determine if an address is within the vmalloc range
358 *
359 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
360 * is no special casing required.
361 */
362static inline int is_vmalloc_addr(const void *x)
363{
364#ifdef CONFIG_MMU
365 unsigned long addr = (unsigned long)x;
366
367 return addr >= VMALLOC_START && addr < VMALLOC_END;
368#else
369 return 0;
370#endif
371}
372#ifdef CONFIG_MMU
373extern int is_vmalloc_or_module_addr(const void *x);
374#else
375static inline int is_vmalloc_or_module_addr(const void *x)
376{
377 return 0;
378}
379#endif
380
381extern void kvfree(const void *addr);
382
383static inline void compound_lock(struct page *page)
384{
385#ifdef CONFIG_TRANSPARENT_HUGEPAGE
386 VM_BUG_ON_PAGE(PageSlab(page), page);
387 bit_spin_lock(PG_compound_lock, &page->flags);
388#endif
389}
390
391static inline void compound_unlock(struct page *page)
392{
393#ifdef CONFIG_TRANSPARENT_HUGEPAGE
394 VM_BUG_ON_PAGE(PageSlab(page), page);
395 bit_spin_unlock(PG_compound_lock, &page->flags);
396#endif
397}
398
399static inline unsigned long compound_lock_irqsave(struct page *page)
400{
401 unsigned long uninitialized_var(flags);
402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
403 local_irq_save(flags);
404 compound_lock(page);
405#endif
406 return flags;
407}
408
409static inline void compound_unlock_irqrestore(struct page *page,
410 unsigned long flags)
411{
412#ifdef CONFIG_TRANSPARENT_HUGEPAGE
413 compound_unlock(page);
414 local_irq_restore(flags);
415#endif
416}
417
418static inline struct page *compound_head_by_tail(struct page *tail)
419{
420 struct page *head = tail->first_page;
421
422 /*
423 * page->first_page may be a dangling pointer to an old
424 * compound page, so recheck that it is still a tail
425 * page before returning.
426 */
427 smp_rmb();
428 if (likely(PageTail(tail)))
429 return head;
430 return tail;
431}
432
433static inline struct page *compound_head(struct page *page)
434{
435 if (unlikely(PageTail(page)))
436 return compound_head_by_tail(page);
437 return page;
438}
439
440/*
441 * The atomic page->_mapcount, starts from -1: so that transitions
442 * both from it and to it can be tracked, using atomic_inc_and_test
443 * and atomic_add_negative(-1).
444 */
445static inline void page_mapcount_reset(struct page *page)
446{
447 atomic_set(&(page)->_mapcount, -1);
448}
449
450static inline int page_mapcount(struct page *page)
451{
452 return atomic_read(&(page)->_mapcount) + 1;
453}
454
455static inline int page_count(struct page *page)
456{
457 return atomic_read(&compound_head(page)->_count);
458}
459
460#ifdef CONFIG_HUGETLB_PAGE
461extern int PageHeadHuge(struct page *page_head);
462#else /* CONFIG_HUGETLB_PAGE */
463static inline int PageHeadHuge(struct page *page_head)
464{
465 return 0;
466}
467#endif /* CONFIG_HUGETLB_PAGE */
468
469static inline bool __compound_tail_refcounted(struct page *page)
470{
471 return !PageSlab(page) && !PageHeadHuge(page);
472}
473
474/*
475 * This takes a head page as parameter and tells if the
476 * tail page reference counting can be skipped.
477 *
478 * For this to be safe, PageSlab and PageHeadHuge must remain true on
479 * any given page where they return true here, until all tail pins
480 * have been released.
481 */
482static inline bool compound_tail_refcounted(struct page *page)
483{
484 VM_BUG_ON_PAGE(!PageHead(page), page);
485 return __compound_tail_refcounted(page);
486}
487
488static inline void get_huge_page_tail(struct page *page)
489{
490 /*
491 * __split_huge_page_refcount() cannot run from under us.
492 */
493 VM_BUG_ON_PAGE(!PageTail(page), page);
494 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
495 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
496 if (compound_tail_refcounted(page->first_page))
497 atomic_inc(&page->_mapcount);
498}
499
500extern bool __get_page_tail(struct page *page);
501
502static inline void get_page(struct page *page)
503{
504 if (unlikely(PageTail(page)))
505 if (likely(__get_page_tail(page)))
506 return;
507 /*
508 * Getting a normal page or the head of a compound page
509 * requires to already have an elevated page->_count.
510 */
511 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
512 atomic_inc(&page->_count);
513}
514
515static inline struct page *virt_to_head_page(const void *x)
516{
517 struct page *page = virt_to_page(x);
518 return compound_head(page);
519}
520
521/*
522 * Setup the page count before being freed into the page allocator for
523 * the first time (boot or memory hotplug)
524 */
525static inline void init_page_count(struct page *page)
526{
527 atomic_set(&page->_count, 1);
528}
529
530/*
531 * PageBuddy() indicate that the page is free and in the buddy system
532 * (see mm/page_alloc.c).
533 *
534 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
535 * -2 so that an underflow of the page_mapcount() won't be mistaken
536 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
537 * efficiently by most CPU architectures.
538 */
539#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
540
541static inline int PageBuddy(struct page *page)
542{
543 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
544}
545
546static inline void __SetPageBuddy(struct page *page)
547{
548 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
549 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
550}
551
552static inline void __ClearPageBuddy(struct page *page)
553{
554 VM_BUG_ON_PAGE(!PageBuddy(page), page);
555 atomic_set(&page->_mapcount, -1);
556}
557
558#define PAGE_BALLOON_MAPCOUNT_VALUE (-256)
559
560static inline int PageBalloon(struct page *page)
561{
562 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE;
563}
564
565static inline void __SetPageBalloon(struct page *page)
566{
567 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page);
568 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE);
569}
570
571static inline void __ClearPageBalloon(struct page *page)
572{
573 VM_BUG_ON_PAGE(!PageBalloon(page), page);
574 atomic_set(&page->_mapcount, -1);
575}
576
577void put_page(struct page *page);
578void put_pages_list(struct list_head *pages);
579
580void split_page(struct page *page, unsigned int order);
581int split_free_page(struct page *page);
582
583/*
584 * Compound pages have a destructor function. Provide a
585 * prototype for that function and accessor functions.
586 * These are _only_ valid on the head of a PG_compound page.
587 */
588typedef void compound_page_dtor(struct page *);
589
590static inline void set_compound_page_dtor(struct page *page,
591 compound_page_dtor *dtor)
592{
593 page[1].lru.next = (void *)dtor;
594}
595
596static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
597{
598 return (compound_page_dtor *)page[1].lru.next;
599}
600
601static inline int compound_order(struct page *page)
602{
603 if (!PageHead(page))
604 return 0;
605 return (unsigned long)page[1].lru.prev;
606}
607
608static inline void set_compound_order(struct page *page, unsigned long order)
609{
610 page[1].lru.prev = (void *)order;
611}
612
613#ifdef CONFIG_MMU
614/*
615 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
616 * servicing faults for write access. In the normal case, do always want
617 * pte_mkwrite. But get_user_pages can cause write faults for mappings
618 * that do not have writing enabled, when used by access_process_vm.
619 */
620static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
621{
622 if (likely(vma->vm_flags & VM_WRITE))
623 pte = pte_mkwrite(pte);
624 return pte;
625}
626
627void do_set_pte(struct vm_area_struct *vma, unsigned long address,
628 struct page *page, pte_t *pte, bool write, bool anon);
629#endif
630
631/*
632 * Multiple processes may "see" the same page. E.g. for untouched
633 * mappings of /dev/null, all processes see the same page full of
634 * zeroes, and text pages of executables and shared libraries have
635 * only one copy in memory, at most, normally.
636 *
637 * For the non-reserved pages, page_count(page) denotes a reference count.
638 * page_count() == 0 means the page is free. page->lru is then used for
639 * freelist management in the buddy allocator.
640 * page_count() > 0 means the page has been allocated.
641 *
642 * Pages are allocated by the slab allocator in order to provide memory
643 * to kmalloc and kmem_cache_alloc. In this case, the management of the
644 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
645 * unless a particular usage is carefully commented. (the responsibility of
646 * freeing the kmalloc memory is the caller's, of course).
647 *
648 * A page may be used by anyone else who does a __get_free_page().
649 * In this case, page_count still tracks the references, and should only
650 * be used through the normal accessor functions. The top bits of page->flags
651 * and page->virtual store page management information, but all other fields
652 * are unused and could be used privately, carefully. The management of this
653 * page is the responsibility of the one who allocated it, and those who have
654 * subsequently been given references to it.
655 *
656 * The other pages (we may call them "pagecache pages") are completely
657 * managed by the Linux memory manager: I/O, buffers, swapping etc.
658 * The following discussion applies only to them.
659 *
660 * A pagecache page contains an opaque `private' member, which belongs to the
661 * page's address_space. Usually, this is the address of a circular list of
662 * the page's disk buffers. PG_private must be set to tell the VM to call
663 * into the filesystem to release these pages.
664 *
665 * A page may belong to an inode's memory mapping. In this case, page->mapping
666 * is the pointer to the inode, and page->index is the file offset of the page,
667 * in units of PAGE_CACHE_SIZE.
668 *
669 * If pagecache pages are not associated with an inode, they are said to be
670 * anonymous pages. These may become associated with the swapcache, and in that
671 * case PG_swapcache is set, and page->private is an offset into the swapcache.
672 *
673 * In either case (swapcache or inode backed), the pagecache itself holds one
674 * reference to the page. Setting PG_private should also increment the
675 * refcount. The each user mapping also has a reference to the page.
676 *
677 * The pagecache pages are stored in a per-mapping radix tree, which is
678 * rooted at mapping->page_tree, and indexed by offset.
679 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
680 * lists, we instead now tag pages as dirty/writeback in the radix tree.
681 *
682 * All pagecache pages may be subject to I/O:
683 * - inode pages may need to be read from disk,
684 * - inode pages which have been modified and are MAP_SHARED may need
685 * to be written back to the inode on disk,
686 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
687 * modified may need to be swapped out to swap space and (later) to be read
688 * back into memory.
689 */
690
691/*
692 * The zone field is never updated after free_area_init_core()
693 * sets it, so none of the operations on it need to be atomic.
694 */
695
696/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
697#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
698#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
699#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
700#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
701
702/*
703 * Define the bit shifts to access each section. For non-existent
704 * sections we define the shift as 0; that plus a 0 mask ensures
705 * the compiler will optimise away reference to them.
706 */
707#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
708#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
709#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
710#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
711
712/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
713#ifdef NODE_NOT_IN_PAGE_FLAGS
714#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
715#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
716 SECTIONS_PGOFF : ZONES_PGOFF)
717#else
718#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
719#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
720 NODES_PGOFF : ZONES_PGOFF)
721#endif
722
723#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
724
725#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
726#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
727#endif
728
729#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
730#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
731#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
732#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
733#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
734
735static inline enum zone_type page_zonenum(const struct page *page)
736{
737 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
738}
739
740#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
741#define SECTION_IN_PAGE_FLAGS
742#endif
743
744/*
745 * The identification function is mainly used by the buddy allocator for
746 * determining if two pages could be buddies. We are not really identifying
747 * the zone since we could be using the section number id if we do not have
748 * node id available in page flags.
749 * We only guarantee that it will return the same value for two combinable
750 * pages in a zone.
751 */
752static inline int page_zone_id(struct page *page)
753{
754 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
755}
756
757static inline int zone_to_nid(struct zone *zone)
758{
759#ifdef CONFIG_NUMA
760 return zone->node;
761#else
762 return 0;
763#endif
764}
765
766#ifdef NODE_NOT_IN_PAGE_FLAGS
767extern int page_to_nid(const struct page *page);
768#else
769static inline int page_to_nid(const struct page *page)
770{
771 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
772}
773#endif
774
775#ifdef CONFIG_NUMA_BALANCING
776static inline int cpu_pid_to_cpupid(int cpu, int pid)
777{
778 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
779}
780
781static inline int cpupid_to_pid(int cpupid)
782{
783 return cpupid & LAST__PID_MASK;
784}
785
786static inline int cpupid_to_cpu(int cpupid)
787{
788 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
789}
790
791static inline int cpupid_to_nid(int cpupid)
792{
793 return cpu_to_node(cpupid_to_cpu(cpupid));
794}
795
796static inline bool cpupid_pid_unset(int cpupid)
797{
798 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
799}
800
801static inline bool cpupid_cpu_unset(int cpupid)
802{
803 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
804}
805
806static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
807{
808 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
809}
810
811#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
812#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
813static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
814{
815 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
816}
817
818static inline int page_cpupid_last(struct page *page)
819{
820 return page->_last_cpupid;
821}
822static inline void page_cpupid_reset_last(struct page *page)
823{
824 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
825}
826#else
827static inline int page_cpupid_last(struct page *page)
828{
829 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
830}
831
832extern int page_cpupid_xchg_last(struct page *page, int cpupid);
833
834static inline void page_cpupid_reset_last(struct page *page)
835{
836 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
837
838 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
839 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
840}
841#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
842#else /* !CONFIG_NUMA_BALANCING */
843static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
844{
845 return page_to_nid(page); /* XXX */
846}
847
848static inline int page_cpupid_last(struct page *page)
849{
850 return page_to_nid(page); /* XXX */
851}
852
853static inline int cpupid_to_nid(int cpupid)
854{
855 return -1;
856}
857
858static inline int cpupid_to_pid(int cpupid)
859{
860 return -1;
861}
862
863static inline int cpupid_to_cpu(int cpupid)
864{
865 return -1;
866}
867
868static inline int cpu_pid_to_cpupid(int nid, int pid)
869{
870 return -1;
871}
872
873static inline bool cpupid_pid_unset(int cpupid)
874{
875 return 1;
876}
877
878static inline void page_cpupid_reset_last(struct page *page)
879{
880}
881
882static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
883{
884 return false;
885}
886#endif /* CONFIG_NUMA_BALANCING */
887
888static inline struct zone *page_zone(const struct page *page)
889{
890 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
891}
892
893#ifdef SECTION_IN_PAGE_FLAGS
894static inline void set_page_section(struct page *page, unsigned long section)
895{
896 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
897 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
898}
899
900static inline unsigned long page_to_section(const struct page *page)
901{
902 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
903}
904#endif
905
906static inline void set_page_zone(struct page *page, enum zone_type zone)
907{
908 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
909 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
910}
911
912static inline void set_page_node(struct page *page, unsigned long node)
913{
914 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
915 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
916}
917
918static inline void set_page_links(struct page *page, enum zone_type zone,
919 unsigned long node, unsigned long pfn)
920{
921 set_page_zone(page, zone);
922 set_page_node(page, node);
923#ifdef SECTION_IN_PAGE_FLAGS
924 set_page_section(page, pfn_to_section_nr(pfn));
925#endif
926}
927
928/*
929 * Some inline functions in vmstat.h depend on page_zone()
930 */
931#include <linux/vmstat.h>
932
933static __always_inline void *lowmem_page_address(const struct page *page)
934{
935 return __va(PFN_PHYS(page_to_pfn(page)));
936}
937
938#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
939#define HASHED_PAGE_VIRTUAL
940#endif
941
942#if defined(WANT_PAGE_VIRTUAL)
943static inline void *page_address(const struct page *page)
944{
945 return page->virtual;
946}
947static inline void set_page_address(struct page *page, void *address)
948{
949 page->virtual = address;
950}
951#define page_address_init() do { } while(0)
952#endif
953
954#if defined(HASHED_PAGE_VIRTUAL)
955void *page_address(const struct page *page);
956void set_page_address(struct page *page, void *virtual);
957void page_address_init(void);
958#endif
959
960#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
961#define page_address(page) lowmem_page_address(page)
962#define set_page_address(page, address) do { } while(0)
963#define page_address_init() do { } while(0)
964#endif
965
966/*
967 * On an anonymous page mapped into a user virtual memory area,
968 * page->mapping points to its anon_vma, not to a struct address_space;
969 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
970 *
971 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
972 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
973 * and then page->mapping points, not to an anon_vma, but to a private
974 * structure which KSM associates with that merged page. See ksm.h.
975 *
976 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
977 *
978 * Please note that, confusingly, "page_mapping" refers to the inode
979 * address_space which maps the page from disk; whereas "page_mapped"
980 * refers to user virtual address space into which the page is mapped.
981 */
982#define PAGE_MAPPING_ANON 1
983#define PAGE_MAPPING_KSM 2
984#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
985
986extern struct address_space *page_mapping(struct page *page);
987
988/* Neutral page->mapping pointer to address_space or anon_vma or other */
989static inline void *page_rmapping(struct page *page)
990{
991 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
992}
993
994extern struct address_space *__page_file_mapping(struct page *);
995
996static inline
997struct address_space *page_file_mapping(struct page *page)
998{
999 if (unlikely(PageSwapCache(page)))
1000 return __page_file_mapping(page);
1001
1002 return page->mapping;
1003}
1004
1005static inline int PageAnon(struct page *page)
1006{
1007 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
1008}
1009
1010/*
1011 * Return the pagecache index of the passed page. Regular pagecache pages
1012 * use ->index whereas swapcache pages use ->private
1013 */
1014static inline pgoff_t page_index(struct page *page)
1015{
1016 if (unlikely(PageSwapCache(page)))
1017 return page_private(page);
1018 return page->index;
1019}
1020
1021extern pgoff_t __page_file_index(struct page *page);
1022
1023/*
1024 * Return the file index of the page. Regular pagecache pages use ->index
1025 * whereas swapcache pages use swp_offset(->private)
1026 */
1027static inline pgoff_t page_file_index(struct page *page)
1028{
1029 if (unlikely(PageSwapCache(page)))
1030 return __page_file_index(page);
1031
1032 return page->index;
1033}
1034
1035/*
1036 * Return true if this page is mapped into pagetables.
1037 */
1038static inline int page_mapped(struct page *page)
1039{
1040 return atomic_read(&(page)->_mapcount) >= 0;
1041}
1042
1043/*
1044 * Different kinds of faults, as returned by handle_mm_fault().
1045 * Used to decide whether a process gets delivered SIGBUS or
1046 * just gets major/minor fault counters bumped up.
1047 */
1048
1049#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
1050
1051#define VM_FAULT_OOM 0x0001
1052#define VM_FAULT_SIGBUS 0x0002
1053#define VM_FAULT_MAJOR 0x0004
1054#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
1055#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1056#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
1057
1058#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1059#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
1060#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
1061#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1062
1063#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1064
1065#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
1066 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
1067
1068/* Encode hstate index for a hwpoisoned large page */
1069#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1070#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1071
1072/*
1073 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1074 */
1075extern void pagefault_out_of_memory(void);
1076
1077#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1078
1079/*
1080 * Flags passed to show_mem() and show_free_areas() to suppress output in
1081 * various contexts.
1082 */
1083#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1084
1085extern void show_free_areas(unsigned int flags);
1086extern bool skip_free_areas_node(unsigned int flags, int nid);
1087
1088int shmem_zero_setup(struct vm_area_struct *);
1089#ifdef CONFIG_SHMEM
1090bool shmem_mapping(struct address_space *mapping);
1091#else
1092static inline bool shmem_mapping(struct address_space *mapping)
1093{
1094 return false;
1095}
1096#endif
1097
1098extern int can_do_mlock(void);
1099extern int user_shm_lock(size_t, struct user_struct *);
1100extern void user_shm_unlock(size_t, struct user_struct *);
1101
1102/*
1103 * Parameter block passed down to zap_pte_range in exceptional cases.
1104 */
1105struct zap_details {
1106 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
1107 struct address_space *check_mapping; /* Check page->mapping if set */
1108 pgoff_t first_index; /* Lowest page->index to unmap */
1109 pgoff_t last_index; /* Highest page->index to unmap */
1110};
1111
1112struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1113 pte_t pte);
1114
1115int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1116 unsigned long size);
1117void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1118 unsigned long size, struct zap_details *);
1119void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1120 unsigned long start, unsigned long end);
1121
1122/**
1123 * mm_walk - callbacks for walk_page_range
1124 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
1125 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1126 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1127 * this handler is required to be able to handle
1128 * pmd_trans_huge() pmds. They may simply choose to
1129 * split_huge_page() instead of handling it explicitly.
1130 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1131 * @pte_hole: if set, called for each hole at all levels
1132 * @hugetlb_entry: if set, called for each hugetlb entry
1133 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1134 * is used.
1135 *
1136 * (see walk_page_range for more details)
1137 */
1138struct mm_walk {
1139 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1140 unsigned long next, struct mm_walk *walk);
1141 int (*pud_entry)(pud_t *pud, unsigned long addr,
1142 unsigned long next, struct mm_walk *walk);
1143 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1144 unsigned long next, struct mm_walk *walk);
1145 int (*pte_entry)(pte_t *pte, unsigned long addr,
1146 unsigned long next, struct mm_walk *walk);
1147 int (*pte_hole)(unsigned long addr, unsigned long next,
1148 struct mm_walk *walk);
1149 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1150 unsigned long addr, unsigned long next,
1151 struct mm_walk *walk);
1152 struct mm_struct *mm;
1153 void *private;
1154};
1155
1156int walk_page_range(unsigned long addr, unsigned long end,
1157 struct mm_walk *walk);
1158void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1159 unsigned long end, unsigned long floor, unsigned long ceiling);
1160int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1161 struct vm_area_struct *vma);
1162void unmap_mapping_range(struct address_space *mapping,
1163 loff_t const holebegin, loff_t const holelen, int even_cows);
1164int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1165 unsigned long *pfn);
1166int follow_phys(struct vm_area_struct *vma, unsigned long address,
1167 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1168int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1169 void *buf, int len, int write);
1170
1171static inline void unmap_shared_mapping_range(struct address_space *mapping,
1172 loff_t const holebegin, loff_t const holelen)
1173{
1174 unmap_mapping_range(mapping, holebegin, holelen, 0);
1175}
1176
1177extern void truncate_pagecache(struct inode *inode, loff_t new);
1178extern void truncate_setsize(struct inode *inode, loff_t newsize);
1179void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1180void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1181int truncate_inode_page(struct address_space *mapping, struct page *page);
1182int generic_error_remove_page(struct address_space *mapping, struct page *page);
1183int invalidate_inode_page(struct page *page);
1184
1185#ifdef CONFIG_MMU
1186extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1187 unsigned long address, unsigned int flags);
1188extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long address, unsigned int fault_flags);
1190#else
1191static inline int handle_mm_fault(struct mm_struct *mm,
1192 struct vm_area_struct *vma, unsigned long address,
1193 unsigned int flags)
1194{
1195 /* should never happen if there's no MMU */
1196 BUG();
1197 return VM_FAULT_SIGBUS;
1198}
1199static inline int fixup_user_fault(struct task_struct *tsk,
1200 struct mm_struct *mm, unsigned long address,
1201 unsigned int fault_flags)
1202{
1203 /* should never happen if there's no MMU */
1204 BUG();
1205 return -EFAULT;
1206}
1207#endif
1208
1209extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1210extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1211 void *buf, int len, int write);
1212
1213long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 unsigned int foll_flags, struct page **pages,
1216 struct vm_area_struct **vmas, int *nonblocking);
1217long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages,
1220 struct vm_area_struct **vmas);
1221int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1222 struct page **pages);
1223struct kvec;
1224int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1225 struct page **pages);
1226int get_kernel_page(unsigned long start, int write, struct page **pages);
1227struct page *get_dump_page(unsigned long addr);
1228
1229extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1230extern void do_invalidatepage(struct page *page, unsigned int offset,
1231 unsigned int length);
1232
1233int __set_page_dirty_nobuffers(struct page *page);
1234int __set_page_dirty_no_writeback(struct page *page);
1235int redirty_page_for_writepage(struct writeback_control *wbc,
1236 struct page *page);
1237void account_page_dirtied(struct page *page, struct address_space *mapping);
1238int set_page_dirty(struct page *page);
1239int set_page_dirty_lock(struct page *page);
1240int clear_page_dirty_for_io(struct page *page);
1241int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1242
1243/* Is the vma a continuation of the stack vma above it? */
1244static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1245{
1246 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1247}
1248
1249static inline int stack_guard_page_start(struct vm_area_struct *vma,
1250 unsigned long addr)
1251{
1252 return (vma->vm_flags & VM_GROWSDOWN) &&
1253 (vma->vm_start == addr) &&
1254 !vma_growsdown(vma->vm_prev, addr);
1255}
1256
1257/* Is the vma a continuation of the stack vma below it? */
1258static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1259{
1260 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1261}
1262
1263static inline int stack_guard_page_end(struct vm_area_struct *vma,
1264 unsigned long addr)
1265{
1266 return (vma->vm_flags & VM_GROWSUP) &&
1267 (vma->vm_end == addr) &&
1268 !vma_growsup(vma->vm_next, addr);
1269}
1270
1271extern struct task_struct *task_of_stack(struct task_struct *task,
1272 struct vm_area_struct *vma, bool in_group);
1273
1274extern unsigned long move_page_tables(struct vm_area_struct *vma,
1275 unsigned long old_addr, struct vm_area_struct *new_vma,
1276 unsigned long new_addr, unsigned long len,
1277 bool need_rmap_locks);
1278extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1279 unsigned long end, pgprot_t newprot,
1280 int dirty_accountable, int prot_numa);
1281extern int mprotect_fixup(struct vm_area_struct *vma,
1282 struct vm_area_struct **pprev, unsigned long start,
1283 unsigned long end, unsigned long newflags);
1284
1285/*
1286 * doesn't attempt to fault and will return short.
1287 */
1288int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1289 struct page **pages);
1290/*
1291 * per-process(per-mm_struct) statistics.
1292 */
1293static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1294{
1295 long val = atomic_long_read(&mm->rss_stat.count[member]);
1296
1297#ifdef SPLIT_RSS_COUNTING
1298 /*
1299 * counter is updated in asynchronous manner and may go to minus.
1300 * But it's never be expected number for users.
1301 */
1302 if (val < 0)
1303 val = 0;
1304#endif
1305 return (unsigned long)val;
1306}
1307
1308static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1309{
1310 atomic_long_add(value, &mm->rss_stat.count[member]);
1311}
1312
1313static inline void inc_mm_counter(struct mm_struct *mm, int member)
1314{
1315 atomic_long_inc(&mm->rss_stat.count[member]);
1316}
1317
1318static inline void dec_mm_counter(struct mm_struct *mm, int member)
1319{
1320 atomic_long_dec(&mm->rss_stat.count[member]);
1321}
1322
1323static inline unsigned long get_mm_rss(struct mm_struct *mm)
1324{
1325 return get_mm_counter(mm, MM_FILEPAGES) +
1326 get_mm_counter(mm, MM_ANONPAGES);
1327}
1328
1329static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1330{
1331 return max(mm->hiwater_rss, get_mm_rss(mm));
1332}
1333
1334static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1335{
1336 return max(mm->hiwater_vm, mm->total_vm);
1337}
1338
1339static inline void update_hiwater_rss(struct mm_struct *mm)
1340{
1341 unsigned long _rss = get_mm_rss(mm);
1342
1343 if ((mm)->hiwater_rss < _rss)
1344 (mm)->hiwater_rss = _rss;
1345}
1346
1347static inline void update_hiwater_vm(struct mm_struct *mm)
1348{
1349 if (mm->hiwater_vm < mm->total_vm)
1350 mm->hiwater_vm = mm->total_vm;
1351}
1352
1353static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1354 struct mm_struct *mm)
1355{
1356 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1357
1358 if (*maxrss < hiwater_rss)
1359 *maxrss = hiwater_rss;
1360}
1361
1362#if defined(SPLIT_RSS_COUNTING)
1363void sync_mm_rss(struct mm_struct *mm);
1364#else
1365static inline void sync_mm_rss(struct mm_struct *mm)
1366{
1367}
1368#endif
1369
1370int vma_wants_writenotify(struct vm_area_struct *vma);
1371
1372extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1373 spinlock_t **ptl);
1374static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1375 spinlock_t **ptl)
1376{
1377 pte_t *ptep;
1378 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1379 return ptep;
1380}
1381
1382#ifdef __PAGETABLE_PUD_FOLDED
1383static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1384 unsigned long address)
1385{
1386 return 0;
1387}
1388#else
1389int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1390#endif
1391
1392#ifdef __PAGETABLE_PMD_FOLDED
1393static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1394 unsigned long address)
1395{
1396 return 0;
1397}
1398#else
1399int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1400#endif
1401
1402int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1403 pmd_t *pmd, unsigned long address);
1404int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1405
1406/*
1407 * The following ifdef needed to get the 4level-fixup.h header to work.
1408 * Remove it when 4level-fixup.h has been removed.
1409 */
1410#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1411static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1412{
1413 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1414 NULL: pud_offset(pgd, address);
1415}
1416
1417static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1418{
1419 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1420 NULL: pmd_offset(pud, address);
1421}
1422#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1423
1424#if USE_SPLIT_PTE_PTLOCKS
1425#if ALLOC_SPLIT_PTLOCKS
1426void __init ptlock_cache_init(void);
1427extern bool ptlock_alloc(struct page *page);
1428extern void ptlock_free(struct page *page);
1429
1430static inline spinlock_t *ptlock_ptr(struct page *page)
1431{
1432 return page->ptl;
1433}
1434#else /* ALLOC_SPLIT_PTLOCKS */
1435static inline void ptlock_cache_init(void)
1436{
1437}
1438
1439static inline bool ptlock_alloc(struct page *page)
1440{
1441 return true;
1442}
1443
1444static inline void ptlock_free(struct page *page)
1445{
1446}
1447
1448static inline spinlock_t *ptlock_ptr(struct page *page)
1449{
1450 return &page->ptl;
1451}
1452#endif /* ALLOC_SPLIT_PTLOCKS */
1453
1454static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1455{
1456 return ptlock_ptr(pmd_page(*pmd));
1457}
1458
1459static inline bool ptlock_init(struct page *page)
1460{
1461 /*
1462 * prep_new_page() initialize page->private (and therefore page->ptl)
1463 * with 0. Make sure nobody took it in use in between.
1464 *
1465 * It can happen if arch try to use slab for page table allocation:
1466 * slab code uses page->slab_cache and page->first_page (for tail
1467 * pages), which share storage with page->ptl.
1468 */
1469 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1470 if (!ptlock_alloc(page))
1471 return false;
1472 spin_lock_init(ptlock_ptr(page));
1473 return true;
1474}
1475
1476/* Reset page->mapping so free_pages_check won't complain. */
1477static inline void pte_lock_deinit(struct page *page)
1478{
1479 page->mapping = NULL;
1480 ptlock_free(page);
1481}
1482
1483#else /* !USE_SPLIT_PTE_PTLOCKS */
1484/*
1485 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1486 */
1487static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1488{
1489 return &mm->page_table_lock;
1490}
1491static inline void ptlock_cache_init(void) {}
1492static inline bool ptlock_init(struct page *page) { return true; }
1493static inline void pte_lock_deinit(struct page *page) {}
1494#endif /* USE_SPLIT_PTE_PTLOCKS */
1495
1496static inline void pgtable_init(void)
1497{
1498 ptlock_cache_init();
1499 pgtable_cache_init();
1500}
1501
1502static inline bool pgtable_page_ctor(struct page *page)
1503{
1504 inc_zone_page_state(page, NR_PAGETABLE);
1505 return ptlock_init(page);
1506}
1507
1508static inline void pgtable_page_dtor(struct page *page)
1509{
1510 pte_lock_deinit(page);
1511 dec_zone_page_state(page, NR_PAGETABLE);
1512}
1513
1514#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1515({ \
1516 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
1517 pte_t *__pte = pte_offset_map(pmd, address); \
1518 *(ptlp) = __ptl; \
1519 spin_lock(__ptl); \
1520 __pte; \
1521})
1522
1523#define pte_unmap_unlock(pte, ptl) do { \
1524 spin_unlock(ptl); \
1525 pte_unmap(pte); \
1526} while (0)
1527
1528#define pte_alloc_map(mm, vma, pmd, address) \
1529 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1530 pmd, address))? \
1531 NULL: pte_offset_map(pmd, address))
1532
1533#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
1534 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1535 pmd, address))? \
1536 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1537
1538#define pte_alloc_kernel(pmd, address) \
1539 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1540 NULL: pte_offset_kernel(pmd, address))
1541
1542#if USE_SPLIT_PMD_PTLOCKS
1543
1544static struct page *pmd_to_page(pmd_t *pmd)
1545{
1546 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1547 return virt_to_page((void *)((unsigned long) pmd & mask));
1548}
1549
1550static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1551{
1552 return ptlock_ptr(pmd_to_page(pmd));
1553}
1554
1555static inline bool pgtable_pmd_page_ctor(struct page *page)
1556{
1557#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558 page->pmd_huge_pte = NULL;
1559#endif
1560 return ptlock_init(page);
1561}
1562
1563static inline void pgtable_pmd_page_dtor(struct page *page)
1564{
1565#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1566 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1567#endif
1568 ptlock_free(page);
1569}
1570
1571#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1572
1573#else
1574
1575static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1576{
1577 return &mm->page_table_lock;
1578}
1579
1580static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1581static inline void pgtable_pmd_page_dtor(struct page *page) {}
1582
1583#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1584
1585#endif
1586
1587static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1588{
1589 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1590 spin_lock(ptl);
1591 return ptl;
1592}
1593
1594extern void free_area_init(unsigned long * zones_size);
1595extern void free_area_init_node(int nid, unsigned long * zones_size,
1596 unsigned long zone_start_pfn, unsigned long *zholes_size);
1597extern void free_initmem(void);
1598
1599/*
1600 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1601 * into the buddy system. The freed pages will be poisoned with pattern
1602 * "poison" if it's within range [0, UCHAR_MAX].
1603 * Return pages freed into the buddy system.
1604 */
1605extern unsigned long free_reserved_area(void *start, void *end,
1606 int poison, char *s);
1607
1608#ifdef CONFIG_HIGHMEM
1609/*
1610 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1611 * and totalram_pages.
1612 */
1613extern void free_highmem_page(struct page *page);
1614#endif
1615
1616extern void adjust_managed_page_count(struct page *page, long count);
1617extern void mem_init_print_info(const char *str);
1618
1619/* Free the reserved page into the buddy system, so it gets managed. */
1620static inline void __free_reserved_page(struct page *page)
1621{
1622 ClearPageReserved(page);
1623 init_page_count(page);
1624 __free_page(page);
1625}
1626
1627static inline void free_reserved_page(struct page *page)
1628{
1629 __free_reserved_page(page);
1630 adjust_managed_page_count(page, 1);
1631}
1632
1633static inline void mark_page_reserved(struct page *page)
1634{
1635 SetPageReserved(page);
1636 adjust_managed_page_count(page, -1);
1637}
1638
1639/*
1640 * Default method to free all the __init memory into the buddy system.
1641 * The freed pages will be poisoned with pattern "poison" if it's within
1642 * range [0, UCHAR_MAX].
1643 * Return pages freed into the buddy system.
1644 */
1645static inline unsigned long free_initmem_default(int poison)
1646{
1647 extern char __init_begin[], __init_end[];
1648
1649 return free_reserved_area(&__init_begin, &__init_end,
1650 poison, "unused kernel");
1651}
1652
1653static inline unsigned long get_num_physpages(void)
1654{
1655 int nid;
1656 unsigned long phys_pages = 0;
1657
1658 for_each_online_node(nid)
1659 phys_pages += node_present_pages(nid);
1660
1661 return phys_pages;
1662}
1663
1664#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1665/*
1666 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1667 * zones, allocate the backing mem_map and account for memory holes in a more
1668 * architecture independent manner. This is a substitute for creating the
1669 * zone_sizes[] and zholes_size[] arrays and passing them to
1670 * free_area_init_node()
1671 *
1672 * An architecture is expected to register range of page frames backed by
1673 * physical memory with memblock_add[_node]() before calling
1674 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1675 * usage, an architecture is expected to do something like
1676 *
1677 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1678 * max_highmem_pfn};
1679 * for_each_valid_physical_page_range()
1680 * memblock_add_node(base, size, nid)
1681 * free_area_init_nodes(max_zone_pfns);
1682 *
1683 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1684 * registered physical page range. Similarly
1685 * sparse_memory_present_with_active_regions() calls memory_present() for
1686 * each range when SPARSEMEM is enabled.
1687 *
1688 * See mm/page_alloc.c for more information on each function exposed by
1689 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1690 */
1691extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1692unsigned long node_map_pfn_alignment(void);
1693unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1694 unsigned long end_pfn);
1695extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1696 unsigned long end_pfn);
1697extern void get_pfn_range_for_nid(unsigned int nid,
1698 unsigned long *start_pfn, unsigned long *end_pfn);
1699extern unsigned long find_min_pfn_with_active_regions(void);
1700extern void free_bootmem_with_active_regions(int nid,
1701 unsigned long max_low_pfn);
1702extern void sparse_memory_present_with_active_regions(int nid);
1703
1704#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1705
1706#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1707 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1708static inline int __early_pfn_to_nid(unsigned long pfn)
1709{
1710 return 0;
1711}
1712#else
1713/* please see mm/page_alloc.c */
1714extern int __meminit early_pfn_to_nid(unsigned long pfn);
1715/* there is a per-arch backend function. */
1716extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1717#endif
1718
1719extern void set_dma_reserve(unsigned long new_dma_reserve);
1720extern void memmap_init_zone(unsigned long, int, unsigned long,
1721 unsigned long, enum memmap_context);
1722extern void setup_per_zone_wmarks(void);
1723extern int __meminit init_per_zone_wmark_min(void);
1724extern void mem_init(void);
1725extern void __init mmap_init(void);
1726extern void show_mem(unsigned int flags);
1727extern void si_meminfo(struct sysinfo * val);
1728extern void si_meminfo_node(struct sysinfo *val, int nid);
1729
1730extern __printf(3, 4)
1731void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1732
1733extern void setup_per_cpu_pageset(void);
1734
1735extern void zone_pcp_update(struct zone *zone);
1736extern void zone_pcp_reset(struct zone *zone);
1737
1738/* page_alloc.c */
1739extern int min_free_kbytes;
1740
1741/* nommu.c */
1742extern atomic_long_t mmap_pages_allocated;
1743extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1744
1745/* interval_tree.c */
1746void vma_interval_tree_insert(struct vm_area_struct *node,
1747 struct rb_root *root);
1748void vma_interval_tree_insert_after(struct vm_area_struct *node,
1749 struct vm_area_struct *prev,
1750 struct rb_root *root);
1751void vma_interval_tree_remove(struct vm_area_struct *node,
1752 struct rb_root *root);
1753struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1754 unsigned long start, unsigned long last);
1755struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1756 unsigned long start, unsigned long last);
1757
1758#define vma_interval_tree_foreach(vma, root, start, last) \
1759 for (vma = vma_interval_tree_iter_first(root, start, last); \
1760 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1761
1762static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1763 struct list_head *list)
1764{
1765 list_add_tail(&vma->shared.nonlinear, list);
1766}
1767
1768void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1769 struct rb_root *root);
1770void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1771 struct rb_root *root);
1772struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1773 struct rb_root *root, unsigned long start, unsigned long last);
1774struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1775 struct anon_vma_chain *node, unsigned long start, unsigned long last);
1776#ifdef CONFIG_DEBUG_VM_RB
1777void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1778#endif
1779
1780#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1781 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1782 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1783
1784/* mmap.c */
1785extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1786extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1787 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1788extern struct vm_area_struct *vma_merge(struct mm_struct *,
1789 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1790 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1791 struct mempolicy *);
1792extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1793extern int split_vma(struct mm_struct *,
1794 struct vm_area_struct *, unsigned long addr, int new_below);
1795extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1796extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1797 struct rb_node **, struct rb_node *);
1798extern void unlink_file_vma(struct vm_area_struct *);
1799extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1800 unsigned long addr, unsigned long len, pgoff_t pgoff,
1801 bool *need_rmap_locks);
1802extern void exit_mmap(struct mm_struct *);
1803
1804static inline int check_data_rlimit(unsigned long rlim,
1805 unsigned long new,
1806 unsigned long start,
1807 unsigned long end_data,
1808 unsigned long start_data)
1809{
1810 if (rlim < RLIM_INFINITY) {
1811 if (((new - start) + (end_data - start_data)) > rlim)
1812 return -ENOSPC;
1813 }
1814
1815 return 0;
1816}
1817
1818extern int mm_take_all_locks(struct mm_struct *mm);
1819extern void mm_drop_all_locks(struct mm_struct *mm);
1820
1821extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1822extern struct file *get_mm_exe_file(struct mm_struct *mm);
1823
1824extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1825extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1826 unsigned long addr, unsigned long len,
1827 unsigned long flags,
1828 const struct vm_special_mapping *spec);
1829/* This is an obsolete alternative to _install_special_mapping. */
1830extern int install_special_mapping(struct mm_struct *mm,
1831 unsigned long addr, unsigned long len,
1832 unsigned long flags, struct page **pages);
1833
1834extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1835
1836extern unsigned long mmap_region(struct file *file, unsigned long addr,
1837 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1838extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1839 unsigned long len, unsigned long prot, unsigned long flags,
1840 unsigned long pgoff, unsigned long *populate);
1841extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1842
1843#ifdef CONFIG_MMU
1844extern int __mm_populate(unsigned long addr, unsigned long len,
1845 int ignore_errors);
1846static inline void mm_populate(unsigned long addr, unsigned long len)
1847{
1848 /* Ignore errors */
1849 (void) __mm_populate(addr, len, 1);
1850}
1851#else
1852static inline void mm_populate(unsigned long addr, unsigned long len) {}
1853#endif
1854
1855/* These take the mm semaphore themselves */
1856extern unsigned long vm_brk(unsigned long, unsigned long);
1857extern int vm_munmap(unsigned long, size_t);
1858extern unsigned long vm_mmap(struct file *, unsigned long,
1859 unsigned long, unsigned long,
1860 unsigned long, unsigned long);
1861
1862struct vm_unmapped_area_info {
1863#define VM_UNMAPPED_AREA_TOPDOWN 1
1864 unsigned long flags;
1865 unsigned long length;
1866 unsigned long low_limit;
1867 unsigned long high_limit;
1868 unsigned long align_mask;
1869 unsigned long align_offset;
1870};
1871
1872extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1873extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1874
1875/*
1876 * Search for an unmapped address range.
1877 *
1878 * We are looking for a range that:
1879 * - does not intersect with any VMA;
1880 * - is contained within the [low_limit, high_limit) interval;
1881 * - is at least the desired size.
1882 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1883 */
1884static inline unsigned long
1885vm_unmapped_area(struct vm_unmapped_area_info *info)
1886{
1887 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1888 return unmapped_area(info);
1889 else
1890 return unmapped_area_topdown(info);
1891}
1892
1893/* truncate.c */
1894extern void truncate_inode_pages(struct address_space *, loff_t);
1895extern void truncate_inode_pages_range(struct address_space *,
1896 loff_t lstart, loff_t lend);
1897extern void truncate_inode_pages_final(struct address_space *);
1898
1899/* generic vm_area_ops exported for stackable file systems */
1900extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1901extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1902extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1903
1904/* mm/page-writeback.c */
1905int write_one_page(struct page *page, int wait);
1906void task_dirty_inc(struct task_struct *tsk);
1907
1908/* readahead.c */
1909#define VM_MAX_READAHEAD 128 /* kbytes */
1910#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1911
1912int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1913 pgoff_t offset, unsigned long nr_to_read);
1914
1915void page_cache_sync_readahead(struct address_space *mapping,
1916 struct file_ra_state *ra,
1917 struct file *filp,
1918 pgoff_t offset,
1919 unsigned long size);
1920
1921void page_cache_async_readahead(struct address_space *mapping,
1922 struct file_ra_state *ra,
1923 struct file *filp,
1924 struct page *pg,
1925 pgoff_t offset,
1926 unsigned long size);
1927
1928unsigned long max_sane_readahead(unsigned long nr);
1929
1930/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1931extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1932
1933/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1934extern int expand_downwards(struct vm_area_struct *vma,
1935 unsigned long address);
1936#if VM_GROWSUP
1937extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1938#else
1939 #define expand_upwards(vma, address) do { } while (0)
1940#endif
1941
1942/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1943extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1944extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1945 struct vm_area_struct **pprev);
1946
1947/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1948 NULL if none. Assume start_addr < end_addr. */
1949static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1950{
1951 struct vm_area_struct * vma = find_vma(mm,start_addr);
1952
1953 if (vma && end_addr <= vma->vm_start)
1954 vma = NULL;
1955 return vma;
1956}
1957
1958static inline unsigned long vma_pages(struct vm_area_struct *vma)
1959{
1960 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1961}
1962
1963/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1964static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1965 unsigned long vm_start, unsigned long vm_end)
1966{
1967 struct vm_area_struct *vma = find_vma(mm, vm_start);
1968
1969 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1970 vma = NULL;
1971
1972 return vma;
1973}
1974
1975#ifdef CONFIG_MMU
1976pgprot_t vm_get_page_prot(unsigned long vm_flags);
1977void vma_set_page_prot(struct vm_area_struct *vma);
1978#else
1979static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1980{
1981 return __pgprot(0);
1982}
1983static inline void vma_set_page_prot(struct vm_area_struct *vma)
1984{
1985 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1986}
1987#endif
1988
1989#ifdef CONFIG_NUMA_BALANCING
1990unsigned long change_prot_numa(struct vm_area_struct *vma,
1991 unsigned long start, unsigned long end);
1992#endif
1993
1994struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1995int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1996 unsigned long pfn, unsigned long size, pgprot_t);
1997int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1998int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1999 unsigned long pfn);
2000int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2001 unsigned long pfn);
2002int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2003
2004
2005struct page *follow_page_mask(struct vm_area_struct *vma,
2006 unsigned long address, unsigned int foll_flags,
2007 unsigned int *page_mask);
2008
2009static inline struct page *follow_page(struct vm_area_struct *vma,
2010 unsigned long address, unsigned int foll_flags)
2011{
2012 unsigned int unused_page_mask;
2013 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2014}
2015
2016#define FOLL_WRITE 0x01 /* check pte is writable */
2017#define FOLL_TOUCH 0x02 /* mark page accessed */
2018#define FOLL_GET 0x04 /* do get_page on page */
2019#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2020#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2021#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2022 * and return without waiting upon it */
2023#define FOLL_MLOCK 0x40 /* mark page as mlocked */
2024#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
2025#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2026#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2027#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2028#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2029
2030typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2031 void *data);
2032extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2033 unsigned long size, pte_fn_t fn, void *data);
2034
2035#ifdef CONFIG_PROC_FS
2036void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2037#else
2038static inline void vm_stat_account(struct mm_struct *mm,
2039 unsigned long flags, struct file *file, long pages)
2040{
2041 mm->total_vm += pages;
2042}
2043#endif /* CONFIG_PROC_FS */
2044
2045#ifdef CONFIG_DEBUG_PAGEALLOC
2046extern void kernel_map_pages(struct page *page, int numpages, int enable);
2047#ifdef CONFIG_HIBERNATION
2048extern bool kernel_page_present(struct page *page);
2049#endif /* CONFIG_HIBERNATION */
2050#else
2051static inline void
2052kernel_map_pages(struct page *page, int numpages, int enable) {}
2053#ifdef CONFIG_HIBERNATION
2054static inline bool kernel_page_present(struct page *page) { return true; }
2055#endif /* CONFIG_HIBERNATION */
2056#endif
2057
2058#ifdef __HAVE_ARCH_GATE_AREA
2059extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2060extern int in_gate_area_no_mm(unsigned long addr);
2061extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2062#else
2063static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2064{
2065 return NULL;
2066}
2067static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2068static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2069{
2070 return 0;
2071}
2072#endif /* __HAVE_ARCH_GATE_AREA */
2073
2074#ifdef CONFIG_SYSCTL
2075extern int sysctl_drop_caches;
2076int drop_caches_sysctl_handler(struct ctl_table *, int,
2077 void __user *, size_t *, loff_t *);
2078#endif
2079
2080unsigned long shrink_slab(struct shrink_control *shrink,
2081 unsigned long nr_pages_scanned,
2082 unsigned long lru_pages);
2083
2084#ifndef CONFIG_MMU
2085#define randomize_va_space 0
2086#else
2087extern int randomize_va_space;
2088#endif
2089
2090const char * arch_vma_name(struct vm_area_struct *vma);
2091void print_vma_addr(char *prefix, unsigned long rip);
2092
2093void sparse_mem_maps_populate_node(struct page **map_map,
2094 unsigned long pnum_begin,
2095 unsigned long pnum_end,
2096 unsigned long map_count,
2097 int nodeid);
2098
2099struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2100pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2101pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2102pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2103pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2104void *vmemmap_alloc_block(unsigned long size, int node);
2105void *vmemmap_alloc_block_buf(unsigned long size, int node);
2106void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2107int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2108 int node);
2109int vmemmap_populate(unsigned long start, unsigned long end, int node);
2110void vmemmap_populate_print_last(void);
2111#ifdef CONFIG_MEMORY_HOTPLUG
2112void vmemmap_free(unsigned long start, unsigned long end);
2113#endif
2114void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2115 unsigned long size);
2116
2117enum mf_flags {
2118 MF_COUNT_INCREASED = 1 << 0,
2119 MF_ACTION_REQUIRED = 1 << 1,
2120 MF_MUST_KILL = 1 << 2,
2121 MF_SOFT_OFFLINE = 1 << 3,
2122};
2123extern int memory_failure(unsigned long pfn, int trapno, int flags);
2124extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2125extern int unpoison_memory(unsigned long pfn);
2126extern int sysctl_memory_failure_early_kill;
2127extern int sysctl_memory_failure_recovery;
2128extern void shake_page(struct page *p, int access);
2129extern atomic_long_t num_poisoned_pages;
2130extern int soft_offline_page(struct page *page, int flags);
2131
2132#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2133extern void clear_huge_page(struct page *page,
2134 unsigned long addr,
2135 unsigned int pages_per_huge_page);
2136extern void copy_user_huge_page(struct page *dst, struct page *src,
2137 unsigned long addr, struct vm_area_struct *vma,
2138 unsigned int pages_per_huge_page);
2139#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2140
2141#ifdef CONFIG_DEBUG_PAGEALLOC
2142extern unsigned int _debug_guardpage_minorder;
2143
2144static inline unsigned int debug_guardpage_minorder(void)
2145{
2146 return _debug_guardpage_minorder;
2147}
2148
2149static inline bool page_is_guard(struct page *page)
2150{
2151 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
2152}
2153#else
2154static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2155static inline bool page_is_guard(struct page *page) { return false; }
2156#endif /* CONFIG_DEBUG_PAGEALLOC */
2157
2158#if MAX_NUMNODES > 1
2159void __init setup_nr_node_ids(void);
2160#else
2161static inline void setup_nr_node_ids(void) {}
2162#endif
2163
2164#endif /* __KERNEL__ */
2165#endif /* _LINUX_MM_H */