Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* memcontrol.h - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#ifndef _LINUX_MEMCONTROL_H
21#define _LINUX_MEMCONTROL_H
22#include <linux/cgroup.h>
23#include <linux/vm_event_item.h>
24#include <linux/hardirq.h>
25#include <linux/jump_label.h>
26
27struct mem_cgroup;
28struct page_cgroup;
29struct page;
30struct mm_struct;
31struct kmem_cache;
32
33/*
34 * The corresponding mem_cgroup_stat_names is defined in mm/memcontrol.c,
35 * These two lists should keep in accord with each other.
36 */
37enum mem_cgroup_stat_index {
38 /*
39 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
40 */
41 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
42 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
43 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
44 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
45 MEM_CGROUP_STAT_WRITEBACK, /* # of pages under writeback */
46 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
47 MEM_CGROUP_STAT_NSTATS,
48};
49
50struct mem_cgroup_reclaim_cookie {
51 struct zone *zone;
52 int priority;
53 unsigned int generation;
54};
55
56#ifdef CONFIG_MEMCG
57int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
58 gfp_t gfp_mask, struct mem_cgroup **memcgp);
59void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
60 bool lrucare);
61void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg);
62void mem_cgroup_uncharge(struct page *page);
63void mem_cgroup_uncharge_list(struct list_head *page_list);
64
65void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
66 bool lrucare);
67
68struct lruvec *mem_cgroup_zone_lruvec(struct zone *, struct mem_cgroup *);
69struct lruvec *mem_cgroup_page_lruvec(struct page *, struct zone *);
70
71bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
72 struct mem_cgroup *memcg);
73bool task_in_mem_cgroup(struct task_struct *task,
74 const struct mem_cgroup *memcg);
75
76extern struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page);
77extern struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
78
79extern struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg);
80extern struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css);
81
82static inline
83bool mm_match_cgroup(const struct mm_struct *mm, const struct mem_cgroup *memcg)
84{
85 struct mem_cgroup *task_memcg;
86 bool match;
87
88 rcu_read_lock();
89 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
90 match = __mem_cgroup_same_or_subtree(memcg, task_memcg);
91 rcu_read_unlock();
92 return match;
93}
94
95extern struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg);
96
97struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
98 struct mem_cgroup *,
99 struct mem_cgroup_reclaim_cookie *);
100void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
101
102/*
103 * For memory reclaim.
104 */
105int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec);
106int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
107unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list);
108void mem_cgroup_update_lru_size(struct lruvec *, enum lru_list, int);
109extern void mem_cgroup_print_oom_info(struct mem_cgroup *memcg,
110 struct task_struct *p);
111
112static inline void mem_cgroup_oom_enable(void)
113{
114 WARN_ON(current->memcg_oom.may_oom);
115 current->memcg_oom.may_oom = 1;
116}
117
118static inline void mem_cgroup_oom_disable(void)
119{
120 WARN_ON(!current->memcg_oom.may_oom);
121 current->memcg_oom.may_oom = 0;
122}
123
124static inline bool task_in_memcg_oom(struct task_struct *p)
125{
126 return p->memcg_oom.memcg;
127}
128
129bool mem_cgroup_oom_synchronize(bool wait);
130
131#ifdef CONFIG_MEMCG_SWAP
132extern int do_swap_account;
133#endif
134
135static inline bool mem_cgroup_disabled(void)
136{
137 if (memory_cgrp_subsys.disabled)
138 return true;
139 return false;
140}
141
142struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, bool *locked,
143 unsigned long *flags);
144void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
145 unsigned long flags);
146void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
147 enum mem_cgroup_stat_index idx, int val);
148
149static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
150 enum mem_cgroup_stat_index idx)
151{
152 mem_cgroup_update_page_stat(memcg, idx, 1);
153}
154
155static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
156 enum mem_cgroup_stat_index idx)
157{
158 mem_cgroup_update_page_stat(memcg, idx, -1);
159}
160
161unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
162 gfp_t gfp_mask,
163 unsigned long *total_scanned);
164
165void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx);
166static inline void mem_cgroup_count_vm_event(struct mm_struct *mm,
167 enum vm_event_item idx)
168{
169 if (mem_cgroup_disabled())
170 return;
171 __mem_cgroup_count_vm_event(mm, idx);
172}
173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
174void mem_cgroup_split_huge_fixup(struct page *head);
175#endif
176
177#ifdef CONFIG_DEBUG_VM
178bool mem_cgroup_bad_page_check(struct page *page);
179void mem_cgroup_print_bad_page(struct page *page);
180#endif
181#else /* CONFIG_MEMCG */
182struct mem_cgroup;
183
184static inline int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
185 gfp_t gfp_mask,
186 struct mem_cgroup **memcgp)
187{
188 *memcgp = NULL;
189 return 0;
190}
191
192static inline void mem_cgroup_commit_charge(struct page *page,
193 struct mem_cgroup *memcg,
194 bool lrucare)
195{
196}
197
198static inline void mem_cgroup_cancel_charge(struct page *page,
199 struct mem_cgroup *memcg)
200{
201}
202
203static inline void mem_cgroup_uncharge(struct page *page)
204{
205}
206
207static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
208{
209}
210
211static inline void mem_cgroup_migrate(struct page *oldpage,
212 struct page *newpage,
213 bool lrucare)
214{
215}
216
217static inline struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
218 struct mem_cgroup *memcg)
219{
220 return &zone->lruvec;
221}
222
223static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
224 struct zone *zone)
225{
226 return &zone->lruvec;
227}
228
229static inline struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
230{
231 return NULL;
232}
233
234static inline bool mm_match_cgroup(struct mm_struct *mm,
235 struct mem_cgroup *memcg)
236{
237 return true;
238}
239
240static inline bool task_in_mem_cgroup(struct task_struct *task,
241 const struct mem_cgroup *memcg)
242{
243 return true;
244}
245
246static inline struct cgroup_subsys_state
247 *mem_cgroup_css(struct mem_cgroup *memcg)
248{
249 return NULL;
250}
251
252static inline struct mem_cgroup *
253mem_cgroup_iter(struct mem_cgroup *root,
254 struct mem_cgroup *prev,
255 struct mem_cgroup_reclaim_cookie *reclaim)
256{
257 return NULL;
258}
259
260static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
261 struct mem_cgroup *prev)
262{
263}
264
265static inline bool mem_cgroup_disabled(void)
266{
267 return true;
268}
269
270static inline int
271mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
272{
273 return 1;
274}
275
276static inline unsigned long
277mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
278{
279 return 0;
280}
281
282static inline void
283mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
284 int increment)
285{
286}
287
288static inline void
289mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
290{
291}
292
293static inline struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
294 bool *locked, unsigned long *flags)
295{
296 return NULL;
297}
298
299static inline void mem_cgroup_end_page_stat(struct mem_cgroup *memcg,
300 bool locked, unsigned long flags)
301{
302}
303
304static inline void mem_cgroup_oom_enable(void)
305{
306}
307
308static inline void mem_cgroup_oom_disable(void)
309{
310}
311
312static inline bool task_in_memcg_oom(struct task_struct *p)
313{
314 return false;
315}
316
317static inline bool mem_cgroup_oom_synchronize(bool wait)
318{
319 return false;
320}
321
322static inline void mem_cgroup_inc_page_stat(struct mem_cgroup *memcg,
323 enum mem_cgroup_stat_index idx)
324{
325}
326
327static inline void mem_cgroup_dec_page_stat(struct mem_cgroup *memcg,
328 enum mem_cgroup_stat_index idx)
329{
330}
331
332static inline
333unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
334 gfp_t gfp_mask,
335 unsigned long *total_scanned)
336{
337 return 0;
338}
339
340static inline void mem_cgroup_split_huge_fixup(struct page *head)
341{
342}
343
344static inline
345void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
346{
347}
348#endif /* CONFIG_MEMCG */
349
350#if !defined(CONFIG_MEMCG) || !defined(CONFIG_DEBUG_VM)
351static inline bool
352mem_cgroup_bad_page_check(struct page *page)
353{
354 return false;
355}
356
357static inline void
358mem_cgroup_print_bad_page(struct page *page)
359{
360}
361#endif
362
363enum {
364 UNDER_LIMIT,
365 SOFT_LIMIT,
366 OVER_LIMIT,
367};
368
369struct sock;
370#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
371void sock_update_memcg(struct sock *sk);
372void sock_release_memcg(struct sock *sk);
373#else
374static inline void sock_update_memcg(struct sock *sk)
375{
376}
377static inline void sock_release_memcg(struct sock *sk)
378{
379}
380#endif /* CONFIG_INET && CONFIG_MEMCG_KMEM */
381
382#ifdef CONFIG_MEMCG_KMEM
383extern struct static_key memcg_kmem_enabled_key;
384
385extern int memcg_limited_groups_array_size;
386
387/*
388 * Helper macro to loop through all memcg-specific caches. Callers must still
389 * check if the cache is valid (it is either valid or NULL).
390 * the slab_mutex must be held when looping through those caches
391 */
392#define for_each_memcg_cache_index(_idx) \
393 for ((_idx) = 0; (_idx) < memcg_limited_groups_array_size; (_idx)++)
394
395static inline bool memcg_kmem_enabled(void)
396{
397 return static_key_false(&memcg_kmem_enabled_key);
398}
399
400/*
401 * In general, we'll do everything in our power to not incur in any overhead
402 * for non-memcg users for the kmem functions. Not even a function call, if we
403 * can avoid it.
404 *
405 * Therefore, we'll inline all those functions so that in the best case, we'll
406 * see that kmemcg is off for everybody and proceed quickly. If it is on,
407 * we'll still do most of the flag checking inline. We check a lot of
408 * conditions, but because they are pretty simple, they are expected to be
409 * fast.
410 */
411bool __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg,
412 int order);
413void __memcg_kmem_commit_charge(struct page *page,
414 struct mem_cgroup *memcg, int order);
415void __memcg_kmem_uncharge_pages(struct page *page, int order);
416
417int memcg_cache_id(struct mem_cgroup *memcg);
418
419void memcg_update_array_size(int num_groups);
420
421struct kmem_cache *
422__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp);
423
424int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order);
425void __memcg_uncharge_slab(struct kmem_cache *cachep, int order);
426
427int __memcg_cleanup_cache_params(struct kmem_cache *s);
428
429/**
430 * memcg_kmem_newpage_charge: verify if a new kmem allocation is allowed.
431 * @gfp: the gfp allocation flags.
432 * @memcg: a pointer to the memcg this was charged against.
433 * @order: allocation order.
434 *
435 * returns true if the memcg where the current task belongs can hold this
436 * allocation.
437 *
438 * We return true automatically if this allocation is not to be accounted to
439 * any memcg.
440 */
441static inline bool
442memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
443{
444 if (!memcg_kmem_enabled())
445 return true;
446
447 /*
448 * __GFP_NOFAIL allocations will move on even if charging is not
449 * possible. Therefore we don't even try, and have this allocation
450 * unaccounted. We could in theory charge it with
451 * res_counter_charge_nofail, but we hope those allocations are rare,
452 * and won't be worth the trouble.
453 */
454 if (gfp & __GFP_NOFAIL)
455 return true;
456 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
457 return true;
458
459 /* If the test is dying, just let it go. */
460 if (unlikely(fatal_signal_pending(current)))
461 return true;
462
463 return __memcg_kmem_newpage_charge(gfp, memcg, order);
464}
465
466/**
467 * memcg_kmem_uncharge_pages: uncharge pages from memcg
468 * @page: pointer to struct page being freed
469 * @order: allocation order.
470 *
471 * there is no need to specify memcg here, since it is embedded in page_cgroup
472 */
473static inline void
474memcg_kmem_uncharge_pages(struct page *page, int order)
475{
476 if (memcg_kmem_enabled())
477 __memcg_kmem_uncharge_pages(page, order);
478}
479
480/**
481 * memcg_kmem_commit_charge: embeds correct memcg in a page
482 * @page: pointer to struct page recently allocated
483 * @memcg: the memcg structure we charged against
484 * @order: allocation order.
485 *
486 * Needs to be called after memcg_kmem_newpage_charge, regardless of success or
487 * failure of the allocation. if @page is NULL, this function will revert the
488 * charges. Otherwise, it will commit the memcg given by @memcg to the
489 * corresponding page_cgroup.
490 */
491static inline void
492memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
493{
494 if (memcg_kmem_enabled() && memcg)
495 __memcg_kmem_commit_charge(page, memcg, order);
496}
497
498/**
499 * memcg_kmem_get_cache: selects the correct per-memcg cache for allocation
500 * @cachep: the original global kmem cache
501 * @gfp: allocation flags.
502 *
503 * All memory allocated from a per-memcg cache is charged to the owner memcg.
504 */
505static __always_inline struct kmem_cache *
506memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
507{
508 if (!memcg_kmem_enabled())
509 return cachep;
510 if (gfp & __GFP_NOFAIL)
511 return cachep;
512 if (in_interrupt() || (!current->mm) || (current->flags & PF_KTHREAD))
513 return cachep;
514 if (unlikely(fatal_signal_pending(current)))
515 return cachep;
516
517 return __memcg_kmem_get_cache(cachep, gfp);
518}
519#else
520#define for_each_memcg_cache_index(_idx) \
521 for (; NULL; )
522
523static inline bool memcg_kmem_enabled(void)
524{
525 return false;
526}
527
528static inline bool
529memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **memcg, int order)
530{
531 return true;
532}
533
534static inline void memcg_kmem_uncharge_pages(struct page *page, int order)
535{
536}
537
538static inline void
539memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, int order)
540{
541}
542
543static inline int memcg_cache_id(struct mem_cgroup *memcg)
544{
545 return -1;
546}
547
548static inline struct kmem_cache *
549memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
550{
551 return cachep;
552}
553#endif /* CONFIG_MEMCG_KMEM */
554#endif /* _LINUX_MEMCONTROL_H */
555