at v3.18 38 kB view raw
1/* 2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms of the GNU General Public License as published by the Free 6 * Software Foundation; either version 2 of the License, or (at your option) 7 * any later version. 8 * 9 * This program is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * The full GNU General Public License is included in this distribution in the 19 * file called COPYING. 20 */ 21#ifndef LINUX_DMAENGINE_H 22#define LINUX_DMAENGINE_H 23 24#include <linux/device.h> 25#include <linux/err.h> 26#include <linux/uio.h> 27#include <linux/bug.h> 28#include <linux/scatterlist.h> 29#include <linux/bitmap.h> 30#include <linux/types.h> 31#include <asm/page.h> 32 33/** 34 * typedef dma_cookie_t - an opaque DMA cookie 35 * 36 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 37 */ 38typedef s32 dma_cookie_t; 39#define DMA_MIN_COOKIE 1 40 41static inline int dma_submit_error(dma_cookie_t cookie) 42{ 43 return cookie < 0 ? cookie : 0; 44} 45 46/** 47 * enum dma_status - DMA transaction status 48 * @DMA_COMPLETE: transaction completed 49 * @DMA_IN_PROGRESS: transaction not yet processed 50 * @DMA_PAUSED: transaction is paused 51 * @DMA_ERROR: transaction failed 52 */ 53enum dma_status { 54 DMA_COMPLETE, 55 DMA_IN_PROGRESS, 56 DMA_PAUSED, 57 DMA_ERROR, 58}; 59 60/** 61 * enum dma_transaction_type - DMA transaction types/indexes 62 * 63 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 64 * automatically set as dma devices are registered. 65 */ 66enum dma_transaction_type { 67 DMA_MEMCPY, 68 DMA_XOR, 69 DMA_PQ, 70 DMA_XOR_VAL, 71 DMA_PQ_VAL, 72 DMA_INTERRUPT, 73 DMA_SG, 74 DMA_PRIVATE, 75 DMA_ASYNC_TX, 76 DMA_SLAVE, 77 DMA_CYCLIC, 78 DMA_INTERLEAVE, 79/* last transaction type for creation of the capabilities mask */ 80 DMA_TX_TYPE_END, 81}; 82 83/** 84 * enum dma_transfer_direction - dma transfer mode and direction indicator 85 * @DMA_MEM_TO_MEM: Async/Memcpy mode 86 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 87 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 88 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 89 */ 90enum dma_transfer_direction { 91 DMA_MEM_TO_MEM, 92 DMA_MEM_TO_DEV, 93 DMA_DEV_TO_MEM, 94 DMA_DEV_TO_DEV, 95 DMA_TRANS_NONE, 96}; 97 98/** 99 * Interleaved Transfer Request 100 * ---------------------------- 101 * A chunk is collection of contiguous bytes to be transfered. 102 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 103 * ICGs may or maynot change between chunks. 104 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 105 * that when repeated an integral number of times, specifies the transfer. 106 * A transfer template is specification of a Frame, the number of times 107 * it is to be repeated and other per-transfer attributes. 108 * 109 * Practically, a client driver would have ready a template for each 110 * type of transfer it is going to need during its lifetime and 111 * set only 'src_start' and 'dst_start' before submitting the requests. 112 * 113 * 114 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 115 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 116 * 117 * == Chunk size 118 * ... ICG 119 */ 120 121/** 122 * struct data_chunk - Element of scatter-gather list that makes a frame. 123 * @size: Number of bytes to read from source. 124 * size_dst := fn(op, size_src), so doesn't mean much for destination. 125 * @icg: Number of bytes to jump after last src/dst address of this 126 * chunk and before first src/dst address for next chunk. 127 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 128 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 129 */ 130struct data_chunk { 131 size_t size; 132 size_t icg; 133}; 134 135/** 136 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 137 * and attributes. 138 * @src_start: Bus address of source for the first chunk. 139 * @dst_start: Bus address of destination for the first chunk. 140 * @dir: Specifies the type of Source and Destination. 141 * @src_inc: If the source address increments after reading from it. 142 * @dst_inc: If the destination address increments after writing to it. 143 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 144 * Otherwise, source is read contiguously (icg ignored). 145 * Ignored if src_inc is false. 146 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 147 * Otherwise, destination is filled contiguously (icg ignored). 148 * Ignored if dst_inc is false. 149 * @numf: Number of frames in this template. 150 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 151 * @sgl: Array of {chunk,icg} pairs that make up a frame. 152 */ 153struct dma_interleaved_template { 154 dma_addr_t src_start; 155 dma_addr_t dst_start; 156 enum dma_transfer_direction dir; 157 bool src_inc; 158 bool dst_inc; 159 bool src_sgl; 160 bool dst_sgl; 161 size_t numf; 162 size_t frame_size; 163 struct data_chunk sgl[0]; 164}; 165 166/** 167 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 168 * control completion, and communicate status. 169 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 170 * this transaction 171 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 172 * acknowledges receipt, i.e. has has a chance to establish any dependency 173 * chains 174 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 175 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 176 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 177 * sources that were the result of a previous operation, in the case of a PQ 178 * operation it continues the calculation with new sources 179 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 180 * on the result of this operation 181 */ 182enum dma_ctrl_flags { 183 DMA_PREP_INTERRUPT = (1 << 0), 184 DMA_CTRL_ACK = (1 << 1), 185 DMA_PREP_PQ_DISABLE_P = (1 << 2), 186 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 187 DMA_PREP_CONTINUE = (1 << 4), 188 DMA_PREP_FENCE = (1 << 5), 189}; 190 191/** 192 * enum dma_ctrl_cmd - DMA operations that can optionally be exercised 193 * on a running channel. 194 * @DMA_TERMINATE_ALL: terminate all ongoing transfers 195 * @DMA_PAUSE: pause ongoing transfers 196 * @DMA_RESUME: resume paused transfer 197 * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers 198 * that need to runtime reconfigure the slave channels (as opposed to passing 199 * configuration data in statically from the platform). An additional 200 * argument of struct dma_slave_config must be passed in with this 201 * command. 202 */ 203enum dma_ctrl_cmd { 204 DMA_TERMINATE_ALL, 205 DMA_PAUSE, 206 DMA_RESUME, 207 DMA_SLAVE_CONFIG, 208}; 209 210/** 211 * enum sum_check_bits - bit position of pq_check_flags 212 */ 213enum sum_check_bits { 214 SUM_CHECK_P = 0, 215 SUM_CHECK_Q = 1, 216}; 217 218/** 219 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 220 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 221 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 222 */ 223enum sum_check_flags { 224 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 225 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 226}; 227 228 229/** 230 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 231 * See linux/cpumask.h 232 */ 233typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 234 235/** 236 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 237 * @memcpy_count: transaction counter 238 * @bytes_transferred: byte counter 239 */ 240 241struct dma_chan_percpu { 242 /* stats */ 243 unsigned long memcpy_count; 244 unsigned long bytes_transferred; 245}; 246 247/** 248 * struct dma_chan - devices supply DMA channels, clients use them 249 * @device: ptr to the dma device who supplies this channel, always !%NULL 250 * @cookie: last cookie value returned to client 251 * @completed_cookie: last completed cookie for this channel 252 * @chan_id: channel ID for sysfs 253 * @dev: class device for sysfs 254 * @device_node: used to add this to the device chan list 255 * @local: per-cpu pointer to a struct dma_chan_percpu 256 * @client_count: how many clients are using this channel 257 * @table_count: number of appearances in the mem-to-mem allocation table 258 * @private: private data for certain client-channel associations 259 */ 260struct dma_chan { 261 struct dma_device *device; 262 dma_cookie_t cookie; 263 dma_cookie_t completed_cookie; 264 265 /* sysfs */ 266 int chan_id; 267 struct dma_chan_dev *dev; 268 269 struct list_head device_node; 270 struct dma_chan_percpu __percpu *local; 271 int client_count; 272 int table_count; 273 void *private; 274}; 275 276/** 277 * struct dma_chan_dev - relate sysfs device node to backing channel device 278 * @chan: driver channel device 279 * @device: sysfs device 280 * @dev_id: parent dma_device dev_id 281 * @idr_ref: reference count to gate release of dma_device dev_id 282 */ 283struct dma_chan_dev { 284 struct dma_chan *chan; 285 struct device device; 286 int dev_id; 287 atomic_t *idr_ref; 288}; 289 290/** 291 * enum dma_slave_buswidth - defines bus width of the DMA slave 292 * device, source or target buses 293 */ 294enum dma_slave_buswidth { 295 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 296 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 297 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 298 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 299 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 300 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 301}; 302 303/** 304 * struct dma_slave_config - dma slave channel runtime config 305 * @direction: whether the data shall go in or out on this slave 306 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 307 * legal values. DEPRECATED, drivers should use the direction argument 308 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 309 * the dir field in the dma_interleaved_template structure. 310 * @src_addr: this is the physical address where DMA slave data 311 * should be read (RX), if the source is memory this argument is 312 * ignored. 313 * @dst_addr: this is the physical address where DMA slave data 314 * should be written (TX), if the source is memory this argument 315 * is ignored. 316 * @src_addr_width: this is the width in bytes of the source (RX) 317 * register where DMA data shall be read. If the source 318 * is memory this may be ignored depending on architecture. 319 * Legal values: 1, 2, 4, 8. 320 * @dst_addr_width: same as src_addr_width but for destination 321 * target (TX) mutatis mutandis. 322 * @src_maxburst: the maximum number of words (note: words, as in 323 * units of the src_addr_width member, not bytes) that can be sent 324 * in one burst to the device. Typically something like half the 325 * FIFO depth on I/O peripherals so you don't overflow it. This 326 * may or may not be applicable on memory sources. 327 * @dst_maxburst: same as src_maxburst but for destination target 328 * mutatis mutandis. 329 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 330 * with 'true' if peripheral should be flow controller. Direction will be 331 * selected at Runtime. 332 * @slave_id: Slave requester id. Only valid for slave channels. The dma 333 * slave peripheral will have unique id as dma requester which need to be 334 * pass as slave config. 335 * 336 * This struct is passed in as configuration data to a DMA engine 337 * in order to set up a certain channel for DMA transport at runtime. 338 * The DMA device/engine has to provide support for an additional 339 * command in the channel config interface, DMA_SLAVE_CONFIG 340 * and this struct will then be passed in as an argument to the 341 * DMA engine device_control() function. 342 * 343 * The rationale for adding configuration information to this struct is as 344 * follows: if it is likely that more than one DMA slave controllers in 345 * the world will support the configuration option, then make it generic. 346 * If not: if it is fixed so that it be sent in static from the platform 347 * data, then prefer to do that. 348 */ 349struct dma_slave_config { 350 enum dma_transfer_direction direction; 351 dma_addr_t src_addr; 352 dma_addr_t dst_addr; 353 enum dma_slave_buswidth src_addr_width; 354 enum dma_slave_buswidth dst_addr_width; 355 u32 src_maxburst; 356 u32 dst_maxburst; 357 bool device_fc; 358 unsigned int slave_id; 359}; 360 361/** 362 * enum dma_residue_granularity - Granularity of the reported transfer residue 363 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 364 * DMA channel is only able to tell whether a descriptor has been completed or 365 * not, which means residue reporting is not supported by this channel. The 366 * residue field of the dma_tx_state field will always be 0. 367 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 368 * completed segment of the transfer (For cyclic transfers this is after each 369 * period). This is typically implemented by having the hardware generate an 370 * interrupt after each transferred segment and then the drivers updates the 371 * outstanding residue by the size of the segment. Another possibility is if 372 * the hardware supports scatter-gather and the segment descriptor has a field 373 * which gets set after the segment has been completed. The driver then counts 374 * the number of segments without the flag set to compute the residue. 375 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 376 * burst. This is typically only supported if the hardware has a progress 377 * register of some sort (E.g. a register with the current read/write address 378 * or a register with the amount of bursts/beats/bytes that have been 379 * transferred or still need to be transferred). 380 */ 381enum dma_residue_granularity { 382 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 383 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 384 DMA_RESIDUE_GRANULARITY_BURST = 2, 385}; 386 387/* struct dma_slave_caps - expose capabilities of a slave channel only 388 * 389 * @src_addr_widths: bit mask of src addr widths the channel supports 390 * @dstn_addr_widths: bit mask of dstn addr widths the channel supports 391 * @directions: bit mask of slave direction the channel supported 392 * since the enum dma_transfer_direction is not defined as bits for each 393 * type of direction, the dma controller should fill (1 << <TYPE>) and same 394 * should be checked by controller as well 395 * @cmd_pause: true, if pause and thereby resume is supported 396 * @cmd_terminate: true, if terminate cmd is supported 397 * @residue_granularity: granularity of the reported transfer residue 398 */ 399struct dma_slave_caps { 400 u32 src_addr_widths; 401 u32 dstn_addr_widths; 402 u32 directions; 403 bool cmd_pause; 404 bool cmd_terminate; 405 enum dma_residue_granularity residue_granularity; 406}; 407 408static inline const char *dma_chan_name(struct dma_chan *chan) 409{ 410 return dev_name(&chan->dev->device); 411} 412 413void dma_chan_cleanup(struct kref *kref); 414 415/** 416 * typedef dma_filter_fn - callback filter for dma_request_channel 417 * @chan: channel to be reviewed 418 * @filter_param: opaque parameter passed through dma_request_channel 419 * 420 * When this optional parameter is specified in a call to dma_request_channel a 421 * suitable channel is passed to this routine for further dispositioning before 422 * being returned. Where 'suitable' indicates a non-busy channel that 423 * satisfies the given capability mask. It returns 'true' to indicate that the 424 * channel is suitable. 425 */ 426typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 427 428typedef void (*dma_async_tx_callback)(void *dma_async_param); 429 430struct dmaengine_unmap_data { 431 u8 map_cnt; 432 u8 to_cnt; 433 u8 from_cnt; 434 u8 bidi_cnt; 435 struct device *dev; 436 struct kref kref; 437 size_t len; 438 dma_addr_t addr[0]; 439}; 440 441/** 442 * struct dma_async_tx_descriptor - async transaction descriptor 443 * ---dma generic offload fields--- 444 * @cookie: tracking cookie for this transaction, set to -EBUSY if 445 * this tx is sitting on a dependency list 446 * @flags: flags to augment operation preparation, control completion, and 447 * communicate status 448 * @phys: physical address of the descriptor 449 * @chan: target channel for this operation 450 * @tx_submit: set the prepared descriptor(s) to be executed by the engine 451 * @callback: routine to call after this operation is complete 452 * @callback_param: general parameter to pass to the callback routine 453 * ---async_tx api specific fields--- 454 * @next: at completion submit this descriptor 455 * @parent: pointer to the next level up in the dependency chain 456 * @lock: protect the parent and next pointers 457 */ 458struct dma_async_tx_descriptor { 459 dma_cookie_t cookie; 460 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 461 dma_addr_t phys; 462 struct dma_chan *chan; 463 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 464 dma_async_tx_callback callback; 465 void *callback_param; 466 struct dmaengine_unmap_data *unmap; 467#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 468 struct dma_async_tx_descriptor *next; 469 struct dma_async_tx_descriptor *parent; 470 spinlock_t lock; 471#endif 472}; 473 474#ifdef CONFIG_DMA_ENGINE 475static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 476 struct dmaengine_unmap_data *unmap) 477{ 478 kref_get(&unmap->kref); 479 tx->unmap = unmap; 480} 481 482struct dmaengine_unmap_data * 483dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 484void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 485#else 486static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 487 struct dmaengine_unmap_data *unmap) 488{ 489} 490static inline struct dmaengine_unmap_data * 491dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 492{ 493 return NULL; 494} 495static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 496{ 497} 498#endif 499 500static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 501{ 502 if (tx->unmap) { 503 dmaengine_unmap_put(tx->unmap); 504 tx->unmap = NULL; 505 } 506} 507 508#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 509static inline void txd_lock(struct dma_async_tx_descriptor *txd) 510{ 511} 512static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 513{ 514} 515static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 516{ 517 BUG(); 518} 519static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 520{ 521} 522static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 523{ 524} 525static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 526{ 527 return NULL; 528} 529static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 530{ 531 return NULL; 532} 533 534#else 535static inline void txd_lock(struct dma_async_tx_descriptor *txd) 536{ 537 spin_lock_bh(&txd->lock); 538} 539static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 540{ 541 spin_unlock_bh(&txd->lock); 542} 543static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 544{ 545 txd->next = next; 546 next->parent = txd; 547} 548static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 549{ 550 txd->parent = NULL; 551} 552static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 553{ 554 txd->next = NULL; 555} 556static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 557{ 558 return txd->parent; 559} 560static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 561{ 562 return txd->next; 563} 564#endif 565 566/** 567 * struct dma_tx_state - filled in to report the status of 568 * a transfer. 569 * @last: last completed DMA cookie 570 * @used: last issued DMA cookie (i.e. the one in progress) 571 * @residue: the remaining number of bytes left to transmit 572 * on the selected transfer for states DMA_IN_PROGRESS and 573 * DMA_PAUSED if this is implemented in the driver, else 0 574 */ 575struct dma_tx_state { 576 dma_cookie_t last; 577 dma_cookie_t used; 578 u32 residue; 579}; 580 581/** 582 * struct dma_device - info on the entity supplying DMA services 583 * @chancnt: how many DMA channels are supported 584 * @privatecnt: how many DMA channels are requested by dma_request_channel 585 * @channels: the list of struct dma_chan 586 * @global_node: list_head for global dma_device_list 587 * @cap_mask: one or more dma_capability flags 588 * @max_xor: maximum number of xor sources, 0 if no capability 589 * @max_pq: maximum number of PQ sources and PQ-continue capability 590 * @copy_align: alignment shift for memcpy operations 591 * @xor_align: alignment shift for xor operations 592 * @pq_align: alignment shift for pq operations 593 * @fill_align: alignment shift for memset operations 594 * @dev_id: unique device ID 595 * @dev: struct device reference for dma mapping api 596 * @device_alloc_chan_resources: allocate resources and return the 597 * number of allocated descriptors 598 * @device_free_chan_resources: release DMA channel's resources 599 * @device_prep_dma_memcpy: prepares a memcpy operation 600 * @device_prep_dma_xor: prepares a xor operation 601 * @device_prep_dma_xor_val: prepares a xor validation operation 602 * @device_prep_dma_pq: prepares a pq operation 603 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 604 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 605 * @device_prep_slave_sg: prepares a slave dma operation 606 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 607 * The function takes a buffer of size buf_len. The callback function will 608 * be called after period_len bytes have been transferred. 609 * @device_prep_interleaved_dma: Transfer expression in a generic way. 610 * @device_control: manipulate all pending operations on a channel, returns 611 * zero or error code 612 * @device_tx_status: poll for transaction completion, the optional 613 * txstate parameter can be supplied with a pointer to get a 614 * struct with auxiliary transfer status information, otherwise the call 615 * will just return a simple status code 616 * @device_issue_pending: push pending transactions to hardware 617 * @device_slave_caps: return the slave channel capabilities 618 */ 619struct dma_device { 620 621 unsigned int chancnt; 622 unsigned int privatecnt; 623 struct list_head channels; 624 struct list_head global_node; 625 dma_cap_mask_t cap_mask; 626 unsigned short max_xor; 627 unsigned short max_pq; 628 u8 copy_align; 629 u8 xor_align; 630 u8 pq_align; 631 u8 fill_align; 632 #define DMA_HAS_PQ_CONTINUE (1 << 15) 633 634 int dev_id; 635 struct device *dev; 636 637 int (*device_alloc_chan_resources)(struct dma_chan *chan); 638 void (*device_free_chan_resources)(struct dma_chan *chan); 639 640 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 641 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 642 size_t len, unsigned long flags); 643 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 644 struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src, 645 unsigned int src_cnt, size_t len, unsigned long flags); 646 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 647 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 648 size_t len, enum sum_check_flags *result, unsigned long flags); 649 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 650 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 651 unsigned int src_cnt, const unsigned char *scf, 652 size_t len, unsigned long flags); 653 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 654 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 655 unsigned int src_cnt, const unsigned char *scf, size_t len, 656 enum sum_check_flags *pqres, unsigned long flags); 657 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 658 struct dma_chan *chan, unsigned long flags); 659 struct dma_async_tx_descriptor *(*device_prep_dma_sg)( 660 struct dma_chan *chan, 661 struct scatterlist *dst_sg, unsigned int dst_nents, 662 struct scatterlist *src_sg, unsigned int src_nents, 663 unsigned long flags); 664 665 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 666 struct dma_chan *chan, struct scatterlist *sgl, 667 unsigned int sg_len, enum dma_transfer_direction direction, 668 unsigned long flags, void *context); 669 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 670 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 671 size_t period_len, enum dma_transfer_direction direction, 672 unsigned long flags); 673 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 674 struct dma_chan *chan, struct dma_interleaved_template *xt, 675 unsigned long flags); 676 int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd, 677 unsigned long arg); 678 679 enum dma_status (*device_tx_status)(struct dma_chan *chan, 680 dma_cookie_t cookie, 681 struct dma_tx_state *txstate); 682 void (*device_issue_pending)(struct dma_chan *chan); 683 int (*device_slave_caps)(struct dma_chan *chan, struct dma_slave_caps *caps); 684}; 685 686static inline int dmaengine_device_control(struct dma_chan *chan, 687 enum dma_ctrl_cmd cmd, 688 unsigned long arg) 689{ 690 if (chan->device->device_control) 691 return chan->device->device_control(chan, cmd, arg); 692 693 return -ENOSYS; 694} 695 696static inline int dmaengine_slave_config(struct dma_chan *chan, 697 struct dma_slave_config *config) 698{ 699 return dmaengine_device_control(chan, DMA_SLAVE_CONFIG, 700 (unsigned long)config); 701} 702 703static inline bool is_slave_direction(enum dma_transfer_direction direction) 704{ 705 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 706} 707 708static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 709 struct dma_chan *chan, dma_addr_t buf, size_t len, 710 enum dma_transfer_direction dir, unsigned long flags) 711{ 712 struct scatterlist sg; 713 sg_init_table(&sg, 1); 714 sg_dma_address(&sg) = buf; 715 sg_dma_len(&sg) = len; 716 717 return chan->device->device_prep_slave_sg(chan, &sg, 1, 718 dir, flags, NULL); 719} 720 721static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 722 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 723 enum dma_transfer_direction dir, unsigned long flags) 724{ 725 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 726 dir, flags, NULL); 727} 728 729#ifdef CONFIG_RAPIDIO_DMA_ENGINE 730struct rio_dma_ext; 731static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 732 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 733 enum dma_transfer_direction dir, unsigned long flags, 734 struct rio_dma_ext *rio_ext) 735{ 736 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 737 dir, flags, rio_ext); 738} 739#endif 740 741static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 742 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 743 size_t period_len, enum dma_transfer_direction dir, 744 unsigned long flags) 745{ 746 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 747 period_len, dir, flags); 748} 749 750static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 751 struct dma_chan *chan, struct dma_interleaved_template *xt, 752 unsigned long flags) 753{ 754 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 755} 756 757static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg( 758 struct dma_chan *chan, 759 struct scatterlist *dst_sg, unsigned int dst_nents, 760 struct scatterlist *src_sg, unsigned int src_nents, 761 unsigned long flags) 762{ 763 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents, 764 src_sg, src_nents, flags); 765} 766 767static inline int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps) 768{ 769 if (!chan || !caps) 770 return -EINVAL; 771 772 /* check if the channel supports slave transactions */ 773 if (!test_bit(DMA_SLAVE, chan->device->cap_mask.bits)) 774 return -ENXIO; 775 776 if (chan->device->device_slave_caps) 777 return chan->device->device_slave_caps(chan, caps); 778 779 return -ENXIO; 780} 781 782static inline int dmaengine_terminate_all(struct dma_chan *chan) 783{ 784 return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0); 785} 786 787static inline int dmaengine_pause(struct dma_chan *chan) 788{ 789 return dmaengine_device_control(chan, DMA_PAUSE, 0); 790} 791 792static inline int dmaengine_resume(struct dma_chan *chan) 793{ 794 return dmaengine_device_control(chan, DMA_RESUME, 0); 795} 796 797static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 798 dma_cookie_t cookie, struct dma_tx_state *state) 799{ 800 return chan->device->device_tx_status(chan, cookie, state); 801} 802 803static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 804{ 805 return desc->tx_submit(desc); 806} 807 808static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len) 809{ 810 size_t mask; 811 812 if (!align) 813 return true; 814 mask = (1 << align) - 1; 815 if (mask & (off1 | off2 | len)) 816 return false; 817 return true; 818} 819 820static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 821 size_t off2, size_t len) 822{ 823 return dmaengine_check_align(dev->copy_align, off1, off2, len); 824} 825 826static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 827 size_t off2, size_t len) 828{ 829 return dmaengine_check_align(dev->xor_align, off1, off2, len); 830} 831 832static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 833 size_t off2, size_t len) 834{ 835 return dmaengine_check_align(dev->pq_align, off1, off2, len); 836} 837 838static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 839 size_t off2, size_t len) 840{ 841 return dmaengine_check_align(dev->fill_align, off1, off2, len); 842} 843 844static inline void 845dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 846{ 847 dma->max_pq = maxpq; 848 if (has_pq_continue) 849 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 850} 851 852static inline bool dmaf_continue(enum dma_ctrl_flags flags) 853{ 854 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 855} 856 857static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 858{ 859 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 860 861 return (flags & mask) == mask; 862} 863 864static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 865{ 866 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 867} 868 869static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 870{ 871 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 872} 873 874/* dma_maxpq - reduce maxpq in the face of continued operations 875 * @dma - dma device with PQ capability 876 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 877 * 878 * When an engine does not support native continuation we need 3 extra 879 * source slots to reuse P and Q with the following coefficients: 880 * 1/ {00} * P : remove P from Q', but use it as a source for P' 881 * 2/ {01} * Q : use Q to continue Q' calculation 882 * 3/ {00} * Q : subtract Q from P' to cancel (2) 883 * 884 * In the case where P is disabled we only need 1 extra source: 885 * 1/ {01} * Q : use Q to continue Q' calculation 886 */ 887static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 888{ 889 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 890 return dma_dev_to_maxpq(dma); 891 else if (dmaf_p_disabled_continue(flags)) 892 return dma_dev_to_maxpq(dma) - 1; 893 else if (dmaf_continue(flags)) 894 return dma_dev_to_maxpq(dma) - 3; 895 BUG(); 896} 897 898/* --- public DMA engine API --- */ 899 900#ifdef CONFIG_DMA_ENGINE 901void dmaengine_get(void); 902void dmaengine_put(void); 903#else 904static inline void dmaengine_get(void) 905{ 906} 907static inline void dmaengine_put(void) 908{ 909} 910#endif 911 912#ifdef CONFIG_ASYNC_TX_DMA 913#define async_dmaengine_get() dmaengine_get() 914#define async_dmaengine_put() dmaengine_put() 915#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 916#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 917#else 918#define async_dma_find_channel(type) dma_find_channel(type) 919#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 920#else 921static inline void async_dmaengine_get(void) 922{ 923} 924static inline void async_dmaengine_put(void) 925{ 926} 927static inline struct dma_chan * 928async_dma_find_channel(enum dma_transaction_type type) 929{ 930 return NULL; 931} 932#endif /* CONFIG_ASYNC_TX_DMA */ 933void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 934 struct dma_chan *chan); 935 936static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 937{ 938 tx->flags |= DMA_CTRL_ACK; 939} 940 941static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 942{ 943 tx->flags &= ~DMA_CTRL_ACK; 944} 945 946static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 947{ 948 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 949} 950 951#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 952static inline void 953__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 954{ 955 set_bit(tx_type, dstp->bits); 956} 957 958#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 959static inline void 960__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 961{ 962 clear_bit(tx_type, dstp->bits); 963} 964 965#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 966static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 967{ 968 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 969} 970 971#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 972static inline int 973__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 974{ 975 return test_bit(tx_type, srcp->bits); 976} 977 978#define for_each_dma_cap_mask(cap, mask) \ 979 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 980 981/** 982 * dma_async_issue_pending - flush pending transactions to HW 983 * @chan: target DMA channel 984 * 985 * This allows drivers to push copies to HW in batches, 986 * reducing MMIO writes where possible. 987 */ 988static inline void dma_async_issue_pending(struct dma_chan *chan) 989{ 990 chan->device->device_issue_pending(chan); 991} 992 993/** 994 * dma_async_is_tx_complete - poll for transaction completion 995 * @chan: DMA channel 996 * @cookie: transaction identifier to check status of 997 * @last: returns last completed cookie, can be NULL 998 * @used: returns last issued cookie, can be NULL 999 * 1000 * If @last and @used are passed in, upon return they reflect the driver 1001 * internal state and can be used with dma_async_is_complete() to check 1002 * the status of multiple cookies without re-checking hardware state. 1003 */ 1004static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1005 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1006{ 1007 struct dma_tx_state state; 1008 enum dma_status status; 1009 1010 status = chan->device->device_tx_status(chan, cookie, &state); 1011 if (last) 1012 *last = state.last; 1013 if (used) 1014 *used = state.used; 1015 return status; 1016} 1017 1018/** 1019 * dma_async_is_complete - test a cookie against chan state 1020 * @cookie: transaction identifier to test status of 1021 * @last_complete: last know completed transaction 1022 * @last_used: last cookie value handed out 1023 * 1024 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1025 * the test logic is separated for lightweight testing of multiple cookies 1026 */ 1027static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1028 dma_cookie_t last_complete, dma_cookie_t last_used) 1029{ 1030 if (last_complete <= last_used) { 1031 if ((cookie <= last_complete) || (cookie > last_used)) 1032 return DMA_COMPLETE; 1033 } else { 1034 if ((cookie <= last_complete) && (cookie > last_used)) 1035 return DMA_COMPLETE; 1036 } 1037 return DMA_IN_PROGRESS; 1038} 1039 1040static inline void 1041dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1042{ 1043 if (st) { 1044 st->last = last; 1045 st->used = used; 1046 st->residue = residue; 1047 } 1048} 1049 1050#ifdef CONFIG_DMA_ENGINE 1051struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1052enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1053enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1054void dma_issue_pending_all(void); 1055struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1056 dma_filter_fn fn, void *fn_param); 1057struct dma_chan *dma_request_slave_channel_reason(struct device *dev, 1058 const char *name); 1059struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name); 1060void dma_release_channel(struct dma_chan *chan); 1061#else 1062static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1063{ 1064 return NULL; 1065} 1066static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1067{ 1068 return DMA_COMPLETE; 1069} 1070static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1071{ 1072 return DMA_COMPLETE; 1073} 1074static inline void dma_issue_pending_all(void) 1075{ 1076} 1077static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1078 dma_filter_fn fn, void *fn_param) 1079{ 1080 return NULL; 1081} 1082static inline struct dma_chan *dma_request_slave_channel_reason( 1083 struct device *dev, const char *name) 1084{ 1085 return ERR_PTR(-ENODEV); 1086} 1087static inline struct dma_chan *dma_request_slave_channel(struct device *dev, 1088 const char *name) 1089{ 1090 return NULL; 1091} 1092static inline void dma_release_channel(struct dma_chan *chan) 1093{ 1094} 1095#endif 1096 1097/* --- DMA device --- */ 1098 1099int dma_async_device_register(struct dma_device *device); 1100void dma_async_device_unregister(struct dma_device *device); 1101void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1102struct dma_chan *dma_get_slave_channel(struct dma_chan *chan); 1103struct dma_chan *dma_get_any_slave_channel(struct dma_device *device); 1104struct dma_chan *net_dma_find_channel(void); 1105#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y) 1106#define dma_request_slave_channel_compat(mask, x, y, dev, name) \ 1107 __dma_request_slave_channel_compat(&(mask), x, y, dev, name) 1108 1109static inline struct dma_chan 1110*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask, 1111 dma_filter_fn fn, void *fn_param, 1112 struct device *dev, char *name) 1113{ 1114 struct dma_chan *chan; 1115 1116 chan = dma_request_slave_channel(dev, name); 1117 if (chan) 1118 return chan; 1119 1120 return __dma_request_channel(mask, fn, fn_param); 1121} 1122 1123/* --- Helper iov-locking functions --- */ 1124 1125struct dma_page_list { 1126 char __user *base_address; 1127 int nr_pages; 1128 struct page **pages; 1129}; 1130 1131struct dma_pinned_list { 1132 int nr_iovecs; 1133 struct dma_page_list page_list[0]; 1134}; 1135 1136struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len); 1137void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list); 1138 1139dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov, 1140 struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len); 1141dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov, 1142 struct dma_pinned_list *pinned_list, struct page *page, 1143 unsigned int offset, size_t len); 1144 1145#endif /* DMAENGINE_H */