at v3.18 45 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/magic.h> 20#include <linux/buffer_head.h> 21#include <linux/swap.h> 22#include <linux/pagevec.h> 23#include <linux/writeback.h> 24#include <linux/mpage.h> 25#include <linux/mount.h> 26#include <linux/uio.h> 27#include <linux/namei.h> 28#include <linux/log2.h> 29#include <linux/cleancache.h> 30#include <linux/aio.h> 31#include <asm/uaccess.h> 32#include "internal.h" 33 34struct bdev_inode { 35 struct block_device bdev; 36 struct inode vfs_inode; 37}; 38 39static const struct address_space_operations def_blk_aops; 40 41static inline struct bdev_inode *BDEV_I(struct inode *inode) 42{ 43 return container_of(inode, struct bdev_inode, vfs_inode); 44} 45 46inline struct block_device *I_BDEV(struct inode *inode) 47{ 48 return &BDEV_I(inode)->bdev; 49} 50EXPORT_SYMBOL(I_BDEV); 51 52/* 53 * Move the inode from its current bdi to a new bdi. Make sure the inode 54 * is clean before moving so that it doesn't linger on the old bdi. 55 */ 56static void bdev_inode_switch_bdi(struct inode *inode, 57 struct backing_dev_info *dst) 58{ 59 while (true) { 60 spin_lock(&inode->i_lock); 61 if (!(inode->i_state & I_DIRTY)) { 62 inode->i_data.backing_dev_info = dst; 63 spin_unlock(&inode->i_lock); 64 return; 65 } 66 spin_unlock(&inode->i_lock); 67 WARN_ON_ONCE(write_inode_now(inode, true)); 68 } 69} 70 71/* Kill _all_ buffers and pagecache , dirty or not.. */ 72void kill_bdev(struct block_device *bdev) 73{ 74 struct address_space *mapping = bdev->bd_inode->i_mapping; 75 76 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 77 return; 78 79 invalidate_bh_lrus(); 80 truncate_inode_pages(mapping, 0); 81} 82EXPORT_SYMBOL(kill_bdev); 83 84/* Invalidate clean unused buffers and pagecache. */ 85void invalidate_bdev(struct block_device *bdev) 86{ 87 struct address_space *mapping = bdev->bd_inode->i_mapping; 88 89 if (mapping->nrpages == 0) 90 return; 91 92 invalidate_bh_lrus(); 93 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 94 invalidate_mapping_pages(mapping, 0, -1); 95 /* 99% of the time, we don't need to flush the cleancache on the bdev. 96 * But, for the strange corners, lets be cautious 97 */ 98 cleancache_invalidate_inode(mapping); 99} 100EXPORT_SYMBOL(invalidate_bdev); 101 102int set_blocksize(struct block_device *bdev, int size) 103{ 104 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 105 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 106 return -EINVAL; 107 108 /* Size cannot be smaller than the size supported by the device */ 109 if (size < bdev_logical_block_size(bdev)) 110 return -EINVAL; 111 112 /* Don't change the size if it is same as current */ 113 if (bdev->bd_block_size != size) { 114 sync_blockdev(bdev); 115 bdev->bd_block_size = size; 116 bdev->bd_inode->i_blkbits = blksize_bits(size); 117 kill_bdev(bdev); 118 } 119 return 0; 120} 121 122EXPORT_SYMBOL(set_blocksize); 123 124int sb_set_blocksize(struct super_block *sb, int size) 125{ 126 if (set_blocksize(sb->s_bdev, size)) 127 return 0; 128 /* If we get here, we know size is power of two 129 * and it's value is between 512 and PAGE_SIZE */ 130 sb->s_blocksize = size; 131 sb->s_blocksize_bits = blksize_bits(size); 132 return sb->s_blocksize; 133} 134 135EXPORT_SYMBOL(sb_set_blocksize); 136 137int sb_min_blocksize(struct super_block *sb, int size) 138{ 139 int minsize = bdev_logical_block_size(sb->s_bdev); 140 if (size < minsize) 141 size = minsize; 142 return sb_set_blocksize(sb, size); 143} 144 145EXPORT_SYMBOL(sb_min_blocksize); 146 147static int 148blkdev_get_block(struct inode *inode, sector_t iblock, 149 struct buffer_head *bh, int create) 150{ 151 bh->b_bdev = I_BDEV(inode); 152 bh->b_blocknr = iblock; 153 set_buffer_mapped(bh); 154 return 0; 155} 156 157static ssize_t 158blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, 159 loff_t offset) 160{ 161 struct file *file = iocb->ki_filp; 162 struct inode *inode = file->f_mapping->host; 163 164 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter, 165 offset, blkdev_get_block, 166 NULL, NULL, 0); 167} 168 169int __sync_blockdev(struct block_device *bdev, int wait) 170{ 171 if (!bdev) 172 return 0; 173 if (!wait) 174 return filemap_flush(bdev->bd_inode->i_mapping); 175 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 176} 177 178/* 179 * Write out and wait upon all the dirty data associated with a block 180 * device via its mapping. Does not take the superblock lock. 181 */ 182int sync_blockdev(struct block_device *bdev) 183{ 184 return __sync_blockdev(bdev, 1); 185} 186EXPORT_SYMBOL(sync_blockdev); 187 188/* 189 * Write out and wait upon all dirty data associated with this 190 * device. Filesystem data as well as the underlying block 191 * device. Takes the superblock lock. 192 */ 193int fsync_bdev(struct block_device *bdev) 194{ 195 struct super_block *sb = get_super(bdev); 196 if (sb) { 197 int res = sync_filesystem(sb); 198 drop_super(sb); 199 return res; 200 } 201 return sync_blockdev(bdev); 202} 203EXPORT_SYMBOL(fsync_bdev); 204 205/** 206 * freeze_bdev -- lock a filesystem and force it into a consistent state 207 * @bdev: blockdevice to lock 208 * 209 * If a superblock is found on this device, we take the s_umount semaphore 210 * on it to make sure nobody unmounts until the snapshot creation is done. 211 * The reference counter (bd_fsfreeze_count) guarantees that only the last 212 * unfreeze process can unfreeze the frozen filesystem actually when multiple 213 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 214 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 215 * actually. 216 */ 217struct super_block *freeze_bdev(struct block_device *bdev) 218{ 219 struct super_block *sb; 220 int error = 0; 221 222 mutex_lock(&bdev->bd_fsfreeze_mutex); 223 if (++bdev->bd_fsfreeze_count > 1) { 224 /* 225 * We don't even need to grab a reference - the first call 226 * to freeze_bdev grab an active reference and only the last 227 * thaw_bdev drops it. 228 */ 229 sb = get_super(bdev); 230 drop_super(sb); 231 mutex_unlock(&bdev->bd_fsfreeze_mutex); 232 return sb; 233 } 234 235 sb = get_active_super(bdev); 236 if (!sb) 237 goto out; 238 error = freeze_super(sb); 239 if (error) { 240 deactivate_super(sb); 241 bdev->bd_fsfreeze_count--; 242 mutex_unlock(&bdev->bd_fsfreeze_mutex); 243 return ERR_PTR(error); 244 } 245 deactivate_super(sb); 246 out: 247 sync_blockdev(bdev); 248 mutex_unlock(&bdev->bd_fsfreeze_mutex); 249 return sb; /* thaw_bdev releases s->s_umount */ 250} 251EXPORT_SYMBOL(freeze_bdev); 252 253/** 254 * thaw_bdev -- unlock filesystem 255 * @bdev: blockdevice to unlock 256 * @sb: associated superblock 257 * 258 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 259 */ 260int thaw_bdev(struct block_device *bdev, struct super_block *sb) 261{ 262 int error = -EINVAL; 263 264 mutex_lock(&bdev->bd_fsfreeze_mutex); 265 if (!bdev->bd_fsfreeze_count) 266 goto out; 267 268 error = 0; 269 if (--bdev->bd_fsfreeze_count > 0) 270 goto out; 271 272 if (!sb) 273 goto out; 274 275 error = thaw_super(sb); 276 if (error) { 277 bdev->bd_fsfreeze_count++; 278 mutex_unlock(&bdev->bd_fsfreeze_mutex); 279 return error; 280 } 281out: 282 mutex_unlock(&bdev->bd_fsfreeze_mutex); 283 return 0; 284} 285EXPORT_SYMBOL(thaw_bdev); 286 287static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 288{ 289 return block_write_full_page(page, blkdev_get_block, wbc); 290} 291 292static int blkdev_readpage(struct file * file, struct page * page) 293{ 294 return block_read_full_page(page, blkdev_get_block); 295} 296 297static int blkdev_readpages(struct file *file, struct address_space *mapping, 298 struct list_head *pages, unsigned nr_pages) 299{ 300 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block); 301} 302 303static int blkdev_write_begin(struct file *file, struct address_space *mapping, 304 loff_t pos, unsigned len, unsigned flags, 305 struct page **pagep, void **fsdata) 306{ 307 return block_write_begin(mapping, pos, len, flags, pagep, 308 blkdev_get_block); 309} 310 311static int blkdev_write_end(struct file *file, struct address_space *mapping, 312 loff_t pos, unsigned len, unsigned copied, 313 struct page *page, void *fsdata) 314{ 315 int ret; 316 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 317 318 unlock_page(page); 319 page_cache_release(page); 320 321 return ret; 322} 323 324/* 325 * private llseek: 326 * for a block special file file_inode(file)->i_size is zero 327 * so we compute the size by hand (just as in block_read/write above) 328 */ 329static loff_t block_llseek(struct file *file, loff_t offset, int whence) 330{ 331 struct inode *bd_inode = file->f_mapping->host; 332 loff_t retval; 333 334 mutex_lock(&bd_inode->i_mutex); 335 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 336 mutex_unlock(&bd_inode->i_mutex); 337 return retval; 338} 339 340int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 341{ 342 struct inode *bd_inode = filp->f_mapping->host; 343 struct block_device *bdev = I_BDEV(bd_inode); 344 int error; 345 346 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 347 if (error) 348 return error; 349 350 /* 351 * There is no need to serialise calls to blkdev_issue_flush with 352 * i_mutex and doing so causes performance issues with concurrent 353 * O_SYNC writers to a block device. 354 */ 355 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 356 if (error == -EOPNOTSUPP) 357 error = 0; 358 359 return error; 360} 361EXPORT_SYMBOL(blkdev_fsync); 362 363/** 364 * bdev_read_page() - Start reading a page from a block device 365 * @bdev: The device to read the page from 366 * @sector: The offset on the device to read the page to (need not be aligned) 367 * @page: The page to read 368 * 369 * On entry, the page should be locked. It will be unlocked when the page 370 * has been read. If the block driver implements rw_page synchronously, 371 * that will be true on exit from this function, but it need not be. 372 * 373 * Errors returned by this function are usually "soft", eg out of memory, or 374 * queue full; callers should try a different route to read this page rather 375 * than propagate an error back up the stack. 376 * 377 * Return: negative errno if an error occurs, 0 if submission was successful. 378 */ 379int bdev_read_page(struct block_device *bdev, sector_t sector, 380 struct page *page) 381{ 382 const struct block_device_operations *ops = bdev->bd_disk->fops; 383 if (!ops->rw_page) 384 return -EOPNOTSUPP; 385 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 386} 387EXPORT_SYMBOL_GPL(bdev_read_page); 388 389/** 390 * bdev_write_page() - Start writing a page to a block device 391 * @bdev: The device to write the page to 392 * @sector: The offset on the device to write the page to (need not be aligned) 393 * @page: The page to write 394 * @wbc: The writeback_control for the write 395 * 396 * On entry, the page should be locked and not currently under writeback. 397 * On exit, if the write started successfully, the page will be unlocked and 398 * under writeback. If the write failed already (eg the driver failed to 399 * queue the page to the device), the page will still be locked. If the 400 * caller is a ->writepage implementation, it will need to unlock the page. 401 * 402 * Errors returned by this function are usually "soft", eg out of memory, or 403 * queue full; callers should try a different route to write this page rather 404 * than propagate an error back up the stack. 405 * 406 * Return: negative errno if an error occurs, 0 if submission was successful. 407 */ 408int bdev_write_page(struct block_device *bdev, sector_t sector, 409 struct page *page, struct writeback_control *wbc) 410{ 411 int result; 412 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 413 const struct block_device_operations *ops = bdev->bd_disk->fops; 414 if (!ops->rw_page) 415 return -EOPNOTSUPP; 416 set_page_writeback(page); 417 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 418 if (result) 419 end_page_writeback(page); 420 else 421 unlock_page(page); 422 return result; 423} 424EXPORT_SYMBOL_GPL(bdev_write_page); 425 426/* 427 * pseudo-fs 428 */ 429 430static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 431static struct kmem_cache * bdev_cachep __read_mostly; 432 433static struct inode *bdev_alloc_inode(struct super_block *sb) 434{ 435 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 436 if (!ei) 437 return NULL; 438 return &ei->vfs_inode; 439} 440 441static void bdev_i_callback(struct rcu_head *head) 442{ 443 struct inode *inode = container_of(head, struct inode, i_rcu); 444 struct bdev_inode *bdi = BDEV_I(inode); 445 446 kmem_cache_free(bdev_cachep, bdi); 447} 448 449static void bdev_destroy_inode(struct inode *inode) 450{ 451 call_rcu(&inode->i_rcu, bdev_i_callback); 452} 453 454static void init_once(void *foo) 455{ 456 struct bdev_inode *ei = (struct bdev_inode *) foo; 457 struct block_device *bdev = &ei->bdev; 458 459 memset(bdev, 0, sizeof(*bdev)); 460 mutex_init(&bdev->bd_mutex); 461 INIT_LIST_HEAD(&bdev->bd_inodes); 462 INIT_LIST_HEAD(&bdev->bd_list); 463#ifdef CONFIG_SYSFS 464 INIT_LIST_HEAD(&bdev->bd_holder_disks); 465#endif 466 inode_init_once(&ei->vfs_inode); 467 /* Initialize mutex for freeze. */ 468 mutex_init(&bdev->bd_fsfreeze_mutex); 469} 470 471static inline void __bd_forget(struct inode *inode) 472{ 473 list_del_init(&inode->i_devices); 474 inode->i_bdev = NULL; 475 inode->i_mapping = &inode->i_data; 476} 477 478static void bdev_evict_inode(struct inode *inode) 479{ 480 struct block_device *bdev = &BDEV_I(inode)->bdev; 481 struct list_head *p; 482 truncate_inode_pages_final(&inode->i_data); 483 invalidate_inode_buffers(inode); /* is it needed here? */ 484 clear_inode(inode); 485 spin_lock(&bdev_lock); 486 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 487 __bd_forget(list_entry(p, struct inode, i_devices)); 488 } 489 list_del_init(&bdev->bd_list); 490 spin_unlock(&bdev_lock); 491} 492 493static const struct super_operations bdev_sops = { 494 .statfs = simple_statfs, 495 .alloc_inode = bdev_alloc_inode, 496 .destroy_inode = bdev_destroy_inode, 497 .drop_inode = generic_delete_inode, 498 .evict_inode = bdev_evict_inode, 499}; 500 501static struct dentry *bd_mount(struct file_system_type *fs_type, 502 int flags, const char *dev_name, void *data) 503{ 504 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 505} 506 507static struct file_system_type bd_type = { 508 .name = "bdev", 509 .mount = bd_mount, 510 .kill_sb = kill_anon_super, 511}; 512 513static struct super_block *blockdev_superblock __read_mostly; 514 515void __init bdev_cache_init(void) 516{ 517 int err; 518 static struct vfsmount *bd_mnt; 519 520 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 521 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 522 SLAB_MEM_SPREAD|SLAB_PANIC), 523 init_once); 524 err = register_filesystem(&bd_type); 525 if (err) 526 panic("Cannot register bdev pseudo-fs"); 527 bd_mnt = kern_mount(&bd_type); 528 if (IS_ERR(bd_mnt)) 529 panic("Cannot create bdev pseudo-fs"); 530 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 531} 532 533/* 534 * Most likely _very_ bad one - but then it's hardly critical for small 535 * /dev and can be fixed when somebody will need really large one. 536 * Keep in mind that it will be fed through icache hash function too. 537 */ 538static inline unsigned long hash(dev_t dev) 539{ 540 return MAJOR(dev)+MINOR(dev); 541} 542 543static int bdev_test(struct inode *inode, void *data) 544{ 545 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 546} 547 548static int bdev_set(struct inode *inode, void *data) 549{ 550 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 551 return 0; 552} 553 554static LIST_HEAD(all_bdevs); 555 556struct block_device *bdget(dev_t dev) 557{ 558 struct block_device *bdev; 559 struct inode *inode; 560 561 inode = iget5_locked(blockdev_superblock, hash(dev), 562 bdev_test, bdev_set, &dev); 563 564 if (!inode) 565 return NULL; 566 567 bdev = &BDEV_I(inode)->bdev; 568 569 if (inode->i_state & I_NEW) { 570 bdev->bd_contains = NULL; 571 bdev->bd_super = NULL; 572 bdev->bd_inode = inode; 573 bdev->bd_block_size = (1 << inode->i_blkbits); 574 bdev->bd_part_count = 0; 575 bdev->bd_invalidated = 0; 576 inode->i_mode = S_IFBLK; 577 inode->i_rdev = dev; 578 inode->i_bdev = bdev; 579 inode->i_data.a_ops = &def_blk_aops; 580 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 581 inode->i_data.backing_dev_info = &default_backing_dev_info; 582 spin_lock(&bdev_lock); 583 list_add(&bdev->bd_list, &all_bdevs); 584 spin_unlock(&bdev_lock); 585 unlock_new_inode(inode); 586 } 587 return bdev; 588} 589 590EXPORT_SYMBOL(bdget); 591 592/** 593 * bdgrab -- Grab a reference to an already referenced block device 594 * @bdev: Block device to grab a reference to. 595 */ 596struct block_device *bdgrab(struct block_device *bdev) 597{ 598 ihold(bdev->bd_inode); 599 return bdev; 600} 601EXPORT_SYMBOL(bdgrab); 602 603long nr_blockdev_pages(void) 604{ 605 struct block_device *bdev; 606 long ret = 0; 607 spin_lock(&bdev_lock); 608 list_for_each_entry(bdev, &all_bdevs, bd_list) { 609 ret += bdev->bd_inode->i_mapping->nrpages; 610 } 611 spin_unlock(&bdev_lock); 612 return ret; 613} 614 615void bdput(struct block_device *bdev) 616{ 617 iput(bdev->bd_inode); 618} 619 620EXPORT_SYMBOL(bdput); 621 622static struct block_device *bd_acquire(struct inode *inode) 623{ 624 struct block_device *bdev; 625 626 spin_lock(&bdev_lock); 627 bdev = inode->i_bdev; 628 if (bdev) { 629 ihold(bdev->bd_inode); 630 spin_unlock(&bdev_lock); 631 return bdev; 632 } 633 spin_unlock(&bdev_lock); 634 635 bdev = bdget(inode->i_rdev); 636 if (bdev) { 637 spin_lock(&bdev_lock); 638 if (!inode->i_bdev) { 639 /* 640 * We take an additional reference to bd_inode, 641 * and it's released in clear_inode() of inode. 642 * So, we can access it via ->i_mapping always 643 * without igrab(). 644 */ 645 ihold(bdev->bd_inode); 646 inode->i_bdev = bdev; 647 inode->i_mapping = bdev->bd_inode->i_mapping; 648 list_add(&inode->i_devices, &bdev->bd_inodes); 649 } 650 spin_unlock(&bdev_lock); 651 } 652 return bdev; 653} 654 655int sb_is_blkdev_sb(struct super_block *sb) 656{ 657 return sb == blockdev_superblock; 658} 659 660/* Call when you free inode */ 661 662void bd_forget(struct inode *inode) 663{ 664 struct block_device *bdev = NULL; 665 666 spin_lock(&bdev_lock); 667 if (!sb_is_blkdev_sb(inode->i_sb)) 668 bdev = inode->i_bdev; 669 __bd_forget(inode); 670 spin_unlock(&bdev_lock); 671 672 if (bdev) 673 iput(bdev->bd_inode); 674} 675 676/** 677 * bd_may_claim - test whether a block device can be claimed 678 * @bdev: block device of interest 679 * @whole: whole block device containing @bdev, may equal @bdev 680 * @holder: holder trying to claim @bdev 681 * 682 * Test whether @bdev can be claimed by @holder. 683 * 684 * CONTEXT: 685 * spin_lock(&bdev_lock). 686 * 687 * RETURNS: 688 * %true if @bdev can be claimed, %false otherwise. 689 */ 690static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 691 void *holder) 692{ 693 if (bdev->bd_holder == holder) 694 return true; /* already a holder */ 695 else if (bdev->bd_holder != NULL) 696 return false; /* held by someone else */ 697 else if (bdev->bd_contains == bdev) 698 return true; /* is a whole device which isn't held */ 699 700 else if (whole->bd_holder == bd_may_claim) 701 return true; /* is a partition of a device that is being partitioned */ 702 else if (whole->bd_holder != NULL) 703 return false; /* is a partition of a held device */ 704 else 705 return true; /* is a partition of an un-held device */ 706} 707 708/** 709 * bd_prepare_to_claim - prepare to claim a block device 710 * @bdev: block device of interest 711 * @whole: the whole device containing @bdev, may equal @bdev 712 * @holder: holder trying to claim @bdev 713 * 714 * Prepare to claim @bdev. This function fails if @bdev is already 715 * claimed by another holder and waits if another claiming is in 716 * progress. This function doesn't actually claim. On successful 717 * return, the caller has ownership of bd_claiming and bd_holder[s]. 718 * 719 * CONTEXT: 720 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 721 * it multiple times. 722 * 723 * RETURNS: 724 * 0 if @bdev can be claimed, -EBUSY otherwise. 725 */ 726static int bd_prepare_to_claim(struct block_device *bdev, 727 struct block_device *whole, void *holder) 728{ 729retry: 730 /* if someone else claimed, fail */ 731 if (!bd_may_claim(bdev, whole, holder)) 732 return -EBUSY; 733 734 /* if claiming is already in progress, wait for it to finish */ 735 if (whole->bd_claiming) { 736 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 737 DEFINE_WAIT(wait); 738 739 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 740 spin_unlock(&bdev_lock); 741 schedule(); 742 finish_wait(wq, &wait); 743 spin_lock(&bdev_lock); 744 goto retry; 745 } 746 747 /* yay, all mine */ 748 return 0; 749} 750 751/** 752 * bd_start_claiming - start claiming a block device 753 * @bdev: block device of interest 754 * @holder: holder trying to claim @bdev 755 * 756 * @bdev is about to be opened exclusively. Check @bdev can be opened 757 * exclusively and mark that an exclusive open is in progress. Each 758 * successful call to this function must be matched with a call to 759 * either bd_finish_claiming() or bd_abort_claiming() (which do not 760 * fail). 761 * 762 * This function is used to gain exclusive access to the block device 763 * without actually causing other exclusive open attempts to fail. It 764 * should be used when the open sequence itself requires exclusive 765 * access but may subsequently fail. 766 * 767 * CONTEXT: 768 * Might sleep. 769 * 770 * RETURNS: 771 * Pointer to the block device containing @bdev on success, ERR_PTR() 772 * value on failure. 773 */ 774static struct block_device *bd_start_claiming(struct block_device *bdev, 775 void *holder) 776{ 777 struct gendisk *disk; 778 struct block_device *whole; 779 int partno, err; 780 781 might_sleep(); 782 783 /* 784 * @bdev might not have been initialized properly yet, look up 785 * and grab the outer block device the hard way. 786 */ 787 disk = get_gendisk(bdev->bd_dev, &partno); 788 if (!disk) 789 return ERR_PTR(-ENXIO); 790 791 /* 792 * Normally, @bdev should equal what's returned from bdget_disk() 793 * if partno is 0; however, some drivers (floppy) use multiple 794 * bdev's for the same physical device and @bdev may be one of the 795 * aliases. Keep @bdev if partno is 0. This means claimer 796 * tracking is broken for those devices but it has always been that 797 * way. 798 */ 799 if (partno) 800 whole = bdget_disk(disk, 0); 801 else 802 whole = bdgrab(bdev); 803 804 module_put(disk->fops->owner); 805 put_disk(disk); 806 if (!whole) 807 return ERR_PTR(-ENOMEM); 808 809 /* prepare to claim, if successful, mark claiming in progress */ 810 spin_lock(&bdev_lock); 811 812 err = bd_prepare_to_claim(bdev, whole, holder); 813 if (err == 0) { 814 whole->bd_claiming = holder; 815 spin_unlock(&bdev_lock); 816 return whole; 817 } else { 818 spin_unlock(&bdev_lock); 819 bdput(whole); 820 return ERR_PTR(err); 821 } 822} 823 824#ifdef CONFIG_SYSFS 825struct bd_holder_disk { 826 struct list_head list; 827 struct gendisk *disk; 828 int refcnt; 829}; 830 831static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 832 struct gendisk *disk) 833{ 834 struct bd_holder_disk *holder; 835 836 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 837 if (holder->disk == disk) 838 return holder; 839 return NULL; 840} 841 842static int add_symlink(struct kobject *from, struct kobject *to) 843{ 844 return sysfs_create_link(from, to, kobject_name(to)); 845} 846 847static void del_symlink(struct kobject *from, struct kobject *to) 848{ 849 sysfs_remove_link(from, kobject_name(to)); 850} 851 852/** 853 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 854 * @bdev: the claimed slave bdev 855 * @disk: the holding disk 856 * 857 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 858 * 859 * This functions creates the following sysfs symlinks. 860 * 861 * - from "slaves" directory of the holder @disk to the claimed @bdev 862 * - from "holders" directory of the @bdev to the holder @disk 863 * 864 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 865 * passed to bd_link_disk_holder(), then: 866 * 867 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 868 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 869 * 870 * The caller must have claimed @bdev before calling this function and 871 * ensure that both @bdev and @disk are valid during the creation and 872 * lifetime of these symlinks. 873 * 874 * CONTEXT: 875 * Might sleep. 876 * 877 * RETURNS: 878 * 0 on success, -errno on failure. 879 */ 880int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 881{ 882 struct bd_holder_disk *holder; 883 int ret = 0; 884 885 mutex_lock(&bdev->bd_mutex); 886 887 WARN_ON_ONCE(!bdev->bd_holder); 888 889 /* FIXME: remove the following once add_disk() handles errors */ 890 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 891 goto out_unlock; 892 893 holder = bd_find_holder_disk(bdev, disk); 894 if (holder) { 895 holder->refcnt++; 896 goto out_unlock; 897 } 898 899 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 900 if (!holder) { 901 ret = -ENOMEM; 902 goto out_unlock; 903 } 904 905 INIT_LIST_HEAD(&holder->list); 906 holder->disk = disk; 907 holder->refcnt = 1; 908 909 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 910 if (ret) 911 goto out_free; 912 913 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 914 if (ret) 915 goto out_del; 916 /* 917 * bdev could be deleted beneath us which would implicitly destroy 918 * the holder directory. Hold on to it. 919 */ 920 kobject_get(bdev->bd_part->holder_dir); 921 922 list_add(&holder->list, &bdev->bd_holder_disks); 923 goto out_unlock; 924 925out_del: 926 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 927out_free: 928 kfree(holder); 929out_unlock: 930 mutex_unlock(&bdev->bd_mutex); 931 return ret; 932} 933EXPORT_SYMBOL_GPL(bd_link_disk_holder); 934 935/** 936 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 937 * @bdev: the calimed slave bdev 938 * @disk: the holding disk 939 * 940 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 941 * 942 * CONTEXT: 943 * Might sleep. 944 */ 945void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 946{ 947 struct bd_holder_disk *holder; 948 949 mutex_lock(&bdev->bd_mutex); 950 951 holder = bd_find_holder_disk(bdev, disk); 952 953 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 954 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 955 del_symlink(bdev->bd_part->holder_dir, 956 &disk_to_dev(disk)->kobj); 957 kobject_put(bdev->bd_part->holder_dir); 958 list_del_init(&holder->list); 959 kfree(holder); 960 } 961 962 mutex_unlock(&bdev->bd_mutex); 963} 964EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 965#endif 966 967/** 968 * flush_disk - invalidates all buffer-cache entries on a disk 969 * 970 * @bdev: struct block device to be flushed 971 * @kill_dirty: flag to guide handling of dirty inodes 972 * 973 * Invalidates all buffer-cache entries on a disk. It should be called 974 * when a disk has been changed -- either by a media change or online 975 * resize. 976 */ 977static void flush_disk(struct block_device *bdev, bool kill_dirty) 978{ 979 if (__invalidate_device(bdev, kill_dirty)) { 980 char name[BDEVNAME_SIZE] = ""; 981 982 if (bdev->bd_disk) 983 disk_name(bdev->bd_disk, 0, name); 984 printk(KERN_WARNING "VFS: busy inodes on changed media or " 985 "resized disk %s\n", name); 986 } 987 988 if (!bdev->bd_disk) 989 return; 990 if (disk_part_scan_enabled(bdev->bd_disk)) 991 bdev->bd_invalidated = 1; 992} 993 994/** 995 * check_disk_size_change - checks for disk size change and adjusts bdev size. 996 * @disk: struct gendisk to check 997 * @bdev: struct bdev to adjust. 998 * 999 * This routine checks to see if the bdev size does not match the disk size 1000 * and adjusts it if it differs. 1001 */ 1002void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1003{ 1004 loff_t disk_size, bdev_size; 1005 1006 disk_size = (loff_t)get_capacity(disk) << 9; 1007 bdev_size = i_size_read(bdev->bd_inode); 1008 if (disk_size != bdev_size) { 1009 char name[BDEVNAME_SIZE]; 1010 1011 disk_name(disk, 0, name); 1012 printk(KERN_INFO 1013 "%s: detected capacity change from %lld to %lld\n", 1014 name, bdev_size, disk_size); 1015 i_size_write(bdev->bd_inode, disk_size); 1016 flush_disk(bdev, false); 1017 } 1018} 1019EXPORT_SYMBOL(check_disk_size_change); 1020 1021/** 1022 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1023 * @disk: struct gendisk to be revalidated 1024 * 1025 * This routine is a wrapper for lower-level driver's revalidate_disk 1026 * call-backs. It is used to do common pre and post operations needed 1027 * for all revalidate_disk operations. 1028 */ 1029int revalidate_disk(struct gendisk *disk) 1030{ 1031 struct block_device *bdev; 1032 int ret = 0; 1033 1034 if (disk->fops->revalidate_disk) 1035 ret = disk->fops->revalidate_disk(disk); 1036 1037 bdev = bdget_disk(disk, 0); 1038 if (!bdev) 1039 return ret; 1040 1041 mutex_lock(&bdev->bd_mutex); 1042 check_disk_size_change(disk, bdev); 1043 bdev->bd_invalidated = 0; 1044 mutex_unlock(&bdev->bd_mutex); 1045 bdput(bdev); 1046 return ret; 1047} 1048EXPORT_SYMBOL(revalidate_disk); 1049 1050/* 1051 * This routine checks whether a removable media has been changed, 1052 * and invalidates all buffer-cache-entries in that case. This 1053 * is a relatively slow routine, so we have to try to minimize using 1054 * it. Thus it is called only upon a 'mount' or 'open'. This 1055 * is the best way of combining speed and utility, I think. 1056 * People changing diskettes in the middle of an operation deserve 1057 * to lose :-) 1058 */ 1059int check_disk_change(struct block_device *bdev) 1060{ 1061 struct gendisk *disk = bdev->bd_disk; 1062 const struct block_device_operations *bdops = disk->fops; 1063 unsigned int events; 1064 1065 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1066 DISK_EVENT_EJECT_REQUEST); 1067 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1068 return 0; 1069 1070 flush_disk(bdev, true); 1071 if (bdops->revalidate_disk) 1072 bdops->revalidate_disk(bdev->bd_disk); 1073 return 1; 1074} 1075 1076EXPORT_SYMBOL(check_disk_change); 1077 1078void bd_set_size(struct block_device *bdev, loff_t size) 1079{ 1080 unsigned bsize = bdev_logical_block_size(bdev); 1081 1082 mutex_lock(&bdev->bd_inode->i_mutex); 1083 i_size_write(bdev->bd_inode, size); 1084 mutex_unlock(&bdev->bd_inode->i_mutex); 1085 while (bsize < PAGE_CACHE_SIZE) { 1086 if (size & bsize) 1087 break; 1088 bsize <<= 1; 1089 } 1090 bdev->bd_block_size = bsize; 1091 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1092} 1093EXPORT_SYMBOL(bd_set_size); 1094 1095static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1096 1097/* 1098 * bd_mutex locking: 1099 * 1100 * mutex_lock(part->bd_mutex) 1101 * mutex_lock_nested(whole->bd_mutex, 1) 1102 */ 1103 1104static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1105{ 1106 struct gendisk *disk; 1107 struct module *owner; 1108 int ret; 1109 int partno; 1110 int perm = 0; 1111 1112 if (mode & FMODE_READ) 1113 perm |= MAY_READ; 1114 if (mode & FMODE_WRITE) 1115 perm |= MAY_WRITE; 1116 /* 1117 * hooks: /n/, see "layering violations". 1118 */ 1119 if (!for_part) { 1120 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1121 if (ret != 0) { 1122 bdput(bdev); 1123 return ret; 1124 } 1125 } 1126 1127 restart: 1128 1129 ret = -ENXIO; 1130 disk = get_gendisk(bdev->bd_dev, &partno); 1131 if (!disk) 1132 goto out; 1133 owner = disk->fops->owner; 1134 1135 disk_block_events(disk); 1136 mutex_lock_nested(&bdev->bd_mutex, for_part); 1137 if (!bdev->bd_openers) { 1138 bdev->bd_disk = disk; 1139 bdev->bd_queue = disk->queue; 1140 bdev->bd_contains = bdev; 1141 if (!partno) { 1142 struct backing_dev_info *bdi; 1143 1144 ret = -ENXIO; 1145 bdev->bd_part = disk_get_part(disk, partno); 1146 if (!bdev->bd_part) 1147 goto out_clear; 1148 1149 ret = 0; 1150 if (disk->fops->open) { 1151 ret = disk->fops->open(bdev, mode); 1152 if (ret == -ERESTARTSYS) { 1153 /* Lost a race with 'disk' being 1154 * deleted, try again. 1155 * See md.c 1156 */ 1157 disk_put_part(bdev->bd_part); 1158 bdev->bd_part = NULL; 1159 bdev->bd_disk = NULL; 1160 bdev->bd_queue = NULL; 1161 mutex_unlock(&bdev->bd_mutex); 1162 disk_unblock_events(disk); 1163 put_disk(disk); 1164 module_put(owner); 1165 goto restart; 1166 } 1167 } 1168 1169 if (!ret) { 1170 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1171 bdi = blk_get_backing_dev_info(bdev); 1172 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1173 } 1174 1175 /* 1176 * If the device is invalidated, rescan partition 1177 * if open succeeded or failed with -ENOMEDIUM. 1178 * The latter is necessary to prevent ghost 1179 * partitions on a removed medium. 1180 */ 1181 if (bdev->bd_invalidated) { 1182 if (!ret) 1183 rescan_partitions(disk, bdev); 1184 else if (ret == -ENOMEDIUM) 1185 invalidate_partitions(disk, bdev); 1186 } 1187 if (ret) 1188 goto out_clear; 1189 } else { 1190 struct block_device *whole; 1191 whole = bdget_disk(disk, 0); 1192 ret = -ENOMEM; 1193 if (!whole) 1194 goto out_clear; 1195 BUG_ON(for_part); 1196 ret = __blkdev_get(whole, mode, 1); 1197 if (ret) 1198 goto out_clear; 1199 bdev->bd_contains = whole; 1200 bdev_inode_switch_bdi(bdev->bd_inode, 1201 whole->bd_inode->i_data.backing_dev_info); 1202 bdev->bd_part = disk_get_part(disk, partno); 1203 if (!(disk->flags & GENHD_FL_UP) || 1204 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1205 ret = -ENXIO; 1206 goto out_clear; 1207 } 1208 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1209 } 1210 } else { 1211 if (bdev->bd_contains == bdev) { 1212 ret = 0; 1213 if (bdev->bd_disk->fops->open) 1214 ret = bdev->bd_disk->fops->open(bdev, mode); 1215 /* the same as first opener case, read comment there */ 1216 if (bdev->bd_invalidated) { 1217 if (!ret) 1218 rescan_partitions(bdev->bd_disk, bdev); 1219 else if (ret == -ENOMEDIUM) 1220 invalidate_partitions(bdev->bd_disk, bdev); 1221 } 1222 if (ret) 1223 goto out_unlock_bdev; 1224 } 1225 /* only one opener holds refs to the module and disk */ 1226 put_disk(disk); 1227 module_put(owner); 1228 } 1229 bdev->bd_openers++; 1230 if (for_part) 1231 bdev->bd_part_count++; 1232 mutex_unlock(&bdev->bd_mutex); 1233 disk_unblock_events(disk); 1234 return 0; 1235 1236 out_clear: 1237 disk_put_part(bdev->bd_part); 1238 bdev->bd_disk = NULL; 1239 bdev->bd_part = NULL; 1240 bdev->bd_queue = NULL; 1241 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1242 if (bdev != bdev->bd_contains) 1243 __blkdev_put(bdev->bd_contains, mode, 1); 1244 bdev->bd_contains = NULL; 1245 out_unlock_bdev: 1246 mutex_unlock(&bdev->bd_mutex); 1247 disk_unblock_events(disk); 1248 put_disk(disk); 1249 module_put(owner); 1250 out: 1251 bdput(bdev); 1252 1253 return ret; 1254} 1255 1256/** 1257 * blkdev_get - open a block device 1258 * @bdev: block_device to open 1259 * @mode: FMODE_* mask 1260 * @holder: exclusive holder identifier 1261 * 1262 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1263 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1264 * @holder is invalid. Exclusive opens may nest for the same @holder. 1265 * 1266 * On success, the reference count of @bdev is unchanged. On failure, 1267 * @bdev is put. 1268 * 1269 * CONTEXT: 1270 * Might sleep. 1271 * 1272 * RETURNS: 1273 * 0 on success, -errno on failure. 1274 */ 1275int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1276{ 1277 struct block_device *whole = NULL; 1278 int res; 1279 1280 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1281 1282 if ((mode & FMODE_EXCL) && holder) { 1283 whole = bd_start_claiming(bdev, holder); 1284 if (IS_ERR(whole)) { 1285 bdput(bdev); 1286 return PTR_ERR(whole); 1287 } 1288 } 1289 1290 res = __blkdev_get(bdev, mode, 0); 1291 1292 if (whole) { 1293 struct gendisk *disk = whole->bd_disk; 1294 1295 /* finish claiming */ 1296 mutex_lock(&bdev->bd_mutex); 1297 spin_lock(&bdev_lock); 1298 1299 if (!res) { 1300 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1301 /* 1302 * Note that for a whole device bd_holders 1303 * will be incremented twice, and bd_holder 1304 * will be set to bd_may_claim before being 1305 * set to holder 1306 */ 1307 whole->bd_holders++; 1308 whole->bd_holder = bd_may_claim; 1309 bdev->bd_holders++; 1310 bdev->bd_holder = holder; 1311 } 1312 1313 /* tell others that we're done */ 1314 BUG_ON(whole->bd_claiming != holder); 1315 whole->bd_claiming = NULL; 1316 wake_up_bit(&whole->bd_claiming, 0); 1317 1318 spin_unlock(&bdev_lock); 1319 1320 /* 1321 * Block event polling for write claims if requested. Any 1322 * write holder makes the write_holder state stick until 1323 * all are released. This is good enough and tracking 1324 * individual writeable reference is too fragile given the 1325 * way @mode is used in blkdev_get/put(). 1326 */ 1327 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1328 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1329 bdev->bd_write_holder = true; 1330 disk_block_events(disk); 1331 } 1332 1333 mutex_unlock(&bdev->bd_mutex); 1334 bdput(whole); 1335 } 1336 1337 return res; 1338} 1339EXPORT_SYMBOL(blkdev_get); 1340 1341/** 1342 * blkdev_get_by_path - open a block device by name 1343 * @path: path to the block device to open 1344 * @mode: FMODE_* mask 1345 * @holder: exclusive holder identifier 1346 * 1347 * Open the blockdevice described by the device file at @path. @mode 1348 * and @holder are identical to blkdev_get(). 1349 * 1350 * On success, the returned block_device has reference count of one. 1351 * 1352 * CONTEXT: 1353 * Might sleep. 1354 * 1355 * RETURNS: 1356 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1357 */ 1358struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1359 void *holder) 1360{ 1361 struct block_device *bdev; 1362 int err; 1363 1364 bdev = lookup_bdev(path); 1365 if (IS_ERR(bdev)) 1366 return bdev; 1367 1368 err = blkdev_get(bdev, mode, holder); 1369 if (err) 1370 return ERR_PTR(err); 1371 1372 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1373 blkdev_put(bdev, mode); 1374 return ERR_PTR(-EACCES); 1375 } 1376 1377 return bdev; 1378} 1379EXPORT_SYMBOL(blkdev_get_by_path); 1380 1381/** 1382 * blkdev_get_by_dev - open a block device by device number 1383 * @dev: device number of block device to open 1384 * @mode: FMODE_* mask 1385 * @holder: exclusive holder identifier 1386 * 1387 * Open the blockdevice described by device number @dev. @mode and 1388 * @holder are identical to blkdev_get(). 1389 * 1390 * Use it ONLY if you really do not have anything better - i.e. when 1391 * you are behind a truly sucky interface and all you are given is a 1392 * device number. _Never_ to be used for internal purposes. If you 1393 * ever need it - reconsider your API. 1394 * 1395 * On success, the returned block_device has reference count of one. 1396 * 1397 * CONTEXT: 1398 * Might sleep. 1399 * 1400 * RETURNS: 1401 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1402 */ 1403struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1404{ 1405 struct block_device *bdev; 1406 int err; 1407 1408 bdev = bdget(dev); 1409 if (!bdev) 1410 return ERR_PTR(-ENOMEM); 1411 1412 err = blkdev_get(bdev, mode, holder); 1413 if (err) 1414 return ERR_PTR(err); 1415 1416 return bdev; 1417} 1418EXPORT_SYMBOL(blkdev_get_by_dev); 1419 1420static int blkdev_open(struct inode * inode, struct file * filp) 1421{ 1422 struct block_device *bdev; 1423 1424 /* 1425 * Preserve backwards compatibility and allow large file access 1426 * even if userspace doesn't ask for it explicitly. Some mkfs 1427 * binary needs it. We might want to drop this workaround 1428 * during an unstable branch. 1429 */ 1430 filp->f_flags |= O_LARGEFILE; 1431 1432 if (filp->f_flags & O_NDELAY) 1433 filp->f_mode |= FMODE_NDELAY; 1434 if (filp->f_flags & O_EXCL) 1435 filp->f_mode |= FMODE_EXCL; 1436 if ((filp->f_flags & O_ACCMODE) == 3) 1437 filp->f_mode |= FMODE_WRITE_IOCTL; 1438 1439 bdev = bd_acquire(inode); 1440 if (bdev == NULL) 1441 return -ENOMEM; 1442 1443 filp->f_mapping = bdev->bd_inode->i_mapping; 1444 1445 return blkdev_get(bdev, filp->f_mode, filp); 1446} 1447 1448static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1449{ 1450 struct gendisk *disk = bdev->bd_disk; 1451 struct block_device *victim = NULL; 1452 1453 mutex_lock_nested(&bdev->bd_mutex, for_part); 1454 if (for_part) 1455 bdev->bd_part_count--; 1456 1457 if (!--bdev->bd_openers) { 1458 WARN_ON_ONCE(bdev->bd_holders); 1459 sync_blockdev(bdev); 1460 kill_bdev(bdev); 1461 /* ->release can cause the old bdi to disappear, 1462 * so must switch it out first 1463 */ 1464 bdev_inode_switch_bdi(bdev->bd_inode, 1465 &default_backing_dev_info); 1466 } 1467 if (bdev->bd_contains == bdev) { 1468 if (disk->fops->release) 1469 disk->fops->release(disk, mode); 1470 } 1471 if (!bdev->bd_openers) { 1472 struct module *owner = disk->fops->owner; 1473 1474 disk_put_part(bdev->bd_part); 1475 bdev->bd_part = NULL; 1476 bdev->bd_disk = NULL; 1477 if (bdev != bdev->bd_contains) 1478 victim = bdev->bd_contains; 1479 bdev->bd_contains = NULL; 1480 1481 put_disk(disk); 1482 module_put(owner); 1483 } 1484 mutex_unlock(&bdev->bd_mutex); 1485 bdput(bdev); 1486 if (victim) 1487 __blkdev_put(victim, mode, 1); 1488} 1489 1490void blkdev_put(struct block_device *bdev, fmode_t mode) 1491{ 1492 mutex_lock(&bdev->bd_mutex); 1493 1494 if (mode & FMODE_EXCL) { 1495 bool bdev_free; 1496 1497 /* 1498 * Release a claim on the device. The holder fields 1499 * are protected with bdev_lock. bd_mutex is to 1500 * synchronize disk_holder unlinking. 1501 */ 1502 spin_lock(&bdev_lock); 1503 1504 WARN_ON_ONCE(--bdev->bd_holders < 0); 1505 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1506 1507 /* bd_contains might point to self, check in a separate step */ 1508 if ((bdev_free = !bdev->bd_holders)) 1509 bdev->bd_holder = NULL; 1510 if (!bdev->bd_contains->bd_holders) 1511 bdev->bd_contains->bd_holder = NULL; 1512 1513 spin_unlock(&bdev_lock); 1514 1515 /* 1516 * If this was the last claim, remove holder link and 1517 * unblock evpoll if it was a write holder. 1518 */ 1519 if (bdev_free && bdev->bd_write_holder) { 1520 disk_unblock_events(bdev->bd_disk); 1521 bdev->bd_write_holder = false; 1522 } 1523 } 1524 1525 /* 1526 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1527 * event. This is to ensure detection of media removal commanded 1528 * from userland - e.g. eject(1). 1529 */ 1530 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1531 1532 mutex_unlock(&bdev->bd_mutex); 1533 1534 __blkdev_put(bdev, mode, 0); 1535} 1536EXPORT_SYMBOL(blkdev_put); 1537 1538static int blkdev_close(struct inode * inode, struct file * filp) 1539{ 1540 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1541 blkdev_put(bdev, filp->f_mode); 1542 return 0; 1543} 1544 1545static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1546{ 1547 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1548 fmode_t mode = file->f_mode; 1549 1550 /* 1551 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1552 * to updated it before every ioctl. 1553 */ 1554 if (file->f_flags & O_NDELAY) 1555 mode |= FMODE_NDELAY; 1556 else 1557 mode &= ~FMODE_NDELAY; 1558 1559 return blkdev_ioctl(bdev, mode, cmd, arg); 1560} 1561 1562/* 1563 * Write data to the block device. Only intended for the block device itself 1564 * and the raw driver which basically is a fake block device. 1565 * 1566 * Does not take i_mutex for the write and thus is not for general purpose 1567 * use. 1568 */ 1569ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1570{ 1571 struct file *file = iocb->ki_filp; 1572 struct blk_plug plug; 1573 ssize_t ret; 1574 1575 blk_start_plug(&plug); 1576 ret = __generic_file_write_iter(iocb, from); 1577 if (ret > 0) { 1578 ssize_t err; 1579 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1580 if (err < 0) 1581 ret = err; 1582 } 1583 blk_finish_plug(&plug); 1584 return ret; 1585} 1586EXPORT_SYMBOL_GPL(blkdev_write_iter); 1587 1588ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1589{ 1590 struct file *file = iocb->ki_filp; 1591 struct inode *bd_inode = file->f_mapping->host; 1592 loff_t size = i_size_read(bd_inode); 1593 loff_t pos = iocb->ki_pos; 1594 1595 if (pos >= size) 1596 return 0; 1597 1598 size -= pos; 1599 iov_iter_truncate(to, size); 1600 return generic_file_read_iter(iocb, to); 1601} 1602EXPORT_SYMBOL_GPL(blkdev_read_iter); 1603 1604/* 1605 * Try to release a page associated with block device when the system 1606 * is under memory pressure. 1607 */ 1608static int blkdev_releasepage(struct page *page, gfp_t wait) 1609{ 1610 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1611 1612 if (super && super->s_op->bdev_try_to_free_page) 1613 return super->s_op->bdev_try_to_free_page(super, page, wait); 1614 1615 return try_to_free_buffers(page); 1616} 1617 1618static const struct address_space_operations def_blk_aops = { 1619 .readpage = blkdev_readpage, 1620 .readpages = blkdev_readpages, 1621 .writepage = blkdev_writepage, 1622 .write_begin = blkdev_write_begin, 1623 .write_end = blkdev_write_end, 1624 .writepages = generic_writepages, 1625 .releasepage = blkdev_releasepage, 1626 .direct_IO = blkdev_direct_IO, 1627 .is_dirty_writeback = buffer_check_dirty_writeback, 1628}; 1629 1630const struct file_operations def_blk_fops = { 1631 .open = blkdev_open, 1632 .release = blkdev_close, 1633 .llseek = block_llseek, 1634 .read = new_sync_read, 1635 .write = new_sync_write, 1636 .read_iter = blkdev_read_iter, 1637 .write_iter = blkdev_write_iter, 1638 .mmap = generic_file_mmap, 1639 .fsync = blkdev_fsync, 1640 .unlocked_ioctl = block_ioctl, 1641#ifdef CONFIG_COMPAT 1642 .compat_ioctl = compat_blkdev_ioctl, 1643#endif 1644 .splice_read = generic_file_splice_read, 1645 .splice_write = iter_file_splice_write, 1646}; 1647 1648int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1649{ 1650 int res; 1651 mm_segment_t old_fs = get_fs(); 1652 set_fs(KERNEL_DS); 1653 res = blkdev_ioctl(bdev, 0, cmd, arg); 1654 set_fs(old_fs); 1655 return res; 1656} 1657 1658EXPORT_SYMBOL(ioctl_by_bdev); 1659 1660/** 1661 * lookup_bdev - lookup a struct block_device by name 1662 * @pathname: special file representing the block device 1663 * 1664 * Get a reference to the blockdevice at @pathname in the current 1665 * namespace if possible and return it. Return ERR_PTR(error) 1666 * otherwise. 1667 */ 1668struct block_device *lookup_bdev(const char *pathname) 1669{ 1670 struct block_device *bdev; 1671 struct inode *inode; 1672 struct path path; 1673 int error; 1674 1675 if (!pathname || !*pathname) 1676 return ERR_PTR(-EINVAL); 1677 1678 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1679 if (error) 1680 return ERR_PTR(error); 1681 1682 inode = path.dentry->d_inode; 1683 error = -ENOTBLK; 1684 if (!S_ISBLK(inode->i_mode)) 1685 goto fail; 1686 error = -EACCES; 1687 if (path.mnt->mnt_flags & MNT_NODEV) 1688 goto fail; 1689 error = -ENOMEM; 1690 bdev = bd_acquire(inode); 1691 if (!bdev) 1692 goto fail; 1693out: 1694 path_put(&path); 1695 return bdev; 1696fail: 1697 bdev = ERR_PTR(error); 1698 goto out; 1699} 1700EXPORT_SYMBOL(lookup_bdev); 1701 1702int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1703{ 1704 struct super_block *sb = get_super(bdev); 1705 int res = 0; 1706 1707 if (sb) { 1708 /* 1709 * no need to lock the super, get_super holds the 1710 * read mutex so the filesystem cannot go away 1711 * under us (->put_super runs with the write lock 1712 * hold). 1713 */ 1714 shrink_dcache_sb(sb); 1715 res = invalidate_inodes(sb, kill_dirty); 1716 drop_super(sb); 1717 } 1718 invalidate_bdev(bdev); 1719 return res; 1720} 1721EXPORT_SYMBOL(__invalidate_device); 1722 1723void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1724{ 1725 struct inode *inode, *old_inode = NULL; 1726 1727 spin_lock(&inode_sb_list_lock); 1728 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1729 struct address_space *mapping = inode->i_mapping; 1730 1731 spin_lock(&inode->i_lock); 1732 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1733 mapping->nrpages == 0) { 1734 spin_unlock(&inode->i_lock); 1735 continue; 1736 } 1737 __iget(inode); 1738 spin_unlock(&inode->i_lock); 1739 spin_unlock(&inode_sb_list_lock); 1740 /* 1741 * We hold a reference to 'inode' so it couldn't have been 1742 * removed from s_inodes list while we dropped the 1743 * inode_sb_list_lock. We cannot iput the inode now as we can 1744 * be holding the last reference and we cannot iput it under 1745 * inode_sb_list_lock. So we keep the reference and iput it 1746 * later. 1747 */ 1748 iput(old_inode); 1749 old_inode = inode; 1750 1751 func(I_BDEV(inode), arg); 1752 1753 spin_lock(&inode_sb_list_lock); 1754 } 1755 spin_unlock(&inode_sb_list_lock); 1756 iput(old_inode); 1757}