Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
13#include "writeback.h"
14
15#include <linux/module.h>
16#include <linux/hash.h>
17#include <linux/random.h>
18
19#include <trace/events/bcache.h>
20
21#define CUTOFF_CACHE_ADD 95
22#define CUTOFF_CACHE_READA 90
23
24struct kmem_cache *bch_search_cache;
25
26static void bch_data_insert_start(struct closure *);
27
28static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
29{
30 return BDEV_CACHE_MODE(&dc->sb);
31}
32
33static bool verify(struct cached_dev *dc, struct bio *bio)
34{
35 return dc->verify;
36}
37
38static void bio_csum(struct bio *bio, struct bkey *k)
39{
40 struct bio_vec bv;
41 struct bvec_iter iter;
42 uint64_t csum = 0;
43
44 bio_for_each_segment(bv, bio, iter) {
45 void *d = kmap(bv.bv_page) + bv.bv_offset;
46 csum = bch_crc64_update(csum, d, bv.bv_len);
47 kunmap(bv.bv_page);
48 }
49
50 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
51}
52
53/* Insert data into cache */
54
55static void bch_data_insert_keys(struct closure *cl)
56{
57 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
58 atomic_t *journal_ref = NULL;
59 struct bkey *replace_key = op->replace ? &op->replace_key : NULL;
60 int ret;
61
62 /*
63 * If we're looping, might already be waiting on
64 * another journal write - can't wait on more than one journal write at
65 * a time
66 *
67 * XXX: this looks wrong
68 */
69#if 0
70 while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
71 closure_sync(&s->cl);
72#endif
73
74 if (!op->replace)
75 journal_ref = bch_journal(op->c, &op->insert_keys,
76 op->flush_journal ? cl : NULL);
77
78 ret = bch_btree_insert(op->c, &op->insert_keys,
79 journal_ref, replace_key);
80 if (ret == -ESRCH) {
81 op->replace_collision = true;
82 } else if (ret) {
83 op->error = -ENOMEM;
84 op->insert_data_done = true;
85 }
86
87 if (journal_ref)
88 atomic_dec_bug(journal_ref);
89
90 if (!op->insert_data_done)
91 continue_at(cl, bch_data_insert_start, op->wq);
92
93 bch_keylist_free(&op->insert_keys);
94 closure_return(cl);
95}
96
97static int bch_keylist_realloc(struct keylist *l, unsigned u64s,
98 struct cache_set *c)
99{
100 size_t oldsize = bch_keylist_nkeys(l);
101 size_t newsize = oldsize + u64s;
102
103 /*
104 * The journalling code doesn't handle the case where the keys to insert
105 * is bigger than an empty write: If we just return -ENOMEM here,
106 * bio_insert() and bio_invalidate() will insert the keys created so far
107 * and finish the rest when the keylist is empty.
108 */
109 if (newsize * sizeof(uint64_t) > block_bytes(c) - sizeof(struct jset))
110 return -ENOMEM;
111
112 return __bch_keylist_realloc(l, u64s);
113}
114
115static void bch_data_invalidate(struct closure *cl)
116{
117 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
118 struct bio *bio = op->bio;
119
120 pr_debug("invalidating %i sectors from %llu",
121 bio_sectors(bio), (uint64_t) bio->bi_iter.bi_sector);
122
123 while (bio_sectors(bio)) {
124 unsigned sectors = min(bio_sectors(bio),
125 1U << (KEY_SIZE_BITS - 1));
126
127 if (bch_keylist_realloc(&op->insert_keys, 2, op->c))
128 goto out;
129
130 bio->bi_iter.bi_sector += sectors;
131 bio->bi_iter.bi_size -= sectors << 9;
132
133 bch_keylist_add(&op->insert_keys,
134 &KEY(op->inode, bio->bi_iter.bi_sector, sectors));
135 }
136
137 op->insert_data_done = true;
138 bio_put(bio);
139out:
140 continue_at(cl, bch_data_insert_keys, op->wq);
141}
142
143static void bch_data_insert_error(struct closure *cl)
144{
145 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
146
147 /*
148 * Our data write just errored, which means we've got a bunch of keys to
149 * insert that point to data that wasn't succesfully written.
150 *
151 * We don't have to insert those keys but we still have to invalidate
152 * that region of the cache - so, if we just strip off all the pointers
153 * from the keys we'll accomplish just that.
154 */
155
156 struct bkey *src = op->insert_keys.keys, *dst = op->insert_keys.keys;
157
158 while (src != op->insert_keys.top) {
159 struct bkey *n = bkey_next(src);
160
161 SET_KEY_PTRS(src, 0);
162 memmove(dst, src, bkey_bytes(src));
163
164 dst = bkey_next(dst);
165 src = n;
166 }
167
168 op->insert_keys.top = dst;
169
170 bch_data_insert_keys(cl);
171}
172
173static void bch_data_insert_endio(struct bio *bio, int error)
174{
175 struct closure *cl = bio->bi_private;
176 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
177
178 if (error) {
179 /* TODO: We could try to recover from this. */
180 if (op->writeback)
181 op->error = error;
182 else if (!op->replace)
183 set_closure_fn(cl, bch_data_insert_error, op->wq);
184 else
185 set_closure_fn(cl, NULL, NULL);
186 }
187
188 bch_bbio_endio(op->c, bio, error, "writing data to cache");
189}
190
191static void bch_data_insert_start(struct closure *cl)
192{
193 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
194 struct bio *bio = op->bio, *n;
195
196 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
197 set_gc_sectors(op->c);
198 wake_up_gc(op->c);
199 }
200
201 if (op->bypass)
202 return bch_data_invalidate(cl);
203
204 /*
205 * Journal writes are marked REQ_FLUSH; if the original write was a
206 * flush, it'll wait on the journal write.
207 */
208 bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
209
210 do {
211 unsigned i;
212 struct bkey *k;
213 struct bio_set *split = op->c->bio_split;
214
215 /* 1 for the device pointer and 1 for the chksum */
216 if (bch_keylist_realloc(&op->insert_keys,
217 3 + (op->csum ? 1 : 0),
218 op->c))
219 continue_at(cl, bch_data_insert_keys, op->wq);
220
221 k = op->insert_keys.top;
222 bkey_init(k);
223 SET_KEY_INODE(k, op->inode);
224 SET_KEY_OFFSET(k, bio->bi_iter.bi_sector);
225
226 if (!bch_alloc_sectors(op->c, k, bio_sectors(bio),
227 op->write_point, op->write_prio,
228 op->writeback))
229 goto err;
230
231 n = bio_next_split(bio, KEY_SIZE(k), GFP_NOIO, split);
232
233 n->bi_end_io = bch_data_insert_endio;
234 n->bi_private = cl;
235
236 if (op->writeback) {
237 SET_KEY_DIRTY(k, true);
238
239 for (i = 0; i < KEY_PTRS(k); i++)
240 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
241 GC_MARK_DIRTY);
242 }
243
244 SET_KEY_CSUM(k, op->csum);
245 if (KEY_CSUM(k))
246 bio_csum(n, k);
247
248 trace_bcache_cache_insert(k);
249 bch_keylist_push(&op->insert_keys);
250
251 n->bi_rw |= REQ_WRITE;
252 bch_submit_bbio(n, op->c, k, 0);
253 } while (n != bio);
254
255 op->insert_data_done = true;
256 continue_at(cl, bch_data_insert_keys, op->wq);
257err:
258 /* bch_alloc_sectors() blocks if s->writeback = true */
259 BUG_ON(op->writeback);
260
261 /*
262 * But if it's not a writeback write we'd rather just bail out if
263 * there aren't any buckets ready to write to - it might take awhile and
264 * we might be starving btree writes for gc or something.
265 */
266
267 if (!op->replace) {
268 /*
269 * Writethrough write: We can't complete the write until we've
270 * updated the index. But we don't want to delay the write while
271 * we wait for buckets to be freed up, so just invalidate the
272 * rest of the write.
273 */
274 op->bypass = true;
275 return bch_data_invalidate(cl);
276 } else {
277 /*
278 * From a cache miss, we can just insert the keys for the data
279 * we have written or bail out if we didn't do anything.
280 */
281 op->insert_data_done = true;
282 bio_put(bio);
283
284 if (!bch_keylist_empty(&op->insert_keys))
285 continue_at(cl, bch_data_insert_keys, op->wq);
286 else
287 closure_return(cl);
288 }
289}
290
291/**
292 * bch_data_insert - stick some data in the cache
293 *
294 * This is the starting point for any data to end up in a cache device; it could
295 * be from a normal write, or a writeback write, or a write to a flash only
296 * volume - it's also used by the moving garbage collector to compact data in
297 * mostly empty buckets.
298 *
299 * It first writes the data to the cache, creating a list of keys to be inserted
300 * (if the data had to be fragmented there will be multiple keys); after the
301 * data is written it calls bch_journal, and after the keys have been added to
302 * the next journal write they're inserted into the btree.
303 *
304 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
305 * and op->inode is used for the key inode.
306 *
307 * If s->bypass is true, instead of inserting the data it invalidates the
308 * region of the cache represented by s->cache_bio and op->inode.
309 */
310void bch_data_insert(struct closure *cl)
311{
312 struct data_insert_op *op = container_of(cl, struct data_insert_op, cl);
313
314 trace_bcache_write(op->c, op->inode, op->bio,
315 op->writeback, op->bypass);
316
317 bch_keylist_init(&op->insert_keys);
318 bio_get(op->bio);
319 bch_data_insert_start(cl);
320}
321
322/* Congested? */
323
324unsigned bch_get_congested(struct cache_set *c)
325{
326 int i;
327 long rand;
328
329 if (!c->congested_read_threshold_us &&
330 !c->congested_write_threshold_us)
331 return 0;
332
333 i = (local_clock_us() - c->congested_last_us) / 1024;
334 if (i < 0)
335 return 0;
336
337 i += atomic_read(&c->congested);
338 if (i >= 0)
339 return 0;
340
341 i += CONGESTED_MAX;
342
343 if (i > 0)
344 i = fract_exp_two(i, 6);
345
346 rand = get_random_int();
347 i -= bitmap_weight(&rand, BITS_PER_LONG);
348
349 return i > 0 ? i : 1;
350}
351
352static void add_sequential(struct task_struct *t)
353{
354 ewma_add(t->sequential_io_avg,
355 t->sequential_io, 8, 0);
356
357 t->sequential_io = 0;
358}
359
360static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
361{
362 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
363}
364
365static bool check_should_bypass(struct cached_dev *dc, struct bio *bio)
366{
367 struct cache_set *c = dc->disk.c;
368 unsigned mode = cache_mode(dc, bio);
369 unsigned sectors, congested = bch_get_congested(c);
370 struct task_struct *task = current;
371 struct io *i;
372
373 if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
374 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
375 (bio->bi_rw & REQ_DISCARD))
376 goto skip;
377
378 if (mode == CACHE_MODE_NONE ||
379 (mode == CACHE_MODE_WRITEAROUND &&
380 (bio->bi_rw & REQ_WRITE)))
381 goto skip;
382
383 if (bio->bi_iter.bi_sector & (c->sb.block_size - 1) ||
384 bio_sectors(bio) & (c->sb.block_size - 1)) {
385 pr_debug("skipping unaligned io");
386 goto skip;
387 }
388
389 if (bypass_torture_test(dc)) {
390 if ((get_random_int() & 3) == 3)
391 goto skip;
392 else
393 goto rescale;
394 }
395
396 if (!congested && !dc->sequential_cutoff)
397 goto rescale;
398
399 if (!congested &&
400 mode == CACHE_MODE_WRITEBACK &&
401 (bio->bi_rw & REQ_WRITE) &&
402 (bio->bi_rw & REQ_SYNC))
403 goto rescale;
404
405 spin_lock(&dc->io_lock);
406
407 hlist_for_each_entry(i, iohash(dc, bio->bi_iter.bi_sector), hash)
408 if (i->last == bio->bi_iter.bi_sector &&
409 time_before(jiffies, i->jiffies))
410 goto found;
411
412 i = list_first_entry(&dc->io_lru, struct io, lru);
413
414 add_sequential(task);
415 i->sequential = 0;
416found:
417 if (i->sequential + bio->bi_iter.bi_size > i->sequential)
418 i->sequential += bio->bi_iter.bi_size;
419
420 i->last = bio_end_sector(bio);
421 i->jiffies = jiffies + msecs_to_jiffies(5000);
422 task->sequential_io = i->sequential;
423
424 hlist_del(&i->hash);
425 hlist_add_head(&i->hash, iohash(dc, i->last));
426 list_move_tail(&i->lru, &dc->io_lru);
427
428 spin_unlock(&dc->io_lock);
429
430 sectors = max(task->sequential_io,
431 task->sequential_io_avg) >> 9;
432
433 if (dc->sequential_cutoff &&
434 sectors >= dc->sequential_cutoff >> 9) {
435 trace_bcache_bypass_sequential(bio);
436 goto skip;
437 }
438
439 if (congested && sectors >= congested) {
440 trace_bcache_bypass_congested(bio);
441 goto skip;
442 }
443
444rescale:
445 bch_rescale_priorities(c, bio_sectors(bio));
446 return false;
447skip:
448 bch_mark_sectors_bypassed(c, dc, bio_sectors(bio));
449 return true;
450}
451
452/* Cache lookup */
453
454struct search {
455 /* Stack frame for bio_complete */
456 struct closure cl;
457
458 struct bbio bio;
459 struct bio *orig_bio;
460 struct bio *cache_miss;
461 struct bcache_device *d;
462
463 unsigned insert_bio_sectors;
464 unsigned recoverable:1;
465 unsigned write:1;
466 unsigned read_dirty_data:1;
467
468 unsigned long start_time;
469
470 struct btree_op op;
471 struct data_insert_op iop;
472};
473
474static void bch_cache_read_endio(struct bio *bio, int error)
475{
476 struct bbio *b = container_of(bio, struct bbio, bio);
477 struct closure *cl = bio->bi_private;
478 struct search *s = container_of(cl, struct search, cl);
479
480 /*
481 * If the bucket was reused while our bio was in flight, we might have
482 * read the wrong data. Set s->error but not error so it doesn't get
483 * counted against the cache device, but we'll still reread the data
484 * from the backing device.
485 */
486
487 if (error)
488 s->iop.error = error;
489 else if (!KEY_DIRTY(&b->key) &&
490 ptr_stale(s->iop.c, &b->key, 0)) {
491 atomic_long_inc(&s->iop.c->cache_read_races);
492 s->iop.error = -EINTR;
493 }
494
495 bch_bbio_endio(s->iop.c, bio, error, "reading from cache");
496}
497
498/*
499 * Read from a single key, handling the initial cache miss if the key starts in
500 * the middle of the bio
501 */
502static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
503{
504 struct search *s = container_of(op, struct search, op);
505 struct bio *n, *bio = &s->bio.bio;
506 struct bkey *bio_key;
507 unsigned ptr;
508
509 if (bkey_cmp(k, &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0)) <= 0)
510 return MAP_CONTINUE;
511
512 if (KEY_INODE(k) != s->iop.inode ||
513 KEY_START(k) > bio->bi_iter.bi_sector) {
514 unsigned bio_sectors = bio_sectors(bio);
515 unsigned sectors = KEY_INODE(k) == s->iop.inode
516 ? min_t(uint64_t, INT_MAX,
517 KEY_START(k) - bio->bi_iter.bi_sector)
518 : INT_MAX;
519
520 int ret = s->d->cache_miss(b, s, bio, sectors);
521 if (ret != MAP_CONTINUE)
522 return ret;
523
524 /* if this was a complete miss we shouldn't get here */
525 BUG_ON(bio_sectors <= sectors);
526 }
527
528 if (!KEY_SIZE(k))
529 return MAP_CONTINUE;
530
531 /* XXX: figure out best pointer - for multiple cache devices */
532 ptr = 0;
533
534 PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
535
536 if (KEY_DIRTY(k))
537 s->read_dirty_data = true;
538
539 n = bio_next_split(bio, min_t(uint64_t, INT_MAX,
540 KEY_OFFSET(k) - bio->bi_iter.bi_sector),
541 GFP_NOIO, s->d->bio_split);
542
543 bio_key = &container_of(n, struct bbio, bio)->key;
544 bch_bkey_copy_single_ptr(bio_key, k, ptr);
545
546 bch_cut_front(&KEY(s->iop.inode, n->bi_iter.bi_sector, 0), bio_key);
547 bch_cut_back(&KEY(s->iop.inode, bio_end_sector(n), 0), bio_key);
548
549 n->bi_end_io = bch_cache_read_endio;
550 n->bi_private = &s->cl;
551
552 /*
553 * The bucket we're reading from might be reused while our bio
554 * is in flight, and we could then end up reading the wrong
555 * data.
556 *
557 * We guard against this by checking (in cache_read_endio()) if
558 * the pointer is stale again; if so, we treat it as an error
559 * and reread from the backing device (but we don't pass that
560 * error up anywhere).
561 */
562
563 __bch_submit_bbio(n, b->c);
564 return n == bio ? MAP_DONE : MAP_CONTINUE;
565}
566
567static void cache_lookup(struct closure *cl)
568{
569 struct search *s = container_of(cl, struct search, iop.cl);
570 struct bio *bio = &s->bio.bio;
571 int ret;
572
573 bch_btree_op_init(&s->op, -1);
574
575 ret = bch_btree_map_keys(&s->op, s->iop.c,
576 &KEY(s->iop.inode, bio->bi_iter.bi_sector, 0),
577 cache_lookup_fn, MAP_END_KEY);
578 if (ret == -EAGAIN)
579 continue_at(cl, cache_lookup, bcache_wq);
580
581 closure_return(cl);
582}
583
584/* Common code for the make_request functions */
585
586static void request_endio(struct bio *bio, int error)
587{
588 struct closure *cl = bio->bi_private;
589
590 if (error) {
591 struct search *s = container_of(cl, struct search, cl);
592 s->iop.error = error;
593 /* Only cache read errors are recoverable */
594 s->recoverable = false;
595 }
596
597 bio_put(bio);
598 closure_put(cl);
599}
600
601static void bio_complete(struct search *s)
602{
603 if (s->orig_bio) {
604 int cpu, rw = bio_data_dir(s->orig_bio);
605 unsigned long duration = jiffies - s->start_time;
606
607 cpu = part_stat_lock();
608 part_round_stats(cpu, &s->d->disk->part0);
609 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
610 part_stat_unlock();
611
612 trace_bcache_request_end(s->d, s->orig_bio);
613 bio_endio(s->orig_bio, s->iop.error);
614 s->orig_bio = NULL;
615 }
616}
617
618static void do_bio_hook(struct search *s, struct bio *orig_bio)
619{
620 struct bio *bio = &s->bio.bio;
621
622 bio_init(bio);
623 __bio_clone_fast(bio, orig_bio);
624 bio->bi_end_io = request_endio;
625 bio->bi_private = &s->cl;
626
627 atomic_set(&bio->bi_cnt, 3);
628}
629
630static void search_free(struct closure *cl)
631{
632 struct search *s = container_of(cl, struct search, cl);
633 bio_complete(s);
634
635 if (s->iop.bio)
636 bio_put(s->iop.bio);
637
638 closure_debug_destroy(cl);
639 mempool_free(s, s->d->c->search);
640}
641
642static inline struct search *search_alloc(struct bio *bio,
643 struct bcache_device *d)
644{
645 struct search *s;
646
647 s = mempool_alloc(d->c->search, GFP_NOIO);
648
649 closure_init(&s->cl, NULL);
650 do_bio_hook(s, bio);
651
652 s->orig_bio = bio;
653 s->cache_miss = NULL;
654 s->d = d;
655 s->recoverable = 1;
656 s->write = (bio->bi_rw & REQ_WRITE) != 0;
657 s->read_dirty_data = 0;
658 s->start_time = jiffies;
659
660 s->iop.c = d->c;
661 s->iop.bio = NULL;
662 s->iop.inode = d->id;
663 s->iop.write_point = hash_long((unsigned long) current, 16);
664 s->iop.write_prio = 0;
665 s->iop.error = 0;
666 s->iop.flags = 0;
667 s->iop.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
668 s->iop.wq = bcache_wq;
669
670 return s;
671}
672
673/* Cached devices */
674
675static void cached_dev_bio_complete(struct closure *cl)
676{
677 struct search *s = container_of(cl, struct search, cl);
678 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
679
680 search_free(cl);
681 cached_dev_put(dc);
682}
683
684/* Process reads */
685
686static void cached_dev_cache_miss_done(struct closure *cl)
687{
688 struct search *s = container_of(cl, struct search, cl);
689
690 if (s->iop.replace_collision)
691 bch_mark_cache_miss_collision(s->iop.c, s->d);
692
693 if (s->iop.bio) {
694 int i;
695 struct bio_vec *bv;
696
697 bio_for_each_segment_all(bv, s->iop.bio, i)
698 __free_page(bv->bv_page);
699 }
700
701 cached_dev_bio_complete(cl);
702}
703
704static void cached_dev_read_error(struct closure *cl)
705{
706 struct search *s = container_of(cl, struct search, cl);
707 struct bio *bio = &s->bio.bio;
708
709 if (s->recoverable) {
710 /* Retry from the backing device: */
711 trace_bcache_read_retry(s->orig_bio);
712
713 s->iop.error = 0;
714 do_bio_hook(s, s->orig_bio);
715
716 /* XXX: invalidate cache */
717
718 closure_bio_submit(bio, cl, s->d);
719 }
720
721 continue_at(cl, cached_dev_cache_miss_done, NULL);
722}
723
724static void cached_dev_read_done(struct closure *cl)
725{
726 struct search *s = container_of(cl, struct search, cl);
727 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
728
729 /*
730 * We had a cache miss; cache_bio now contains data ready to be inserted
731 * into the cache.
732 *
733 * First, we copy the data we just read from cache_bio's bounce buffers
734 * to the buffers the original bio pointed to:
735 */
736
737 if (s->iop.bio) {
738 bio_reset(s->iop.bio);
739 s->iop.bio->bi_iter.bi_sector = s->cache_miss->bi_iter.bi_sector;
740 s->iop.bio->bi_bdev = s->cache_miss->bi_bdev;
741 s->iop.bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
742 bch_bio_map(s->iop.bio, NULL);
743
744 bio_copy_data(s->cache_miss, s->iop.bio);
745
746 bio_put(s->cache_miss);
747 s->cache_miss = NULL;
748 }
749
750 if (verify(dc, &s->bio.bio) && s->recoverable && !s->read_dirty_data)
751 bch_data_verify(dc, s->orig_bio);
752
753 bio_complete(s);
754
755 if (s->iop.bio &&
756 !test_bit(CACHE_SET_STOPPING, &s->iop.c->flags)) {
757 BUG_ON(!s->iop.replace);
758 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
759 }
760
761 continue_at(cl, cached_dev_cache_miss_done, NULL);
762}
763
764static void cached_dev_read_done_bh(struct closure *cl)
765{
766 struct search *s = container_of(cl, struct search, cl);
767 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
768
769 bch_mark_cache_accounting(s->iop.c, s->d,
770 !s->cache_miss, s->iop.bypass);
771 trace_bcache_read(s->orig_bio, !s->cache_miss, s->iop.bypass);
772
773 if (s->iop.error)
774 continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
775 else if (s->iop.bio || verify(dc, &s->bio.bio))
776 continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
777 else
778 continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
779}
780
781static int cached_dev_cache_miss(struct btree *b, struct search *s,
782 struct bio *bio, unsigned sectors)
783{
784 int ret = MAP_CONTINUE;
785 unsigned reada = 0;
786 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
787 struct bio *miss, *cache_bio;
788
789 if (s->cache_miss || s->iop.bypass) {
790 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
791 ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
792 goto out_submit;
793 }
794
795 if (!(bio->bi_rw & REQ_RAHEAD) &&
796 !(bio->bi_rw & REQ_META) &&
797 s->iop.c->gc_stats.in_use < CUTOFF_CACHE_READA)
798 reada = min_t(sector_t, dc->readahead >> 9,
799 bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
800
801 s->insert_bio_sectors = min(sectors, bio_sectors(bio) + reada);
802
803 s->iop.replace_key = KEY(s->iop.inode,
804 bio->bi_iter.bi_sector + s->insert_bio_sectors,
805 s->insert_bio_sectors);
806
807 ret = bch_btree_insert_check_key(b, &s->op, &s->iop.replace_key);
808 if (ret)
809 return ret;
810
811 s->iop.replace = true;
812
813 miss = bio_next_split(bio, sectors, GFP_NOIO, s->d->bio_split);
814
815 /* btree_search_recurse()'s btree iterator is no good anymore */
816 ret = miss == bio ? MAP_DONE : -EINTR;
817
818 cache_bio = bio_alloc_bioset(GFP_NOWAIT,
819 DIV_ROUND_UP(s->insert_bio_sectors, PAGE_SECTORS),
820 dc->disk.bio_split);
821 if (!cache_bio)
822 goto out_submit;
823
824 cache_bio->bi_iter.bi_sector = miss->bi_iter.bi_sector;
825 cache_bio->bi_bdev = miss->bi_bdev;
826 cache_bio->bi_iter.bi_size = s->insert_bio_sectors << 9;
827
828 cache_bio->bi_end_io = request_endio;
829 cache_bio->bi_private = &s->cl;
830
831 bch_bio_map(cache_bio, NULL);
832 if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
833 goto out_put;
834
835 if (reada)
836 bch_mark_cache_readahead(s->iop.c, s->d);
837
838 s->cache_miss = miss;
839 s->iop.bio = cache_bio;
840 bio_get(cache_bio);
841 closure_bio_submit(cache_bio, &s->cl, s->d);
842
843 return ret;
844out_put:
845 bio_put(cache_bio);
846out_submit:
847 miss->bi_end_io = request_endio;
848 miss->bi_private = &s->cl;
849 closure_bio_submit(miss, &s->cl, s->d);
850 return ret;
851}
852
853static void cached_dev_read(struct cached_dev *dc, struct search *s)
854{
855 struct closure *cl = &s->cl;
856
857 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
858 continue_at(cl, cached_dev_read_done_bh, NULL);
859}
860
861/* Process writes */
862
863static void cached_dev_write_complete(struct closure *cl)
864{
865 struct search *s = container_of(cl, struct search, cl);
866 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
867
868 up_read_non_owner(&dc->writeback_lock);
869 cached_dev_bio_complete(cl);
870}
871
872static void cached_dev_write(struct cached_dev *dc, struct search *s)
873{
874 struct closure *cl = &s->cl;
875 struct bio *bio = &s->bio.bio;
876 struct bkey start = KEY(dc->disk.id, bio->bi_iter.bi_sector, 0);
877 struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
878
879 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys, &start, &end);
880
881 down_read_non_owner(&dc->writeback_lock);
882 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
883 /*
884 * We overlap with some dirty data undergoing background
885 * writeback, force this write to writeback
886 */
887 s->iop.bypass = false;
888 s->iop.writeback = true;
889 }
890
891 /*
892 * Discards aren't _required_ to do anything, so skipping if
893 * check_overlapping returned true is ok
894 *
895 * But check_overlapping drops dirty keys for which io hasn't started,
896 * so we still want to call it.
897 */
898 if (bio->bi_rw & REQ_DISCARD)
899 s->iop.bypass = true;
900
901 if (should_writeback(dc, s->orig_bio,
902 cache_mode(dc, bio),
903 s->iop.bypass)) {
904 s->iop.bypass = false;
905 s->iop.writeback = true;
906 }
907
908 if (s->iop.bypass) {
909 s->iop.bio = s->orig_bio;
910 bio_get(s->iop.bio);
911
912 if (!(bio->bi_rw & REQ_DISCARD) ||
913 blk_queue_discard(bdev_get_queue(dc->bdev)))
914 closure_bio_submit(bio, cl, s->d);
915 } else if (s->iop.writeback) {
916 bch_writeback_add(dc);
917 s->iop.bio = bio;
918
919 if (bio->bi_rw & REQ_FLUSH) {
920 /* Also need to send a flush to the backing device */
921 struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
922 dc->disk.bio_split);
923
924 flush->bi_rw = WRITE_FLUSH;
925 flush->bi_bdev = bio->bi_bdev;
926 flush->bi_end_io = request_endio;
927 flush->bi_private = cl;
928
929 closure_bio_submit(flush, cl, s->d);
930 }
931 } else {
932 s->iop.bio = bio_clone_fast(bio, GFP_NOIO, dc->disk.bio_split);
933
934 closure_bio_submit(bio, cl, s->d);
935 }
936
937 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
938 continue_at(cl, cached_dev_write_complete, NULL);
939}
940
941static void cached_dev_nodata(struct closure *cl)
942{
943 struct search *s = container_of(cl, struct search, cl);
944 struct bio *bio = &s->bio.bio;
945
946 if (s->iop.flush_journal)
947 bch_journal_meta(s->iop.c, cl);
948
949 /* If it's a flush, we send the flush to the backing device too */
950 closure_bio_submit(bio, cl, s->d);
951
952 continue_at(cl, cached_dev_bio_complete, NULL);
953}
954
955/* Cached devices - read & write stuff */
956
957static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
958{
959 struct search *s;
960 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
961 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
962 int cpu, rw = bio_data_dir(bio);
963
964 cpu = part_stat_lock();
965 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
966 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
967 part_stat_unlock();
968
969 bio->bi_bdev = dc->bdev;
970 bio->bi_iter.bi_sector += dc->sb.data_offset;
971
972 if (cached_dev_get(dc)) {
973 s = search_alloc(bio, d);
974 trace_bcache_request_start(s->d, bio);
975
976 if (!bio->bi_iter.bi_size) {
977 /*
978 * can't call bch_journal_meta from under
979 * generic_make_request
980 */
981 continue_at_nobarrier(&s->cl,
982 cached_dev_nodata,
983 bcache_wq);
984 } else {
985 s->iop.bypass = check_should_bypass(dc, bio);
986
987 if (rw)
988 cached_dev_write(dc, s);
989 else
990 cached_dev_read(dc, s);
991 }
992 } else {
993 if ((bio->bi_rw & REQ_DISCARD) &&
994 !blk_queue_discard(bdev_get_queue(dc->bdev)))
995 bio_endio(bio, 0);
996 else
997 bch_generic_make_request(bio, &d->bio_split_hook);
998 }
999}
1000
1001static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1002 unsigned int cmd, unsigned long arg)
1003{
1004 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1005 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1006}
1007
1008static int cached_dev_congested(void *data, int bits)
1009{
1010 struct bcache_device *d = data;
1011 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1012 struct request_queue *q = bdev_get_queue(dc->bdev);
1013 int ret = 0;
1014
1015 if (bdi_congested(&q->backing_dev_info, bits))
1016 return 1;
1017
1018 if (cached_dev_get(dc)) {
1019 unsigned i;
1020 struct cache *ca;
1021
1022 for_each_cache(ca, d->c, i) {
1023 q = bdev_get_queue(ca->bdev);
1024 ret |= bdi_congested(&q->backing_dev_info, bits);
1025 }
1026
1027 cached_dev_put(dc);
1028 }
1029
1030 return ret;
1031}
1032
1033void bch_cached_dev_request_init(struct cached_dev *dc)
1034{
1035 struct gendisk *g = dc->disk.disk;
1036
1037 g->queue->make_request_fn = cached_dev_make_request;
1038 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1039 dc->disk.cache_miss = cached_dev_cache_miss;
1040 dc->disk.ioctl = cached_dev_ioctl;
1041}
1042
1043/* Flash backed devices */
1044
1045static int flash_dev_cache_miss(struct btree *b, struct search *s,
1046 struct bio *bio, unsigned sectors)
1047{
1048 unsigned bytes = min(sectors, bio_sectors(bio)) << 9;
1049
1050 swap(bio->bi_iter.bi_size, bytes);
1051 zero_fill_bio(bio);
1052 swap(bio->bi_iter.bi_size, bytes);
1053
1054 bio_advance(bio, bytes);
1055
1056 if (!bio->bi_iter.bi_size)
1057 return MAP_DONE;
1058
1059 return MAP_CONTINUE;
1060}
1061
1062static void flash_dev_nodata(struct closure *cl)
1063{
1064 struct search *s = container_of(cl, struct search, cl);
1065
1066 if (s->iop.flush_journal)
1067 bch_journal_meta(s->iop.c, cl);
1068
1069 continue_at(cl, search_free, NULL);
1070}
1071
1072static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1073{
1074 struct search *s;
1075 struct closure *cl;
1076 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1077 int cpu, rw = bio_data_dir(bio);
1078
1079 cpu = part_stat_lock();
1080 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1081 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1082 part_stat_unlock();
1083
1084 s = search_alloc(bio, d);
1085 cl = &s->cl;
1086 bio = &s->bio.bio;
1087
1088 trace_bcache_request_start(s->d, bio);
1089
1090 if (!bio->bi_iter.bi_size) {
1091 /*
1092 * can't call bch_journal_meta from under
1093 * generic_make_request
1094 */
1095 continue_at_nobarrier(&s->cl,
1096 flash_dev_nodata,
1097 bcache_wq);
1098 } else if (rw) {
1099 bch_keybuf_check_overlapping(&s->iop.c->moving_gc_keys,
1100 &KEY(d->id, bio->bi_iter.bi_sector, 0),
1101 &KEY(d->id, bio_end_sector(bio), 0));
1102
1103 s->iop.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
1104 s->iop.writeback = true;
1105 s->iop.bio = bio;
1106
1107 closure_call(&s->iop.cl, bch_data_insert, NULL, cl);
1108 } else {
1109 closure_call(&s->iop.cl, cache_lookup, NULL, cl);
1110 }
1111
1112 continue_at(cl, search_free, NULL);
1113}
1114
1115static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1116 unsigned int cmd, unsigned long arg)
1117{
1118 return -ENOTTY;
1119}
1120
1121static int flash_dev_congested(void *data, int bits)
1122{
1123 struct bcache_device *d = data;
1124 struct request_queue *q;
1125 struct cache *ca;
1126 unsigned i;
1127 int ret = 0;
1128
1129 for_each_cache(ca, d->c, i) {
1130 q = bdev_get_queue(ca->bdev);
1131 ret |= bdi_congested(&q->backing_dev_info, bits);
1132 }
1133
1134 return ret;
1135}
1136
1137void bch_flash_dev_request_init(struct bcache_device *d)
1138{
1139 struct gendisk *g = d->disk;
1140
1141 g->queue->make_request_fn = flash_dev_make_request;
1142 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1143 d->cache_miss = flash_dev_cache_miss;
1144 d->ioctl = flash_dev_ioctl;
1145}
1146
1147void bch_request_exit(void)
1148{
1149 if (bch_search_cache)
1150 kmem_cache_destroy(bch_search_cache);
1151}
1152
1153int __init bch_request_init(void)
1154{
1155 bch_search_cache = KMEM_CACHE(search, 0);
1156 if (!bch_search_cache)
1157 return -ENOMEM;
1158
1159 return 0;
1160}