at v3.18 990 lines 28 kB view raw
1/* 2 * Copyright (C) 1995 Linus Torvalds 3 * Copyright 2010 Tilera Corporation. All Rights Reserved. 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation, version 2. 8 * 9 * This program is distributed in the hope that it will be useful, but 10 * WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 12 * NON INFRINGEMENT. See the GNU General Public License for 13 * more details. 14 */ 15 16#include <linux/module.h> 17#include <linux/signal.h> 18#include <linux/sched.h> 19#include <linux/kernel.h> 20#include <linux/errno.h> 21#include <linux/string.h> 22#include <linux/types.h> 23#include <linux/ptrace.h> 24#include <linux/mman.h> 25#include <linux/mm.h> 26#include <linux/hugetlb.h> 27#include <linux/swap.h> 28#include <linux/smp.h> 29#include <linux/init.h> 30#include <linux/highmem.h> 31#include <linux/pagemap.h> 32#include <linux/poison.h> 33#include <linux/bootmem.h> 34#include <linux/slab.h> 35#include <linux/proc_fs.h> 36#include <linux/efi.h> 37#include <linux/memory_hotplug.h> 38#include <linux/uaccess.h> 39#include <asm/mmu_context.h> 40#include <asm/processor.h> 41#include <asm/pgtable.h> 42#include <asm/pgalloc.h> 43#include <asm/dma.h> 44#include <asm/fixmap.h> 45#include <asm/tlb.h> 46#include <asm/tlbflush.h> 47#include <asm/sections.h> 48#include <asm/setup.h> 49#include <asm/homecache.h> 50#include <hv/hypervisor.h> 51#include <arch/chip.h> 52 53#include "migrate.h" 54 55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0)) 56 57#ifndef __tilegx__ 58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE; 59EXPORT_SYMBOL(VMALLOC_RESERVE); 60#endif 61 62/* Create an L2 page table */ 63static pte_t * __init alloc_pte(void) 64{ 65 return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); 66} 67 68/* 69 * L2 page tables per controller. We allocate these all at once from 70 * the bootmem allocator and store them here. This saves on kernel L2 71 * page table memory, compared to allocating a full 64K page per L2 72 * page table, and also means that in cases where we use huge pages, 73 * we are guaranteed to later be able to shatter those huge pages and 74 * switch to using these page tables instead, without requiring 75 * further allocation. Each l2_ptes[] entry points to the first page 76 * table for the first hugepage-size piece of memory on the 77 * controller; other page tables are just indexed directly, i.e. the 78 * L2 page tables are contiguous in memory for each controller. 79 */ 80static pte_t *l2_ptes[MAX_NUMNODES]; 81static int num_l2_ptes[MAX_NUMNODES]; 82 83static void init_prealloc_ptes(int node, int pages) 84{ 85 BUG_ON(pages & (PTRS_PER_PTE - 1)); 86 if (pages) { 87 num_l2_ptes[node] = pages; 88 l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t), 89 HV_PAGE_TABLE_ALIGN, 0); 90 } 91} 92 93pte_t *get_prealloc_pte(unsigned long pfn) 94{ 95 int node = pfn_to_nid(pfn); 96 pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT)); 97 BUG_ON(node >= MAX_NUMNODES); 98 BUG_ON(pfn >= num_l2_ptes[node]); 99 return &l2_ptes[node][pfn]; 100} 101 102/* 103 * What caching do we expect pages from the heap to have when 104 * they are allocated during bootup? (Once we've installed the 105 * "real" swapper_pg_dir.) 106 */ 107static int initial_heap_home(void) 108{ 109 if (hash_default) 110 return PAGE_HOME_HASH; 111 return smp_processor_id(); 112} 113 114/* 115 * Place a pointer to an L2 page table in a middle page 116 * directory entry. 117 */ 118static void __init assign_pte(pmd_t *pmd, pte_t *page_table) 119{ 120 phys_addr_t pa = __pa(page_table); 121 unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN; 122 pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn); 123 BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0); 124 pteval = pte_set_home(pteval, initial_heap_home()); 125 *(pte_t *)pmd = pteval; 126 if (page_table != (pte_t *)pmd_page_vaddr(*pmd)) 127 BUG(); 128} 129 130#ifdef __tilegx__ 131 132static inline pmd_t *alloc_pmd(void) 133{ 134 return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0); 135} 136 137static inline void assign_pmd(pud_t *pud, pmd_t *pmd) 138{ 139 assign_pte((pmd_t *)pud, (pte_t *)pmd); 140} 141 142#endif /* __tilegx__ */ 143 144/* Replace the given pmd with a full PTE table. */ 145void __init shatter_pmd(pmd_t *pmd) 146{ 147 pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd)); 148 assign_pte(pmd, pte); 149} 150 151#ifdef __tilegx__ 152static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) 153{ 154 pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va); 155 if (pud_none(*pud)) 156 assign_pmd(pud, alloc_pmd()); 157 return pmd_offset(pud, va); 158} 159#else 160static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va) 161{ 162 return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va); 163} 164#endif 165 166/* 167 * This function initializes a certain range of kernel virtual memory 168 * with new bootmem page tables, everywhere page tables are missing in 169 * the given range. 170 */ 171 172/* 173 * NOTE: The pagetables are allocated contiguous on the physical space 174 * so we can cache the place of the first one and move around without 175 * checking the pgd every time. 176 */ 177static void __init page_table_range_init(unsigned long start, 178 unsigned long end, pgd_t *pgd) 179{ 180 unsigned long vaddr; 181 start = round_down(start, PMD_SIZE); 182 end = round_up(end, PMD_SIZE); 183 for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) { 184 pmd_t *pmd = get_pmd(pgd, vaddr); 185 if (pmd_none(*pmd)) 186 assign_pte(pmd, alloc_pte()); 187 } 188} 189 190 191static int __initdata ktext_hash = 1; /* .text pages */ 192static int __initdata kdata_hash = 1; /* .data and .bss pages */ 193int __write_once hash_default = 1; /* kernel allocator pages */ 194EXPORT_SYMBOL(hash_default); 195int __write_once kstack_hash = 1; /* if no homecaching, use h4h */ 196 197/* 198 * CPUs to use to for striping the pages of kernel data. If hash-for-home 199 * is available, this is only relevant if kcache_hash sets up the 200 * .data and .bss to be page-homed, and we don't want the default mode 201 * of using the full set of kernel cpus for the striping. 202 */ 203static __initdata struct cpumask kdata_mask; 204static __initdata int kdata_arg_seen; 205 206int __write_once kdata_huge; /* if no homecaching, small pages */ 207 208 209/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */ 210static pgprot_t __init construct_pgprot(pgprot_t prot, int home) 211{ 212 prot = pte_set_home(prot, home); 213 if (home == PAGE_HOME_IMMUTABLE) { 214 if (ktext_hash) 215 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3); 216 else 217 prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3); 218 } 219 return prot; 220} 221 222/* 223 * For a given kernel data VA, how should it be cached? 224 * We return the complete pgprot_t with caching bits set. 225 */ 226static pgprot_t __init init_pgprot(ulong address) 227{ 228 int cpu; 229 unsigned long page; 230 enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET }; 231 232 /* For kdata=huge, everything is just hash-for-home. */ 233 if (kdata_huge) 234 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); 235 236 /* We map the aliased pages of permanent text inaccessible. */ 237 if (address < (ulong) _sinittext - CODE_DELTA) 238 return PAGE_NONE; 239 240 /* We map read-only data non-coherent for performance. */ 241 if ((address >= (ulong) __start_rodata && 242 address < (ulong) __end_rodata) || 243 address == (ulong) empty_zero_page) { 244 return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE); 245 } 246 247#ifndef __tilegx__ 248 /* Force the atomic_locks[] array page to be hash-for-home. */ 249 if (address == (ulong) atomic_locks) 250 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); 251#endif 252 253 /* 254 * Everything else that isn't data or bss is heap, so mark it 255 * with the initial heap home (hash-for-home, or this cpu). This 256 * includes any addresses after the loaded image and any address before 257 * __init_end, since we already captured the case of text before 258 * _sinittext, and __pa(einittext) is approximately __pa(__init_begin). 259 * 260 * All the LOWMEM pages that we mark this way will get their 261 * struct page homecache properly marked later, in set_page_homes(). 262 * The HIGHMEM pages we leave with a default zero for their 263 * homes, but with a zero free_time we don't have to actually 264 * do a flush action the first time we use them, either. 265 */ 266 if (address >= (ulong) _end || address < (ulong) __init_end) 267 return construct_pgprot(PAGE_KERNEL, initial_heap_home()); 268 269 /* Use hash-for-home if requested for data/bss. */ 270 if (kdata_hash) 271 return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH); 272 273 /* 274 * Otherwise we just hand out consecutive cpus. To avoid 275 * requiring this function to hold state, we just walk forward from 276 * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to 277 * reach the requested address, while walking cpu home around 278 * kdata_mask. This is typically no more than a dozen or so iterations. 279 */ 280 page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK; 281 BUG_ON(address < page || address >= (ulong)_end); 282 cpu = cpumask_first(&kdata_mask); 283 for (; page < address; page += PAGE_SIZE) { 284 if (page >= (ulong)&init_thread_union && 285 page < (ulong)&init_thread_union + THREAD_SIZE) 286 continue; 287 if (page == (ulong)empty_zero_page) 288 continue; 289#ifndef __tilegx__ 290 if (page == (ulong)atomic_locks) 291 continue; 292#endif 293 cpu = cpumask_next(cpu, &kdata_mask); 294 if (cpu == NR_CPUS) 295 cpu = cpumask_first(&kdata_mask); 296 } 297 return construct_pgprot(PAGE_KERNEL, cpu); 298} 299 300/* 301 * This function sets up how we cache the kernel text. If we have 302 * hash-for-home support, normally that is used instead (see the 303 * kcache_hash boot flag for more information). But if we end up 304 * using a page-based caching technique, this option sets up the 305 * details of that. In addition, the "ktext=nocache" option may 306 * always be used to disable local caching of text pages, if desired. 307 */ 308 309static int __initdata ktext_arg_seen; 310static int __initdata ktext_small; 311static int __initdata ktext_local; 312static int __initdata ktext_all; 313static int __initdata ktext_nondataplane; 314static int __initdata ktext_nocache; 315static struct cpumask __initdata ktext_mask; 316 317static int __init setup_ktext(char *str) 318{ 319 if (str == NULL) 320 return -EINVAL; 321 322 /* If you have a leading "nocache", turn off ktext caching */ 323 if (strncmp(str, "nocache", 7) == 0) { 324 ktext_nocache = 1; 325 pr_info("ktext: disabling local caching of kernel text\n"); 326 str += 7; 327 if (*str == ',') 328 ++str; 329 if (*str == '\0') 330 return 0; 331 } 332 333 ktext_arg_seen = 1; 334 335 /* Default setting: use a huge page */ 336 if (strcmp(str, "huge") == 0) 337 pr_info("ktext: using one huge locally cached page\n"); 338 339 /* Pay TLB cost but get no cache benefit: cache small pages locally */ 340 else if (strcmp(str, "local") == 0) { 341 ktext_small = 1; 342 ktext_local = 1; 343 pr_info("ktext: using small pages with local caching\n"); 344 } 345 346 /* Neighborhood cache ktext pages on all cpus. */ 347 else if (strcmp(str, "all") == 0) { 348 ktext_small = 1; 349 ktext_all = 1; 350 pr_info("ktext: using maximal caching neighborhood\n"); 351 } 352 353 354 /* Neighborhood ktext pages on specified mask */ 355 else if (cpulist_parse(str, &ktext_mask) == 0) { 356 char buf[NR_CPUS * 5]; 357 cpulist_scnprintf(buf, sizeof(buf), &ktext_mask); 358 if (cpumask_weight(&ktext_mask) > 1) { 359 ktext_small = 1; 360 pr_info("ktext: using caching neighborhood %s " 361 "with small pages\n", buf); 362 } else { 363 pr_info("ktext: caching on cpu %s with one huge page\n", 364 buf); 365 } 366 } 367 368 else if (*str) 369 return -EINVAL; 370 371 return 0; 372} 373 374early_param("ktext", setup_ktext); 375 376 377static inline pgprot_t ktext_set_nocache(pgprot_t prot) 378{ 379 if (!ktext_nocache) 380 prot = hv_pte_set_nc(prot); 381 else 382 prot = hv_pte_set_no_alloc_l2(prot); 383 return prot; 384} 385 386/* Temporary page table we use for staging. */ 387static pgd_t pgtables[PTRS_PER_PGD] 388 __attribute__((aligned(HV_PAGE_TABLE_ALIGN))); 389 390/* 391 * This maps the physical memory to kernel virtual address space, a total 392 * of max_low_pfn pages, by creating page tables starting from address 393 * PAGE_OFFSET. 394 * 395 * This routine transitions us from using a set of compiled-in large 396 * pages to using some more precise caching, including removing access 397 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START) 398 * marking read-only data as locally cacheable, striping the remaining 399 * .data and .bss across all the available tiles, and removing access 400 * to pages above the top of RAM (thus ensuring a page fault from a bad 401 * virtual address rather than a hypervisor shoot down for accessing 402 * memory outside the assigned limits). 403 */ 404static void __init kernel_physical_mapping_init(pgd_t *pgd_base) 405{ 406 unsigned long long irqmask; 407 unsigned long address, pfn; 408 pmd_t *pmd; 409 pte_t *pte; 410 int pte_ofs; 411 const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id()); 412 struct cpumask kstripe_mask; 413 int rc, i; 414 415 if (ktext_arg_seen && ktext_hash) { 416 pr_warning("warning: \"ktext\" boot argument ignored" 417 " if \"kcache_hash\" sets up text hash-for-home\n"); 418 ktext_small = 0; 419 } 420 421 if (kdata_arg_seen && kdata_hash) { 422 pr_warning("warning: \"kdata\" boot argument ignored" 423 " if \"kcache_hash\" sets up data hash-for-home\n"); 424 } 425 426 if (kdata_huge && !hash_default) { 427 pr_warning("warning: disabling \"kdata=huge\"; requires" 428 " kcache_hash=all or =allbutstack\n"); 429 kdata_huge = 0; 430 } 431 432 /* 433 * Set up a mask for cpus to use for kernel striping. 434 * This is normally all cpus, but minus dataplane cpus if any. 435 * If the dataplane covers the whole chip, we stripe over 436 * the whole chip too. 437 */ 438 cpumask_copy(&kstripe_mask, cpu_possible_mask); 439 if (!kdata_arg_seen) 440 kdata_mask = kstripe_mask; 441 442 /* Allocate and fill in L2 page tables */ 443 for (i = 0; i < MAX_NUMNODES; ++i) { 444#ifdef CONFIG_HIGHMEM 445 unsigned long end_pfn = node_lowmem_end_pfn[i]; 446#else 447 unsigned long end_pfn = node_end_pfn[i]; 448#endif 449 unsigned long end_huge_pfn = 0; 450 451 /* Pre-shatter the last huge page to allow per-cpu pages. */ 452 if (kdata_huge) 453 end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT); 454 455 pfn = node_start_pfn[i]; 456 457 /* Allocate enough memory to hold L2 page tables for node. */ 458 init_prealloc_ptes(i, end_pfn - pfn); 459 460 address = (unsigned long) pfn_to_kaddr(pfn); 461 while (pfn < end_pfn) { 462 BUG_ON(address & (HPAGE_SIZE-1)); 463 pmd = get_pmd(pgtables, address); 464 pte = get_prealloc_pte(pfn); 465 if (pfn < end_huge_pfn) { 466 pgprot_t prot = init_pgprot(address); 467 *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot)); 468 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; 469 pfn++, pte_ofs++, address += PAGE_SIZE) 470 pte[pte_ofs] = pfn_pte(pfn, prot); 471 } else { 472 if (kdata_huge) 473 printk(KERN_DEBUG "pre-shattered huge" 474 " page at %#lx\n", address); 475 for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE; 476 pfn++, pte_ofs++, address += PAGE_SIZE) { 477 pgprot_t prot = init_pgprot(address); 478 pte[pte_ofs] = pfn_pte(pfn, prot); 479 } 480 assign_pte(pmd, pte); 481 } 482 } 483 } 484 485 /* 486 * Set or check ktext_map now that we have cpu_possible_mask 487 * and kstripe_mask to work with. 488 */ 489 if (ktext_all) 490 cpumask_copy(&ktext_mask, cpu_possible_mask); 491 else if (ktext_nondataplane) 492 ktext_mask = kstripe_mask; 493 else if (!cpumask_empty(&ktext_mask)) { 494 /* Sanity-check any mask that was requested */ 495 struct cpumask bad; 496 cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask); 497 cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask); 498 if (!cpumask_empty(&bad)) { 499 char buf[NR_CPUS * 5]; 500 cpulist_scnprintf(buf, sizeof(buf), &bad); 501 pr_info("ktext: not using unavailable cpus %s\n", buf); 502 } 503 if (cpumask_empty(&ktext_mask)) { 504 pr_warning("ktext: no valid cpus; caching on %d.\n", 505 smp_processor_id()); 506 cpumask_copy(&ktext_mask, 507 cpumask_of(smp_processor_id())); 508 } 509 } 510 511 address = MEM_SV_START; 512 pmd = get_pmd(pgtables, address); 513 pfn = 0; /* code starts at PA 0 */ 514 if (ktext_small) { 515 /* Allocate an L2 PTE for the kernel text */ 516 int cpu = 0; 517 pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC, 518 PAGE_HOME_IMMUTABLE); 519 520 if (ktext_local) { 521 if (ktext_nocache) 522 prot = hv_pte_set_mode(prot, 523 HV_PTE_MODE_UNCACHED); 524 else 525 prot = hv_pte_set_mode(prot, 526 HV_PTE_MODE_CACHE_NO_L3); 527 } else { 528 prot = hv_pte_set_mode(prot, 529 HV_PTE_MODE_CACHE_TILE_L3); 530 cpu = cpumask_first(&ktext_mask); 531 532 prot = ktext_set_nocache(prot); 533 } 534 535 BUG_ON(address != (unsigned long)_text); 536 pte = NULL; 537 for (; address < (unsigned long)_einittext; 538 pfn++, address += PAGE_SIZE) { 539 pte_ofs = pte_index(address); 540 if (pte_ofs == 0) { 541 if (pte) 542 assign_pte(pmd++, pte); 543 pte = alloc_pte(); 544 } 545 if (!ktext_local) { 546 prot = set_remote_cache_cpu(prot, cpu); 547 cpu = cpumask_next(cpu, &ktext_mask); 548 if (cpu == NR_CPUS) 549 cpu = cpumask_first(&ktext_mask); 550 } 551 pte[pte_ofs] = pfn_pte(pfn, prot); 552 } 553 if (pte) 554 assign_pte(pmd, pte); 555 } else { 556 pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC); 557 pteval = pte_mkhuge(pteval); 558 if (ktext_hash) { 559 pteval = hv_pte_set_mode(pteval, 560 HV_PTE_MODE_CACHE_HASH_L3); 561 pteval = ktext_set_nocache(pteval); 562 } else 563 if (cpumask_weight(&ktext_mask) == 1) { 564 pteval = set_remote_cache_cpu(pteval, 565 cpumask_first(&ktext_mask)); 566 pteval = hv_pte_set_mode(pteval, 567 HV_PTE_MODE_CACHE_TILE_L3); 568 pteval = ktext_set_nocache(pteval); 569 } else if (ktext_nocache) 570 pteval = hv_pte_set_mode(pteval, 571 HV_PTE_MODE_UNCACHED); 572 else 573 pteval = hv_pte_set_mode(pteval, 574 HV_PTE_MODE_CACHE_NO_L3); 575 for (; address < (unsigned long)_einittext; 576 pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE) 577 *(pte_t *)(pmd++) = pfn_pte(pfn, pteval); 578 } 579 580 /* Set swapper_pgprot here so it is flushed to memory right away. */ 581 swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir); 582 583 /* 584 * Since we may be changing the caching of the stack and page 585 * table itself, we invoke an assembly helper to do the 586 * following steps: 587 * 588 * - flush the cache so we start with an empty slate 589 * - install pgtables[] as the real page table 590 * - flush the TLB so the new page table takes effect 591 */ 592 irqmask = interrupt_mask_save_mask(); 593 interrupt_mask_set_mask(-1ULL); 594 rc = flush_and_install_context(__pa(pgtables), 595 init_pgprot((unsigned long)pgtables), 596 __this_cpu_read(current_asid), 597 cpumask_bits(my_cpu_mask)); 598 interrupt_mask_restore_mask(irqmask); 599 BUG_ON(rc != 0); 600 601 /* Copy the page table back to the normal swapper_pg_dir. */ 602 memcpy(pgd_base, pgtables, sizeof(pgtables)); 603 __install_page_table(pgd_base, __this_cpu_read(current_asid), 604 swapper_pgprot); 605 606 /* 607 * We just read swapper_pgprot and thus brought it into the cache, 608 * with its new home & caching mode. When we start the other CPUs, 609 * they're going to reference swapper_pgprot via their initial fake 610 * VA-is-PA mappings, which cache everything locally. At that 611 * time, if it's in our cache with a conflicting home, the 612 * simulator's coherence checker will complain. So, flush it out 613 * of our cache; we're not going to ever use it again anyway. 614 */ 615 __insn_finv(&swapper_pgprot); 616} 617 618/* 619 * devmem_is_allowed() checks to see if /dev/mem access to a certain address 620 * is valid. The argument is a physical page number. 621 * 622 * On Tile, the only valid things for which we can just hand out unchecked 623 * PTEs are the kernel code and data. Anything else might change its 624 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs. 625 * Note that init_thread_union is released to heap soon after boot, 626 * so we include it in the init data. 627 * 628 * For TILE-Gx, we might want to consider allowing access to PA 629 * regions corresponding to PCI space, etc. 630 */ 631int devmem_is_allowed(unsigned long pagenr) 632{ 633 return pagenr < kaddr_to_pfn(_end) && 634 !(pagenr >= kaddr_to_pfn(&init_thread_union) || 635 pagenr < kaddr_to_pfn(__init_end)) && 636 !(pagenr >= kaddr_to_pfn(_sinittext) || 637 pagenr <= kaddr_to_pfn(_einittext-1)); 638} 639 640#ifdef CONFIG_HIGHMEM 641static void __init permanent_kmaps_init(pgd_t *pgd_base) 642{ 643 pgd_t *pgd; 644 pud_t *pud; 645 pmd_t *pmd; 646 pte_t *pte; 647 unsigned long vaddr; 648 649 vaddr = PKMAP_BASE; 650 page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base); 651 652 pgd = swapper_pg_dir + pgd_index(vaddr); 653 pud = pud_offset(pgd, vaddr); 654 pmd = pmd_offset(pud, vaddr); 655 pte = pte_offset_kernel(pmd, vaddr); 656 pkmap_page_table = pte; 657} 658#endif /* CONFIG_HIGHMEM */ 659 660 661#ifndef CONFIG_64BIT 662static void __init init_free_pfn_range(unsigned long start, unsigned long end) 663{ 664 unsigned long pfn; 665 struct page *page = pfn_to_page(start); 666 667 for (pfn = start; pfn < end; ) { 668 /* Optimize by freeing pages in large batches */ 669 int order = __ffs(pfn); 670 int count, i; 671 struct page *p; 672 673 if (order >= MAX_ORDER) 674 order = MAX_ORDER-1; 675 count = 1 << order; 676 while (pfn + count > end) { 677 count >>= 1; 678 --order; 679 } 680 for (p = page, i = 0; i < count; ++i, ++p) { 681 __ClearPageReserved(p); 682 /* 683 * Hacky direct set to avoid unnecessary 684 * lock take/release for EVERY page here. 685 */ 686 p->_count.counter = 0; 687 p->_mapcount.counter = -1; 688 } 689 init_page_count(page); 690 __free_pages(page, order); 691 adjust_managed_page_count(page, count); 692 693 page += count; 694 pfn += count; 695 } 696} 697 698static void __init set_non_bootmem_pages_init(void) 699{ 700 struct zone *z; 701 for_each_zone(z) { 702 unsigned long start, end; 703 int nid = z->zone_pgdat->node_id; 704#ifdef CONFIG_HIGHMEM 705 int idx = zone_idx(z); 706#endif 707 708 start = z->zone_start_pfn; 709 end = start + z->spanned_pages; 710 start = max(start, node_free_pfn[nid]); 711 start = max(start, max_low_pfn); 712 713#ifdef CONFIG_HIGHMEM 714 if (idx == ZONE_HIGHMEM) 715 totalhigh_pages += z->spanned_pages; 716#endif 717 if (kdata_huge) { 718 unsigned long percpu_pfn = node_percpu_pfn[nid]; 719 if (start < percpu_pfn && end > percpu_pfn) 720 end = percpu_pfn; 721 } 722#ifdef CONFIG_PCI 723 if (start <= pci_reserve_start_pfn && 724 end > pci_reserve_start_pfn) { 725 if (end > pci_reserve_end_pfn) 726 init_free_pfn_range(pci_reserve_end_pfn, end); 727 end = pci_reserve_start_pfn; 728 } 729#endif 730 init_free_pfn_range(start, end); 731 } 732} 733#endif 734 735/* 736 * paging_init() sets up the page tables - note that all of lowmem is 737 * already mapped by head.S. 738 */ 739void __init paging_init(void) 740{ 741#ifdef __tilegx__ 742 pud_t *pud; 743#endif 744 pgd_t *pgd_base = swapper_pg_dir; 745 746 kernel_physical_mapping_init(pgd_base); 747 748 /* Fixed mappings, only the page table structure has to be created. */ 749 page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1), 750 FIXADDR_TOP, pgd_base); 751 752#ifdef CONFIG_HIGHMEM 753 permanent_kmaps_init(pgd_base); 754#endif 755 756#ifdef __tilegx__ 757 /* 758 * Since GX allocates just one pmd_t array worth of vmalloc space, 759 * we go ahead and allocate it statically here, then share it 760 * globally. As a result we don't have to worry about any task 761 * changing init_mm once we get up and running, and there's no 762 * need for e.g. vmalloc_sync_all(). 763 */ 764 BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1)); 765 pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START); 766 assign_pmd(pud, alloc_pmd()); 767#endif 768} 769 770 771/* 772 * Walk the kernel page tables and derive the page_home() from 773 * the PTEs, so that set_pte() can properly validate the caching 774 * of all PTEs it sees. 775 */ 776void __init set_page_homes(void) 777{ 778} 779 780static void __init set_max_mapnr_init(void) 781{ 782#ifdef CONFIG_FLATMEM 783 max_mapnr = max_low_pfn; 784#endif 785} 786 787void __init mem_init(void) 788{ 789 int i; 790#ifndef __tilegx__ 791 void *last; 792#endif 793 794#ifdef CONFIG_FLATMEM 795 BUG_ON(!mem_map); 796#endif 797 798#ifdef CONFIG_HIGHMEM 799 /* check that fixmap and pkmap do not overlap */ 800 if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) { 801 pr_err("fixmap and kmap areas overlap" 802 " - this will crash\n"); 803 pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n", 804 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), 805 FIXADDR_START); 806 BUG(); 807 } 808#endif 809 810 set_max_mapnr_init(); 811 812 /* this will put all bootmem onto the freelists */ 813 free_all_bootmem(); 814 815#ifndef CONFIG_64BIT 816 /* count all remaining LOWMEM and give all HIGHMEM to page allocator */ 817 set_non_bootmem_pages_init(); 818#endif 819 820 mem_init_print_info(NULL); 821 822 /* 823 * In debug mode, dump some interesting memory mappings. 824 */ 825#ifdef CONFIG_HIGHMEM 826 printk(KERN_DEBUG " KMAP %#lx - %#lx\n", 827 FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1); 828 printk(KERN_DEBUG " PKMAP %#lx - %#lx\n", 829 PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1); 830#endif 831 printk(KERN_DEBUG " VMALLOC %#lx - %#lx\n", 832 _VMALLOC_START, _VMALLOC_END - 1); 833#ifdef __tilegx__ 834 for (i = MAX_NUMNODES-1; i >= 0; --i) { 835 struct pglist_data *node = &node_data[i]; 836 if (node->node_present_pages) { 837 unsigned long start = (unsigned long) 838 pfn_to_kaddr(node->node_start_pfn); 839 unsigned long end = start + 840 (node->node_present_pages << PAGE_SHIFT); 841 printk(KERN_DEBUG " MEM%d %#lx - %#lx\n", 842 i, start, end - 1); 843 } 844 } 845#else 846 last = high_memory; 847 for (i = MAX_NUMNODES-1; i >= 0; --i) { 848 if ((unsigned long)vbase_map[i] != -1UL) { 849 printk(KERN_DEBUG " LOWMEM%d %#lx - %#lx\n", 850 i, (unsigned long) (vbase_map[i]), 851 (unsigned long) (last-1)); 852 last = vbase_map[i]; 853 } 854 } 855#endif 856 857#ifndef __tilegx__ 858 /* 859 * Convert from using one lock for all atomic operations to 860 * one per cpu. 861 */ 862 __init_atomic_per_cpu(); 863#endif 864} 865 866/* 867 * this is for the non-NUMA, single node SMP system case. 868 * Specifically, in the case of x86, we will always add 869 * memory to the highmem for now. 870 */ 871#ifndef CONFIG_NEED_MULTIPLE_NODES 872int arch_add_memory(u64 start, u64 size) 873{ 874 struct pglist_data *pgdata = &contig_page_data; 875 struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1; 876 unsigned long start_pfn = start >> PAGE_SHIFT; 877 unsigned long nr_pages = size >> PAGE_SHIFT; 878 879 return __add_pages(zone, start_pfn, nr_pages); 880} 881 882int remove_memory(u64 start, u64 size) 883{ 884 return -EINVAL; 885} 886 887#ifdef CONFIG_MEMORY_HOTREMOVE 888int arch_remove_memory(u64 start, u64 size) 889{ 890 /* TODO */ 891 return -EBUSY; 892} 893#endif 894#endif 895 896struct kmem_cache *pgd_cache; 897 898void __init pgtable_cache_init(void) 899{ 900 pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL); 901 if (!pgd_cache) 902 panic("pgtable_cache_init(): Cannot create pgd cache"); 903} 904 905#ifdef CONFIG_DEBUG_PAGEALLOC 906static long __write_once initfree; 907#else 908static long __write_once initfree = 1; 909#endif 910 911/* Select whether to free (1) or mark unusable (0) the __init pages. */ 912static int __init set_initfree(char *str) 913{ 914 long val; 915 if (kstrtol(str, 0, &val) == 0) { 916 initfree = val; 917 pr_info("initfree: %s free init pages\n", 918 initfree ? "will" : "won't"); 919 } 920 return 1; 921} 922__setup("initfree=", set_initfree); 923 924static void free_init_pages(char *what, unsigned long begin, unsigned long end) 925{ 926 unsigned long addr = (unsigned long) begin; 927 928 if (kdata_huge && !initfree) { 929 pr_warning("Warning: ignoring initfree=0:" 930 " incompatible with kdata=huge\n"); 931 initfree = 1; 932 } 933 end = (end + PAGE_SIZE - 1) & PAGE_MASK; 934 local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin); 935 for (addr = begin; addr < end; addr += PAGE_SIZE) { 936 /* 937 * Note we just reset the home here directly in the 938 * page table. We know this is safe because our caller 939 * just flushed the caches on all the other cpus, 940 * and they won't be touching any of these pages. 941 */ 942 int pfn = kaddr_to_pfn((void *)addr); 943 struct page *page = pfn_to_page(pfn); 944 pte_t *ptep = virt_to_kpte(addr); 945 if (!initfree) { 946 /* 947 * If debugging page accesses then do not free 948 * this memory but mark them not present - any 949 * buggy init-section access will create a 950 * kernel page fault: 951 */ 952 pte_clear(&init_mm, addr, ptep); 953 continue; 954 } 955 if (pte_huge(*ptep)) 956 BUG_ON(!kdata_huge); 957 else 958 set_pte_at(&init_mm, addr, ptep, 959 pfn_pte(pfn, PAGE_KERNEL)); 960 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE); 961 free_reserved_page(page); 962 } 963 pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10); 964} 965 966void free_initmem(void) 967{ 968 const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET; 969 970 /* 971 * Evict the cache on all cores to avoid incoherence. 972 * We are guaranteed that no one will touch the init pages any more. 973 */ 974 homecache_evict(&cpu_cacheable_map); 975 976 /* Free the data pages that we won't use again after init. */ 977 free_init_pages("unused kernel data", 978 (unsigned long)__init_begin, 979 (unsigned long)__init_end); 980 981 /* 982 * Free the pages mapped from 0xc0000000 that correspond to code 983 * pages from MEM_SV_START that we won't use again after init. 984 */ 985 free_init_pages("unused kernel text", 986 (unsigned long)_sinittext - text_delta, 987 (unsigned long)_einittext - text_delta); 988 /* Do a global TLB flush so everyone sees the changes. */ 989 flush_tlb_all(); 990}