at v3.18-rc2 3343 lines 96 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/hrtimer.h> 32#include <linux/dma-mapping.h> 33#include <linux/netdev_features.h> 34#include <linux/sched.h> 35#include <net/flow_keys.h> 36 37/* A. Checksumming of received packets by device. 38 * 39 * CHECKSUM_NONE: 40 * 41 * Device failed to checksum this packet e.g. due to lack of capabilities. 42 * The packet contains full (though not verified) checksum in packet but 43 * not in skb->csum. Thus, skb->csum is undefined in this case. 44 * 45 * CHECKSUM_UNNECESSARY: 46 * 47 * The hardware you're dealing with doesn't calculate the full checksum 48 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 49 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 50 * if their checksums are okay. skb->csum is still undefined in this case 51 * though. It is a bad option, but, unfortunately, nowadays most vendors do 52 * this. Apparently with the secret goal to sell you new devices, when you 53 * will add new protocol to your host, f.e. IPv6 8) 54 * 55 * CHECKSUM_UNNECESSARY is applicable to following protocols: 56 * TCP: IPv6 and IPv4. 57 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 58 * zero UDP checksum for either IPv4 or IPv6, the networking stack 59 * may perform further validation in this case. 60 * GRE: only if the checksum is present in the header. 61 * SCTP: indicates the CRC in SCTP header has been validated. 62 * 63 * skb->csum_level indicates the number of consecutive checksums found in 64 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 65 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 66 * and a device is able to verify the checksums for UDP (possibly zero), 67 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to 68 * two. If the device were only able to verify the UDP checksum and not 69 * GRE, either because it doesn't support GRE checksum of because GRE 70 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 71 * not considered in this case). 72 * 73 * CHECKSUM_COMPLETE: 74 * 75 * This is the most generic way. The device supplied checksum of the _whole_ 76 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 77 * hardware doesn't need to parse L3/L4 headers to implement this. 78 * 79 * Note: Even if device supports only some protocols, but is able to produce 80 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 81 * 82 * CHECKSUM_PARTIAL: 83 * 84 * This is identical to the case for output below. This may occur on a packet 85 * received directly from another Linux OS, e.g., a virtualized Linux kernel 86 * on the same host. The packet can be treated in the same way as 87 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 88 * checksum must be filled in by the OS or the hardware. 89 * 90 * B. Checksumming on output. 91 * 92 * CHECKSUM_NONE: 93 * 94 * The skb was already checksummed by the protocol, or a checksum is not 95 * required. 96 * 97 * CHECKSUM_PARTIAL: 98 * 99 * The device is required to checksum the packet as seen by hard_start_xmit() 100 * from skb->csum_start up to the end, and to record/write the checksum at 101 * offset skb->csum_start + skb->csum_offset. 102 * 103 * The device must show its capabilities in dev->features, set up at device 104 * setup time, e.g. netdev_features.h: 105 * 106 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 107 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 108 * IPv4. Sigh. Vendors like this way for an unknown reason. 109 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 110 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 111 * NETIF_F_... - Well, you get the picture. 112 * 113 * CHECKSUM_UNNECESSARY: 114 * 115 * Normally, the device will do per protocol specific checksumming. Protocol 116 * implementations that do not want the NIC to perform the checksum 117 * calculation should use this flag in their outgoing skbs. 118 * 119 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 120 * offload. Correspondingly, the FCoE protocol driver 121 * stack should use CHECKSUM_UNNECESSARY. 122 * 123 * Any questions? No questions, good. --ANK 124 */ 125 126/* Don't change this without changing skb_csum_unnecessary! */ 127#define CHECKSUM_NONE 0 128#define CHECKSUM_UNNECESSARY 1 129#define CHECKSUM_COMPLETE 2 130#define CHECKSUM_PARTIAL 3 131 132/* Maximum value in skb->csum_level */ 133#define SKB_MAX_CSUM_LEVEL 3 134 135#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 136#define SKB_WITH_OVERHEAD(X) \ 137 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 138#define SKB_MAX_ORDER(X, ORDER) \ 139 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 140#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 141#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 142 143/* return minimum truesize of one skb containing X bytes of data */ 144#define SKB_TRUESIZE(X) ((X) + \ 145 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 146 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 147 148struct net_device; 149struct scatterlist; 150struct pipe_inode_info; 151 152#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 153struct nf_conntrack { 154 atomic_t use; 155}; 156#endif 157 158#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 159struct nf_bridge_info { 160 atomic_t use; 161 unsigned int mask; 162 struct net_device *physindev; 163 struct net_device *physoutdev; 164 unsigned long data[32 / sizeof(unsigned long)]; 165}; 166#endif 167 168struct sk_buff_head { 169 /* These two members must be first. */ 170 struct sk_buff *next; 171 struct sk_buff *prev; 172 173 __u32 qlen; 174 spinlock_t lock; 175}; 176 177struct sk_buff; 178 179/* To allow 64K frame to be packed as single skb without frag_list we 180 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 181 * buffers which do not start on a page boundary. 182 * 183 * Since GRO uses frags we allocate at least 16 regardless of page 184 * size. 185 */ 186#if (65536/PAGE_SIZE + 1) < 16 187#define MAX_SKB_FRAGS 16UL 188#else 189#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 190#endif 191 192typedef struct skb_frag_struct skb_frag_t; 193 194struct skb_frag_struct { 195 struct { 196 struct page *p; 197 } page; 198#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 199 __u32 page_offset; 200 __u32 size; 201#else 202 __u16 page_offset; 203 __u16 size; 204#endif 205}; 206 207static inline unsigned int skb_frag_size(const skb_frag_t *frag) 208{ 209 return frag->size; 210} 211 212static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 213{ 214 frag->size = size; 215} 216 217static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 218{ 219 frag->size += delta; 220} 221 222static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 223{ 224 frag->size -= delta; 225} 226 227#define HAVE_HW_TIME_STAMP 228 229/** 230 * struct skb_shared_hwtstamps - hardware time stamps 231 * @hwtstamp: hardware time stamp transformed into duration 232 * since arbitrary point in time 233 * 234 * Software time stamps generated by ktime_get_real() are stored in 235 * skb->tstamp. 236 * 237 * hwtstamps can only be compared against other hwtstamps from 238 * the same device. 239 * 240 * This structure is attached to packets as part of the 241 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 242 */ 243struct skb_shared_hwtstamps { 244 ktime_t hwtstamp; 245}; 246 247/* Definitions for tx_flags in struct skb_shared_info */ 248enum { 249 /* generate hardware time stamp */ 250 SKBTX_HW_TSTAMP = 1 << 0, 251 252 /* generate software time stamp when queueing packet to NIC */ 253 SKBTX_SW_TSTAMP = 1 << 1, 254 255 /* device driver is going to provide hardware time stamp */ 256 SKBTX_IN_PROGRESS = 1 << 2, 257 258 /* device driver supports TX zero-copy buffers */ 259 SKBTX_DEV_ZEROCOPY = 1 << 3, 260 261 /* generate wifi status information (where possible) */ 262 SKBTX_WIFI_STATUS = 1 << 4, 263 264 /* This indicates at least one fragment might be overwritten 265 * (as in vmsplice(), sendfile() ...) 266 * If we need to compute a TX checksum, we'll need to copy 267 * all frags to avoid possible bad checksum 268 */ 269 SKBTX_SHARED_FRAG = 1 << 5, 270 271 /* generate software time stamp when entering packet scheduling */ 272 SKBTX_SCHED_TSTAMP = 1 << 6, 273 274 /* generate software timestamp on peer data acknowledgment */ 275 SKBTX_ACK_TSTAMP = 1 << 7, 276}; 277 278#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 279 SKBTX_SCHED_TSTAMP | \ 280 SKBTX_ACK_TSTAMP) 281#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 282 283/* 284 * The callback notifies userspace to release buffers when skb DMA is done in 285 * lower device, the skb last reference should be 0 when calling this. 286 * The zerocopy_success argument is true if zero copy transmit occurred, 287 * false on data copy or out of memory error caused by data copy attempt. 288 * The ctx field is used to track device context. 289 * The desc field is used to track userspace buffer index. 290 */ 291struct ubuf_info { 292 void (*callback)(struct ubuf_info *, bool zerocopy_success); 293 void *ctx; 294 unsigned long desc; 295}; 296 297/* This data is invariant across clones and lives at 298 * the end of the header data, ie. at skb->end. 299 */ 300struct skb_shared_info { 301 unsigned char nr_frags; 302 __u8 tx_flags; 303 unsigned short gso_size; 304 /* Warning: this field is not always filled in (UFO)! */ 305 unsigned short gso_segs; 306 unsigned short gso_type; 307 struct sk_buff *frag_list; 308 struct skb_shared_hwtstamps hwtstamps; 309 u32 tskey; 310 __be32 ip6_frag_id; 311 312 /* 313 * Warning : all fields before dataref are cleared in __alloc_skb() 314 */ 315 atomic_t dataref; 316 317 /* Intermediate layers must ensure that destructor_arg 318 * remains valid until skb destructor */ 319 void * destructor_arg; 320 321 /* must be last field, see pskb_expand_head() */ 322 skb_frag_t frags[MAX_SKB_FRAGS]; 323}; 324 325/* We divide dataref into two halves. The higher 16 bits hold references 326 * to the payload part of skb->data. The lower 16 bits hold references to 327 * the entire skb->data. A clone of a headerless skb holds the length of 328 * the header in skb->hdr_len. 329 * 330 * All users must obey the rule that the skb->data reference count must be 331 * greater than or equal to the payload reference count. 332 * 333 * Holding a reference to the payload part means that the user does not 334 * care about modifications to the header part of skb->data. 335 */ 336#define SKB_DATAREF_SHIFT 16 337#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 338 339 340enum { 341 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 342 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 343 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 344 SKB_FCLONE_FREE, /* this companion fclone skb is available */ 345}; 346 347enum { 348 SKB_GSO_TCPV4 = 1 << 0, 349 SKB_GSO_UDP = 1 << 1, 350 351 /* This indicates the skb is from an untrusted source. */ 352 SKB_GSO_DODGY = 1 << 2, 353 354 /* This indicates the tcp segment has CWR set. */ 355 SKB_GSO_TCP_ECN = 1 << 3, 356 357 SKB_GSO_TCPV6 = 1 << 4, 358 359 SKB_GSO_FCOE = 1 << 5, 360 361 SKB_GSO_GRE = 1 << 6, 362 363 SKB_GSO_GRE_CSUM = 1 << 7, 364 365 SKB_GSO_IPIP = 1 << 8, 366 367 SKB_GSO_SIT = 1 << 9, 368 369 SKB_GSO_UDP_TUNNEL = 1 << 10, 370 371 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 372 373 SKB_GSO_MPLS = 1 << 12, 374 375}; 376 377#if BITS_PER_LONG > 32 378#define NET_SKBUFF_DATA_USES_OFFSET 1 379#endif 380 381#ifdef NET_SKBUFF_DATA_USES_OFFSET 382typedef unsigned int sk_buff_data_t; 383#else 384typedef unsigned char *sk_buff_data_t; 385#endif 386 387/** 388 * struct skb_mstamp - multi resolution time stamps 389 * @stamp_us: timestamp in us resolution 390 * @stamp_jiffies: timestamp in jiffies 391 */ 392struct skb_mstamp { 393 union { 394 u64 v64; 395 struct { 396 u32 stamp_us; 397 u32 stamp_jiffies; 398 }; 399 }; 400}; 401 402/** 403 * skb_mstamp_get - get current timestamp 404 * @cl: place to store timestamps 405 */ 406static inline void skb_mstamp_get(struct skb_mstamp *cl) 407{ 408 u64 val = local_clock(); 409 410 do_div(val, NSEC_PER_USEC); 411 cl->stamp_us = (u32)val; 412 cl->stamp_jiffies = (u32)jiffies; 413} 414 415/** 416 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 417 * @t1: pointer to newest sample 418 * @t0: pointer to oldest sample 419 */ 420static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 421 const struct skb_mstamp *t0) 422{ 423 s32 delta_us = t1->stamp_us - t0->stamp_us; 424 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 425 426 /* If delta_us is negative, this might be because interval is too big, 427 * or local_clock() drift is too big : fallback using jiffies. 428 */ 429 if (delta_us <= 0 || 430 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 431 432 delta_us = jiffies_to_usecs(delta_jiffies); 433 434 return delta_us; 435} 436 437 438/** 439 * struct sk_buff - socket buffer 440 * @next: Next buffer in list 441 * @prev: Previous buffer in list 442 * @tstamp: Time we arrived/left 443 * @sk: Socket we are owned by 444 * @dev: Device we arrived on/are leaving by 445 * @cb: Control buffer. Free for use by every layer. Put private vars here 446 * @_skb_refdst: destination entry (with norefcount bit) 447 * @sp: the security path, used for xfrm 448 * @len: Length of actual data 449 * @data_len: Data length 450 * @mac_len: Length of link layer header 451 * @hdr_len: writable header length of cloned skb 452 * @csum: Checksum (must include start/offset pair) 453 * @csum_start: Offset from skb->head where checksumming should start 454 * @csum_offset: Offset from csum_start where checksum should be stored 455 * @priority: Packet queueing priority 456 * @ignore_df: allow local fragmentation 457 * @cloned: Head may be cloned (check refcnt to be sure) 458 * @ip_summed: Driver fed us an IP checksum 459 * @nohdr: Payload reference only, must not modify header 460 * @nfctinfo: Relationship of this skb to the connection 461 * @pkt_type: Packet class 462 * @fclone: skbuff clone status 463 * @ipvs_property: skbuff is owned by ipvs 464 * @peeked: this packet has been seen already, so stats have been 465 * done for it, don't do them again 466 * @nf_trace: netfilter packet trace flag 467 * @protocol: Packet protocol from driver 468 * @destructor: Destruct function 469 * @nfct: Associated connection, if any 470 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 471 * @skb_iif: ifindex of device we arrived on 472 * @tc_index: Traffic control index 473 * @tc_verd: traffic control verdict 474 * @hash: the packet hash 475 * @queue_mapping: Queue mapping for multiqueue devices 476 * @xmit_more: More SKBs are pending for this queue 477 * @ndisc_nodetype: router type (from link layer) 478 * @ooo_okay: allow the mapping of a socket to a queue to be changed 479 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 480 * ports. 481 * @sw_hash: indicates hash was computed in software stack 482 * @wifi_acked_valid: wifi_acked was set 483 * @wifi_acked: whether frame was acked on wifi or not 484 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 485 * @napi_id: id of the NAPI struct this skb came from 486 * @secmark: security marking 487 * @mark: Generic packet mark 488 * @dropcount: total number of sk_receive_queue overflows 489 * @vlan_proto: vlan encapsulation protocol 490 * @vlan_tci: vlan tag control information 491 * @inner_protocol: Protocol (encapsulation) 492 * @inner_transport_header: Inner transport layer header (encapsulation) 493 * @inner_network_header: Network layer header (encapsulation) 494 * @inner_mac_header: Link layer header (encapsulation) 495 * @transport_header: Transport layer header 496 * @network_header: Network layer header 497 * @mac_header: Link layer header 498 * @tail: Tail pointer 499 * @end: End pointer 500 * @head: Head of buffer 501 * @data: Data head pointer 502 * @truesize: Buffer size 503 * @users: User count - see {datagram,tcp}.c 504 */ 505 506struct sk_buff { 507 /* These two members must be first. */ 508 struct sk_buff *next; 509 struct sk_buff *prev; 510 511 union { 512 ktime_t tstamp; 513 struct skb_mstamp skb_mstamp; 514 }; 515 516 struct sock *sk; 517 struct net_device *dev; 518 519 /* 520 * This is the control buffer. It is free to use for every 521 * layer. Please put your private variables there. If you 522 * want to keep them across layers you have to do a skb_clone() 523 * first. This is owned by whoever has the skb queued ATM. 524 */ 525 char cb[48] __aligned(8); 526 527 unsigned long _skb_refdst; 528 void (*destructor)(struct sk_buff *skb); 529#ifdef CONFIG_XFRM 530 struct sec_path *sp; 531#endif 532#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 533 struct nf_conntrack *nfct; 534#endif 535#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 536 struct nf_bridge_info *nf_bridge; 537#endif 538 unsigned int len, 539 data_len; 540 __u16 mac_len, 541 hdr_len; 542 543 /* Following fields are _not_ copied in __copy_skb_header() 544 * Note that queue_mapping is here mostly to fill a hole. 545 */ 546 kmemcheck_bitfield_begin(flags1); 547 __u16 queue_mapping; 548 __u8 cloned:1, 549 nohdr:1, 550 fclone:2, 551 peeked:1, 552 head_frag:1, 553 xmit_more:1; 554 /* one bit hole */ 555 kmemcheck_bitfield_end(flags1); 556 557 /* fields enclosed in headers_start/headers_end are copied 558 * using a single memcpy() in __copy_skb_header() 559 */ 560 __u32 headers_start[0]; 561 562/* if you move pkt_type around you also must adapt those constants */ 563#ifdef __BIG_ENDIAN_BITFIELD 564#define PKT_TYPE_MAX (7 << 5) 565#else 566#define PKT_TYPE_MAX 7 567#endif 568#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 569 570 __u8 __pkt_type_offset[0]; 571 __u8 pkt_type:3; 572 __u8 pfmemalloc:1; 573 __u8 ignore_df:1; 574 __u8 nfctinfo:3; 575 576 __u8 nf_trace:1; 577 __u8 ip_summed:2; 578 __u8 ooo_okay:1; 579 __u8 l4_hash:1; 580 __u8 sw_hash:1; 581 __u8 wifi_acked_valid:1; 582 __u8 wifi_acked:1; 583 584 __u8 no_fcs:1; 585 /* Indicates the inner headers are valid in the skbuff. */ 586 __u8 encapsulation:1; 587 __u8 encap_hdr_csum:1; 588 __u8 csum_valid:1; 589 __u8 csum_complete_sw:1; 590 __u8 csum_level:2; 591 __u8 csum_bad:1; 592 593#ifdef CONFIG_IPV6_NDISC_NODETYPE 594 __u8 ndisc_nodetype:2; 595#endif 596 __u8 ipvs_property:1; 597 __u8 inner_protocol_type:1; 598 /* 4 or 6 bit hole */ 599 600#ifdef CONFIG_NET_SCHED 601 __u16 tc_index; /* traffic control index */ 602#ifdef CONFIG_NET_CLS_ACT 603 __u16 tc_verd; /* traffic control verdict */ 604#endif 605#endif 606 607 union { 608 __wsum csum; 609 struct { 610 __u16 csum_start; 611 __u16 csum_offset; 612 }; 613 }; 614 __u32 priority; 615 int skb_iif; 616 __u32 hash; 617 __be16 vlan_proto; 618 __u16 vlan_tci; 619#ifdef CONFIG_NET_RX_BUSY_POLL 620 unsigned int napi_id; 621#endif 622#ifdef CONFIG_NETWORK_SECMARK 623 __u32 secmark; 624#endif 625 union { 626 __u32 mark; 627 __u32 dropcount; 628 __u32 reserved_tailroom; 629 }; 630 631 union { 632 __be16 inner_protocol; 633 __u8 inner_ipproto; 634 }; 635 636 __u16 inner_transport_header; 637 __u16 inner_network_header; 638 __u16 inner_mac_header; 639 640 __be16 protocol; 641 __u16 transport_header; 642 __u16 network_header; 643 __u16 mac_header; 644 645 __u32 headers_end[0]; 646 647 /* These elements must be at the end, see alloc_skb() for details. */ 648 sk_buff_data_t tail; 649 sk_buff_data_t end; 650 unsigned char *head, 651 *data; 652 unsigned int truesize; 653 atomic_t users; 654}; 655 656#ifdef __KERNEL__ 657/* 658 * Handling routines are only of interest to the kernel 659 */ 660#include <linux/slab.h> 661 662 663#define SKB_ALLOC_FCLONE 0x01 664#define SKB_ALLOC_RX 0x02 665 666/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 667static inline bool skb_pfmemalloc(const struct sk_buff *skb) 668{ 669 return unlikely(skb->pfmemalloc); 670} 671 672/* 673 * skb might have a dst pointer attached, refcounted or not. 674 * _skb_refdst low order bit is set if refcount was _not_ taken 675 */ 676#define SKB_DST_NOREF 1UL 677#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 678 679/** 680 * skb_dst - returns skb dst_entry 681 * @skb: buffer 682 * 683 * Returns skb dst_entry, regardless of reference taken or not. 684 */ 685static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 686{ 687 /* If refdst was not refcounted, check we still are in a 688 * rcu_read_lock section 689 */ 690 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 691 !rcu_read_lock_held() && 692 !rcu_read_lock_bh_held()); 693 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 694} 695 696/** 697 * skb_dst_set - sets skb dst 698 * @skb: buffer 699 * @dst: dst entry 700 * 701 * Sets skb dst, assuming a reference was taken on dst and should 702 * be released by skb_dst_drop() 703 */ 704static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 705{ 706 skb->_skb_refdst = (unsigned long)dst; 707} 708 709void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 710 bool force); 711 712/** 713 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 714 * @skb: buffer 715 * @dst: dst entry 716 * 717 * Sets skb dst, assuming a reference was not taken on dst. 718 * If dst entry is cached, we do not take reference and dst_release 719 * will be avoided by refdst_drop. If dst entry is not cached, we take 720 * reference, so that last dst_release can destroy the dst immediately. 721 */ 722static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 723{ 724 __skb_dst_set_noref(skb, dst, false); 725} 726 727/** 728 * skb_dst_set_noref_force - sets skb dst, without taking reference 729 * @skb: buffer 730 * @dst: dst entry 731 * 732 * Sets skb dst, assuming a reference was not taken on dst. 733 * No reference is taken and no dst_release will be called. While for 734 * cached dsts deferred reclaim is a basic feature, for entries that are 735 * not cached it is caller's job to guarantee that last dst_release for 736 * provided dst happens when nobody uses it, eg. after a RCU grace period. 737 */ 738static inline void skb_dst_set_noref_force(struct sk_buff *skb, 739 struct dst_entry *dst) 740{ 741 __skb_dst_set_noref(skb, dst, true); 742} 743 744/** 745 * skb_dst_is_noref - Test if skb dst isn't refcounted 746 * @skb: buffer 747 */ 748static inline bool skb_dst_is_noref(const struct sk_buff *skb) 749{ 750 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 751} 752 753static inline struct rtable *skb_rtable(const struct sk_buff *skb) 754{ 755 return (struct rtable *)skb_dst(skb); 756} 757 758void kfree_skb(struct sk_buff *skb); 759void kfree_skb_list(struct sk_buff *segs); 760void skb_tx_error(struct sk_buff *skb); 761void consume_skb(struct sk_buff *skb); 762void __kfree_skb(struct sk_buff *skb); 763extern struct kmem_cache *skbuff_head_cache; 764 765void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 766bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 767 bool *fragstolen, int *delta_truesize); 768 769struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 770 int node); 771struct sk_buff *build_skb(void *data, unsigned int frag_size); 772static inline struct sk_buff *alloc_skb(unsigned int size, 773 gfp_t priority) 774{ 775 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 776} 777 778struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 779 unsigned long data_len, 780 int max_page_order, 781 int *errcode, 782 gfp_t gfp_mask); 783 784/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 785struct sk_buff_fclones { 786 struct sk_buff skb1; 787 788 struct sk_buff skb2; 789 790 atomic_t fclone_ref; 791}; 792 793/** 794 * skb_fclone_busy - check if fclone is busy 795 * @skb: buffer 796 * 797 * Returns true is skb is a fast clone, and its clone is not freed. 798 */ 799static inline bool skb_fclone_busy(const struct sk_buff *skb) 800{ 801 const struct sk_buff_fclones *fclones; 802 803 fclones = container_of(skb, struct sk_buff_fclones, skb1); 804 805 return skb->fclone == SKB_FCLONE_ORIG && 806 fclones->skb2.fclone == SKB_FCLONE_CLONE; 807} 808 809static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 810 gfp_t priority) 811{ 812 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 813} 814 815struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 816static inline struct sk_buff *alloc_skb_head(gfp_t priority) 817{ 818 return __alloc_skb_head(priority, -1); 819} 820 821struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 822int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 823struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 824struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 825struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 826 gfp_t gfp_mask, bool fclone); 827static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 828 gfp_t gfp_mask) 829{ 830 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 831} 832 833int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 834struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 835 unsigned int headroom); 836struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 837 int newtailroom, gfp_t priority); 838int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 839 int offset, int len); 840int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 841 int len); 842int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 843int skb_pad(struct sk_buff *skb, int pad); 844#define dev_kfree_skb(a) consume_skb(a) 845 846int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 847 int getfrag(void *from, char *to, int offset, 848 int len, int odd, struct sk_buff *skb), 849 void *from, int length); 850 851struct skb_seq_state { 852 __u32 lower_offset; 853 __u32 upper_offset; 854 __u32 frag_idx; 855 __u32 stepped_offset; 856 struct sk_buff *root_skb; 857 struct sk_buff *cur_skb; 858 __u8 *frag_data; 859}; 860 861void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 862 unsigned int to, struct skb_seq_state *st); 863unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 864 struct skb_seq_state *st); 865void skb_abort_seq_read(struct skb_seq_state *st); 866 867unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 868 unsigned int to, struct ts_config *config, 869 struct ts_state *state); 870 871/* 872 * Packet hash types specify the type of hash in skb_set_hash. 873 * 874 * Hash types refer to the protocol layer addresses which are used to 875 * construct a packet's hash. The hashes are used to differentiate or identify 876 * flows of the protocol layer for the hash type. Hash types are either 877 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 878 * 879 * Properties of hashes: 880 * 881 * 1) Two packets in different flows have different hash values 882 * 2) Two packets in the same flow should have the same hash value 883 * 884 * A hash at a higher layer is considered to be more specific. A driver should 885 * set the most specific hash possible. 886 * 887 * A driver cannot indicate a more specific hash than the layer at which a hash 888 * was computed. For instance an L3 hash cannot be set as an L4 hash. 889 * 890 * A driver may indicate a hash level which is less specific than the 891 * actual layer the hash was computed on. For instance, a hash computed 892 * at L4 may be considered an L3 hash. This should only be done if the 893 * driver can't unambiguously determine that the HW computed the hash at 894 * the higher layer. Note that the "should" in the second property above 895 * permits this. 896 */ 897enum pkt_hash_types { 898 PKT_HASH_TYPE_NONE, /* Undefined type */ 899 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 900 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 901 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 902}; 903 904static inline void 905skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 906{ 907 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 908 skb->sw_hash = 0; 909 skb->hash = hash; 910} 911 912void __skb_get_hash(struct sk_buff *skb); 913static inline __u32 skb_get_hash(struct sk_buff *skb) 914{ 915 if (!skb->l4_hash && !skb->sw_hash) 916 __skb_get_hash(skb); 917 918 return skb->hash; 919} 920 921static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 922{ 923 return skb->hash; 924} 925 926static inline void skb_clear_hash(struct sk_buff *skb) 927{ 928 skb->hash = 0; 929 skb->sw_hash = 0; 930 skb->l4_hash = 0; 931} 932 933static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 934{ 935 if (!skb->l4_hash) 936 skb_clear_hash(skb); 937} 938 939static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 940{ 941 to->hash = from->hash; 942 to->sw_hash = from->sw_hash; 943 to->l4_hash = from->l4_hash; 944}; 945 946#ifdef NET_SKBUFF_DATA_USES_OFFSET 947static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 948{ 949 return skb->head + skb->end; 950} 951 952static inline unsigned int skb_end_offset(const struct sk_buff *skb) 953{ 954 return skb->end; 955} 956#else 957static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 958{ 959 return skb->end; 960} 961 962static inline unsigned int skb_end_offset(const struct sk_buff *skb) 963{ 964 return skb->end - skb->head; 965} 966#endif 967 968/* Internal */ 969#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 970 971static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 972{ 973 return &skb_shinfo(skb)->hwtstamps; 974} 975 976/** 977 * skb_queue_empty - check if a queue is empty 978 * @list: queue head 979 * 980 * Returns true if the queue is empty, false otherwise. 981 */ 982static inline int skb_queue_empty(const struct sk_buff_head *list) 983{ 984 return list->next == (const struct sk_buff *) list; 985} 986 987/** 988 * skb_queue_is_last - check if skb is the last entry in the queue 989 * @list: queue head 990 * @skb: buffer 991 * 992 * Returns true if @skb is the last buffer on the list. 993 */ 994static inline bool skb_queue_is_last(const struct sk_buff_head *list, 995 const struct sk_buff *skb) 996{ 997 return skb->next == (const struct sk_buff *) list; 998} 999 1000/** 1001 * skb_queue_is_first - check if skb is the first entry in the queue 1002 * @list: queue head 1003 * @skb: buffer 1004 * 1005 * Returns true if @skb is the first buffer on the list. 1006 */ 1007static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1008 const struct sk_buff *skb) 1009{ 1010 return skb->prev == (const struct sk_buff *) list; 1011} 1012 1013/** 1014 * skb_queue_next - return the next packet in the queue 1015 * @list: queue head 1016 * @skb: current buffer 1017 * 1018 * Return the next packet in @list after @skb. It is only valid to 1019 * call this if skb_queue_is_last() evaluates to false. 1020 */ 1021static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1022 const struct sk_buff *skb) 1023{ 1024 /* This BUG_ON may seem severe, but if we just return then we 1025 * are going to dereference garbage. 1026 */ 1027 BUG_ON(skb_queue_is_last(list, skb)); 1028 return skb->next; 1029} 1030 1031/** 1032 * skb_queue_prev - return the prev packet in the queue 1033 * @list: queue head 1034 * @skb: current buffer 1035 * 1036 * Return the prev packet in @list before @skb. It is only valid to 1037 * call this if skb_queue_is_first() evaluates to false. 1038 */ 1039static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1040 const struct sk_buff *skb) 1041{ 1042 /* This BUG_ON may seem severe, but if we just return then we 1043 * are going to dereference garbage. 1044 */ 1045 BUG_ON(skb_queue_is_first(list, skb)); 1046 return skb->prev; 1047} 1048 1049/** 1050 * skb_get - reference buffer 1051 * @skb: buffer to reference 1052 * 1053 * Makes another reference to a socket buffer and returns a pointer 1054 * to the buffer. 1055 */ 1056static inline struct sk_buff *skb_get(struct sk_buff *skb) 1057{ 1058 atomic_inc(&skb->users); 1059 return skb; 1060} 1061 1062/* 1063 * If users == 1, we are the only owner and are can avoid redundant 1064 * atomic change. 1065 */ 1066 1067/** 1068 * skb_cloned - is the buffer a clone 1069 * @skb: buffer to check 1070 * 1071 * Returns true if the buffer was generated with skb_clone() and is 1072 * one of multiple shared copies of the buffer. Cloned buffers are 1073 * shared data so must not be written to under normal circumstances. 1074 */ 1075static inline int skb_cloned(const struct sk_buff *skb) 1076{ 1077 return skb->cloned && 1078 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1079} 1080 1081static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1082{ 1083 might_sleep_if(pri & __GFP_WAIT); 1084 1085 if (skb_cloned(skb)) 1086 return pskb_expand_head(skb, 0, 0, pri); 1087 1088 return 0; 1089} 1090 1091/** 1092 * skb_header_cloned - is the header a clone 1093 * @skb: buffer to check 1094 * 1095 * Returns true if modifying the header part of the buffer requires 1096 * the data to be copied. 1097 */ 1098static inline int skb_header_cloned(const struct sk_buff *skb) 1099{ 1100 int dataref; 1101 1102 if (!skb->cloned) 1103 return 0; 1104 1105 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1106 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1107 return dataref != 1; 1108} 1109 1110/** 1111 * skb_header_release - release reference to header 1112 * @skb: buffer to operate on 1113 * 1114 * Drop a reference to the header part of the buffer. This is done 1115 * by acquiring a payload reference. You must not read from the header 1116 * part of skb->data after this. 1117 * Note : Check if you can use __skb_header_release() instead. 1118 */ 1119static inline void skb_header_release(struct sk_buff *skb) 1120{ 1121 BUG_ON(skb->nohdr); 1122 skb->nohdr = 1; 1123 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1124} 1125 1126/** 1127 * __skb_header_release - release reference to header 1128 * @skb: buffer to operate on 1129 * 1130 * Variant of skb_header_release() assuming skb is private to caller. 1131 * We can avoid one atomic operation. 1132 */ 1133static inline void __skb_header_release(struct sk_buff *skb) 1134{ 1135 skb->nohdr = 1; 1136 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1137} 1138 1139 1140/** 1141 * skb_shared - is the buffer shared 1142 * @skb: buffer to check 1143 * 1144 * Returns true if more than one person has a reference to this 1145 * buffer. 1146 */ 1147static inline int skb_shared(const struct sk_buff *skb) 1148{ 1149 return atomic_read(&skb->users) != 1; 1150} 1151 1152/** 1153 * skb_share_check - check if buffer is shared and if so clone it 1154 * @skb: buffer to check 1155 * @pri: priority for memory allocation 1156 * 1157 * If the buffer is shared the buffer is cloned and the old copy 1158 * drops a reference. A new clone with a single reference is returned. 1159 * If the buffer is not shared the original buffer is returned. When 1160 * being called from interrupt status or with spinlocks held pri must 1161 * be GFP_ATOMIC. 1162 * 1163 * NULL is returned on a memory allocation failure. 1164 */ 1165static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1166{ 1167 might_sleep_if(pri & __GFP_WAIT); 1168 if (skb_shared(skb)) { 1169 struct sk_buff *nskb = skb_clone(skb, pri); 1170 1171 if (likely(nskb)) 1172 consume_skb(skb); 1173 else 1174 kfree_skb(skb); 1175 skb = nskb; 1176 } 1177 return skb; 1178} 1179 1180/* 1181 * Copy shared buffers into a new sk_buff. We effectively do COW on 1182 * packets to handle cases where we have a local reader and forward 1183 * and a couple of other messy ones. The normal one is tcpdumping 1184 * a packet thats being forwarded. 1185 */ 1186 1187/** 1188 * skb_unshare - make a copy of a shared buffer 1189 * @skb: buffer to check 1190 * @pri: priority for memory allocation 1191 * 1192 * If the socket buffer is a clone then this function creates a new 1193 * copy of the data, drops a reference count on the old copy and returns 1194 * the new copy with the reference count at 1. If the buffer is not a clone 1195 * the original buffer is returned. When called with a spinlock held or 1196 * from interrupt state @pri must be %GFP_ATOMIC 1197 * 1198 * %NULL is returned on a memory allocation failure. 1199 */ 1200static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1201 gfp_t pri) 1202{ 1203 might_sleep_if(pri & __GFP_WAIT); 1204 if (skb_cloned(skb)) { 1205 struct sk_buff *nskb = skb_copy(skb, pri); 1206 1207 /* Free our shared copy */ 1208 if (likely(nskb)) 1209 consume_skb(skb); 1210 else 1211 kfree_skb(skb); 1212 skb = nskb; 1213 } 1214 return skb; 1215} 1216 1217/** 1218 * skb_peek - peek at the head of an &sk_buff_head 1219 * @list_: list to peek at 1220 * 1221 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1222 * be careful with this one. A peek leaves the buffer on the 1223 * list and someone else may run off with it. You must hold 1224 * the appropriate locks or have a private queue to do this. 1225 * 1226 * Returns %NULL for an empty list or a pointer to the head element. 1227 * The reference count is not incremented and the reference is therefore 1228 * volatile. Use with caution. 1229 */ 1230static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1231{ 1232 struct sk_buff *skb = list_->next; 1233 1234 if (skb == (struct sk_buff *)list_) 1235 skb = NULL; 1236 return skb; 1237} 1238 1239/** 1240 * skb_peek_next - peek skb following the given one from a queue 1241 * @skb: skb to start from 1242 * @list_: list to peek at 1243 * 1244 * Returns %NULL when the end of the list is met or a pointer to the 1245 * next element. The reference count is not incremented and the 1246 * reference is therefore volatile. Use with caution. 1247 */ 1248static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1249 const struct sk_buff_head *list_) 1250{ 1251 struct sk_buff *next = skb->next; 1252 1253 if (next == (struct sk_buff *)list_) 1254 next = NULL; 1255 return next; 1256} 1257 1258/** 1259 * skb_peek_tail - peek at the tail of an &sk_buff_head 1260 * @list_: list to peek at 1261 * 1262 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1263 * be careful with this one. A peek leaves the buffer on the 1264 * list and someone else may run off with it. You must hold 1265 * the appropriate locks or have a private queue to do this. 1266 * 1267 * Returns %NULL for an empty list or a pointer to the tail element. 1268 * The reference count is not incremented and the reference is therefore 1269 * volatile. Use with caution. 1270 */ 1271static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1272{ 1273 struct sk_buff *skb = list_->prev; 1274 1275 if (skb == (struct sk_buff *)list_) 1276 skb = NULL; 1277 return skb; 1278 1279} 1280 1281/** 1282 * skb_queue_len - get queue length 1283 * @list_: list to measure 1284 * 1285 * Return the length of an &sk_buff queue. 1286 */ 1287static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1288{ 1289 return list_->qlen; 1290} 1291 1292/** 1293 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1294 * @list: queue to initialize 1295 * 1296 * This initializes only the list and queue length aspects of 1297 * an sk_buff_head object. This allows to initialize the list 1298 * aspects of an sk_buff_head without reinitializing things like 1299 * the spinlock. It can also be used for on-stack sk_buff_head 1300 * objects where the spinlock is known to not be used. 1301 */ 1302static inline void __skb_queue_head_init(struct sk_buff_head *list) 1303{ 1304 list->prev = list->next = (struct sk_buff *)list; 1305 list->qlen = 0; 1306} 1307 1308/* 1309 * This function creates a split out lock class for each invocation; 1310 * this is needed for now since a whole lot of users of the skb-queue 1311 * infrastructure in drivers have different locking usage (in hardirq) 1312 * than the networking core (in softirq only). In the long run either the 1313 * network layer or drivers should need annotation to consolidate the 1314 * main types of usage into 3 classes. 1315 */ 1316static inline void skb_queue_head_init(struct sk_buff_head *list) 1317{ 1318 spin_lock_init(&list->lock); 1319 __skb_queue_head_init(list); 1320} 1321 1322static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1323 struct lock_class_key *class) 1324{ 1325 skb_queue_head_init(list); 1326 lockdep_set_class(&list->lock, class); 1327} 1328 1329/* 1330 * Insert an sk_buff on a list. 1331 * 1332 * The "__skb_xxxx()" functions are the non-atomic ones that 1333 * can only be called with interrupts disabled. 1334 */ 1335void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1336 struct sk_buff_head *list); 1337static inline void __skb_insert(struct sk_buff *newsk, 1338 struct sk_buff *prev, struct sk_buff *next, 1339 struct sk_buff_head *list) 1340{ 1341 newsk->next = next; 1342 newsk->prev = prev; 1343 next->prev = prev->next = newsk; 1344 list->qlen++; 1345} 1346 1347static inline void __skb_queue_splice(const struct sk_buff_head *list, 1348 struct sk_buff *prev, 1349 struct sk_buff *next) 1350{ 1351 struct sk_buff *first = list->next; 1352 struct sk_buff *last = list->prev; 1353 1354 first->prev = prev; 1355 prev->next = first; 1356 1357 last->next = next; 1358 next->prev = last; 1359} 1360 1361/** 1362 * skb_queue_splice - join two skb lists, this is designed for stacks 1363 * @list: the new list to add 1364 * @head: the place to add it in the first list 1365 */ 1366static inline void skb_queue_splice(const struct sk_buff_head *list, 1367 struct sk_buff_head *head) 1368{ 1369 if (!skb_queue_empty(list)) { 1370 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1371 head->qlen += list->qlen; 1372 } 1373} 1374 1375/** 1376 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1377 * @list: the new list to add 1378 * @head: the place to add it in the first list 1379 * 1380 * The list at @list is reinitialised 1381 */ 1382static inline void skb_queue_splice_init(struct sk_buff_head *list, 1383 struct sk_buff_head *head) 1384{ 1385 if (!skb_queue_empty(list)) { 1386 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1387 head->qlen += list->qlen; 1388 __skb_queue_head_init(list); 1389 } 1390} 1391 1392/** 1393 * skb_queue_splice_tail - join two skb lists, each list being a queue 1394 * @list: the new list to add 1395 * @head: the place to add it in the first list 1396 */ 1397static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1398 struct sk_buff_head *head) 1399{ 1400 if (!skb_queue_empty(list)) { 1401 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1402 head->qlen += list->qlen; 1403 } 1404} 1405 1406/** 1407 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1408 * @list: the new list to add 1409 * @head: the place to add it in the first list 1410 * 1411 * Each of the lists is a queue. 1412 * The list at @list is reinitialised 1413 */ 1414static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1415 struct sk_buff_head *head) 1416{ 1417 if (!skb_queue_empty(list)) { 1418 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1419 head->qlen += list->qlen; 1420 __skb_queue_head_init(list); 1421 } 1422} 1423 1424/** 1425 * __skb_queue_after - queue a buffer at the list head 1426 * @list: list to use 1427 * @prev: place after this buffer 1428 * @newsk: buffer to queue 1429 * 1430 * Queue a buffer int the middle of a list. This function takes no locks 1431 * and you must therefore hold required locks before calling it. 1432 * 1433 * A buffer cannot be placed on two lists at the same time. 1434 */ 1435static inline void __skb_queue_after(struct sk_buff_head *list, 1436 struct sk_buff *prev, 1437 struct sk_buff *newsk) 1438{ 1439 __skb_insert(newsk, prev, prev->next, list); 1440} 1441 1442void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1443 struct sk_buff_head *list); 1444 1445static inline void __skb_queue_before(struct sk_buff_head *list, 1446 struct sk_buff *next, 1447 struct sk_buff *newsk) 1448{ 1449 __skb_insert(newsk, next->prev, next, list); 1450} 1451 1452/** 1453 * __skb_queue_head - queue a buffer at the list head 1454 * @list: list to use 1455 * @newsk: buffer to queue 1456 * 1457 * Queue a buffer at the start of a list. This function takes no locks 1458 * and you must therefore hold required locks before calling it. 1459 * 1460 * A buffer cannot be placed on two lists at the same time. 1461 */ 1462void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1463static inline void __skb_queue_head(struct sk_buff_head *list, 1464 struct sk_buff *newsk) 1465{ 1466 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1467} 1468 1469/** 1470 * __skb_queue_tail - queue a buffer at the list tail 1471 * @list: list to use 1472 * @newsk: buffer to queue 1473 * 1474 * Queue a buffer at the end of a list. This function takes no locks 1475 * and you must therefore hold required locks before calling it. 1476 * 1477 * A buffer cannot be placed on two lists at the same time. 1478 */ 1479void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1480static inline void __skb_queue_tail(struct sk_buff_head *list, 1481 struct sk_buff *newsk) 1482{ 1483 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1484} 1485 1486/* 1487 * remove sk_buff from list. _Must_ be called atomically, and with 1488 * the list known.. 1489 */ 1490void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1491static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1492{ 1493 struct sk_buff *next, *prev; 1494 1495 list->qlen--; 1496 next = skb->next; 1497 prev = skb->prev; 1498 skb->next = skb->prev = NULL; 1499 next->prev = prev; 1500 prev->next = next; 1501} 1502 1503/** 1504 * __skb_dequeue - remove from the head of the queue 1505 * @list: list to dequeue from 1506 * 1507 * Remove the head of the list. This function does not take any locks 1508 * so must be used with appropriate locks held only. The head item is 1509 * returned or %NULL if the list is empty. 1510 */ 1511struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1512static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1513{ 1514 struct sk_buff *skb = skb_peek(list); 1515 if (skb) 1516 __skb_unlink(skb, list); 1517 return skb; 1518} 1519 1520/** 1521 * __skb_dequeue_tail - remove from the tail of the queue 1522 * @list: list to dequeue from 1523 * 1524 * Remove the tail of the list. This function does not take any locks 1525 * so must be used with appropriate locks held only. The tail item is 1526 * returned or %NULL if the list is empty. 1527 */ 1528struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1529static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1530{ 1531 struct sk_buff *skb = skb_peek_tail(list); 1532 if (skb) 1533 __skb_unlink(skb, list); 1534 return skb; 1535} 1536 1537 1538static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1539{ 1540 return skb->data_len; 1541} 1542 1543static inline unsigned int skb_headlen(const struct sk_buff *skb) 1544{ 1545 return skb->len - skb->data_len; 1546} 1547 1548static inline int skb_pagelen(const struct sk_buff *skb) 1549{ 1550 int i, len = 0; 1551 1552 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1553 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1554 return len + skb_headlen(skb); 1555} 1556 1557/** 1558 * __skb_fill_page_desc - initialise a paged fragment in an skb 1559 * @skb: buffer containing fragment to be initialised 1560 * @i: paged fragment index to initialise 1561 * @page: the page to use for this fragment 1562 * @off: the offset to the data with @page 1563 * @size: the length of the data 1564 * 1565 * Initialises the @i'th fragment of @skb to point to &size bytes at 1566 * offset @off within @page. 1567 * 1568 * Does not take any additional reference on the fragment. 1569 */ 1570static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1571 struct page *page, int off, int size) 1572{ 1573 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1574 1575 /* 1576 * Propagate page->pfmemalloc to the skb if we can. The problem is 1577 * that not all callers have unique ownership of the page. If 1578 * pfmemalloc is set, we check the mapping as a mapping implies 1579 * page->index is set (index and pfmemalloc share space). 1580 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1581 * do not lose pfmemalloc information as the pages would not be 1582 * allocated using __GFP_MEMALLOC. 1583 */ 1584 frag->page.p = page; 1585 frag->page_offset = off; 1586 skb_frag_size_set(frag, size); 1587 1588 page = compound_head(page); 1589 if (page->pfmemalloc && !page->mapping) 1590 skb->pfmemalloc = true; 1591} 1592 1593/** 1594 * skb_fill_page_desc - initialise a paged fragment in an skb 1595 * @skb: buffer containing fragment to be initialised 1596 * @i: paged fragment index to initialise 1597 * @page: the page to use for this fragment 1598 * @off: the offset to the data with @page 1599 * @size: the length of the data 1600 * 1601 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1602 * @skb to point to @size bytes at offset @off within @page. In 1603 * addition updates @skb such that @i is the last fragment. 1604 * 1605 * Does not take any additional reference on the fragment. 1606 */ 1607static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1608 struct page *page, int off, int size) 1609{ 1610 __skb_fill_page_desc(skb, i, page, off, size); 1611 skb_shinfo(skb)->nr_frags = i + 1; 1612} 1613 1614void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1615 int size, unsigned int truesize); 1616 1617void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1618 unsigned int truesize); 1619 1620#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1621#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1622#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1623 1624#ifdef NET_SKBUFF_DATA_USES_OFFSET 1625static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1626{ 1627 return skb->head + skb->tail; 1628} 1629 1630static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1631{ 1632 skb->tail = skb->data - skb->head; 1633} 1634 1635static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1636{ 1637 skb_reset_tail_pointer(skb); 1638 skb->tail += offset; 1639} 1640 1641#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1642static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1643{ 1644 return skb->tail; 1645} 1646 1647static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1648{ 1649 skb->tail = skb->data; 1650} 1651 1652static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1653{ 1654 skb->tail = skb->data + offset; 1655} 1656 1657#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1658 1659/* 1660 * Add data to an sk_buff 1661 */ 1662unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1663unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1664static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1665{ 1666 unsigned char *tmp = skb_tail_pointer(skb); 1667 SKB_LINEAR_ASSERT(skb); 1668 skb->tail += len; 1669 skb->len += len; 1670 return tmp; 1671} 1672 1673unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1674static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1675{ 1676 skb->data -= len; 1677 skb->len += len; 1678 return skb->data; 1679} 1680 1681unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1682static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1683{ 1684 skb->len -= len; 1685 BUG_ON(skb->len < skb->data_len); 1686 return skb->data += len; 1687} 1688 1689static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1690{ 1691 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1692} 1693 1694unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1695 1696static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1697{ 1698 if (len > skb_headlen(skb) && 1699 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1700 return NULL; 1701 skb->len -= len; 1702 return skb->data += len; 1703} 1704 1705static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1706{ 1707 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1708} 1709 1710static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1711{ 1712 if (likely(len <= skb_headlen(skb))) 1713 return 1; 1714 if (unlikely(len > skb->len)) 1715 return 0; 1716 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1717} 1718 1719/** 1720 * skb_headroom - bytes at buffer head 1721 * @skb: buffer to check 1722 * 1723 * Return the number of bytes of free space at the head of an &sk_buff. 1724 */ 1725static inline unsigned int skb_headroom(const struct sk_buff *skb) 1726{ 1727 return skb->data - skb->head; 1728} 1729 1730/** 1731 * skb_tailroom - bytes at buffer end 1732 * @skb: buffer to check 1733 * 1734 * Return the number of bytes of free space at the tail of an sk_buff 1735 */ 1736static inline int skb_tailroom(const struct sk_buff *skb) 1737{ 1738 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1739} 1740 1741/** 1742 * skb_availroom - bytes at buffer end 1743 * @skb: buffer to check 1744 * 1745 * Return the number of bytes of free space at the tail of an sk_buff 1746 * allocated by sk_stream_alloc() 1747 */ 1748static inline int skb_availroom(const struct sk_buff *skb) 1749{ 1750 if (skb_is_nonlinear(skb)) 1751 return 0; 1752 1753 return skb->end - skb->tail - skb->reserved_tailroom; 1754} 1755 1756/** 1757 * skb_reserve - adjust headroom 1758 * @skb: buffer to alter 1759 * @len: bytes to move 1760 * 1761 * Increase the headroom of an empty &sk_buff by reducing the tail 1762 * room. This is only allowed for an empty buffer. 1763 */ 1764static inline void skb_reserve(struct sk_buff *skb, int len) 1765{ 1766 skb->data += len; 1767 skb->tail += len; 1768} 1769 1770#define ENCAP_TYPE_ETHER 0 1771#define ENCAP_TYPE_IPPROTO 1 1772 1773static inline void skb_set_inner_protocol(struct sk_buff *skb, 1774 __be16 protocol) 1775{ 1776 skb->inner_protocol = protocol; 1777 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 1778} 1779 1780static inline void skb_set_inner_ipproto(struct sk_buff *skb, 1781 __u8 ipproto) 1782{ 1783 skb->inner_ipproto = ipproto; 1784 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 1785} 1786 1787static inline void skb_reset_inner_headers(struct sk_buff *skb) 1788{ 1789 skb->inner_mac_header = skb->mac_header; 1790 skb->inner_network_header = skb->network_header; 1791 skb->inner_transport_header = skb->transport_header; 1792} 1793 1794static inline void skb_reset_mac_len(struct sk_buff *skb) 1795{ 1796 skb->mac_len = skb->network_header - skb->mac_header; 1797} 1798 1799static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1800 *skb) 1801{ 1802 return skb->head + skb->inner_transport_header; 1803} 1804 1805static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1806{ 1807 skb->inner_transport_header = skb->data - skb->head; 1808} 1809 1810static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1811 const int offset) 1812{ 1813 skb_reset_inner_transport_header(skb); 1814 skb->inner_transport_header += offset; 1815} 1816 1817static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1818{ 1819 return skb->head + skb->inner_network_header; 1820} 1821 1822static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1823{ 1824 skb->inner_network_header = skb->data - skb->head; 1825} 1826 1827static inline void skb_set_inner_network_header(struct sk_buff *skb, 1828 const int offset) 1829{ 1830 skb_reset_inner_network_header(skb); 1831 skb->inner_network_header += offset; 1832} 1833 1834static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1835{ 1836 return skb->head + skb->inner_mac_header; 1837} 1838 1839static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1840{ 1841 skb->inner_mac_header = skb->data - skb->head; 1842} 1843 1844static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1845 const int offset) 1846{ 1847 skb_reset_inner_mac_header(skb); 1848 skb->inner_mac_header += offset; 1849} 1850static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1851{ 1852 return skb->transport_header != (typeof(skb->transport_header))~0U; 1853} 1854 1855static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1856{ 1857 return skb->head + skb->transport_header; 1858} 1859 1860static inline void skb_reset_transport_header(struct sk_buff *skb) 1861{ 1862 skb->transport_header = skb->data - skb->head; 1863} 1864 1865static inline void skb_set_transport_header(struct sk_buff *skb, 1866 const int offset) 1867{ 1868 skb_reset_transport_header(skb); 1869 skb->transport_header += offset; 1870} 1871 1872static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1873{ 1874 return skb->head + skb->network_header; 1875} 1876 1877static inline void skb_reset_network_header(struct sk_buff *skb) 1878{ 1879 skb->network_header = skb->data - skb->head; 1880} 1881 1882static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1883{ 1884 skb_reset_network_header(skb); 1885 skb->network_header += offset; 1886} 1887 1888static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1889{ 1890 return skb->head + skb->mac_header; 1891} 1892 1893static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1894{ 1895 return skb->mac_header != (typeof(skb->mac_header))~0U; 1896} 1897 1898static inline void skb_reset_mac_header(struct sk_buff *skb) 1899{ 1900 skb->mac_header = skb->data - skb->head; 1901} 1902 1903static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1904{ 1905 skb_reset_mac_header(skb); 1906 skb->mac_header += offset; 1907} 1908 1909static inline void skb_pop_mac_header(struct sk_buff *skb) 1910{ 1911 skb->mac_header = skb->network_header; 1912} 1913 1914static inline void skb_probe_transport_header(struct sk_buff *skb, 1915 const int offset_hint) 1916{ 1917 struct flow_keys keys; 1918 1919 if (skb_transport_header_was_set(skb)) 1920 return; 1921 else if (skb_flow_dissect(skb, &keys)) 1922 skb_set_transport_header(skb, keys.thoff); 1923 else 1924 skb_set_transport_header(skb, offset_hint); 1925} 1926 1927static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1928{ 1929 if (skb_mac_header_was_set(skb)) { 1930 const unsigned char *old_mac = skb_mac_header(skb); 1931 1932 skb_set_mac_header(skb, -skb->mac_len); 1933 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1934 } 1935} 1936 1937static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1938{ 1939 return skb->csum_start - skb_headroom(skb); 1940} 1941 1942static inline int skb_transport_offset(const struct sk_buff *skb) 1943{ 1944 return skb_transport_header(skb) - skb->data; 1945} 1946 1947static inline u32 skb_network_header_len(const struct sk_buff *skb) 1948{ 1949 return skb->transport_header - skb->network_header; 1950} 1951 1952static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1953{ 1954 return skb->inner_transport_header - skb->inner_network_header; 1955} 1956 1957static inline int skb_network_offset(const struct sk_buff *skb) 1958{ 1959 return skb_network_header(skb) - skb->data; 1960} 1961 1962static inline int skb_inner_network_offset(const struct sk_buff *skb) 1963{ 1964 return skb_inner_network_header(skb) - skb->data; 1965} 1966 1967static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1968{ 1969 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1970} 1971 1972/* 1973 * CPUs often take a performance hit when accessing unaligned memory 1974 * locations. The actual performance hit varies, it can be small if the 1975 * hardware handles it or large if we have to take an exception and fix it 1976 * in software. 1977 * 1978 * Since an ethernet header is 14 bytes network drivers often end up with 1979 * the IP header at an unaligned offset. The IP header can be aligned by 1980 * shifting the start of the packet by 2 bytes. Drivers should do this 1981 * with: 1982 * 1983 * skb_reserve(skb, NET_IP_ALIGN); 1984 * 1985 * The downside to this alignment of the IP header is that the DMA is now 1986 * unaligned. On some architectures the cost of an unaligned DMA is high 1987 * and this cost outweighs the gains made by aligning the IP header. 1988 * 1989 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1990 * to be overridden. 1991 */ 1992#ifndef NET_IP_ALIGN 1993#define NET_IP_ALIGN 2 1994#endif 1995 1996/* 1997 * The networking layer reserves some headroom in skb data (via 1998 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1999 * the header has to grow. In the default case, if the header has to grow 2000 * 32 bytes or less we avoid the reallocation. 2001 * 2002 * Unfortunately this headroom changes the DMA alignment of the resulting 2003 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2004 * on some architectures. An architecture can override this value, 2005 * perhaps setting it to a cacheline in size (since that will maintain 2006 * cacheline alignment of the DMA). It must be a power of 2. 2007 * 2008 * Various parts of the networking layer expect at least 32 bytes of 2009 * headroom, you should not reduce this. 2010 * 2011 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2012 * to reduce average number of cache lines per packet. 2013 * get_rps_cpus() for example only access one 64 bytes aligned block : 2014 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2015 */ 2016#ifndef NET_SKB_PAD 2017#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2018#endif 2019 2020int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2021 2022static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2023{ 2024 if (unlikely(skb_is_nonlinear(skb))) { 2025 WARN_ON(1); 2026 return; 2027 } 2028 skb->len = len; 2029 skb_set_tail_pointer(skb, len); 2030} 2031 2032void skb_trim(struct sk_buff *skb, unsigned int len); 2033 2034static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2035{ 2036 if (skb->data_len) 2037 return ___pskb_trim(skb, len); 2038 __skb_trim(skb, len); 2039 return 0; 2040} 2041 2042static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2043{ 2044 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2045} 2046 2047/** 2048 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2049 * @skb: buffer to alter 2050 * @len: new length 2051 * 2052 * This is identical to pskb_trim except that the caller knows that 2053 * the skb is not cloned so we should never get an error due to out- 2054 * of-memory. 2055 */ 2056static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2057{ 2058 int err = pskb_trim(skb, len); 2059 BUG_ON(err); 2060} 2061 2062/** 2063 * skb_orphan - orphan a buffer 2064 * @skb: buffer to orphan 2065 * 2066 * If a buffer currently has an owner then we call the owner's 2067 * destructor function and make the @skb unowned. The buffer continues 2068 * to exist but is no longer charged to its former owner. 2069 */ 2070static inline void skb_orphan(struct sk_buff *skb) 2071{ 2072 if (skb->destructor) { 2073 skb->destructor(skb); 2074 skb->destructor = NULL; 2075 skb->sk = NULL; 2076 } else { 2077 BUG_ON(skb->sk); 2078 } 2079} 2080 2081/** 2082 * skb_orphan_frags - orphan the frags contained in a buffer 2083 * @skb: buffer to orphan frags from 2084 * @gfp_mask: allocation mask for replacement pages 2085 * 2086 * For each frag in the SKB which needs a destructor (i.e. has an 2087 * owner) create a copy of that frag and release the original 2088 * page by calling the destructor. 2089 */ 2090static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2091{ 2092 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 2093 return 0; 2094 return skb_copy_ubufs(skb, gfp_mask); 2095} 2096 2097/** 2098 * __skb_queue_purge - empty a list 2099 * @list: list to empty 2100 * 2101 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2102 * the list and one reference dropped. This function does not take the 2103 * list lock and the caller must hold the relevant locks to use it. 2104 */ 2105void skb_queue_purge(struct sk_buff_head *list); 2106static inline void __skb_queue_purge(struct sk_buff_head *list) 2107{ 2108 struct sk_buff *skb; 2109 while ((skb = __skb_dequeue(list)) != NULL) 2110 kfree_skb(skb); 2111} 2112 2113#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2114#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2115#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2116 2117void *netdev_alloc_frag(unsigned int fragsz); 2118 2119struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2120 gfp_t gfp_mask); 2121 2122/** 2123 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2124 * @dev: network device to receive on 2125 * @length: length to allocate 2126 * 2127 * Allocate a new &sk_buff and assign it a usage count of one. The 2128 * buffer has unspecified headroom built in. Users should allocate 2129 * the headroom they think they need without accounting for the 2130 * built in space. The built in space is used for optimisations. 2131 * 2132 * %NULL is returned if there is no free memory. Although this function 2133 * allocates memory it can be called from an interrupt. 2134 */ 2135static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2136 unsigned int length) 2137{ 2138 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2139} 2140 2141/* legacy helper around __netdev_alloc_skb() */ 2142static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2143 gfp_t gfp_mask) 2144{ 2145 return __netdev_alloc_skb(NULL, length, gfp_mask); 2146} 2147 2148/* legacy helper around netdev_alloc_skb() */ 2149static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2150{ 2151 return netdev_alloc_skb(NULL, length); 2152} 2153 2154 2155static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2156 unsigned int length, gfp_t gfp) 2157{ 2158 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2159 2160 if (NET_IP_ALIGN && skb) 2161 skb_reserve(skb, NET_IP_ALIGN); 2162 return skb; 2163} 2164 2165static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2166 unsigned int length) 2167{ 2168 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2169} 2170 2171/** 2172 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2173 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2174 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2175 * @order: size of the allocation 2176 * 2177 * Allocate a new page. 2178 * 2179 * %NULL is returned if there is no free memory. 2180*/ 2181static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2182 struct sk_buff *skb, 2183 unsigned int order) 2184{ 2185 struct page *page; 2186 2187 gfp_mask |= __GFP_COLD; 2188 2189 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2190 gfp_mask |= __GFP_MEMALLOC; 2191 2192 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2193 if (skb && page && page->pfmemalloc) 2194 skb->pfmemalloc = true; 2195 2196 return page; 2197} 2198 2199/** 2200 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2201 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2202 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2203 * 2204 * Allocate a new page. 2205 * 2206 * %NULL is returned if there is no free memory. 2207 */ 2208static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2209 struct sk_buff *skb) 2210{ 2211 return __skb_alloc_pages(gfp_mask, skb, 0); 2212} 2213 2214/** 2215 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2216 * @page: The page that was allocated from skb_alloc_page 2217 * @skb: The skb that may need pfmemalloc set 2218 */ 2219static inline void skb_propagate_pfmemalloc(struct page *page, 2220 struct sk_buff *skb) 2221{ 2222 if (page && page->pfmemalloc) 2223 skb->pfmemalloc = true; 2224} 2225 2226/** 2227 * skb_frag_page - retrieve the page referred to by a paged fragment 2228 * @frag: the paged fragment 2229 * 2230 * Returns the &struct page associated with @frag. 2231 */ 2232static inline struct page *skb_frag_page(const skb_frag_t *frag) 2233{ 2234 return frag->page.p; 2235} 2236 2237/** 2238 * __skb_frag_ref - take an addition reference on a paged fragment. 2239 * @frag: the paged fragment 2240 * 2241 * Takes an additional reference on the paged fragment @frag. 2242 */ 2243static inline void __skb_frag_ref(skb_frag_t *frag) 2244{ 2245 get_page(skb_frag_page(frag)); 2246} 2247 2248/** 2249 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2250 * @skb: the buffer 2251 * @f: the fragment offset. 2252 * 2253 * Takes an additional reference on the @f'th paged fragment of @skb. 2254 */ 2255static inline void skb_frag_ref(struct sk_buff *skb, int f) 2256{ 2257 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2258} 2259 2260/** 2261 * __skb_frag_unref - release a reference on a paged fragment. 2262 * @frag: the paged fragment 2263 * 2264 * Releases a reference on the paged fragment @frag. 2265 */ 2266static inline void __skb_frag_unref(skb_frag_t *frag) 2267{ 2268 put_page(skb_frag_page(frag)); 2269} 2270 2271/** 2272 * skb_frag_unref - release a reference on a paged fragment of an skb. 2273 * @skb: the buffer 2274 * @f: the fragment offset 2275 * 2276 * Releases a reference on the @f'th paged fragment of @skb. 2277 */ 2278static inline void skb_frag_unref(struct sk_buff *skb, int f) 2279{ 2280 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2281} 2282 2283/** 2284 * skb_frag_address - gets the address of the data contained in a paged fragment 2285 * @frag: the paged fragment buffer 2286 * 2287 * Returns the address of the data within @frag. The page must already 2288 * be mapped. 2289 */ 2290static inline void *skb_frag_address(const skb_frag_t *frag) 2291{ 2292 return page_address(skb_frag_page(frag)) + frag->page_offset; 2293} 2294 2295/** 2296 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2297 * @frag: the paged fragment buffer 2298 * 2299 * Returns the address of the data within @frag. Checks that the page 2300 * is mapped and returns %NULL otherwise. 2301 */ 2302static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2303{ 2304 void *ptr = page_address(skb_frag_page(frag)); 2305 if (unlikely(!ptr)) 2306 return NULL; 2307 2308 return ptr + frag->page_offset; 2309} 2310 2311/** 2312 * __skb_frag_set_page - sets the page contained in a paged fragment 2313 * @frag: the paged fragment 2314 * @page: the page to set 2315 * 2316 * Sets the fragment @frag to contain @page. 2317 */ 2318static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2319{ 2320 frag->page.p = page; 2321} 2322 2323/** 2324 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2325 * @skb: the buffer 2326 * @f: the fragment offset 2327 * @page: the page to set 2328 * 2329 * Sets the @f'th fragment of @skb to contain @page. 2330 */ 2331static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2332 struct page *page) 2333{ 2334 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2335} 2336 2337bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2338 2339/** 2340 * skb_frag_dma_map - maps a paged fragment via the DMA API 2341 * @dev: the device to map the fragment to 2342 * @frag: the paged fragment to map 2343 * @offset: the offset within the fragment (starting at the 2344 * fragment's own offset) 2345 * @size: the number of bytes to map 2346 * @dir: the direction of the mapping (%PCI_DMA_*) 2347 * 2348 * Maps the page associated with @frag to @device. 2349 */ 2350static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2351 const skb_frag_t *frag, 2352 size_t offset, size_t size, 2353 enum dma_data_direction dir) 2354{ 2355 return dma_map_page(dev, skb_frag_page(frag), 2356 frag->page_offset + offset, size, dir); 2357} 2358 2359static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2360 gfp_t gfp_mask) 2361{ 2362 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2363} 2364 2365 2366static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2367 gfp_t gfp_mask) 2368{ 2369 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2370} 2371 2372 2373/** 2374 * skb_clone_writable - is the header of a clone writable 2375 * @skb: buffer to check 2376 * @len: length up to which to write 2377 * 2378 * Returns true if modifying the header part of the cloned buffer 2379 * does not requires the data to be copied. 2380 */ 2381static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2382{ 2383 return !skb_header_cloned(skb) && 2384 skb_headroom(skb) + len <= skb->hdr_len; 2385} 2386 2387static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2388 int cloned) 2389{ 2390 int delta = 0; 2391 2392 if (headroom > skb_headroom(skb)) 2393 delta = headroom - skb_headroom(skb); 2394 2395 if (delta || cloned) 2396 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2397 GFP_ATOMIC); 2398 return 0; 2399} 2400 2401/** 2402 * skb_cow - copy header of skb when it is required 2403 * @skb: buffer to cow 2404 * @headroom: needed headroom 2405 * 2406 * If the skb passed lacks sufficient headroom or its data part 2407 * is shared, data is reallocated. If reallocation fails, an error 2408 * is returned and original skb is not changed. 2409 * 2410 * The result is skb with writable area skb->head...skb->tail 2411 * and at least @headroom of space at head. 2412 */ 2413static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2414{ 2415 return __skb_cow(skb, headroom, skb_cloned(skb)); 2416} 2417 2418/** 2419 * skb_cow_head - skb_cow but only making the head writable 2420 * @skb: buffer to cow 2421 * @headroom: needed headroom 2422 * 2423 * This function is identical to skb_cow except that we replace the 2424 * skb_cloned check by skb_header_cloned. It should be used when 2425 * you only need to push on some header and do not need to modify 2426 * the data. 2427 */ 2428static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2429{ 2430 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2431} 2432 2433/** 2434 * skb_padto - pad an skbuff up to a minimal size 2435 * @skb: buffer to pad 2436 * @len: minimal length 2437 * 2438 * Pads up a buffer to ensure the trailing bytes exist and are 2439 * blanked. If the buffer already contains sufficient data it 2440 * is untouched. Otherwise it is extended. Returns zero on 2441 * success. The skb is freed on error. 2442 */ 2443 2444static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2445{ 2446 unsigned int size = skb->len; 2447 if (likely(size >= len)) 2448 return 0; 2449 return skb_pad(skb, len - size); 2450} 2451 2452static inline int skb_add_data(struct sk_buff *skb, 2453 char __user *from, int copy) 2454{ 2455 const int off = skb->len; 2456 2457 if (skb->ip_summed == CHECKSUM_NONE) { 2458 int err = 0; 2459 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2460 copy, 0, &err); 2461 if (!err) { 2462 skb->csum = csum_block_add(skb->csum, csum, off); 2463 return 0; 2464 } 2465 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2466 return 0; 2467 2468 __skb_trim(skb, off); 2469 return -EFAULT; 2470} 2471 2472static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2473 const struct page *page, int off) 2474{ 2475 if (i) { 2476 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2477 2478 return page == skb_frag_page(frag) && 2479 off == frag->page_offset + skb_frag_size(frag); 2480 } 2481 return false; 2482} 2483 2484static inline int __skb_linearize(struct sk_buff *skb) 2485{ 2486 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2487} 2488 2489/** 2490 * skb_linearize - convert paged skb to linear one 2491 * @skb: buffer to linarize 2492 * 2493 * If there is no free memory -ENOMEM is returned, otherwise zero 2494 * is returned and the old skb data released. 2495 */ 2496static inline int skb_linearize(struct sk_buff *skb) 2497{ 2498 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2499} 2500 2501/** 2502 * skb_has_shared_frag - can any frag be overwritten 2503 * @skb: buffer to test 2504 * 2505 * Return true if the skb has at least one frag that might be modified 2506 * by an external entity (as in vmsplice()/sendfile()) 2507 */ 2508static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2509{ 2510 return skb_is_nonlinear(skb) && 2511 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2512} 2513 2514/** 2515 * skb_linearize_cow - make sure skb is linear and writable 2516 * @skb: buffer to process 2517 * 2518 * If there is no free memory -ENOMEM is returned, otherwise zero 2519 * is returned and the old skb data released. 2520 */ 2521static inline int skb_linearize_cow(struct sk_buff *skb) 2522{ 2523 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2524 __skb_linearize(skb) : 0; 2525} 2526 2527/** 2528 * skb_postpull_rcsum - update checksum for received skb after pull 2529 * @skb: buffer to update 2530 * @start: start of data before pull 2531 * @len: length of data pulled 2532 * 2533 * After doing a pull on a received packet, you need to call this to 2534 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2535 * CHECKSUM_NONE so that it can be recomputed from scratch. 2536 */ 2537 2538static inline void skb_postpull_rcsum(struct sk_buff *skb, 2539 const void *start, unsigned int len) 2540{ 2541 if (skb->ip_summed == CHECKSUM_COMPLETE) 2542 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2543} 2544 2545unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2546 2547/** 2548 * pskb_trim_rcsum - trim received skb and update checksum 2549 * @skb: buffer to trim 2550 * @len: new length 2551 * 2552 * This is exactly the same as pskb_trim except that it ensures the 2553 * checksum of received packets are still valid after the operation. 2554 */ 2555 2556static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2557{ 2558 if (likely(len >= skb->len)) 2559 return 0; 2560 if (skb->ip_summed == CHECKSUM_COMPLETE) 2561 skb->ip_summed = CHECKSUM_NONE; 2562 return __pskb_trim(skb, len); 2563} 2564 2565#define skb_queue_walk(queue, skb) \ 2566 for (skb = (queue)->next; \ 2567 skb != (struct sk_buff *)(queue); \ 2568 skb = skb->next) 2569 2570#define skb_queue_walk_safe(queue, skb, tmp) \ 2571 for (skb = (queue)->next, tmp = skb->next; \ 2572 skb != (struct sk_buff *)(queue); \ 2573 skb = tmp, tmp = skb->next) 2574 2575#define skb_queue_walk_from(queue, skb) \ 2576 for (; skb != (struct sk_buff *)(queue); \ 2577 skb = skb->next) 2578 2579#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2580 for (tmp = skb->next; \ 2581 skb != (struct sk_buff *)(queue); \ 2582 skb = tmp, tmp = skb->next) 2583 2584#define skb_queue_reverse_walk(queue, skb) \ 2585 for (skb = (queue)->prev; \ 2586 skb != (struct sk_buff *)(queue); \ 2587 skb = skb->prev) 2588 2589#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2590 for (skb = (queue)->prev, tmp = skb->prev; \ 2591 skb != (struct sk_buff *)(queue); \ 2592 skb = tmp, tmp = skb->prev) 2593 2594#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2595 for (tmp = skb->prev; \ 2596 skb != (struct sk_buff *)(queue); \ 2597 skb = tmp, tmp = skb->prev) 2598 2599static inline bool skb_has_frag_list(const struct sk_buff *skb) 2600{ 2601 return skb_shinfo(skb)->frag_list != NULL; 2602} 2603 2604static inline void skb_frag_list_init(struct sk_buff *skb) 2605{ 2606 skb_shinfo(skb)->frag_list = NULL; 2607} 2608 2609static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2610{ 2611 frag->next = skb_shinfo(skb)->frag_list; 2612 skb_shinfo(skb)->frag_list = frag; 2613} 2614 2615#define skb_walk_frags(skb, iter) \ 2616 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2617 2618struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2619 int *peeked, int *off, int *err); 2620struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2621 int *err); 2622unsigned int datagram_poll(struct file *file, struct socket *sock, 2623 struct poll_table_struct *wait); 2624int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2625 struct iovec *to, int size); 2626int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2627 struct iovec *iov); 2628int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2629 const struct iovec *from, int from_offset, 2630 int len); 2631int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2632 int offset, size_t count); 2633int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2634 const struct iovec *to, int to_offset, 2635 int size); 2636void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2637void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2638int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2639int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2640int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2641__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2642 int len, __wsum csum); 2643int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2644 struct pipe_inode_info *pipe, unsigned int len, 2645 unsigned int flags); 2646void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2647unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2648int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2649 int len, int hlen); 2650void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2651int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2652void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2653unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2654struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2655struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2656 2657struct skb_checksum_ops { 2658 __wsum (*update)(const void *mem, int len, __wsum wsum); 2659 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2660}; 2661 2662__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2663 __wsum csum, const struct skb_checksum_ops *ops); 2664__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2665 __wsum csum); 2666 2667static inline void *__skb_header_pointer(const struct sk_buff *skb, int offset, 2668 int len, void *data, int hlen, void *buffer) 2669{ 2670 if (hlen - offset >= len) 2671 return data + offset; 2672 2673 if (!skb || 2674 skb_copy_bits(skb, offset, buffer, len) < 0) 2675 return NULL; 2676 2677 return buffer; 2678} 2679 2680static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2681 int len, void *buffer) 2682{ 2683 return __skb_header_pointer(skb, offset, len, skb->data, 2684 skb_headlen(skb), buffer); 2685} 2686 2687/** 2688 * skb_needs_linearize - check if we need to linearize a given skb 2689 * depending on the given device features. 2690 * @skb: socket buffer to check 2691 * @features: net device features 2692 * 2693 * Returns true if either: 2694 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2695 * 2. skb is fragmented and the device does not support SG. 2696 */ 2697static inline bool skb_needs_linearize(struct sk_buff *skb, 2698 netdev_features_t features) 2699{ 2700 return skb_is_nonlinear(skb) && 2701 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2702 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2703} 2704 2705static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2706 void *to, 2707 const unsigned int len) 2708{ 2709 memcpy(to, skb->data, len); 2710} 2711 2712static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2713 const int offset, void *to, 2714 const unsigned int len) 2715{ 2716 memcpy(to, skb->data + offset, len); 2717} 2718 2719static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2720 const void *from, 2721 const unsigned int len) 2722{ 2723 memcpy(skb->data, from, len); 2724} 2725 2726static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2727 const int offset, 2728 const void *from, 2729 const unsigned int len) 2730{ 2731 memcpy(skb->data + offset, from, len); 2732} 2733 2734void skb_init(void); 2735 2736static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2737{ 2738 return skb->tstamp; 2739} 2740 2741/** 2742 * skb_get_timestamp - get timestamp from a skb 2743 * @skb: skb to get stamp from 2744 * @stamp: pointer to struct timeval to store stamp in 2745 * 2746 * Timestamps are stored in the skb as offsets to a base timestamp. 2747 * This function converts the offset back to a struct timeval and stores 2748 * it in stamp. 2749 */ 2750static inline void skb_get_timestamp(const struct sk_buff *skb, 2751 struct timeval *stamp) 2752{ 2753 *stamp = ktime_to_timeval(skb->tstamp); 2754} 2755 2756static inline void skb_get_timestampns(const struct sk_buff *skb, 2757 struct timespec *stamp) 2758{ 2759 *stamp = ktime_to_timespec(skb->tstamp); 2760} 2761 2762static inline void __net_timestamp(struct sk_buff *skb) 2763{ 2764 skb->tstamp = ktime_get_real(); 2765} 2766 2767static inline ktime_t net_timedelta(ktime_t t) 2768{ 2769 return ktime_sub(ktime_get_real(), t); 2770} 2771 2772static inline ktime_t net_invalid_timestamp(void) 2773{ 2774 return ktime_set(0, 0); 2775} 2776 2777struct sk_buff *skb_clone_sk(struct sk_buff *skb); 2778 2779#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2780 2781void skb_clone_tx_timestamp(struct sk_buff *skb); 2782bool skb_defer_rx_timestamp(struct sk_buff *skb); 2783 2784#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2785 2786static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2787{ 2788} 2789 2790static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2791{ 2792 return false; 2793} 2794 2795#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2796 2797/** 2798 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2799 * 2800 * PHY drivers may accept clones of transmitted packets for 2801 * timestamping via their phy_driver.txtstamp method. These drivers 2802 * must call this function to return the skb back to the stack, with 2803 * or without a timestamp. 2804 * 2805 * @skb: clone of the the original outgoing packet 2806 * @hwtstamps: hardware time stamps, may be NULL if not available 2807 * 2808 */ 2809void skb_complete_tx_timestamp(struct sk_buff *skb, 2810 struct skb_shared_hwtstamps *hwtstamps); 2811 2812void __skb_tstamp_tx(struct sk_buff *orig_skb, 2813 struct skb_shared_hwtstamps *hwtstamps, 2814 struct sock *sk, int tstype); 2815 2816/** 2817 * skb_tstamp_tx - queue clone of skb with send time stamps 2818 * @orig_skb: the original outgoing packet 2819 * @hwtstamps: hardware time stamps, may be NULL if not available 2820 * 2821 * If the skb has a socket associated, then this function clones the 2822 * skb (thus sharing the actual data and optional structures), stores 2823 * the optional hardware time stamping information (if non NULL) or 2824 * generates a software time stamp (otherwise), then queues the clone 2825 * to the error queue of the socket. Errors are silently ignored. 2826 */ 2827void skb_tstamp_tx(struct sk_buff *orig_skb, 2828 struct skb_shared_hwtstamps *hwtstamps); 2829 2830static inline void sw_tx_timestamp(struct sk_buff *skb) 2831{ 2832 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2833 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2834 skb_tstamp_tx(skb, NULL); 2835} 2836 2837/** 2838 * skb_tx_timestamp() - Driver hook for transmit timestamping 2839 * 2840 * Ethernet MAC Drivers should call this function in their hard_xmit() 2841 * function immediately before giving the sk_buff to the MAC hardware. 2842 * 2843 * Specifically, one should make absolutely sure that this function is 2844 * called before TX completion of this packet can trigger. Otherwise 2845 * the packet could potentially already be freed. 2846 * 2847 * @skb: A socket buffer. 2848 */ 2849static inline void skb_tx_timestamp(struct sk_buff *skb) 2850{ 2851 skb_clone_tx_timestamp(skb); 2852 sw_tx_timestamp(skb); 2853} 2854 2855/** 2856 * skb_complete_wifi_ack - deliver skb with wifi status 2857 * 2858 * @skb: the original outgoing packet 2859 * @acked: ack status 2860 * 2861 */ 2862void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2863 2864__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2865__sum16 __skb_checksum_complete(struct sk_buff *skb); 2866 2867static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2868{ 2869 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid); 2870} 2871 2872/** 2873 * skb_checksum_complete - Calculate checksum of an entire packet 2874 * @skb: packet to process 2875 * 2876 * This function calculates the checksum over the entire packet plus 2877 * the value of skb->csum. The latter can be used to supply the 2878 * checksum of a pseudo header as used by TCP/UDP. It returns the 2879 * checksum. 2880 * 2881 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2882 * this function can be used to verify that checksum on received 2883 * packets. In that case the function should return zero if the 2884 * checksum is correct. In particular, this function will return zero 2885 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2886 * hardware has already verified the correctness of the checksum. 2887 */ 2888static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2889{ 2890 return skb_csum_unnecessary(skb) ? 2891 0 : __skb_checksum_complete(skb); 2892} 2893 2894static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 2895{ 2896 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2897 if (skb->csum_level == 0) 2898 skb->ip_summed = CHECKSUM_NONE; 2899 else 2900 skb->csum_level--; 2901 } 2902} 2903 2904static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 2905{ 2906 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 2907 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 2908 skb->csum_level++; 2909 } else if (skb->ip_summed == CHECKSUM_NONE) { 2910 skb->ip_summed = CHECKSUM_UNNECESSARY; 2911 skb->csum_level = 0; 2912 } 2913} 2914 2915static inline void __skb_mark_checksum_bad(struct sk_buff *skb) 2916{ 2917 /* Mark current checksum as bad (typically called from GRO 2918 * path). In the case that ip_summed is CHECKSUM_NONE 2919 * this must be the first checksum encountered in the packet. 2920 * When ip_summed is CHECKSUM_UNNECESSARY, this is the first 2921 * checksum after the last one validated. For UDP, a zero 2922 * checksum can not be marked as bad. 2923 */ 2924 2925 if (skb->ip_summed == CHECKSUM_NONE || 2926 skb->ip_summed == CHECKSUM_UNNECESSARY) 2927 skb->csum_bad = 1; 2928} 2929 2930/* Check if we need to perform checksum complete validation. 2931 * 2932 * Returns true if checksum complete is needed, false otherwise 2933 * (either checksum is unnecessary or zero checksum is allowed). 2934 */ 2935static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2936 bool zero_okay, 2937 __sum16 check) 2938{ 2939 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2940 skb->csum_valid = 1; 2941 __skb_decr_checksum_unnecessary(skb); 2942 return false; 2943 } 2944 2945 return true; 2946} 2947 2948/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 2949 * in checksum_init. 2950 */ 2951#define CHECKSUM_BREAK 76 2952 2953/* Validate (init) checksum based on checksum complete. 2954 * 2955 * Return values: 2956 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 2957 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 2958 * checksum is stored in skb->csum for use in __skb_checksum_complete 2959 * non-zero: value of invalid checksum 2960 * 2961 */ 2962static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 2963 bool complete, 2964 __wsum psum) 2965{ 2966 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2967 if (!csum_fold(csum_add(psum, skb->csum))) { 2968 skb->csum_valid = 1; 2969 return 0; 2970 } 2971 } else if (skb->csum_bad) { 2972 /* ip_summed == CHECKSUM_NONE in this case */ 2973 return 1; 2974 } 2975 2976 skb->csum = psum; 2977 2978 if (complete || skb->len <= CHECKSUM_BREAK) { 2979 __sum16 csum; 2980 2981 csum = __skb_checksum_complete(skb); 2982 skb->csum_valid = !csum; 2983 return csum; 2984 } 2985 2986 return 0; 2987} 2988 2989static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 2990{ 2991 return 0; 2992} 2993 2994/* Perform checksum validate (init). Note that this is a macro since we only 2995 * want to calculate the pseudo header which is an input function if necessary. 2996 * First we try to validate without any computation (checksum unnecessary) and 2997 * then calculate based on checksum complete calling the function to compute 2998 * pseudo header. 2999 * 3000 * Return values: 3001 * 0: checksum is validated or try to in skb_checksum_complete 3002 * non-zero: value of invalid checksum 3003 */ 3004#define __skb_checksum_validate(skb, proto, complete, \ 3005 zero_okay, check, compute_pseudo) \ 3006({ \ 3007 __sum16 __ret = 0; \ 3008 skb->csum_valid = 0; \ 3009 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 3010 __ret = __skb_checksum_validate_complete(skb, \ 3011 complete, compute_pseudo(skb, proto)); \ 3012 __ret; \ 3013}) 3014 3015#define skb_checksum_init(skb, proto, compute_pseudo) \ 3016 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 3017 3018#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 3019 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 3020 3021#define skb_checksum_validate(skb, proto, compute_pseudo) \ 3022 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 3023 3024#define skb_checksum_validate_zero_check(skb, proto, check, \ 3025 compute_pseudo) \ 3026 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo) 3027 3028#define skb_checksum_simple_validate(skb) \ 3029 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 3030 3031static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 3032{ 3033 return (skb->ip_summed == CHECKSUM_NONE && 3034 skb->csum_valid && !skb->csum_bad); 3035} 3036 3037static inline void __skb_checksum_convert(struct sk_buff *skb, 3038 __sum16 check, __wsum pseudo) 3039{ 3040 skb->csum = ~pseudo; 3041 skb->ip_summed = CHECKSUM_COMPLETE; 3042} 3043 3044#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \ 3045do { \ 3046 if (__skb_checksum_convert_check(skb)) \ 3047 __skb_checksum_convert(skb, check, \ 3048 compute_pseudo(skb, proto)); \ 3049} while (0) 3050 3051#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3052void nf_conntrack_destroy(struct nf_conntrack *nfct); 3053static inline void nf_conntrack_put(struct nf_conntrack *nfct) 3054{ 3055 if (nfct && atomic_dec_and_test(&nfct->use)) 3056 nf_conntrack_destroy(nfct); 3057} 3058static inline void nf_conntrack_get(struct nf_conntrack *nfct) 3059{ 3060 if (nfct) 3061 atomic_inc(&nfct->use); 3062} 3063#endif 3064#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3065static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 3066{ 3067 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 3068 kfree(nf_bridge); 3069} 3070static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 3071{ 3072 if (nf_bridge) 3073 atomic_inc(&nf_bridge->use); 3074} 3075#endif /* CONFIG_BRIDGE_NETFILTER */ 3076static inline void nf_reset(struct sk_buff *skb) 3077{ 3078#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3079 nf_conntrack_put(skb->nfct); 3080 skb->nfct = NULL; 3081#endif 3082#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3083 nf_bridge_put(skb->nf_bridge); 3084 skb->nf_bridge = NULL; 3085#endif 3086} 3087 3088static inline void nf_reset_trace(struct sk_buff *skb) 3089{ 3090#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3091 skb->nf_trace = 0; 3092#endif 3093} 3094 3095/* Note: This doesn't put any conntrack and bridge info in dst. */ 3096static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 3097 bool copy) 3098{ 3099#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3100 dst->nfct = src->nfct; 3101 nf_conntrack_get(src->nfct); 3102 if (copy) 3103 dst->nfctinfo = src->nfctinfo; 3104#endif 3105#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3106 dst->nf_bridge = src->nf_bridge; 3107 nf_bridge_get(src->nf_bridge); 3108#endif 3109#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 3110 if (copy) 3111 dst->nf_trace = src->nf_trace; 3112#endif 3113} 3114 3115static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 3116{ 3117#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 3118 nf_conntrack_put(dst->nfct); 3119#endif 3120#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 3121 nf_bridge_put(dst->nf_bridge); 3122#endif 3123 __nf_copy(dst, src, true); 3124} 3125 3126#ifdef CONFIG_NETWORK_SECMARK 3127static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3128{ 3129 to->secmark = from->secmark; 3130} 3131 3132static inline void skb_init_secmark(struct sk_buff *skb) 3133{ 3134 skb->secmark = 0; 3135} 3136#else 3137static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 3138{ } 3139 3140static inline void skb_init_secmark(struct sk_buff *skb) 3141{ } 3142#endif 3143 3144static inline bool skb_irq_freeable(const struct sk_buff *skb) 3145{ 3146 return !skb->destructor && 3147#if IS_ENABLED(CONFIG_XFRM) 3148 !skb->sp && 3149#endif 3150#if IS_ENABLED(CONFIG_NF_CONNTRACK) 3151 !skb->nfct && 3152#endif 3153 !skb->_skb_refdst && 3154 !skb_has_frag_list(skb); 3155} 3156 3157static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 3158{ 3159 skb->queue_mapping = queue_mapping; 3160} 3161 3162static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 3163{ 3164 return skb->queue_mapping; 3165} 3166 3167static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3168{ 3169 to->queue_mapping = from->queue_mapping; 3170} 3171 3172static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3173{ 3174 skb->queue_mapping = rx_queue + 1; 3175} 3176 3177static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3178{ 3179 return skb->queue_mapping - 1; 3180} 3181 3182static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3183{ 3184 return skb->queue_mapping != 0; 3185} 3186 3187u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3188 unsigned int num_tx_queues); 3189 3190static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3191{ 3192#ifdef CONFIG_XFRM 3193 return skb->sp; 3194#else 3195 return NULL; 3196#endif 3197} 3198 3199/* Keeps track of mac header offset relative to skb->head. 3200 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3201 * For non-tunnel skb it points to skb_mac_header() and for 3202 * tunnel skb it points to outer mac header. 3203 * Keeps track of level of encapsulation of network headers. 3204 */ 3205struct skb_gso_cb { 3206 int mac_offset; 3207 int encap_level; 3208 __u16 csum_start; 3209}; 3210#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3211 3212static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3213{ 3214 return (skb_mac_header(inner_skb) - inner_skb->head) - 3215 SKB_GSO_CB(inner_skb)->mac_offset; 3216} 3217 3218static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3219{ 3220 int new_headroom, headroom; 3221 int ret; 3222 3223 headroom = skb_headroom(skb); 3224 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3225 if (ret) 3226 return ret; 3227 3228 new_headroom = skb_headroom(skb); 3229 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3230 return 0; 3231} 3232 3233/* Compute the checksum for a gso segment. First compute the checksum value 3234 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3235 * then add in skb->csum (checksum from csum_start to end of packet). 3236 * skb->csum and csum_start are then updated to reflect the checksum of the 3237 * resultant packet starting from the transport header-- the resultant checksum 3238 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3239 * header. 3240 */ 3241static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3242{ 3243 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3244 skb_transport_offset(skb); 3245 __u16 csum; 3246 3247 csum = csum_fold(csum_partial(skb_transport_header(skb), 3248 plen, skb->csum)); 3249 skb->csum = res; 3250 SKB_GSO_CB(skb)->csum_start -= plen; 3251 3252 return csum; 3253} 3254 3255static inline bool skb_is_gso(const struct sk_buff *skb) 3256{ 3257 return skb_shinfo(skb)->gso_size; 3258} 3259 3260/* Note: Should be called only if skb_is_gso(skb) is true */ 3261static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3262{ 3263 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3264} 3265 3266void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3267 3268static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3269{ 3270 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3271 * wanted then gso_type will be set. */ 3272 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3273 3274 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3275 unlikely(shinfo->gso_type == 0)) { 3276 __skb_warn_lro_forwarding(skb); 3277 return true; 3278 } 3279 return false; 3280} 3281 3282static inline void skb_forward_csum(struct sk_buff *skb) 3283{ 3284 /* Unfortunately we don't support this one. Any brave souls? */ 3285 if (skb->ip_summed == CHECKSUM_COMPLETE) 3286 skb->ip_summed = CHECKSUM_NONE; 3287} 3288 3289/** 3290 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3291 * @skb: skb to check 3292 * 3293 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3294 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3295 * use this helper, to document places where we make this assertion. 3296 */ 3297static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3298{ 3299#ifdef DEBUG 3300 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3301#endif 3302} 3303 3304bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3305 3306int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3307 3308u32 skb_get_poff(const struct sk_buff *skb); 3309u32 __skb_get_poff(const struct sk_buff *skb, void *data, 3310 const struct flow_keys *keys, int hlen); 3311 3312/** 3313 * skb_head_is_locked - Determine if the skb->head is locked down 3314 * @skb: skb to check 3315 * 3316 * The head on skbs build around a head frag can be removed if they are 3317 * not cloned. This function returns true if the skb head is locked down 3318 * due to either being allocated via kmalloc, or by being a clone with 3319 * multiple references to the head. 3320 */ 3321static inline bool skb_head_is_locked(const struct sk_buff *skb) 3322{ 3323 return !skb->head_frag || skb_cloned(skb); 3324} 3325 3326/** 3327 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3328 * 3329 * @skb: GSO skb 3330 * 3331 * skb_gso_network_seglen is used to determine the real size of the 3332 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3333 * 3334 * The MAC/L2 header is not accounted for. 3335 */ 3336static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3337{ 3338 unsigned int hdr_len = skb_transport_header(skb) - 3339 skb_network_header(skb); 3340 return hdr_len + skb_gso_transport_seglen(skb); 3341} 3342#endif /* __KERNEL__ */ 3343#endif /* _LINUX_SKBUFF_H */