Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/ext4/ialloc.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * BSD ufs-inspired inode and directory allocation by
10 * Stephen Tweedie (sct@redhat.com), 1993
11 * Big-endian to little-endian byte-swapping/bitmaps by
12 * David S. Miller (davem@caip.rutgers.edu), 1995
13 */
14
15#include <linux/time.h>
16#include <linux/fs.h>
17#include <linux/jbd2.h>
18#include <linux/stat.h>
19#include <linux/string.h>
20#include <linux/quotaops.h>
21#include <linux/buffer_head.h>
22#include <linux/random.h>
23#include <linux/bitops.h>
24#include <linux/blkdev.h>
25#include <asm/byteorder.h>
26
27#include "ext4.h"
28#include "ext4_jbd2.h"
29#include "xattr.h"
30#include "acl.h"
31
32#include <trace/events/ext4.h>
33
34/*
35 * ialloc.c contains the inodes allocation and deallocation routines
36 */
37
38/*
39 * The free inodes are managed by bitmaps. A file system contains several
40 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
41 * block for inodes, N blocks for the inode table and data blocks.
42 *
43 * The file system contains group descriptors which are located after the
44 * super block. Each descriptor contains the number of the bitmap block and
45 * the free blocks count in the block.
46 */
47
48/*
49 * To avoid calling the atomic setbit hundreds or thousands of times, we only
50 * need to use it within a single byte (to ensure we get endianness right).
51 * We can use memset for the rest of the bitmap as there are no other users.
52 */
53void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
54{
55 int i;
56
57 if (start_bit >= end_bit)
58 return;
59
60 ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
61 for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
62 ext4_set_bit(i, bitmap);
63 if (i < end_bit)
64 memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
65}
66
67/* Initializes an uninitialized inode bitmap */
68static unsigned ext4_init_inode_bitmap(struct super_block *sb,
69 struct buffer_head *bh,
70 ext4_group_t block_group,
71 struct ext4_group_desc *gdp)
72{
73 struct ext4_group_info *grp;
74 struct ext4_sb_info *sbi = EXT4_SB(sb);
75 J_ASSERT_BH(bh, buffer_locked(bh));
76
77 /* If checksum is bad mark all blocks and inodes use to prevent
78 * allocation, essentially implementing a per-group read-only flag. */
79 if (!ext4_group_desc_csum_verify(sb, block_group, gdp)) {
80 ext4_error(sb, "Checksum bad for group %u", block_group);
81 grp = ext4_get_group_info(sb, block_group);
82 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
83 percpu_counter_sub(&sbi->s_freeclusters_counter,
84 grp->bb_free);
85 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
86 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
87 int count;
88 count = ext4_free_inodes_count(sb, gdp);
89 percpu_counter_sub(&sbi->s_freeinodes_counter,
90 count);
91 }
92 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
93 return 0;
94 }
95
96 memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
97 ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
98 bh->b_data);
99 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bh,
100 EXT4_INODES_PER_GROUP(sb) / 8);
101 ext4_group_desc_csum_set(sb, block_group, gdp);
102
103 return EXT4_INODES_PER_GROUP(sb);
104}
105
106void ext4_end_bitmap_read(struct buffer_head *bh, int uptodate)
107{
108 if (uptodate) {
109 set_buffer_uptodate(bh);
110 set_bitmap_uptodate(bh);
111 }
112 unlock_buffer(bh);
113 put_bh(bh);
114}
115
116/*
117 * Read the inode allocation bitmap for a given block_group, reading
118 * into the specified slot in the superblock's bitmap cache.
119 *
120 * Return buffer_head of bitmap on success or NULL.
121 */
122static struct buffer_head *
123ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
124{
125 struct ext4_group_desc *desc;
126 struct buffer_head *bh = NULL;
127 ext4_fsblk_t bitmap_blk;
128 struct ext4_group_info *grp;
129 struct ext4_sb_info *sbi = EXT4_SB(sb);
130
131 desc = ext4_get_group_desc(sb, block_group, NULL);
132 if (!desc)
133 return NULL;
134
135 bitmap_blk = ext4_inode_bitmap(sb, desc);
136 bh = sb_getblk(sb, bitmap_blk);
137 if (unlikely(!bh)) {
138 ext4_error(sb, "Cannot read inode bitmap - "
139 "block_group = %u, inode_bitmap = %llu",
140 block_group, bitmap_blk);
141 return NULL;
142 }
143 if (bitmap_uptodate(bh))
144 goto verify;
145
146 lock_buffer(bh);
147 if (bitmap_uptodate(bh)) {
148 unlock_buffer(bh);
149 goto verify;
150 }
151
152 ext4_lock_group(sb, block_group);
153 if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
154 ext4_init_inode_bitmap(sb, bh, block_group, desc);
155 set_bitmap_uptodate(bh);
156 set_buffer_uptodate(bh);
157 set_buffer_verified(bh);
158 ext4_unlock_group(sb, block_group);
159 unlock_buffer(bh);
160 return bh;
161 }
162 ext4_unlock_group(sb, block_group);
163
164 if (buffer_uptodate(bh)) {
165 /*
166 * if not uninit if bh is uptodate,
167 * bitmap is also uptodate
168 */
169 set_bitmap_uptodate(bh);
170 unlock_buffer(bh);
171 goto verify;
172 }
173 /*
174 * submit the buffer_head for reading
175 */
176 trace_ext4_load_inode_bitmap(sb, block_group);
177 bh->b_end_io = ext4_end_bitmap_read;
178 get_bh(bh);
179 submit_bh(READ | REQ_META | REQ_PRIO, bh);
180 wait_on_buffer(bh);
181 if (!buffer_uptodate(bh)) {
182 put_bh(bh);
183 ext4_error(sb, "Cannot read inode bitmap - "
184 "block_group = %u, inode_bitmap = %llu",
185 block_group, bitmap_blk);
186 return NULL;
187 }
188
189verify:
190 ext4_lock_group(sb, block_group);
191 if (!buffer_verified(bh) &&
192 !ext4_inode_bitmap_csum_verify(sb, block_group, desc, bh,
193 EXT4_INODES_PER_GROUP(sb) / 8)) {
194 ext4_unlock_group(sb, block_group);
195 put_bh(bh);
196 ext4_error(sb, "Corrupt inode bitmap - block_group = %u, "
197 "inode_bitmap = %llu", block_group, bitmap_blk);
198 grp = ext4_get_group_info(sb, block_group);
199 if (!EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
200 int count;
201 count = ext4_free_inodes_count(sb, desc);
202 percpu_counter_sub(&sbi->s_freeinodes_counter,
203 count);
204 }
205 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
206 return NULL;
207 }
208 ext4_unlock_group(sb, block_group);
209 set_buffer_verified(bh);
210 return bh;
211}
212
213/*
214 * NOTE! When we get the inode, we're the only people
215 * that have access to it, and as such there are no
216 * race conditions we have to worry about. The inode
217 * is not on the hash-lists, and it cannot be reached
218 * through the filesystem because the directory entry
219 * has been deleted earlier.
220 *
221 * HOWEVER: we must make sure that we get no aliases,
222 * which means that we have to call "clear_inode()"
223 * _before_ we mark the inode not in use in the inode
224 * bitmaps. Otherwise a newly created file might use
225 * the same inode number (not actually the same pointer
226 * though), and then we'd have two inodes sharing the
227 * same inode number and space on the harddisk.
228 */
229void ext4_free_inode(handle_t *handle, struct inode *inode)
230{
231 struct super_block *sb = inode->i_sb;
232 int is_directory;
233 unsigned long ino;
234 struct buffer_head *bitmap_bh = NULL;
235 struct buffer_head *bh2;
236 ext4_group_t block_group;
237 unsigned long bit;
238 struct ext4_group_desc *gdp;
239 struct ext4_super_block *es;
240 struct ext4_sb_info *sbi;
241 int fatal = 0, err, count, cleared;
242 struct ext4_group_info *grp;
243
244 if (!sb) {
245 printk(KERN_ERR "EXT4-fs: %s:%d: inode on "
246 "nonexistent device\n", __func__, __LINE__);
247 return;
248 }
249 if (atomic_read(&inode->i_count) > 1) {
250 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: count=%d",
251 __func__, __LINE__, inode->i_ino,
252 atomic_read(&inode->i_count));
253 return;
254 }
255 if (inode->i_nlink) {
256 ext4_msg(sb, KERN_ERR, "%s:%d: inode #%lu: nlink=%d\n",
257 __func__, __LINE__, inode->i_ino, inode->i_nlink);
258 return;
259 }
260 sbi = EXT4_SB(sb);
261
262 ino = inode->i_ino;
263 ext4_debug("freeing inode %lu\n", ino);
264 trace_ext4_free_inode(inode);
265
266 /*
267 * Note: we must free any quota before locking the superblock,
268 * as writing the quota to disk may need the lock as well.
269 */
270 dquot_initialize(inode);
271 ext4_xattr_delete_inode(handle, inode);
272 dquot_free_inode(inode);
273 dquot_drop(inode);
274
275 is_directory = S_ISDIR(inode->i_mode);
276
277 /* Do this BEFORE marking the inode not in use or returning an error */
278 ext4_clear_inode(inode);
279
280 es = EXT4_SB(sb)->s_es;
281 if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
282 ext4_error(sb, "reserved or nonexistent inode %lu", ino);
283 goto error_return;
284 }
285 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
286 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
287 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
288 /* Don't bother if the inode bitmap is corrupt. */
289 grp = ext4_get_group_info(sb, block_group);
290 if (unlikely(EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) || !bitmap_bh)
291 goto error_return;
292
293 BUFFER_TRACE(bitmap_bh, "get_write_access");
294 fatal = ext4_journal_get_write_access(handle, bitmap_bh);
295 if (fatal)
296 goto error_return;
297
298 fatal = -ESRCH;
299 gdp = ext4_get_group_desc(sb, block_group, &bh2);
300 if (gdp) {
301 BUFFER_TRACE(bh2, "get_write_access");
302 fatal = ext4_journal_get_write_access(handle, bh2);
303 }
304 ext4_lock_group(sb, block_group);
305 cleared = ext4_test_and_clear_bit(bit, bitmap_bh->b_data);
306 if (fatal || !cleared) {
307 ext4_unlock_group(sb, block_group);
308 goto out;
309 }
310
311 count = ext4_free_inodes_count(sb, gdp) + 1;
312 ext4_free_inodes_set(sb, gdp, count);
313 if (is_directory) {
314 count = ext4_used_dirs_count(sb, gdp) - 1;
315 ext4_used_dirs_set(sb, gdp, count);
316 percpu_counter_dec(&sbi->s_dirs_counter);
317 }
318 ext4_inode_bitmap_csum_set(sb, block_group, gdp, bitmap_bh,
319 EXT4_INODES_PER_GROUP(sb) / 8);
320 ext4_group_desc_csum_set(sb, block_group, gdp);
321 ext4_unlock_group(sb, block_group);
322
323 percpu_counter_inc(&sbi->s_freeinodes_counter);
324 if (sbi->s_log_groups_per_flex) {
325 ext4_group_t f = ext4_flex_group(sbi, block_group);
326
327 atomic_inc(&sbi->s_flex_groups[f].free_inodes);
328 if (is_directory)
329 atomic_dec(&sbi->s_flex_groups[f].used_dirs);
330 }
331 BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
332 fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
333out:
334 if (cleared) {
335 BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
336 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
337 if (!fatal)
338 fatal = err;
339 } else {
340 ext4_error(sb, "bit already cleared for inode %lu", ino);
341 if (gdp && !EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
342 int count;
343 count = ext4_free_inodes_count(sb, gdp);
344 percpu_counter_sub(&sbi->s_freeinodes_counter,
345 count);
346 }
347 set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT, &grp->bb_state);
348 }
349
350error_return:
351 brelse(bitmap_bh);
352 ext4_std_error(sb, fatal);
353}
354
355struct orlov_stats {
356 __u64 free_clusters;
357 __u32 free_inodes;
358 __u32 used_dirs;
359};
360
361/*
362 * Helper function for Orlov's allocator; returns critical information
363 * for a particular block group or flex_bg. If flex_size is 1, then g
364 * is a block group number; otherwise it is flex_bg number.
365 */
366static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
367 int flex_size, struct orlov_stats *stats)
368{
369 struct ext4_group_desc *desc;
370 struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
371
372 if (flex_size > 1) {
373 stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
374 stats->free_clusters = atomic64_read(&flex_group[g].free_clusters);
375 stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
376 return;
377 }
378
379 desc = ext4_get_group_desc(sb, g, NULL);
380 if (desc) {
381 stats->free_inodes = ext4_free_inodes_count(sb, desc);
382 stats->free_clusters = ext4_free_group_clusters(sb, desc);
383 stats->used_dirs = ext4_used_dirs_count(sb, desc);
384 } else {
385 stats->free_inodes = 0;
386 stats->free_clusters = 0;
387 stats->used_dirs = 0;
388 }
389}
390
391/*
392 * Orlov's allocator for directories.
393 *
394 * We always try to spread first-level directories.
395 *
396 * If there are blockgroups with both free inodes and free blocks counts
397 * not worse than average we return one with smallest directory count.
398 * Otherwise we simply return a random group.
399 *
400 * For the rest rules look so:
401 *
402 * It's OK to put directory into a group unless
403 * it has too many directories already (max_dirs) or
404 * it has too few free inodes left (min_inodes) or
405 * it has too few free blocks left (min_blocks) or
406 * Parent's group is preferred, if it doesn't satisfy these
407 * conditions we search cyclically through the rest. If none
408 * of the groups look good we just look for a group with more
409 * free inodes than average (starting at parent's group).
410 */
411
412static int find_group_orlov(struct super_block *sb, struct inode *parent,
413 ext4_group_t *group, umode_t mode,
414 const struct qstr *qstr)
415{
416 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
417 struct ext4_sb_info *sbi = EXT4_SB(sb);
418 ext4_group_t real_ngroups = ext4_get_groups_count(sb);
419 int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
420 unsigned int freei, avefreei, grp_free;
421 ext4_fsblk_t freeb, avefreec;
422 unsigned int ndirs;
423 int max_dirs, min_inodes;
424 ext4_grpblk_t min_clusters;
425 ext4_group_t i, grp, g, ngroups;
426 struct ext4_group_desc *desc;
427 struct orlov_stats stats;
428 int flex_size = ext4_flex_bg_size(sbi);
429 struct dx_hash_info hinfo;
430
431 ngroups = real_ngroups;
432 if (flex_size > 1) {
433 ngroups = (real_ngroups + flex_size - 1) >>
434 sbi->s_log_groups_per_flex;
435 parent_group >>= sbi->s_log_groups_per_flex;
436 }
437
438 freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
439 avefreei = freei / ngroups;
440 freeb = EXT4_C2B(sbi,
441 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
442 avefreec = freeb;
443 do_div(avefreec, ngroups);
444 ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
445
446 if (S_ISDIR(mode) &&
447 ((parent == sb->s_root->d_inode) ||
448 (ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
449 int best_ndir = inodes_per_group;
450 int ret = -1;
451
452 if (qstr) {
453 hinfo.hash_version = DX_HASH_HALF_MD4;
454 hinfo.seed = sbi->s_hash_seed;
455 ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
456 grp = hinfo.hash;
457 } else
458 grp = prandom_u32();
459 parent_group = (unsigned)grp % ngroups;
460 for (i = 0; i < ngroups; i++) {
461 g = (parent_group + i) % ngroups;
462 get_orlov_stats(sb, g, flex_size, &stats);
463 if (!stats.free_inodes)
464 continue;
465 if (stats.used_dirs >= best_ndir)
466 continue;
467 if (stats.free_inodes < avefreei)
468 continue;
469 if (stats.free_clusters < avefreec)
470 continue;
471 grp = g;
472 ret = 0;
473 best_ndir = stats.used_dirs;
474 }
475 if (ret)
476 goto fallback;
477 found_flex_bg:
478 if (flex_size == 1) {
479 *group = grp;
480 return 0;
481 }
482
483 /*
484 * We pack inodes at the beginning of the flexgroup's
485 * inode tables. Block allocation decisions will do
486 * something similar, although regular files will
487 * start at 2nd block group of the flexgroup. See
488 * ext4_ext_find_goal() and ext4_find_near().
489 */
490 grp *= flex_size;
491 for (i = 0; i < flex_size; i++) {
492 if (grp+i >= real_ngroups)
493 break;
494 desc = ext4_get_group_desc(sb, grp+i, NULL);
495 if (desc && ext4_free_inodes_count(sb, desc)) {
496 *group = grp+i;
497 return 0;
498 }
499 }
500 goto fallback;
501 }
502
503 max_dirs = ndirs / ngroups + inodes_per_group / 16;
504 min_inodes = avefreei - inodes_per_group*flex_size / 4;
505 if (min_inodes < 1)
506 min_inodes = 1;
507 min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
508
509 /*
510 * Start looking in the flex group where we last allocated an
511 * inode for this parent directory
512 */
513 if (EXT4_I(parent)->i_last_alloc_group != ~0) {
514 parent_group = EXT4_I(parent)->i_last_alloc_group;
515 if (flex_size > 1)
516 parent_group >>= sbi->s_log_groups_per_flex;
517 }
518
519 for (i = 0; i < ngroups; i++) {
520 grp = (parent_group + i) % ngroups;
521 get_orlov_stats(sb, grp, flex_size, &stats);
522 if (stats.used_dirs >= max_dirs)
523 continue;
524 if (stats.free_inodes < min_inodes)
525 continue;
526 if (stats.free_clusters < min_clusters)
527 continue;
528 goto found_flex_bg;
529 }
530
531fallback:
532 ngroups = real_ngroups;
533 avefreei = freei / ngroups;
534fallback_retry:
535 parent_group = EXT4_I(parent)->i_block_group;
536 for (i = 0; i < ngroups; i++) {
537 grp = (parent_group + i) % ngroups;
538 desc = ext4_get_group_desc(sb, grp, NULL);
539 if (desc) {
540 grp_free = ext4_free_inodes_count(sb, desc);
541 if (grp_free && grp_free >= avefreei) {
542 *group = grp;
543 return 0;
544 }
545 }
546 }
547
548 if (avefreei) {
549 /*
550 * The free-inodes counter is approximate, and for really small
551 * filesystems the above test can fail to find any blockgroups
552 */
553 avefreei = 0;
554 goto fallback_retry;
555 }
556
557 return -1;
558}
559
560static int find_group_other(struct super_block *sb, struct inode *parent,
561 ext4_group_t *group, umode_t mode)
562{
563 ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
564 ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
565 struct ext4_group_desc *desc;
566 int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
567
568 /*
569 * Try to place the inode is the same flex group as its
570 * parent. If we can't find space, use the Orlov algorithm to
571 * find another flex group, and store that information in the
572 * parent directory's inode information so that use that flex
573 * group for future allocations.
574 */
575 if (flex_size > 1) {
576 int retry = 0;
577
578 try_again:
579 parent_group &= ~(flex_size-1);
580 last = parent_group + flex_size;
581 if (last > ngroups)
582 last = ngroups;
583 for (i = parent_group; i < last; i++) {
584 desc = ext4_get_group_desc(sb, i, NULL);
585 if (desc && ext4_free_inodes_count(sb, desc)) {
586 *group = i;
587 return 0;
588 }
589 }
590 if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
591 retry = 1;
592 parent_group = EXT4_I(parent)->i_last_alloc_group;
593 goto try_again;
594 }
595 /*
596 * If this didn't work, use the Orlov search algorithm
597 * to find a new flex group; we pass in the mode to
598 * avoid the topdir algorithms.
599 */
600 *group = parent_group + flex_size;
601 if (*group > ngroups)
602 *group = 0;
603 return find_group_orlov(sb, parent, group, mode, NULL);
604 }
605
606 /*
607 * Try to place the inode in its parent directory
608 */
609 *group = parent_group;
610 desc = ext4_get_group_desc(sb, *group, NULL);
611 if (desc && ext4_free_inodes_count(sb, desc) &&
612 ext4_free_group_clusters(sb, desc))
613 return 0;
614
615 /*
616 * We're going to place this inode in a different blockgroup from its
617 * parent. We want to cause files in a common directory to all land in
618 * the same blockgroup. But we want files which are in a different
619 * directory which shares a blockgroup with our parent to land in a
620 * different blockgroup.
621 *
622 * So add our directory's i_ino into the starting point for the hash.
623 */
624 *group = (*group + parent->i_ino) % ngroups;
625
626 /*
627 * Use a quadratic hash to find a group with a free inode and some free
628 * blocks.
629 */
630 for (i = 1; i < ngroups; i <<= 1) {
631 *group += i;
632 if (*group >= ngroups)
633 *group -= ngroups;
634 desc = ext4_get_group_desc(sb, *group, NULL);
635 if (desc && ext4_free_inodes_count(sb, desc) &&
636 ext4_free_group_clusters(sb, desc))
637 return 0;
638 }
639
640 /*
641 * That failed: try linear search for a free inode, even if that group
642 * has no free blocks.
643 */
644 *group = parent_group;
645 for (i = 0; i < ngroups; i++) {
646 if (++*group >= ngroups)
647 *group = 0;
648 desc = ext4_get_group_desc(sb, *group, NULL);
649 if (desc && ext4_free_inodes_count(sb, desc))
650 return 0;
651 }
652
653 return -1;
654}
655
656/*
657 * In no journal mode, if an inode has recently been deleted, we want
658 * to avoid reusing it until we're reasonably sure the inode table
659 * block has been written back to disk. (Yes, these values are
660 * somewhat arbitrary...)
661 */
662#define RECENTCY_MIN 5
663#define RECENTCY_DIRTY 30
664
665static int recently_deleted(struct super_block *sb, ext4_group_t group, int ino)
666{
667 struct ext4_group_desc *gdp;
668 struct ext4_inode *raw_inode;
669 struct buffer_head *bh;
670 unsigned long dtime, now;
671 int inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
672 int offset, ret = 0, recentcy = RECENTCY_MIN;
673
674 gdp = ext4_get_group_desc(sb, group, NULL);
675 if (unlikely(!gdp))
676 return 0;
677
678 bh = sb_getblk(sb, ext4_inode_table(sb, gdp) +
679 (ino / inodes_per_block));
680 if (unlikely(!bh) || !buffer_uptodate(bh))
681 /*
682 * If the block is not in the buffer cache, then it
683 * must have been written out.
684 */
685 goto out;
686
687 offset = (ino % inodes_per_block) * EXT4_INODE_SIZE(sb);
688 raw_inode = (struct ext4_inode *) (bh->b_data + offset);
689 dtime = le32_to_cpu(raw_inode->i_dtime);
690 now = get_seconds();
691 if (buffer_dirty(bh))
692 recentcy += RECENTCY_DIRTY;
693
694 if (dtime && (dtime < now) && (now < dtime + recentcy))
695 ret = 1;
696out:
697 brelse(bh);
698 return ret;
699}
700
701/*
702 * There are two policies for allocating an inode. If the new inode is
703 * a directory, then a forward search is made for a block group with both
704 * free space and a low directory-to-inode ratio; if that fails, then of
705 * the groups with above-average free space, that group with the fewest
706 * directories already is chosen.
707 *
708 * For other inodes, search forward from the parent directory's block
709 * group to find a free inode.
710 */
711struct inode *__ext4_new_inode(handle_t *handle, struct inode *dir,
712 umode_t mode, const struct qstr *qstr,
713 __u32 goal, uid_t *owner, int handle_type,
714 unsigned int line_no, int nblocks)
715{
716 struct super_block *sb;
717 struct buffer_head *inode_bitmap_bh = NULL;
718 struct buffer_head *group_desc_bh;
719 ext4_group_t ngroups, group = 0;
720 unsigned long ino = 0;
721 struct inode *inode;
722 struct ext4_group_desc *gdp = NULL;
723 struct ext4_inode_info *ei;
724 struct ext4_sb_info *sbi;
725 int ret2, err = 0;
726 struct inode *ret;
727 ext4_group_t i;
728 ext4_group_t flex_group;
729 struct ext4_group_info *grp;
730
731 /* Cannot create files in a deleted directory */
732 if (!dir || !dir->i_nlink)
733 return ERR_PTR(-EPERM);
734
735 sb = dir->i_sb;
736 ngroups = ext4_get_groups_count(sb);
737 trace_ext4_request_inode(dir, mode);
738 inode = new_inode(sb);
739 if (!inode)
740 return ERR_PTR(-ENOMEM);
741 ei = EXT4_I(inode);
742 sbi = EXT4_SB(sb);
743
744 /*
745 * Initalize owners and quota early so that we don't have to account
746 * for quota initialization worst case in standard inode creating
747 * transaction
748 */
749 if (owner) {
750 inode->i_mode = mode;
751 i_uid_write(inode, owner[0]);
752 i_gid_write(inode, owner[1]);
753 } else if (test_opt(sb, GRPID)) {
754 inode->i_mode = mode;
755 inode->i_uid = current_fsuid();
756 inode->i_gid = dir->i_gid;
757 } else
758 inode_init_owner(inode, dir, mode);
759 dquot_initialize(inode);
760
761 if (!goal)
762 goal = sbi->s_inode_goal;
763
764 if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
765 group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
766 ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
767 ret2 = 0;
768 goto got_group;
769 }
770
771 if (S_ISDIR(mode))
772 ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
773 else
774 ret2 = find_group_other(sb, dir, &group, mode);
775
776got_group:
777 EXT4_I(dir)->i_last_alloc_group = group;
778 err = -ENOSPC;
779 if (ret2 == -1)
780 goto out;
781
782 /*
783 * Normally we will only go through one pass of this loop,
784 * unless we get unlucky and it turns out the group we selected
785 * had its last inode grabbed by someone else.
786 */
787 for (i = 0; i < ngroups; i++, ino = 0) {
788 err = -EIO;
789
790 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
791 if (!gdp)
792 goto out;
793
794 /*
795 * Check free inodes count before loading bitmap.
796 */
797 if (ext4_free_inodes_count(sb, gdp) == 0) {
798 if (++group == ngroups)
799 group = 0;
800 continue;
801 }
802
803 grp = ext4_get_group_info(sb, group);
804 /* Skip groups with already-known suspicious inode tables */
805 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp)) {
806 if (++group == ngroups)
807 group = 0;
808 continue;
809 }
810
811 brelse(inode_bitmap_bh);
812 inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
813 /* Skip groups with suspicious inode tables */
814 if (EXT4_MB_GRP_IBITMAP_CORRUPT(grp) || !inode_bitmap_bh) {
815 if (++group == ngroups)
816 group = 0;
817 continue;
818 }
819
820repeat_in_this_group:
821 ino = ext4_find_next_zero_bit((unsigned long *)
822 inode_bitmap_bh->b_data,
823 EXT4_INODES_PER_GROUP(sb), ino);
824 if (ino >= EXT4_INODES_PER_GROUP(sb))
825 goto next_group;
826 if (group == 0 && (ino+1) < EXT4_FIRST_INO(sb)) {
827 ext4_error(sb, "reserved inode found cleared - "
828 "inode=%lu", ino + 1);
829 continue;
830 }
831 if ((EXT4_SB(sb)->s_journal == NULL) &&
832 recently_deleted(sb, group, ino)) {
833 ino++;
834 goto next_inode;
835 }
836 if (!handle) {
837 BUG_ON(nblocks <= 0);
838 handle = __ext4_journal_start_sb(dir->i_sb, line_no,
839 handle_type, nblocks,
840 0);
841 if (IS_ERR(handle)) {
842 err = PTR_ERR(handle);
843 ext4_std_error(sb, err);
844 goto out;
845 }
846 }
847 BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
848 err = ext4_journal_get_write_access(handle, inode_bitmap_bh);
849 if (err) {
850 ext4_std_error(sb, err);
851 goto out;
852 }
853 ext4_lock_group(sb, group);
854 ret2 = ext4_test_and_set_bit(ino, inode_bitmap_bh->b_data);
855 ext4_unlock_group(sb, group);
856 ino++; /* the inode bitmap is zero-based */
857 if (!ret2)
858 goto got; /* we grabbed the inode! */
859next_inode:
860 if (ino < EXT4_INODES_PER_GROUP(sb))
861 goto repeat_in_this_group;
862next_group:
863 if (++group == ngroups)
864 group = 0;
865 }
866 err = -ENOSPC;
867 goto out;
868
869got:
870 BUFFER_TRACE(inode_bitmap_bh, "call ext4_handle_dirty_metadata");
871 err = ext4_handle_dirty_metadata(handle, NULL, inode_bitmap_bh);
872 if (err) {
873 ext4_std_error(sb, err);
874 goto out;
875 }
876
877 BUFFER_TRACE(group_desc_bh, "get_write_access");
878 err = ext4_journal_get_write_access(handle, group_desc_bh);
879 if (err) {
880 ext4_std_error(sb, err);
881 goto out;
882 }
883
884 /* We may have to initialize the block bitmap if it isn't already */
885 if (ext4_has_group_desc_csum(sb) &&
886 gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
887 struct buffer_head *block_bitmap_bh;
888
889 block_bitmap_bh = ext4_read_block_bitmap(sb, group);
890 BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
891 err = ext4_journal_get_write_access(handle, block_bitmap_bh);
892 if (err) {
893 brelse(block_bitmap_bh);
894 ext4_std_error(sb, err);
895 goto out;
896 }
897
898 BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
899 err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
900
901 /* recheck and clear flag under lock if we still need to */
902 ext4_lock_group(sb, group);
903 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
904 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
905 ext4_free_group_clusters_set(sb, gdp,
906 ext4_free_clusters_after_init(sb, group, gdp));
907 ext4_block_bitmap_csum_set(sb, group, gdp,
908 block_bitmap_bh);
909 ext4_group_desc_csum_set(sb, group, gdp);
910 }
911 ext4_unlock_group(sb, group);
912 brelse(block_bitmap_bh);
913
914 if (err) {
915 ext4_std_error(sb, err);
916 goto out;
917 }
918 }
919
920 /* Update the relevant bg descriptor fields */
921 if (ext4_has_group_desc_csum(sb)) {
922 int free;
923 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
924
925 down_read(&grp->alloc_sem); /* protect vs itable lazyinit */
926 ext4_lock_group(sb, group); /* while we modify the bg desc */
927 free = EXT4_INODES_PER_GROUP(sb) -
928 ext4_itable_unused_count(sb, gdp);
929 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
930 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
931 free = 0;
932 }
933 /*
934 * Check the relative inode number against the last used
935 * relative inode number in this group. if it is greater
936 * we need to update the bg_itable_unused count
937 */
938 if (ino > free)
939 ext4_itable_unused_set(sb, gdp,
940 (EXT4_INODES_PER_GROUP(sb) - ino));
941 up_read(&grp->alloc_sem);
942 } else {
943 ext4_lock_group(sb, group);
944 }
945
946 ext4_free_inodes_set(sb, gdp, ext4_free_inodes_count(sb, gdp) - 1);
947 if (S_ISDIR(mode)) {
948 ext4_used_dirs_set(sb, gdp, ext4_used_dirs_count(sb, gdp) + 1);
949 if (sbi->s_log_groups_per_flex) {
950 ext4_group_t f = ext4_flex_group(sbi, group);
951
952 atomic_inc(&sbi->s_flex_groups[f].used_dirs);
953 }
954 }
955 if (ext4_has_group_desc_csum(sb)) {
956 ext4_inode_bitmap_csum_set(sb, group, gdp, inode_bitmap_bh,
957 EXT4_INODES_PER_GROUP(sb) / 8);
958 ext4_group_desc_csum_set(sb, group, gdp);
959 }
960 ext4_unlock_group(sb, group);
961
962 BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
963 err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
964 if (err) {
965 ext4_std_error(sb, err);
966 goto out;
967 }
968
969 percpu_counter_dec(&sbi->s_freeinodes_counter);
970 if (S_ISDIR(mode))
971 percpu_counter_inc(&sbi->s_dirs_counter);
972
973 if (sbi->s_log_groups_per_flex) {
974 flex_group = ext4_flex_group(sbi, group);
975 atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
976 }
977
978 inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
979 /* This is the optimal IO size (for stat), not the fs block size */
980 inode->i_blocks = 0;
981 inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
982 ext4_current_time(inode);
983
984 memset(ei->i_data, 0, sizeof(ei->i_data));
985 ei->i_dir_start_lookup = 0;
986 ei->i_disksize = 0;
987
988 /* Don't inherit extent flag from directory, amongst others. */
989 ei->i_flags =
990 ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
991 ei->i_file_acl = 0;
992 ei->i_dtime = 0;
993 ei->i_block_group = group;
994 ei->i_last_alloc_group = ~0;
995
996 ext4_set_inode_flags(inode);
997 if (IS_DIRSYNC(inode))
998 ext4_handle_sync(handle);
999 if (insert_inode_locked(inode) < 0) {
1000 /*
1001 * Likely a bitmap corruption causing inode to be allocated
1002 * twice.
1003 */
1004 err = -EIO;
1005 ext4_error(sb, "failed to insert inode %lu: doubly allocated?",
1006 inode->i_ino);
1007 goto out;
1008 }
1009 spin_lock(&sbi->s_next_gen_lock);
1010 inode->i_generation = sbi->s_next_generation++;
1011 spin_unlock(&sbi->s_next_gen_lock);
1012
1013 /* Precompute checksum seed for inode metadata */
1014 if (ext4_has_metadata_csum(sb)) {
1015 __u32 csum;
1016 __le32 inum = cpu_to_le32(inode->i_ino);
1017 __le32 gen = cpu_to_le32(inode->i_generation);
1018 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
1019 sizeof(inum));
1020 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
1021 sizeof(gen));
1022 }
1023
1024 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
1025 ext4_set_inode_state(inode, EXT4_STATE_NEW);
1026
1027 ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
1028
1029 ei->i_inline_off = 0;
1030 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_INLINE_DATA))
1031 ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
1032
1033 ret = inode;
1034 err = dquot_alloc_inode(inode);
1035 if (err)
1036 goto fail_drop;
1037
1038 err = ext4_init_acl(handle, inode, dir);
1039 if (err)
1040 goto fail_free_drop;
1041
1042 err = ext4_init_security(handle, inode, dir, qstr);
1043 if (err)
1044 goto fail_free_drop;
1045
1046 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
1047 /* set extent flag only for directory, file and normal symlink*/
1048 if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
1049 ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
1050 ext4_ext_tree_init(handle, inode);
1051 }
1052 }
1053
1054 if (ext4_handle_valid(handle)) {
1055 ei->i_sync_tid = handle->h_transaction->t_tid;
1056 ei->i_datasync_tid = handle->h_transaction->t_tid;
1057 }
1058
1059 err = ext4_mark_inode_dirty(handle, inode);
1060 if (err) {
1061 ext4_std_error(sb, err);
1062 goto fail_free_drop;
1063 }
1064
1065 ext4_debug("allocating inode %lu\n", inode->i_ino);
1066 trace_ext4_allocate_inode(inode, dir, mode);
1067 brelse(inode_bitmap_bh);
1068 return ret;
1069
1070fail_free_drop:
1071 dquot_free_inode(inode);
1072fail_drop:
1073 clear_nlink(inode);
1074 unlock_new_inode(inode);
1075out:
1076 dquot_drop(inode);
1077 inode->i_flags |= S_NOQUOTA;
1078 iput(inode);
1079 brelse(inode_bitmap_bh);
1080 return ERR_PTR(err);
1081}
1082
1083/* Verify that we are loading a valid orphan from disk */
1084struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
1085{
1086 unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
1087 ext4_group_t block_group;
1088 int bit;
1089 struct buffer_head *bitmap_bh;
1090 struct inode *inode = NULL;
1091 long err = -EIO;
1092
1093 /* Error cases - e2fsck has already cleaned up for us */
1094 if (ino > max_ino) {
1095 ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
1096 goto error;
1097 }
1098
1099 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
1100 bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
1101 bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
1102 if (!bitmap_bh) {
1103 ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
1104 goto error;
1105 }
1106
1107 /* Having the inode bit set should be a 100% indicator that this
1108 * is a valid orphan (no e2fsck run on fs). Orphans also include
1109 * inodes that were being truncated, so we can't check i_nlink==0.
1110 */
1111 if (!ext4_test_bit(bit, bitmap_bh->b_data))
1112 goto bad_orphan;
1113
1114 inode = ext4_iget(sb, ino);
1115 if (IS_ERR(inode))
1116 goto iget_failed;
1117
1118 /*
1119 * If the orphans has i_nlinks > 0 then it should be able to be
1120 * truncated, otherwise it won't be removed from the orphan list
1121 * during processing and an infinite loop will result.
1122 */
1123 if (inode->i_nlink && !ext4_can_truncate(inode))
1124 goto bad_orphan;
1125
1126 if (NEXT_ORPHAN(inode) > max_ino)
1127 goto bad_orphan;
1128 brelse(bitmap_bh);
1129 return inode;
1130
1131iget_failed:
1132 err = PTR_ERR(inode);
1133 inode = NULL;
1134bad_orphan:
1135 ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
1136 printk(KERN_WARNING "ext4_test_bit(bit=%d, block=%llu) = %d\n",
1137 bit, (unsigned long long)bitmap_bh->b_blocknr,
1138 ext4_test_bit(bit, bitmap_bh->b_data));
1139 printk(KERN_WARNING "inode=%p\n", inode);
1140 if (inode) {
1141 printk(KERN_WARNING "is_bad_inode(inode)=%d\n",
1142 is_bad_inode(inode));
1143 printk(KERN_WARNING "NEXT_ORPHAN(inode)=%u\n",
1144 NEXT_ORPHAN(inode));
1145 printk(KERN_WARNING "max_ino=%lu\n", max_ino);
1146 printk(KERN_WARNING "i_nlink=%u\n", inode->i_nlink);
1147 /* Avoid freeing blocks if we got a bad deleted inode */
1148 if (inode->i_nlink == 0)
1149 inode->i_blocks = 0;
1150 iput(inode);
1151 }
1152 brelse(bitmap_bh);
1153error:
1154 return ERR_PTR(err);
1155}
1156
1157unsigned long ext4_count_free_inodes(struct super_block *sb)
1158{
1159 unsigned long desc_count;
1160 struct ext4_group_desc *gdp;
1161 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1162#ifdef EXT4FS_DEBUG
1163 struct ext4_super_block *es;
1164 unsigned long bitmap_count, x;
1165 struct buffer_head *bitmap_bh = NULL;
1166
1167 es = EXT4_SB(sb)->s_es;
1168 desc_count = 0;
1169 bitmap_count = 0;
1170 gdp = NULL;
1171 for (i = 0; i < ngroups; i++) {
1172 gdp = ext4_get_group_desc(sb, i, NULL);
1173 if (!gdp)
1174 continue;
1175 desc_count += ext4_free_inodes_count(sb, gdp);
1176 brelse(bitmap_bh);
1177 bitmap_bh = ext4_read_inode_bitmap(sb, i);
1178 if (!bitmap_bh)
1179 continue;
1180
1181 x = ext4_count_free(bitmap_bh->b_data,
1182 EXT4_INODES_PER_GROUP(sb) / 8);
1183 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1184 (unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
1185 bitmap_count += x;
1186 }
1187 brelse(bitmap_bh);
1188 printk(KERN_DEBUG "ext4_count_free_inodes: "
1189 "stored = %u, computed = %lu, %lu\n",
1190 le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
1191 return desc_count;
1192#else
1193 desc_count = 0;
1194 for (i = 0; i < ngroups; i++) {
1195 gdp = ext4_get_group_desc(sb, i, NULL);
1196 if (!gdp)
1197 continue;
1198 desc_count += ext4_free_inodes_count(sb, gdp);
1199 cond_resched();
1200 }
1201 return desc_count;
1202#endif
1203}
1204
1205/* Called at mount-time, super-block is locked */
1206unsigned long ext4_count_dirs(struct super_block * sb)
1207{
1208 unsigned long count = 0;
1209 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
1210
1211 for (i = 0; i < ngroups; i++) {
1212 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
1213 if (!gdp)
1214 continue;
1215 count += ext4_used_dirs_count(sb, gdp);
1216 }
1217 return count;
1218}
1219
1220/*
1221 * Zeroes not yet zeroed inode table - just write zeroes through the whole
1222 * inode table. Must be called without any spinlock held. The only place
1223 * where it is called from on active part of filesystem is ext4lazyinit
1224 * thread, so we do not need any special locks, however we have to prevent
1225 * inode allocation from the current group, so we take alloc_sem lock, to
1226 * block ext4_new_inode() until we are finished.
1227 */
1228int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
1229 int barrier)
1230{
1231 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1232 struct ext4_sb_info *sbi = EXT4_SB(sb);
1233 struct ext4_group_desc *gdp = NULL;
1234 struct buffer_head *group_desc_bh;
1235 handle_t *handle;
1236 ext4_fsblk_t blk;
1237 int num, ret = 0, used_blks = 0;
1238
1239 /* This should not happen, but just to be sure check this */
1240 if (sb->s_flags & MS_RDONLY) {
1241 ret = 1;
1242 goto out;
1243 }
1244
1245 gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
1246 if (!gdp)
1247 goto out;
1248
1249 /*
1250 * We do not need to lock this, because we are the only one
1251 * handling this flag.
1252 */
1253 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
1254 goto out;
1255
1256 handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
1257 if (IS_ERR(handle)) {
1258 ret = PTR_ERR(handle);
1259 goto out;
1260 }
1261
1262 down_write(&grp->alloc_sem);
1263 /*
1264 * If inode bitmap was already initialized there may be some
1265 * used inodes so we need to skip blocks with used inodes in
1266 * inode table.
1267 */
1268 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
1269 used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
1270 ext4_itable_unused_count(sb, gdp)),
1271 sbi->s_inodes_per_block);
1272
1273 if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
1274 ext4_error(sb, "Something is wrong with group %u: "
1275 "used itable blocks: %d; "
1276 "itable unused count: %u",
1277 group, used_blks,
1278 ext4_itable_unused_count(sb, gdp));
1279 ret = 1;
1280 goto err_out;
1281 }
1282
1283 blk = ext4_inode_table(sb, gdp) + used_blks;
1284 num = sbi->s_itb_per_group - used_blks;
1285
1286 BUFFER_TRACE(group_desc_bh, "get_write_access");
1287 ret = ext4_journal_get_write_access(handle,
1288 group_desc_bh);
1289 if (ret)
1290 goto err_out;
1291
1292 /*
1293 * Skip zeroout if the inode table is full. But we set the ZEROED
1294 * flag anyway, because obviously, when it is full it does not need
1295 * further zeroing.
1296 */
1297 if (unlikely(num == 0))
1298 goto skip_zeroout;
1299
1300 ext4_debug("going to zero out inode table in group %d\n",
1301 group);
1302 ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
1303 if (ret < 0)
1304 goto err_out;
1305 if (barrier)
1306 blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
1307
1308skip_zeroout:
1309 ext4_lock_group(sb, group);
1310 gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
1311 ext4_group_desc_csum_set(sb, group, gdp);
1312 ext4_unlock_group(sb, group);
1313
1314 BUFFER_TRACE(group_desc_bh,
1315 "call ext4_handle_dirty_metadata");
1316 ret = ext4_handle_dirty_metadata(handle, NULL,
1317 group_desc_bh);
1318
1319err_out:
1320 up_write(&grp->alloc_sem);
1321 ext4_journal_stop(handle);
1322out:
1323 return ret;
1324}