at v3.17 21 kB view raw
1/* 2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 3 * 4 * (C) SGI 2006, Christoph Lameter 5 * Cleaned up and restructured to ease the addition of alternative 6 * implementations of SLAB allocators. 7 * (C) Linux Foundation 2008-2013 8 * Unified interface for all slab allocators 9 */ 10 11#ifndef _LINUX_SLAB_H 12#define _LINUX_SLAB_H 13 14#include <linux/gfp.h> 15#include <linux/types.h> 16#include <linux/workqueue.h> 17 18 19/* 20 * Flags to pass to kmem_cache_create(). 21 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set. 22 */ 23#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */ 24#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */ 25#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */ 26#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */ 27#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */ 28#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */ 29#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */ 30/* 31 * SLAB_DESTROY_BY_RCU - **WARNING** READ THIS! 32 * 33 * This delays freeing the SLAB page by a grace period, it does _NOT_ 34 * delay object freeing. This means that if you do kmem_cache_free() 35 * that memory location is free to be reused at any time. Thus it may 36 * be possible to see another object there in the same RCU grace period. 37 * 38 * This feature only ensures the memory location backing the object 39 * stays valid, the trick to using this is relying on an independent 40 * object validation pass. Something like: 41 * 42 * rcu_read_lock() 43 * again: 44 * obj = lockless_lookup(key); 45 * if (obj) { 46 * if (!try_get_ref(obj)) // might fail for free objects 47 * goto again; 48 * 49 * if (obj->key != key) { // not the object we expected 50 * put_ref(obj); 51 * goto again; 52 * } 53 * } 54 * rcu_read_unlock(); 55 * 56 * This is useful if we need to approach a kernel structure obliquely, 57 * from its address obtained without the usual locking. We can lock 58 * the structure to stabilize it and check it's still at the given address, 59 * only if we can be sure that the memory has not been meanwhile reused 60 * for some other kind of object (which our subsystem's lock might corrupt). 61 * 62 * rcu_read_lock before reading the address, then rcu_read_unlock after 63 * taking the spinlock within the structure expected at that address. 64 */ 65#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */ 66#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */ 67#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */ 68 69/* Flag to prevent checks on free */ 70#ifdef CONFIG_DEBUG_OBJECTS 71# define SLAB_DEBUG_OBJECTS 0x00400000UL 72#else 73# define SLAB_DEBUG_OBJECTS 0x00000000UL 74#endif 75 76#define SLAB_NOLEAKTRACE 0x00800000UL /* Avoid kmemleak tracing */ 77 78/* Don't track use of uninitialized memory */ 79#ifdef CONFIG_KMEMCHECK 80# define SLAB_NOTRACK 0x01000000UL 81#else 82# define SLAB_NOTRACK 0x00000000UL 83#endif 84#ifdef CONFIG_FAILSLAB 85# define SLAB_FAILSLAB 0x02000000UL /* Fault injection mark */ 86#else 87# define SLAB_FAILSLAB 0x00000000UL 88#endif 89 90/* The following flags affect the page allocator grouping pages by mobility */ 91#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */ 92#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 93/* 94 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 95 * 96 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 97 * 98 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 99 * Both make kfree a no-op. 100 */ 101#define ZERO_SIZE_PTR ((void *)16) 102 103#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 104 (unsigned long)ZERO_SIZE_PTR) 105 106#include <linux/kmemleak.h> 107 108struct mem_cgroup; 109/* 110 * struct kmem_cache related prototypes 111 */ 112void __init kmem_cache_init(void); 113int slab_is_available(void); 114 115struct kmem_cache *kmem_cache_create(const char *, size_t, size_t, 116 unsigned long, 117 void (*)(void *)); 118#ifdef CONFIG_MEMCG_KMEM 119struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *, 120 struct kmem_cache *, 121 const char *); 122#endif 123void kmem_cache_destroy(struct kmem_cache *); 124int kmem_cache_shrink(struct kmem_cache *); 125void kmem_cache_free(struct kmem_cache *, void *); 126 127/* 128 * Please use this macro to create slab caches. Simply specify the 129 * name of the structure and maybe some flags that are listed above. 130 * 131 * The alignment of the struct determines object alignment. If you 132 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 133 * then the objects will be properly aligned in SMP configurations. 134 */ 135#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\ 136 sizeof(struct __struct), __alignof__(struct __struct),\ 137 (__flags), NULL) 138 139/* 140 * Common kmalloc functions provided by all allocators 141 */ 142void * __must_check __krealloc(const void *, size_t, gfp_t); 143void * __must_check krealloc(const void *, size_t, gfp_t); 144void kfree(const void *); 145void kzfree(const void *); 146size_t ksize(const void *); 147 148/* 149 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 150 * alignment larger than the alignment of a 64-bit integer. 151 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 152 */ 153#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 154#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 155#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 156#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 157#else 158#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 159#endif 160 161#ifdef CONFIG_SLOB 162/* 163 * Common fields provided in kmem_cache by all slab allocators 164 * This struct is either used directly by the allocator (SLOB) 165 * or the allocator must include definitions for all fields 166 * provided in kmem_cache_common in their definition of kmem_cache. 167 * 168 * Once we can do anonymous structs (C11 standard) we could put a 169 * anonymous struct definition in these allocators so that the 170 * separate allocations in the kmem_cache structure of SLAB and 171 * SLUB is no longer needed. 172 */ 173struct kmem_cache { 174 unsigned int object_size;/* The original size of the object */ 175 unsigned int size; /* The aligned/padded/added on size */ 176 unsigned int align; /* Alignment as calculated */ 177 unsigned long flags; /* Active flags on the slab */ 178 const char *name; /* Slab name for sysfs */ 179 int refcount; /* Use counter */ 180 void (*ctor)(void *); /* Called on object slot creation */ 181 struct list_head list; /* List of all slab caches on the system */ 182}; 183 184#endif /* CONFIG_SLOB */ 185 186/* 187 * Kmalloc array related definitions 188 */ 189 190#ifdef CONFIG_SLAB 191/* 192 * The largest kmalloc size supported by the SLAB allocators is 193 * 32 megabyte (2^25) or the maximum allocatable page order if that is 194 * less than 32 MB. 195 * 196 * WARNING: Its not easy to increase this value since the allocators have 197 * to do various tricks to work around compiler limitations in order to 198 * ensure proper constant folding. 199 */ 200#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 201 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 202#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 203#ifndef KMALLOC_SHIFT_LOW 204#define KMALLOC_SHIFT_LOW 5 205#endif 206#endif 207 208#ifdef CONFIG_SLUB 209/* 210 * SLUB directly allocates requests fitting in to an order-1 page 211 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 212 */ 213#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 214#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT) 215#ifndef KMALLOC_SHIFT_LOW 216#define KMALLOC_SHIFT_LOW 3 217#endif 218#endif 219 220#ifdef CONFIG_SLOB 221/* 222 * SLOB passes all requests larger than one page to the page allocator. 223 * No kmalloc array is necessary since objects of different sizes can 224 * be allocated from the same page. 225 */ 226#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 227#define KMALLOC_SHIFT_MAX 30 228#ifndef KMALLOC_SHIFT_LOW 229#define KMALLOC_SHIFT_LOW 3 230#endif 231#endif 232 233/* Maximum allocatable size */ 234#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 235/* Maximum size for which we actually use a slab cache */ 236#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 237/* Maximum order allocatable via the slab allocagtor */ 238#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 239 240/* 241 * Kmalloc subsystem. 242 */ 243#ifndef KMALLOC_MIN_SIZE 244#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 245#endif 246 247/* 248 * This restriction comes from byte sized index implementation. 249 * Page size is normally 2^12 bytes and, in this case, if we want to use 250 * byte sized index which can represent 2^8 entries, the size of the object 251 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 252 * If minimum size of kmalloc is less than 16, we use it as minimum object 253 * size and give up to use byte sized index. 254 */ 255#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 256 (KMALLOC_MIN_SIZE) : 16) 257 258#ifndef CONFIG_SLOB 259extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1]; 260#ifdef CONFIG_ZONE_DMA 261extern struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1]; 262#endif 263 264/* 265 * Figure out which kmalloc slab an allocation of a certain size 266 * belongs to. 267 * 0 = zero alloc 268 * 1 = 65 .. 96 bytes 269 * 2 = 120 .. 192 bytes 270 * n = 2^(n-1) .. 2^n -1 271 */ 272static __always_inline int kmalloc_index(size_t size) 273{ 274 if (!size) 275 return 0; 276 277 if (size <= KMALLOC_MIN_SIZE) 278 return KMALLOC_SHIFT_LOW; 279 280 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 281 return 1; 282 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 283 return 2; 284 if (size <= 8) return 3; 285 if (size <= 16) return 4; 286 if (size <= 32) return 5; 287 if (size <= 64) return 6; 288 if (size <= 128) return 7; 289 if (size <= 256) return 8; 290 if (size <= 512) return 9; 291 if (size <= 1024) return 10; 292 if (size <= 2 * 1024) return 11; 293 if (size <= 4 * 1024) return 12; 294 if (size <= 8 * 1024) return 13; 295 if (size <= 16 * 1024) return 14; 296 if (size <= 32 * 1024) return 15; 297 if (size <= 64 * 1024) return 16; 298 if (size <= 128 * 1024) return 17; 299 if (size <= 256 * 1024) return 18; 300 if (size <= 512 * 1024) return 19; 301 if (size <= 1024 * 1024) return 20; 302 if (size <= 2 * 1024 * 1024) return 21; 303 if (size <= 4 * 1024 * 1024) return 22; 304 if (size <= 8 * 1024 * 1024) return 23; 305 if (size <= 16 * 1024 * 1024) return 24; 306 if (size <= 32 * 1024 * 1024) return 25; 307 if (size <= 64 * 1024 * 1024) return 26; 308 BUG(); 309 310 /* Will never be reached. Needed because the compiler may complain */ 311 return -1; 312} 313#endif /* !CONFIG_SLOB */ 314 315void *__kmalloc(size_t size, gfp_t flags); 316void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags); 317 318#ifdef CONFIG_NUMA 319void *__kmalloc_node(size_t size, gfp_t flags, int node); 320void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node); 321#else 322static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 323{ 324 return __kmalloc(size, flags); 325} 326 327static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 328{ 329 return kmem_cache_alloc(s, flags); 330} 331#endif 332 333#ifdef CONFIG_TRACING 334extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t); 335 336#ifdef CONFIG_NUMA 337extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 338 gfp_t gfpflags, 339 int node, size_t size); 340#else 341static __always_inline void * 342kmem_cache_alloc_node_trace(struct kmem_cache *s, 343 gfp_t gfpflags, 344 int node, size_t size) 345{ 346 return kmem_cache_alloc_trace(s, gfpflags, size); 347} 348#endif /* CONFIG_NUMA */ 349 350#else /* CONFIG_TRACING */ 351static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 352 gfp_t flags, size_t size) 353{ 354 return kmem_cache_alloc(s, flags); 355} 356 357static __always_inline void * 358kmem_cache_alloc_node_trace(struct kmem_cache *s, 359 gfp_t gfpflags, 360 int node, size_t size) 361{ 362 return kmem_cache_alloc_node(s, gfpflags, node); 363} 364#endif /* CONFIG_TRACING */ 365 366#ifdef CONFIG_SLAB 367#include <linux/slab_def.h> 368#endif 369 370#ifdef CONFIG_SLUB 371#include <linux/slub_def.h> 372#endif 373 374extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order); 375 376#ifdef CONFIG_TRACING 377extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order); 378#else 379static __always_inline void * 380kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 381{ 382 return kmalloc_order(size, flags, order); 383} 384#endif 385 386static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 387{ 388 unsigned int order = get_order(size); 389 return kmalloc_order_trace(size, flags, order); 390} 391 392/** 393 * kmalloc - allocate memory 394 * @size: how many bytes of memory are required. 395 * @flags: the type of memory to allocate. 396 * 397 * kmalloc is the normal method of allocating memory 398 * for objects smaller than page size in the kernel. 399 * 400 * The @flags argument may be one of: 401 * 402 * %GFP_USER - Allocate memory on behalf of user. May sleep. 403 * 404 * %GFP_KERNEL - Allocate normal kernel ram. May sleep. 405 * 406 * %GFP_ATOMIC - Allocation will not sleep. May use emergency pools. 407 * For example, use this inside interrupt handlers. 408 * 409 * %GFP_HIGHUSER - Allocate pages from high memory. 410 * 411 * %GFP_NOIO - Do not do any I/O at all while trying to get memory. 412 * 413 * %GFP_NOFS - Do not make any fs calls while trying to get memory. 414 * 415 * %GFP_NOWAIT - Allocation will not sleep. 416 * 417 * %__GFP_THISNODE - Allocate node-local memory only. 418 * 419 * %GFP_DMA - Allocation suitable for DMA. 420 * Should only be used for kmalloc() caches. Otherwise, use a 421 * slab created with SLAB_DMA. 422 * 423 * Also it is possible to set different flags by OR'ing 424 * in one or more of the following additional @flags: 425 * 426 * %__GFP_COLD - Request cache-cold pages instead of 427 * trying to return cache-warm pages. 428 * 429 * %__GFP_HIGH - This allocation has high priority and may use emergency pools. 430 * 431 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail 432 * (think twice before using). 433 * 434 * %__GFP_NORETRY - If memory is not immediately available, 435 * then give up at once. 436 * 437 * %__GFP_NOWARN - If allocation fails, don't issue any warnings. 438 * 439 * %__GFP_REPEAT - If allocation fails initially, try once more before failing. 440 * 441 * There are other flags available as well, but these are not intended 442 * for general use, and so are not documented here. For a full list of 443 * potential flags, always refer to linux/gfp.h. 444 */ 445static __always_inline void *kmalloc(size_t size, gfp_t flags) 446{ 447 if (__builtin_constant_p(size)) { 448 if (size > KMALLOC_MAX_CACHE_SIZE) 449 return kmalloc_large(size, flags); 450#ifndef CONFIG_SLOB 451 if (!(flags & GFP_DMA)) { 452 int index = kmalloc_index(size); 453 454 if (!index) 455 return ZERO_SIZE_PTR; 456 457 return kmem_cache_alloc_trace(kmalloc_caches[index], 458 flags, size); 459 } 460#endif 461 } 462 return __kmalloc(size, flags); 463} 464 465/* 466 * Determine size used for the nth kmalloc cache. 467 * return size or 0 if a kmalloc cache for that 468 * size does not exist 469 */ 470static __always_inline int kmalloc_size(int n) 471{ 472#ifndef CONFIG_SLOB 473 if (n > 2) 474 return 1 << n; 475 476 if (n == 1 && KMALLOC_MIN_SIZE <= 32) 477 return 96; 478 479 if (n == 2 && KMALLOC_MIN_SIZE <= 64) 480 return 192; 481#endif 482 return 0; 483} 484 485static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 486{ 487#ifndef CONFIG_SLOB 488 if (__builtin_constant_p(size) && 489 size <= KMALLOC_MAX_CACHE_SIZE && !(flags & GFP_DMA)) { 490 int i = kmalloc_index(size); 491 492 if (!i) 493 return ZERO_SIZE_PTR; 494 495 return kmem_cache_alloc_node_trace(kmalloc_caches[i], 496 flags, node, size); 497 } 498#endif 499 return __kmalloc_node(size, flags, node); 500} 501 502/* 503 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 504 * Intended for arches that get misalignment faults even for 64 bit integer 505 * aligned buffers. 506 */ 507#ifndef ARCH_SLAB_MINALIGN 508#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 509#endif 510/* 511 * This is the main placeholder for memcg-related information in kmem caches. 512 * struct kmem_cache will hold a pointer to it, so the memory cost while 513 * disabled is 1 pointer. The runtime cost while enabled, gets bigger than it 514 * would otherwise be if that would be bundled in kmem_cache: we'll need an 515 * extra pointer chase. But the trade off clearly lays in favor of not 516 * penalizing non-users. 517 * 518 * Both the root cache and the child caches will have it. For the root cache, 519 * this will hold a dynamically allocated array large enough to hold 520 * information about the currently limited memcgs in the system. To allow the 521 * array to be accessed without taking any locks, on relocation we free the old 522 * version only after a grace period. 523 * 524 * Child caches will hold extra metadata needed for its operation. Fields are: 525 * 526 * @memcg: pointer to the memcg this cache belongs to 527 * @list: list_head for the list of all caches in this memcg 528 * @root_cache: pointer to the global, root cache, this cache was derived from 529 * @nr_pages: number of pages that belongs to this cache. 530 */ 531struct memcg_cache_params { 532 bool is_root_cache; 533 union { 534 struct { 535 struct rcu_head rcu_head; 536 struct kmem_cache *memcg_caches[0]; 537 }; 538 struct { 539 struct mem_cgroup *memcg; 540 struct list_head list; 541 struct kmem_cache *root_cache; 542 atomic_t nr_pages; 543 }; 544 }; 545}; 546 547int memcg_update_all_caches(int num_memcgs); 548 549struct seq_file; 550int cache_show(struct kmem_cache *s, struct seq_file *m); 551void print_slabinfo_header(struct seq_file *m); 552 553/** 554 * kmalloc_array - allocate memory for an array. 555 * @n: number of elements. 556 * @size: element size. 557 * @flags: the type of memory to allocate (see kmalloc). 558 */ 559static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 560{ 561 if (size != 0 && n > SIZE_MAX / size) 562 return NULL; 563 return __kmalloc(n * size, flags); 564} 565 566/** 567 * kcalloc - allocate memory for an array. The memory is set to zero. 568 * @n: number of elements. 569 * @size: element size. 570 * @flags: the type of memory to allocate (see kmalloc). 571 */ 572static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 573{ 574 return kmalloc_array(n, size, flags | __GFP_ZERO); 575} 576 577/* 578 * kmalloc_track_caller is a special version of kmalloc that records the 579 * calling function of the routine calling it for slab leak tracking instead 580 * of just the calling function (confusing, eh?). 581 * It's useful when the call to kmalloc comes from a widely-used standard 582 * allocator where we care about the real place the memory allocation 583 * request comes from. 584 */ 585#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 586 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 587 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 588extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 589#define kmalloc_track_caller(size, flags) \ 590 __kmalloc_track_caller(size, flags, _RET_IP_) 591#else 592#define kmalloc_track_caller(size, flags) \ 593 __kmalloc(size, flags) 594#endif /* DEBUG_SLAB */ 595 596#ifdef CONFIG_NUMA 597/* 598 * kmalloc_node_track_caller is a special version of kmalloc_node that 599 * records the calling function of the routine calling it for slab leak 600 * tracking instead of just the calling function (confusing, eh?). 601 * It's useful when the call to kmalloc_node comes from a widely-used 602 * standard allocator where we care about the real place the memory 603 * allocation request comes from. 604 */ 605#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB) || \ 606 (defined(CONFIG_SLAB) && defined(CONFIG_TRACING)) || \ 607 (defined(CONFIG_SLOB) && defined(CONFIG_TRACING)) 608extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 609#define kmalloc_node_track_caller(size, flags, node) \ 610 __kmalloc_node_track_caller(size, flags, node, \ 611 _RET_IP_) 612#else 613#define kmalloc_node_track_caller(size, flags, node) \ 614 __kmalloc_node(size, flags, node) 615#endif 616 617#else /* CONFIG_NUMA */ 618 619#define kmalloc_node_track_caller(size, flags, node) \ 620 kmalloc_track_caller(size, flags) 621 622#endif /* CONFIG_NUMA */ 623 624/* 625 * Shortcuts 626 */ 627static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 628{ 629 return kmem_cache_alloc(k, flags | __GFP_ZERO); 630} 631 632/** 633 * kzalloc - allocate memory. The memory is set to zero. 634 * @size: how many bytes of memory are required. 635 * @flags: the type of memory to allocate (see kmalloc). 636 */ 637static inline void *kzalloc(size_t size, gfp_t flags) 638{ 639 return kmalloc(size, flags | __GFP_ZERO); 640} 641 642/** 643 * kzalloc_node - allocate zeroed memory from a particular memory node. 644 * @size: how many bytes of memory are required. 645 * @flags: the type of memory to allocate (see kmalloc). 646 * @node: memory node from which to allocate 647 */ 648static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 649{ 650 return kmalloc_node(size, flags | __GFP_ZERO, node); 651} 652 653/* 654 * Determine the size of a slab object 655 */ 656static inline unsigned int kmem_cache_size(struct kmem_cache *s) 657{ 658 return s->object_size; 659} 660 661void __init kmem_cache_init_late(void); 662 663#endif /* _LINUX_SLAB_H */