at v3.17 91 kB view raw
1/* 2 * Definitions for the 'struct sk_buff' memory handlers. 3 * 4 * Authors: 5 * Alan Cox, <gw4pts@gw4pts.ampr.org> 6 * Florian La Roche, <rzsfl@rz.uni-sb.de> 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 */ 13 14#ifndef _LINUX_SKBUFF_H 15#define _LINUX_SKBUFF_H 16 17#include <linux/kernel.h> 18#include <linux/kmemcheck.h> 19#include <linux/compiler.h> 20#include <linux/time.h> 21#include <linux/bug.h> 22#include <linux/cache.h> 23 24#include <linux/atomic.h> 25#include <asm/types.h> 26#include <linux/spinlock.h> 27#include <linux/net.h> 28#include <linux/textsearch.h> 29#include <net/checksum.h> 30#include <linux/rcupdate.h> 31#include <linux/dmaengine.h> 32#include <linux/hrtimer.h> 33#include <linux/dma-mapping.h> 34#include <linux/netdev_features.h> 35#include <linux/sched.h> 36#include <net/flow_keys.h> 37 38/* A. Checksumming of received packets by device. 39 * 40 * CHECKSUM_NONE: 41 * 42 * Device failed to checksum this packet e.g. due to lack of capabilities. 43 * The packet contains full (though not verified) checksum in packet but 44 * not in skb->csum. Thus, skb->csum is undefined in this case. 45 * 46 * CHECKSUM_UNNECESSARY: 47 * 48 * The hardware you're dealing with doesn't calculate the full checksum 49 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 50 * for specific protocols e.g. TCP/UDP/SCTP, then, for such packets it will 51 * set CHECKSUM_UNNECESSARY if their checksums are okay. skb->csum is still 52 * undefined in this case though. It is a bad option, but, unfortunately, 53 * nowadays most vendors do this. Apparently with the secret goal to sell 54 * you new devices, when you will add new protocol to your host, f.e. IPv6 8) 55 * 56 * CHECKSUM_COMPLETE: 57 * 58 * This is the most generic way. The device supplied checksum of the _whole_ 59 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the 60 * hardware doesn't need to parse L3/L4 headers to implement this. 61 * 62 * Note: Even if device supports only some protocols, but is able to produce 63 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 64 * 65 * CHECKSUM_PARTIAL: 66 * 67 * This is identical to the case for output below. This may occur on a packet 68 * received directly from another Linux OS, e.g., a virtualized Linux kernel 69 * on the same host. The packet can be treated in the same way as 70 * CHECKSUM_UNNECESSARY, except that on output (i.e., forwarding) the 71 * checksum must be filled in by the OS or the hardware. 72 * 73 * B. Checksumming on output. 74 * 75 * CHECKSUM_NONE: 76 * 77 * The skb was already checksummed by the protocol, or a checksum is not 78 * required. 79 * 80 * CHECKSUM_PARTIAL: 81 * 82 * The device is required to checksum the packet as seen by hard_start_xmit() 83 * from skb->csum_start up to the end, and to record/write the checksum at 84 * offset skb->csum_start + skb->csum_offset. 85 * 86 * The device must show its capabilities in dev->features, set up at device 87 * setup time, e.g. netdev_features.h: 88 * 89 * NETIF_F_HW_CSUM - It's a clever device, it's able to checksum everything. 90 * NETIF_F_IP_CSUM - Device is dumb, it's able to checksum only TCP/UDP over 91 * IPv4. Sigh. Vendors like this way for an unknown reason. 92 * Though, see comment above about CHECKSUM_UNNECESSARY. 8) 93 * NETIF_F_IPV6_CSUM - About as dumb as the last one but does IPv6 instead. 94 * NETIF_F_... - Well, you get the picture. 95 * 96 * CHECKSUM_UNNECESSARY: 97 * 98 * Normally, the device will do per protocol specific checksumming. Protocol 99 * implementations that do not want the NIC to perform the checksum 100 * calculation should use this flag in their outgoing skbs. 101 * 102 * NETIF_F_FCOE_CRC - This indicates that the device can do FCoE FC CRC 103 * offload. Correspondingly, the FCoE protocol driver 104 * stack should use CHECKSUM_UNNECESSARY. 105 * 106 * Any questions? No questions, good. --ANK 107 */ 108 109/* Don't change this without changing skb_csum_unnecessary! */ 110#define CHECKSUM_NONE 0 111#define CHECKSUM_UNNECESSARY 1 112#define CHECKSUM_COMPLETE 2 113#define CHECKSUM_PARTIAL 3 114 115#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 116#define SKB_WITH_OVERHEAD(X) \ 117 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 118#define SKB_MAX_ORDER(X, ORDER) \ 119 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 120#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 121#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 122 123/* return minimum truesize of one skb containing X bytes of data */ 124#define SKB_TRUESIZE(X) ((X) + \ 125 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 126 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 127 128struct net_device; 129struct scatterlist; 130struct pipe_inode_info; 131 132#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 133struct nf_conntrack { 134 atomic_t use; 135}; 136#endif 137 138#ifdef CONFIG_BRIDGE_NETFILTER 139struct nf_bridge_info { 140 atomic_t use; 141 unsigned int mask; 142 struct net_device *physindev; 143 struct net_device *physoutdev; 144 unsigned long data[32 / sizeof(unsigned long)]; 145}; 146#endif 147 148struct sk_buff_head { 149 /* These two members must be first. */ 150 struct sk_buff *next; 151 struct sk_buff *prev; 152 153 __u32 qlen; 154 spinlock_t lock; 155}; 156 157struct sk_buff; 158 159/* To allow 64K frame to be packed as single skb without frag_list we 160 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 161 * buffers which do not start on a page boundary. 162 * 163 * Since GRO uses frags we allocate at least 16 regardless of page 164 * size. 165 */ 166#if (65536/PAGE_SIZE + 1) < 16 167#define MAX_SKB_FRAGS 16UL 168#else 169#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 170#endif 171 172typedef struct skb_frag_struct skb_frag_t; 173 174struct skb_frag_struct { 175 struct { 176 struct page *p; 177 } page; 178#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) 179 __u32 page_offset; 180 __u32 size; 181#else 182 __u16 page_offset; 183 __u16 size; 184#endif 185}; 186 187static inline unsigned int skb_frag_size(const skb_frag_t *frag) 188{ 189 return frag->size; 190} 191 192static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 193{ 194 frag->size = size; 195} 196 197static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 198{ 199 frag->size += delta; 200} 201 202static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 203{ 204 frag->size -= delta; 205} 206 207#define HAVE_HW_TIME_STAMP 208 209/** 210 * struct skb_shared_hwtstamps - hardware time stamps 211 * @hwtstamp: hardware time stamp transformed into duration 212 * since arbitrary point in time 213 * 214 * Software time stamps generated by ktime_get_real() are stored in 215 * skb->tstamp. 216 * 217 * hwtstamps can only be compared against other hwtstamps from 218 * the same device. 219 * 220 * This structure is attached to packets as part of the 221 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 222 */ 223struct skb_shared_hwtstamps { 224 ktime_t hwtstamp; 225}; 226 227/* Definitions for tx_flags in struct skb_shared_info */ 228enum { 229 /* generate hardware time stamp */ 230 SKBTX_HW_TSTAMP = 1 << 0, 231 232 /* generate software time stamp when queueing packet to NIC */ 233 SKBTX_SW_TSTAMP = 1 << 1, 234 235 /* device driver is going to provide hardware time stamp */ 236 SKBTX_IN_PROGRESS = 1 << 2, 237 238 /* device driver supports TX zero-copy buffers */ 239 SKBTX_DEV_ZEROCOPY = 1 << 3, 240 241 /* generate wifi status information (where possible) */ 242 SKBTX_WIFI_STATUS = 1 << 4, 243 244 /* This indicates at least one fragment might be overwritten 245 * (as in vmsplice(), sendfile() ...) 246 * If we need to compute a TX checksum, we'll need to copy 247 * all frags to avoid possible bad checksum 248 */ 249 SKBTX_SHARED_FRAG = 1 << 5, 250 251 /* generate software time stamp when entering packet scheduling */ 252 SKBTX_SCHED_TSTAMP = 1 << 6, 253 254 /* generate software timestamp on peer data acknowledgment */ 255 SKBTX_ACK_TSTAMP = 1 << 7, 256}; 257 258#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 259 SKBTX_SCHED_TSTAMP | \ 260 SKBTX_ACK_TSTAMP) 261#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 262 263/* 264 * The callback notifies userspace to release buffers when skb DMA is done in 265 * lower device, the skb last reference should be 0 when calling this. 266 * The zerocopy_success argument is true if zero copy transmit occurred, 267 * false on data copy or out of memory error caused by data copy attempt. 268 * The ctx field is used to track device context. 269 * The desc field is used to track userspace buffer index. 270 */ 271struct ubuf_info { 272 void (*callback)(struct ubuf_info *, bool zerocopy_success); 273 void *ctx; 274 unsigned long desc; 275}; 276 277/* This data is invariant across clones and lives at 278 * the end of the header data, ie. at skb->end. 279 */ 280struct skb_shared_info { 281 unsigned char nr_frags; 282 __u8 tx_flags; 283 unsigned short gso_size; 284 /* Warning: this field is not always filled in (UFO)! */ 285 unsigned short gso_segs; 286 unsigned short gso_type; 287 struct sk_buff *frag_list; 288 struct skb_shared_hwtstamps hwtstamps; 289 u32 tskey; 290 __be32 ip6_frag_id; 291 292 /* 293 * Warning : all fields before dataref are cleared in __alloc_skb() 294 */ 295 atomic_t dataref; 296 297 /* Intermediate layers must ensure that destructor_arg 298 * remains valid until skb destructor */ 299 void * destructor_arg; 300 301 /* must be last field, see pskb_expand_head() */ 302 skb_frag_t frags[MAX_SKB_FRAGS]; 303}; 304 305/* We divide dataref into two halves. The higher 16 bits hold references 306 * to the payload part of skb->data. The lower 16 bits hold references to 307 * the entire skb->data. A clone of a headerless skb holds the length of 308 * the header in skb->hdr_len. 309 * 310 * All users must obey the rule that the skb->data reference count must be 311 * greater than or equal to the payload reference count. 312 * 313 * Holding a reference to the payload part means that the user does not 314 * care about modifications to the header part of skb->data. 315 */ 316#define SKB_DATAREF_SHIFT 16 317#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 318 319 320enum { 321 SKB_FCLONE_UNAVAILABLE, 322 SKB_FCLONE_ORIG, 323 SKB_FCLONE_CLONE, 324}; 325 326enum { 327 SKB_GSO_TCPV4 = 1 << 0, 328 SKB_GSO_UDP = 1 << 1, 329 330 /* This indicates the skb is from an untrusted source. */ 331 SKB_GSO_DODGY = 1 << 2, 332 333 /* This indicates the tcp segment has CWR set. */ 334 SKB_GSO_TCP_ECN = 1 << 3, 335 336 SKB_GSO_TCPV6 = 1 << 4, 337 338 SKB_GSO_FCOE = 1 << 5, 339 340 SKB_GSO_GRE = 1 << 6, 341 342 SKB_GSO_GRE_CSUM = 1 << 7, 343 344 SKB_GSO_IPIP = 1 << 8, 345 346 SKB_GSO_SIT = 1 << 9, 347 348 SKB_GSO_UDP_TUNNEL = 1 << 10, 349 350 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 351 352 SKB_GSO_MPLS = 1 << 12, 353 354}; 355 356#if BITS_PER_LONG > 32 357#define NET_SKBUFF_DATA_USES_OFFSET 1 358#endif 359 360#ifdef NET_SKBUFF_DATA_USES_OFFSET 361typedef unsigned int sk_buff_data_t; 362#else 363typedef unsigned char *sk_buff_data_t; 364#endif 365 366/** 367 * struct skb_mstamp - multi resolution time stamps 368 * @stamp_us: timestamp in us resolution 369 * @stamp_jiffies: timestamp in jiffies 370 */ 371struct skb_mstamp { 372 union { 373 u64 v64; 374 struct { 375 u32 stamp_us; 376 u32 stamp_jiffies; 377 }; 378 }; 379}; 380 381/** 382 * skb_mstamp_get - get current timestamp 383 * @cl: place to store timestamps 384 */ 385static inline void skb_mstamp_get(struct skb_mstamp *cl) 386{ 387 u64 val = local_clock(); 388 389 do_div(val, NSEC_PER_USEC); 390 cl->stamp_us = (u32)val; 391 cl->stamp_jiffies = (u32)jiffies; 392} 393 394/** 395 * skb_mstamp_delta - compute the difference in usec between two skb_mstamp 396 * @t1: pointer to newest sample 397 * @t0: pointer to oldest sample 398 */ 399static inline u32 skb_mstamp_us_delta(const struct skb_mstamp *t1, 400 const struct skb_mstamp *t0) 401{ 402 s32 delta_us = t1->stamp_us - t0->stamp_us; 403 u32 delta_jiffies = t1->stamp_jiffies - t0->stamp_jiffies; 404 405 /* If delta_us is negative, this might be because interval is too big, 406 * or local_clock() drift is too big : fallback using jiffies. 407 */ 408 if (delta_us <= 0 || 409 delta_jiffies >= (INT_MAX / (USEC_PER_SEC / HZ))) 410 411 delta_us = jiffies_to_usecs(delta_jiffies); 412 413 return delta_us; 414} 415 416 417/** 418 * struct sk_buff - socket buffer 419 * @next: Next buffer in list 420 * @prev: Previous buffer in list 421 * @tstamp: Time we arrived/left 422 * @sk: Socket we are owned by 423 * @dev: Device we arrived on/are leaving by 424 * @cb: Control buffer. Free for use by every layer. Put private vars here 425 * @_skb_refdst: destination entry (with norefcount bit) 426 * @sp: the security path, used for xfrm 427 * @len: Length of actual data 428 * @data_len: Data length 429 * @mac_len: Length of link layer header 430 * @hdr_len: writable header length of cloned skb 431 * @csum: Checksum (must include start/offset pair) 432 * @csum_start: Offset from skb->head where checksumming should start 433 * @csum_offset: Offset from csum_start where checksum should be stored 434 * @priority: Packet queueing priority 435 * @ignore_df: allow local fragmentation 436 * @cloned: Head may be cloned (check refcnt to be sure) 437 * @ip_summed: Driver fed us an IP checksum 438 * @nohdr: Payload reference only, must not modify header 439 * @nfctinfo: Relationship of this skb to the connection 440 * @pkt_type: Packet class 441 * @fclone: skbuff clone status 442 * @ipvs_property: skbuff is owned by ipvs 443 * @peeked: this packet has been seen already, so stats have been 444 * done for it, don't do them again 445 * @nf_trace: netfilter packet trace flag 446 * @protocol: Packet protocol from driver 447 * @destructor: Destruct function 448 * @nfct: Associated connection, if any 449 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 450 * @skb_iif: ifindex of device we arrived on 451 * @tc_index: Traffic control index 452 * @tc_verd: traffic control verdict 453 * @hash: the packet hash 454 * @queue_mapping: Queue mapping for multiqueue devices 455 * @ndisc_nodetype: router type (from link layer) 456 * @ooo_okay: allow the mapping of a socket to a queue to be changed 457 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 458 * ports. 459 * @sw_hash: indicates hash was computed in software stack 460 * @wifi_acked_valid: wifi_acked was set 461 * @wifi_acked: whether frame was acked on wifi or not 462 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 463 * @dma_cookie: a cookie to one of several possible DMA operations 464 * done by skb DMA functions 465 * @napi_id: id of the NAPI struct this skb came from 466 * @secmark: security marking 467 * @mark: Generic packet mark 468 * @dropcount: total number of sk_receive_queue overflows 469 * @vlan_proto: vlan encapsulation protocol 470 * @vlan_tci: vlan tag control information 471 * @inner_protocol: Protocol (encapsulation) 472 * @inner_transport_header: Inner transport layer header (encapsulation) 473 * @inner_network_header: Network layer header (encapsulation) 474 * @inner_mac_header: Link layer header (encapsulation) 475 * @transport_header: Transport layer header 476 * @network_header: Network layer header 477 * @mac_header: Link layer header 478 * @tail: Tail pointer 479 * @end: End pointer 480 * @head: Head of buffer 481 * @data: Data head pointer 482 * @truesize: Buffer size 483 * @users: User count - see {datagram,tcp}.c 484 */ 485 486struct sk_buff { 487 /* These two members must be first. */ 488 struct sk_buff *next; 489 struct sk_buff *prev; 490 491 union { 492 ktime_t tstamp; 493 struct skb_mstamp skb_mstamp; 494 }; 495 496 struct sock *sk; 497 struct net_device *dev; 498 499 /* 500 * This is the control buffer. It is free to use for every 501 * layer. Please put your private variables there. If you 502 * want to keep them across layers you have to do a skb_clone() 503 * first. This is owned by whoever has the skb queued ATM. 504 */ 505 char cb[48] __aligned(8); 506 507 unsigned long _skb_refdst; 508#ifdef CONFIG_XFRM 509 struct sec_path *sp; 510#endif 511 unsigned int len, 512 data_len; 513 __u16 mac_len, 514 hdr_len; 515 union { 516 __wsum csum; 517 struct { 518 __u16 csum_start; 519 __u16 csum_offset; 520 }; 521 }; 522 __u32 priority; 523 kmemcheck_bitfield_begin(flags1); 524 __u8 ignore_df:1, 525 cloned:1, 526 ip_summed:2, 527 nohdr:1, 528 nfctinfo:3; 529 __u8 pkt_type:3, 530 fclone:2, 531 ipvs_property:1, 532 peeked:1, 533 nf_trace:1; 534 kmemcheck_bitfield_end(flags1); 535 __be16 protocol; 536 537 void (*destructor)(struct sk_buff *skb); 538#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 539 struct nf_conntrack *nfct; 540#endif 541#ifdef CONFIG_BRIDGE_NETFILTER 542 struct nf_bridge_info *nf_bridge; 543#endif 544 545 int skb_iif; 546 547 __u32 hash; 548 549 __be16 vlan_proto; 550 __u16 vlan_tci; 551 552#ifdef CONFIG_NET_SCHED 553 __u16 tc_index; /* traffic control index */ 554#ifdef CONFIG_NET_CLS_ACT 555 __u16 tc_verd; /* traffic control verdict */ 556#endif 557#endif 558 559 __u16 queue_mapping; 560 kmemcheck_bitfield_begin(flags2); 561#ifdef CONFIG_IPV6_NDISC_NODETYPE 562 __u8 ndisc_nodetype:2; 563#endif 564 __u8 pfmemalloc:1; 565 __u8 ooo_okay:1; 566 __u8 l4_hash:1; 567 __u8 sw_hash:1; 568 __u8 wifi_acked_valid:1; 569 __u8 wifi_acked:1; 570 __u8 no_fcs:1; 571 __u8 head_frag:1; 572 /* Encapsulation protocol and NIC drivers should use 573 * this flag to indicate to each other if the skb contains 574 * encapsulated packet or not and maybe use the inner packet 575 * headers if needed 576 */ 577 __u8 encapsulation:1; 578 __u8 encap_hdr_csum:1; 579 __u8 csum_valid:1; 580 __u8 csum_complete_sw:1; 581 /* 2/4 bit hole (depending on ndisc_nodetype presence) */ 582 kmemcheck_bitfield_end(flags2); 583 584#if defined CONFIG_NET_DMA || defined CONFIG_NET_RX_BUSY_POLL 585 union { 586 unsigned int napi_id; 587 dma_cookie_t dma_cookie; 588 }; 589#endif 590#ifdef CONFIG_NETWORK_SECMARK 591 __u32 secmark; 592#endif 593 union { 594 __u32 mark; 595 __u32 dropcount; 596 __u32 reserved_tailroom; 597 }; 598 599 __be16 inner_protocol; 600 __u16 inner_transport_header; 601 __u16 inner_network_header; 602 __u16 inner_mac_header; 603 __u16 transport_header; 604 __u16 network_header; 605 __u16 mac_header; 606 /* These elements must be at the end, see alloc_skb() for details. */ 607 sk_buff_data_t tail; 608 sk_buff_data_t end; 609 unsigned char *head, 610 *data; 611 unsigned int truesize; 612 atomic_t users; 613}; 614 615#ifdef __KERNEL__ 616/* 617 * Handling routines are only of interest to the kernel 618 */ 619#include <linux/slab.h> 620 621 622#define SKB_ALLOC_FCLONE 0x01 623#define SKB_ALLOC_RX 0x02 624 625/* Returns true if the skb was allocated from PFMEMALLOC reserves */ 626static inline bool skb_pfmemalloc(const struct sk_buff *skb) 627{ 628 return unlikely(skb->pfmemalloc); 629} 630 631/* 632 * skb might have a dst pointer attached, refcounted or not. 633 * _skb_refdst low order bit is set if refcount was _not_ taken 634 */ 635#define SKB_DST_NOREF 1UL 636#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 637 638/** 639 * skb_dst - returns skb dst_entry 640 * @skb: buffer 641 * 642 * Returns skb dst_entry, regardless of reference taken or not. 643 */ 644static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 645{ 646 /* If refdst was not refcounted, check we still are in a 647 * rcu_read_lock section 648 */ 649 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 650 !rcu_read_lock_held() && 651 !rcu_read_lock_bh_held()); 652 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 653} 654 655/** 656 * skb_dst_set - sets skb dst 657 * @skb: buffer 658 * @dst: dst entry 659 * 660 * Sets skb dst, assuming a reference was taken on dst and should 661 * be released by skb_dst_drop() 662 */ 663static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 664{ 665 skb->_skb_refdst = (unsigned long)dst; 666} 667 668void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst, 669 bool force); 670 671/** 672 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 673 * @skb: buffer 674 * @dst: dst entry 675 * 676 * Sets skb dst, assuming a reference was not taken on dst. 677 * If dst entry is cached, we do not take reference and dst_release 678 * will be avoided by refdst_drop. If dst entry is not cached, we take 679 * reference, so that last dst_release can destroy the dst immediately. 680 */ 681static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 682{ 683 __skb_dst_set_noref(skb, dst, false); 684} 685 686/** 687 * skb_dst_set_noref_force - sets skb dst, without taking reference 688 * @skb: buffer 689 * @dst: dst entry 690 * 691 * Sets skb dst, assuming a reference was not taken on dst. 692 * No reference is taken and no dst_release will be called. While for 693 * cached dsts deferred reclaim is a basic feature, for entries that are 694 * not cached it is caller's job to guarantee that last dst_release for 695 * provided dst happens when nobody uses it, eg. after a RCU grace period. 696 */ 697static inline void skb_dst_set_noref_force(struct sk_buff *skb, 698 struct dst_entry *dst) 699{ 700 __skb_dst_set_noref(skb, dst, true); 701} 702 703/** 704 * skb_dst_is_noref - Test if skb dst isn't refcounted 705 * @skb: buffer 706 */ 707static inline bool skb_dst_is_noref(const struct sk_buff *skb) 708{ 709 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 710} 711 712static inline struct rtable *skb_rtable(const struct sk_buff *skb) 713{ 714 return (struct rtable *)skb_dst(skb); 715} 716 717void kfree_skb(struct sk_buff *skb); 718void kfree_skb_list(struct sk_buff *segs); 719void skb_tx_error(struct sk_buff *skb); 720void consume_skb(struct sk_buff *skb); 721void __kfree_skb(struct sk_buff *skb); 722extern struct kmem_cache *skbuff_head_cache; 723 724void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 725bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 726 bool *fragstolen, int *delta_truesize); 727 728struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 729 int node); 730struct sk_buff *build_skb(void *data, unsigned int frag_size); 731static inline struct sk_buff *alloc_skb(unsigned int size, 732 gfp_t priority) 733{ 734 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 735} 736 737static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 738 gfp_t priority) 739{ 740 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 741} 742 743struct sk_buff *__alloc_skb_head(gfp_t priority, int node); 744static inline struct sk_buff *alloc_skb_head(gfp_t priority) 745{ 746 return __alloc_skb_head(priority, -1); 747} 748 749struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 750int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 751struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 752struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 753struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 754 gfp_t gfp_mask, bool fclone); 755static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 756 gfp_t gfp_mask) 757{ 758 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 759} 760 761int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 762struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 763 unsigned int headroom); 764struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 765 int newtailroom, gfp_t priority); 766int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 767 int offset, int len); 768int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, 769 int len); 770int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 771int skb_pad(struct sk_buff *skb, int pad); 772#define dev_kfree_skb(a) consume_skb(a) 773 774int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb, 775 int getfrag(void *from, char *to, int offset, 776 int len, int odd, struct sk_buff *skb), 777 void *from, int length); 778 779struct skb_seq_state { 780 __u32 lower_offset; 781 __u32 upper_offset; 782 __u32 frag_idx; 783 __u32 stepped_offset; 784 struct sk_buff *root_skb; 785 struct sk_buff *cur_skb; 786 __u8 *frag_data; 787}; 788 789void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 790 unsigned int to, struct skb_seq_state *st); 791unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 792 struct skb_seq_state *st); 793void skb_abort_seq_read(struct skb_seq_state *st); 794 795unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 796 unsigned int to, struct ts_config *config, 797 struct ts_state *state); 798 799/* 800 * Packet hash types specify the type of hash in skb_set_hash. 801 * 802 * Hash types refer to the protocol layer addresses which are used to 803 * construct a packet's hash. The hashes are used to differentiate or identify 804 * flows of the protocol layer for the hash type. Hash types are either 805 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 806 * 807 * Properties of hashes: 808 * 809 * 1) Two packets in different flows have different hash values 810 * 2) Two packets in the same flow should have the same hash value 811 * 812 * A hash at a higher layer is considered to be more specific. A driver should 813 * set the most specific hash possible. 814 * 815 * A driver cannot indicate a more specific hash than the layer at which a hash 816 * was computed. For instance an L3 hash cannot be set as an L4 hash. 817 * 818 * A driver may indicate a hash level which is less specific than the 819 * actual layer the hash was computed on. For instance, a hash computed 820 * at L4 may be considered an L3 hash. This should only be done if the 821 * driver can't unambiguously determine that the HW computed the hash at 822 * the higher layer. Note that the "should" in the second property above 823 * permits this. 824 */ 825enum pkt_hash_types { 826 PKT_HASH_TYPE_NONE, /* Undefined type */ 827 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 828 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 829 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 830}; 831 832static inline void 833skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 834{ 835 skb->l4_hash = (type == PKT_HASH_TYPE_L4); 836 skb->sw_hash = 0; 837 skb->hash = hash; 838} 839 840void __skb_get_hash(struct sk_buff *skb); 841static inline __u32 skb_get_hash(struct sk_buff *skb) 842{ 843 if (!skb->l4_hash && !skb->sw_hash) 844 __skb_get_hash(skb); 845 846 return skb->hash; 847} 848 849static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 850{ 851 return skb->hash; 852} 853 854static inline void skb_clear_hash(struct sk_buff *skb) 855{ 856 skb->hash = 0; 857 skb->sw_hash = 0; 858 skb->l4_hash = 0; 859} 860 861static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 862{ 863 if (!skb->l4_hash) 864 skb_clear_hash(skb); 865} 866 867static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 868{ 869 to->hash = from->hash; 870 to->sw_hash = from->sw_hash; 871 to->l4_hash = from->l4_hash; 872}; 873 874#ifdef NET_SKBUFF_DATA_USES_OFFSET 875static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 876{ 877 return skb->head + skb->end; 878} 879 880static inline unsigned int skb_end_offset(const struct sk_buff *skb) 881{ 882 return skb->end; 883} 884#else 885static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 886{ 887 return skb->end; 888} 889 890static inline unsigned int skb_end_offset(const struct sk_buff *skb) 891{ 892 return skb->end - skb->head; 893} 894#endif 895 896/* Internal */ 897#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 898 899static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 900{ 901 return &skb_shinfo(skb)->hwtstamps; 902} 903 904/** 905 * skb_queue_empty - check if a queue is empty 906 * @list: queue head 907 * 908 * Returns true if the queue is empty, false otherwise. 909 */ 910static inline int skb_queue_empty(const struct sk_buff_head *list) 911{ 912 return list->next == (const struct sk_buff *) list; 913} 914 915/** 916 * skb_queue_is_last - check if skb is the last entry in the queue 917 * @list: queue head 918 * @skb: buffer 919 * 920 * Returns true if @skb is the last buffer on the list. 921 */ 922static inline bool skb_queue_is_last(const struct sk_buff_head *list, 923 const struct sk_buff *skb) 924{ 925 return skb->next == (const struct sk_buff *) list; 926} 927 928/** 929 * skb_queue_is_first - check if skb is the first entry in the queue 930 * @list: queue head 931 * @skb: buffer 932 * 933 * Returns true if @skb is the first buffer on the list. 934 */ 935static inline bool skb_queue_is_first(const struct sk_buff_head *list, 936 const struct sk_buff *skb) 937{ 938 return skb->prev == (const struct sk_buff *) list; 939} 940 941/** 942 * skb_queue_next - return the next packet in the queue 943 * @list: queue head 944 * @skb: current buffer 945 * 946 * Return the next packet in @list after @skb. It is only valid to 947 * call this if skb_queue_is_last() evaluates to false. 948 */ 949static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 950 const struct sk_buff *skb) 951{ 952 /* This BUG_ON may seem severe, but if we just return then we 953 * are going to dereference garbage. 954 */ 955 BUG_ON(skb_queue_is_last(list, skb)); 956 return skb->next; 957} 958 959/** 960 * skb_queue_prev - return the prev packet in the queue 961 * @list: queue head 962 * @skb: current buffer 963 * 964 * Return the prev packet in @list before @skb. It is only valid to 965 * call this if skb_queue_is_first() evaluates to false. 966 */ 967static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 968 const struct sk_buff *skb) 969{ 970 /* This BUG_ON may seem severe, but if we just return then we 971 * are going to dereference garbage. 972 */ 973 BUG_ON(skb_queue_is_first(list, skb)); 974 return skb->prev; 975} 976 977/** 978 * skb_get - reference buffer 979 * @skb: buffer to reference 980 * 981 * Makes another reference to a socket buffer and returns a pointer 982 * to the buffer. 983 */ 984static inline struct sk_buff *skb_get(struct sk_buff *skb) 985{ 986 atomic_inc(&skb->users); 987 return skb; 988} 989 990/* 991 * If users == 1, we are the only owner and are can avoid redundant 992 * atomic change. 993 */ 994 995/** 996 * skb_cloned - is the buffer a clone 997 * @skb: buffer to check 998 * 999 * Returns true if the buffer was generated with skb_clone() and is 1000 * one of multiple shared copies of the buffer. Cloned buffers are 1001 * shared data so must not be written to under normal circumstances. 1002 */ 1003static inline int skb_cloned(const struct sk_buff *skb) 1004{ 1005 return skb->cloned && 1006 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1007} 1008 1009static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1010{ 1011 might_sleep_if(pri & __GFP_WAIT); 1012 1013 if (skb_cloned(skb)) 1014 return pskb_expand_head(skb, 0, 0, pri); 1015 1016 return 0; 1017} 1018 1019/** 1020 * skb_header_cloned - is the header a clone 1021 * @skb: buffer to check 1022 * 1023 * Returns true if modifying the header part of the buffer requires 1024 * the data to be copied. 1025 */ 1026static inline int skb_header_cloned(const struct sk_buff *skb) 1027{ 1028 int dataref; 1029 1030 if (!skb->cloned) 1031 return 0; 1032 1033 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1034 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1035 return dataref != 1; 1036} 1037 1038/** 1039 * skb_header_release - release reference to header 1040 * @skb: buffer to operate on 1041 * 1042 * Drop a reference to the header part of the buffer. This is done 1043 * by acquiring a payload reference. You must not read from the header 1044 * part of skb->data after this. 1045 */ 1046static inline void skb_header_release(struct sk_buff *skb) 1047{ 1048 BUG_ON(skb->nohdr); 1049 skb->nohdr = 1; 1050 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref); 1051} 1052 1053/** 1054 * skb_shared - is the buffer shared 1055 * @skb: buffer to check 1056 * 1057 * Returns true if more than one person has a reference to this 1058 * buffer. 1059 */ 1060static inline int skb_shared(const struct sk_buff *skb) 1061{ 1062 return atomic_read(&skb->users) != 1; 1063} 1064 1065/** 1066 * skb_share_check - check if buffer is shared and if so clone it 1067 * @skb: buffer to check 1068 * @pri: priority for memory allocation 1069 * 1070 * If the buffer is shared the buffer is cloned and the old copy 1071 * drops a reference. A new clone with a single reference is returned. 1072 * If the buffer is not shared the original buffer is returned. When 1073 * being called from interrupt status or with spinlocks held pri must 1074 * be GFP_ATOMIC. 1075 * 1076 * NULL is returned on a memory allocation failure. 1077 */ 1078static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1079{ 1080 might_sleep_if(pri & __GFP_WAIT); 1081 if (skb_shared(skb)) { 1082 struct sk_buff *nskb = skb_clone(skb, pri); 1083 1084 if (likely(nskb)) 1085 consume_skb(skb); 1086 else 1087 kfree_skb(skb); 1088 skb = nskb; 1089 } 1090 return skb; 1091} 1092 1093/* 1094 * Copy shared buffers into a new sk_buff. We effectively do COW on 1095 * packets to handle cases where we have a local reader and forward 1096 * and a couple of other messy ones. The normal one is tcpdumping 1097 * a packet thats being forwarded. 1098 */ 1099 1100/** 1101 * skb_unshare - make a copy of a shared buffer 1102 * @skb: buffer to check 1103 * @pri: priority for memory allocation 1104 * 1105 * If the socket buffer is a clone then this function creates a new 1106 * copy of the data, drops a reference count on the old copy and returns 1107 * the new copy with the reference count at 1. If the buffer is not a clone 1108 * the original buffer is returned. When called with a spinlock held or 1109 * from interrupt state @pri must be %GFP_ATOMIC 1110 * 1111 * %NULL is returned on a memory allocation failure. 1112 */ 1113static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1114 gfp_t pri) 1115{ 1116 might_sleep_if(pri & __GFP_WAIT); 1117 if (skb_cloned(skb)) { 1118 struct sk_buff *nskb = skb_copy(skb, pri); 1119 kfree_skb(skb); /* Free our shared copy */ 1120 skb = nskb; 1121 } 1122 return skb; 1123} 1124 1125/** 1126 * skb_peek - peek at the head of an &sk_buff_head 1127 * @list_: list to peek at 1128 * 1129 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1130 * be careful with this one. A peek leaves the buffer on the 1131 * list and someone else may run off with it. You must hold 1132 * the appropriate locks or have a private queue to do this. 1133 * 1134 * Returns %NULL for an empty list or a pointer to the head element. 1135 * The reference count is not incremented and the reference is therefore 1136 * volatile. Use with caution. 1137 */ 1138static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1139{ 1140 struct sk_buff *skb = list_->next; 1141 1142 if (skb == (struct sk_buff *)list_) 1143 skb = NULL; 1144 return skb; 1145} 1146 1147/** 1148 * skb_peek_next - peek skb following the given one from a queue 1149 * @skb: skb to start from 1150 * @list_: list to peek at 1151 * 1152 * Returns %NULL when the end of the list is met or a pointer to the 1153 * next element. The reference count is not incremented and the 1154 * reference is therefore volatile. Use with caution. 1155 */ 1156static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1157 const struct sk_buff_head *list_) 1158{ 1159 struct sk_buff *next = skb->next; 1160 1161 if (next == (struct sk_buff *)list_) 1162 next = NULL; 1163 return next; 1164} 1165 1166/** 1167 * skb_peek_tail - peek at the tail of an &sk_buff_head 1168 * @list_: list to peek at 1169 * 1170 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1171 * be careful with this one. A peek leaves the buffer on the 1172 * list and someone else may run off with it. You must hold 1173 * the appropriate locks or have a private queue to do this. 1174 * 1175 * Returns %NULL for an empty list or a pointer to the tail element. 1176 * The reference count is not incremented and the reference is therefore 1177 * volatile. Use with caution. 1178 */ 1179static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1180{ 1181 struct sk_buff *skb = list_->prev; 1182 1183 if (skb == (struct sk_buff *)list_) 1184 skb = NULL; 1185 return skb; 1186 1187} 1188 1189/** 1190 * skb_queue_len - get queue length 1191 * @list_: list to measure 1192 * 1193 * Return the length of an &sk_buff queue. 1194 */ 1195static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1196{ 1197 return list_->qlen; 1198} 1199 1200/** 1201 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1202 * @list: queue to initialize 1203 * 1204 * This initializes only the list and queue length aspects of 1205 * an sk_buff_head object. This allows to initialize the list 1206 * aspects of an sk_buff_head without reinitializing things like 1207 * the spinlock. It can also be used for on-stack sk_buff_head 1208 * objects where the spinlock is known to not be used. 1209 */ 1210static inline void __skb_queue_head_init(struct sk_buff_head *list) 1211{ 1212 list->prev = list->next = (struct sk_buff *)list; 1213 list->qlen = 0; 1214} 1215 1216/* 1217 * This function creates a split out lock class for each invocation; 1218 * this is needed for now since a whole lot of users of the skb-queue 1219 * infrastructure in drivers have different locking usage (in hardirq) 1220 * than the networking core (in softirq only). In the long run either the 1221 * network layer or drivers should need annotation to consolidate the 1222 * main types of usage into 3 classes. 1223 */ 1224static inline void skb_queue_head_init(struct sk_buff_head *list) 1225{ 1226 spin_lock_init(&list->lock); 1227 __skb_queue_head_init(list); 1228} 1229 1230static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1231 struct lock_class_key *class) 1232{ 1233 skb_queue_head_init(list); 1234 lockdep_set_class(&list->lock, class); 1235} 1236 1237/* 1238 * Insert an sk_buff on a list. 1239 * 1240 * The "__skb_xxxx()" functions are the non-atomic ones that 1241 * can only be called with interrupts disabled. 1242 */ 1243void skb_insert(struct sk_buff *old, struct sk_buff *newsk, 1244 struct sk_buff_head *list); 1245static inline void __skb_insert(struct sk_buff *newsk, 1246 struct sk_buff *prev, struct sk_buff *next, 1247 struct sk_buff_head *list) 1248{ 1249 newsk->next = next; 1250 newsk->prev = prev; 1251 next->prev = prev->next = newsk; 1252 list->qlen++; 1253} 1254 1255static inline void __skb_queue_splice(const struct sk_buff_head *list, 1256 struct sk_buff *prev, 1257 struct sk_buff *next) 1258{ 1259 struct sk_buff *first = list->next; 1260 struct sk_buff *last = list->prev; 1261 1262 first->prev = prev; 1263 prev->next = first; 1264 1265 last->next = next; 1266 next->prev = last; 1267} 1268 1269/** 1270 * skb_queue_splice - join two skb lists, this is designed for stacks 1271 * @list: the new list to add 1272 * @head: the place to add it in the first list 1273 */ 1274static inline void skb_queue_splice(const struct sk_buff_head *list, 1275 struct sk_buff_head *head) 1276{ 1277 if (!skb_queue_empty(list)) { 1278 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1279 head->qlen += list->qlen; 1280 } 1281} 1282 1283/** 1284 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1285 * @list: the new list to add 1286 * @head: the place to add it in the first list 1287 * 1288 * The list at @list is reinitialised 1289 */ 1290static inline void skb_queue_splice_init(struct sk_buff_head *list, 1291 struct sk_buff_head *head) 1292{ 1293 if (!skb_queue_empty(list)) { 1294 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1295 head->qlen += list->qlen; 1296 __skb_queue_head_init(list); 1297 } 1298} 1299 1300/** 1301 * skb_queue_splice_tail - join two skb lists, each list being a queue 1302 * @list: the new list to add 1303 * @head: the place to add it in the first list 1304 */ 1305static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1306 struct sk_buff_head *head) 1307{ 1308 if (!skb_queue_empty(list)) { 1309 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1310 head->qlen += list->qlen; 1311 } 1312} 1313 1314/** 1315 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 1316 * @list: the new list to add 1317 * @head: the place to add it in the first list 1318 * 1319 * Each of the lists is a queue. 1320 * The list at @list is reinitialised 1321 */ 1322static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 1323 struct sk_buff_head *head) 1324{ 1325 if (!skb_queue_empty(list)) { 1326 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1327 head->qlen += list->qlen; 1328 __skb_queue_head_init(list); 1329 } 1330} 1331 1332/** 1333 * __skb_queue_after - queue a buffer at the list head 1334 * @list: list to use 1335 * @prev: place after this buffer 1336 * @newsk: buffer to queue 1337 * 1338 * Queue a buffer int the middle of a list. This function takes no locks 1339 * and you must therefore hold required locks before calling it. 1340 * 1341 * A buffer cannot be placed on two lists at the same time. 1342 */ 1343static inline void __skb_queue_after(struct sk_buff_head *list, 1344 struct sk_buff *prev, 1345 struct sk_buff *newsk) 1346{ 1347 __skb_insert(newsk, prev, prev->next, list); 1348} 1349 1350void skb_append(struct sk_buff *old, struct sk_buff *newsk, 1351 struct sk_buff_head *list); 1352 1353static inline void __skb_queue_before(struct sk_buff_head *list, 1354 struct sk_buff *next, 1355 struct sk_buff *newsk) 1356{ 1357 __skb_insert(newsk, next->prev, next, list); 1358} 1359 1360/** 1361 * __skb_queue_head - queue a buffer at the list head 1362 * @list: list to use 1363 * @newsk: buffer to queue 1364 * 1365 * Queue a buffer at the start of a list. This function takes no locks 1366 * and you must therefore hold required locks before calling it. 1367 * 1368 * A buffer cannot be placed on two lists at the same time. 1369 */ 1370void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 1371static inline void __skb_queue_head(struct sk_buff_head *list, 1372 struct sk_buff *newsk) 1373{ 1374 __skb_queue_after(list, (struct sk_buff *)list, newsk); 1375} 1376 1377/** 1378 * __skb_queue_tail - queue a buffer at the list tail 1379 * @list: list to use 1380 * @newsk: buffer to queue 1381 * 1382 * Queue a buffer at the end of a list. This function takes no locks 1383 * and you must therefore hold required locks before calling it. 1384 * 1385 * A buffer cannot be placed on two lists at the same time. 1386 */ 1387void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 1388static inline void __skb_queue_tail(struct sk_buff_head *list, 1389 struct sk_buff *newsk) 1390{ 1391 __skb_queue_before(list, (struct sk_buff *)list, newsk); 1392} 1393 1394/* 1395 * remove sk_buff from list. _Must_ be called atomically, and with 1396 * the list known.. 1397 */ 1398void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 1399static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 1400{ 1401 struct sk_buff *next, *prev; 1402 1403 list->qlen--; 1404 next = skb->next; 1405 prev = skb->prev; 1406 skb->next = skb->prev = NULL; 1407 next->prev = prev; 1408 prev->next = next; 1409} 1410 1411/** 1412 * __skb_dequeue - remove from the head of the queue 1413 * @list: list to dequeue from 1414 * 1415 * Remove the head of the list. This function does not take any locks 1416 * so must be used with appropriate locks held only. The head item is 1417 * returned or %NULL if the list is empty. 1418 */ 1419struct sk_buff *skb_dequeue(struct sk_buff_head *list); 1420static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 1421{ 1422 struct sk_buff *skb = skb_peek(list); 1423 if (skb) 1424 __skb_unlink(skb, list); 1425 return skb; 1426} 1427 1428/** 1429 * __skb_dequeue_tail - remove from the tail of the queue 1430 * @list: list to dequeue from 1431 * 1432 * Remove the tail of the list. This function does not take any locks 1433 * so must be used with appropriate locks held only. The tail item is 1434 * returned or %NULL if the list is empty. 1435 */ 1436struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 1437static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 1438{ 1439 struct sk_buff *skb = skb_peek_tail(list); 1440 if (skb) 1441 __skb_unlink(skb, list); 1442 return skb; 1443} 1444 1445 1446static inline bool skb_is_nonlinear(const struct sk_buff *skb) 1447{ 1448 return skb->data_len; 1449} 1450 1451static inline unsigned int skb_headlen(const struct sk_buff *skb) 1452{ 1453 return skb->len - skb->data_len; 1454} 1455 1456static inline int skb_pagelen(const struct sk_buff *skb) 1457{ 1458 int i, len = 0; 1459 1460 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--) 1461 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 1462 return len + skb_headlen(skb); 1463} 1464 1465/** 1466 * __skb_fill_page_desc - initialise a paged fragment in an skb 1467 * @skb: buffer containing fragment to be initialised 1468 * @i: paged fragment index to initialise 1469 * @page: the page to use for this fragment 1470 * @off: the offset to the data with @page 1471 * @size: the length of the data 1472 * 1473 * Initialises the @i'th fragment of @skb to point to &size bytes at 1474 * offset @off within @page. 1475 * 1476 * Does not take any additional reference on the fragment. 1477 */ 1478static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 1479 struct page *page, int off, int size) 1480{ 1481 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1482 1483 /* 1484 * Propagate page->pfmemalloc to the skb if we can. The problem is 1485 * that not all callers have unique ownership of the page. If 1486 * pfmemalloc is set, we check the mapping as a mapping implies 1487 * page->index is set (index and pfmemalloc share space). 1488 * If it's a valid mapping, we cannot use page->pfmemalloc but we 1489 * do not lose pfmemalloc information as the pages would not be 1490 * allocated using __GFP_MEMALLOC. 1491 */ 1492 frag->page.p = page; 1493 frag->page_offset = off; 1494 skb_frag_size_set(frag, size); 1495 1496 page = compound_head(page); 1497 if (page->pfmemalloc && !page->mapping) 1498 skb->pfmemalloc = true; 1499} 1500 1501/** 1502 * skb_fill_page_desc - initialise a paged fragment in an skb 1503 * @skb: buffer containing fragment to be initialised 1504 * @i: paged fragment index to initialise 1505 * @page: the page to use for this fragment 1506 * @off: the offset to the data with @page 1507 * @size: the length of the data 1508 * 1509 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 1510 * @skb to point to @size bytes at offset @off within @page. In 1511 * addition updates @skb such that @i is the last fragment. 1512 * 1513 * Does not take any additional reference on the fragment. 1514 */ 1515static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 1516 struct page *page, int off, int size) 1517{ 1518 __skb_fill_page_desc(skb, i, page, off, size); 1519 skb_shinfo(skb)->nr_frags = i + 1; 1520} 1521 1522void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 1523 int size, unsigned int truesize); 1524 1525void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 1526 unsigned int truesize); 1527 1528#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags) 1529#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb)) 1530#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 1531 1532#ifdef NET_SKBUFF_DATA_USES_OFFSET 1533static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1534{ 1535 return skb->head + skb->tail; 1536} 1537 1538static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1539{ 1540 skb->tail = skb->data - skb->head; 1541} 1542 1543static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1544{ 1545 skb_reset_tail_pointer(skb); 1546 skb->tail += offset; 1547} 1548 1549#else /* NET_SKBUFF_DATA_USES_OFFSET */ 1550static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 1551{ 1552 return skb->tail; 1553} 1554 1555static inline void skb_reset_tail_pointer(struct sk_buff *skb) 1556{ 1557 skb->tail = skb->data; 1558} 1559 1560static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 1561{ 1562 skb->tail = skb->data + offset; 1563} 1564 1565#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 1566 1567/* 1568 * Add data to an sk_buff 1569 */ 1570unsigned char *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 1571unsigned char *skb_put(struct sk_buff *skb, unsigned int len); 1572static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len) 1573{ 1574 unsigned char *tmp = skb_tail_pointer(skb); 1575 SKB_LINEAR_ASSERT(skb); 1576 skb->tail += len; 1577 skb->len += len; 1578 return tmp; 1579} 1580 1581unsigned char *skb_push(struct sk_buff *skb, unsigned int len); 1582static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len) 1583{ 1584 skb->data -= len; 1585 skb->len += len; 1586 return skb->data; 1587} 1588 1589unsigned char *skb_pull(struct sk_buff *skb, unsigned int len); 1590static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len) 1591{ 1592 skb->len -= len; 1593 BUG_ON(skb->len < skb->data_len); 1594 return skb->data += len; 1595} 1596 1597static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len) 1598{ 1599 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 1600} 1601 1602unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta); 1603 1604static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len) 1605{ 1606 if (len > skb_headlen(skb) && 1607 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 1608 return NULL; 1609 skb->len -= len; 1610 return skb->data += len; 1611} 1612 1613static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len) 1614{ 1615 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 1616} 1617 1618static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len) 1619{ 1620 if (likely(len <= skb_headlen(skb))) 1621 return 1; 1622 if (unlikely(len > skb->len)) 1623 return 0; 1624 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 1625} 1626 1627/** 1628 * skb_headroom - bytes at buffer head 1629 * @skb: buffer to check 1630 * 1631 * Return the number of bytes of free space at the head of an &sk_buff. 1632 */ 1633static inline unsigned int skb_headroom(const struct sk_buff *skb) 1634{ 1635 return skb->data - skb->head; 1636} 1637 1638/** 1639 * skb_tailroom - bytes at buffer end 1640 * @skb: buffer to check 1641 * 1642 * Return the number of bytes of free space at the tail of an sk_buff 1643 */ 1644static inline int skb_tailroom(const struct sk_buff *skb) 1645{ 1646 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 1647} 1648 1649/** 1650 * skb_availroom - bytes at buffer end 1651 * @skb: buffer to check 1652 * 1653 * Return the number of bytes of free space at the tail of an sk_buff 1654 * allocated by sk_stream_alloc() 1655 */ 1656static inline int skb_availroom(const struct sk_buff *skb) 1657{ 1658 if (skb_is_nonlinear(skb)) 1659 return 0; 1660 1661 return skb->end - skb->tail - skb->reserved_tailroom; 1662} 1663 1664/** 1665 * skb_reserve - adjust headroom 1666 * @skb: buffer to alter 1667 * @len: bytes to move 1668 * 1669 * Increase the headroom of an empty &sk_buff by reducing the tail 1670 * room. This is only allowed for an empty buffer. 1671 */ 1672static inline void skb_reserve(struct sk_buff *skb, int len) 1673{ 1674 skb->data += len; 1675 skb->tail += len; 1676} 1677 1678static inline void skb_reset_inner_headers(struct sk_buff *skb) 1679{ 1680 skb->inner_mac_header = skb->mac_header; 1681 skb->inner_network_header = skb->network_header; 1682 skb->inner_transport_header = skb->transport_header; 1683} 1684 1685static inline void skb_reset_mac_len(struct sk_buff *skb) 1686{ 1687 skb->mac_len = skb->network_header - skb->mac_header; 1688} 1689 1690static inline unsigned char *skb_inner_transport_header(const struct sk_buff 1691 *skb) 1692{ 1693 return skb->head + skb->inner_transport_header; 1694} 1695 1696static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 1697{ 1698 skb->inner_transport_header = skb->data - skb->head; 1699} 1700 1701static inline void skb_set_inner_transport_header(struct sk_buff *skb, 1702 const int offset) 1703{ 1704 skb_reset_inner_transport_header(skb); 1705 skb->inner_transport_header += offset; 1706} 1707 1708static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 1709{ 1710 return skb->head + skb->inner_network_header; 1711} 1712 1713static inline void skb_reset_inner_network_header(struct sk_buff *skb) 1714{ 1715 skb->inner_network_header = skb->data - skb->head; 1716} 1717 1718static inline void skb_set_inner_network_header(struct sk_buff *skb, 1719 const int offset) 1720{ 1721 skb_reset_inner_network_header(skb); 1722 skb->inner_network_header += offset; 1723} 1724 1725static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 1726{ 1727 return skb->head + skb->inner_mac_header; 1728} 1729 1730static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 1731{ 1732 skb->inner_mac_header = skb->data - skb->head; 1733} 1734 1735static inline void skb_set_inner_mac_header(struct sk_buff *skb, 1736 const int offset) 1737{ 1738 skb_reset_inner_mac_header(skb); 1739 skb->inner_mac_header += offset; 1740} 1741static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 1742{ 1743 return skb->transport_header != (typeof(skb->transport_header))~0U; 1744} 1745 1746static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 1747{ 1748 return skb->head + skb->transport_header; 1749} 1750 1751static inline void skb_reset_transport_header(struct sk_buff *skb) 1752{ 1753 skb->transport_header = skb->data - skb->head; 1754} 1755 1756static inline void skb_set_transport_header(struct sk_buff *skb, 1757 const int offset) 1758{ 1759 skb_reset_transport_header(skb); 1760 skb->transport_header += offset; 1761} 1762 1763static inline unsigned char *skb_network_header(const struct sk_buff *skb) 1764{ 1765 return skb->head + skb->network_header; 1766} 1767 1768static inline void skb_reset_network_header(struct sk_buff *skb) 1769{ 1770 skb->network_header = skb->data - skb->head; 1771} 1772 1773static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 1774{ 1775 skb_reset_network_header(skb); 1776 skb->network_header += offset; 1777} 1778 1779static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 1780{ 1781 return skb->head + skb->mac_header; 1782} 1783 1784static inline int skb_mac_header_was_set(const struct sk_buff *skb) 1785{ 1786 return skb->mac_header != (typeof(skb->mac_header))~0U; 1787} 1788 1789static inline void skb_reset_mac_header(struct sk_buff *skb) 1790{ 1791 skb->mac_header = skb->data - skb->head; 1792} 1793 1794static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 1795{ 1796 skb_reset_mac_header(skb); 1797 skb->mac_header += offset; 1798} 1799 1800static inline void skb_pop_mac_header(struct sk_buff *skb) 1801{ 1802 skb->mac_header = skb->network_header; 1803} 1804 1805static inline void skb_probe_transport_header(struct sk_buff *skb, 1806 const int offset_hint) 1807{ 1808 struct flow_keys keys; 1809 1810 if (skb_transport_header_was_set(skb)) 1811 return; 1812 else if (skb_flow_dissect(skb, &keys)) 1813 skb_set_transport_header(skb, keys.thoff); 1814 else 1815 skb_set_transport_header(skb, offset_hint); 1816} 1817 1818static inline void skb_mac_header_rebuild(struct sk_buff *skb) 1819{ 1820 if (skb_mac_header_was_set(skb)) { 1821 const unsigned char *old_mac = skb_mac_header(skb); 1822 1823 skb_set_mac_header(skb, -skb->mac_len); 1824 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 1825 } 1826} 1827 1828static inline int skb_checksum_start_offset(const struct sk_buff *skb) 1829{ 1830 return skb->csum_start - skb_headroom(skb); 1831} 1832 1833static inline int skb_transport_offset(const struct sk_buff *skb) 1834{ 1835 return skb_transport_header(skb) - skb->data; 1836} 1837 1838static inline u32 skb_network_header_len(const struct sk_buff *skb) 1839{ 1840 return skb->transport_header - skb->network_header; 1841} 1842 1843static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 1844{ 1845 return skb->inner_transport_header - skb->inner_network_header; 1846} 1847 1848static inline int skb_network_offset(const struct sk_buff *skb) 1849{ 1850 return skb_network_header(skb) - skb->data; 1851} 1852 1853static inline int skb_inner_network_offset(const struct sk_buff *skb) 1854{ 1855 return skb_inner_network_header(skb) - skb->data; 1856} 1857 1858static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 1859{ 1860 return pskb_may_pull(skb, skb_network_offset(skb) + len); 1861} 1862 1863static inline void skb_pop_rcv_encapsulation(struct sk_buff *skb) 1864{ 1865 /* Only continue with checksum unnecessary if device indicated 1866 * it is valid across encapsulation (skb->encapsulation was set). 1867 */ 1868 if (skb->ip_summed == CHECKSUM_UNNECESSARY && !skb->encapsulation) 1869 skb->ip_summed = CHECKSUM_NONE; 1870 1871 skb->encapsulation = 0; 1872 skb->csum_valid = 0; 1873} 1874 1875/* 1876 * CPUs often take a performance hit when accessing unaligned memory 1877 * locations. The actual performance hit varies, it can be small if the 1878 * hardware handles it or large if we have to take an exception and fix it 1879 * in software. 1880 * 1881 * Since an ethernet header is 14 bytes network drivers often end up with 1882 * the IP header at an unaligned offset. The IP header can be aligned by 1883 * shifting the start of the packet by 2 bytes. Drivers should do this 1884 * with: 1885 * 1886 * skb_reserve(skb, NET_IP_ALIGN); 1887 * 1888 * The downside to this alignment of the IP header is that the DMA is now 1889 * unaligned. On some architectures the cost of an unaligned DMA is high 1890 * and this cost outweighs the gains made by aligning the IP header. 1891 * 1892 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 1893 * to be overridden. 1894 */ 1895#ifndef NET_IP_ALIGN 1896#define NET_IP_ALIGN 2 1897#endif 1898 1899/* 1900 * The networking layer reserves some headroom in skb data (via 1901 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 1902 * the header has to grow. In the default case, if the header has to grow 1903 * 32 bytes or less we avoid the reallocation. 1904 * 1905 * Unfortunately this headroom changes the DMA alignment of the resulting 1906 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 1907 * on some architectures. An architecture can override this value, 1908 * perhaps setting it to a cacheline in size (since that will maintain 1909 * cacheline alignment of the DMA). It must be a power of 2. 1910 * 1911 * Various parts of the networking layer expect at least 32 bytes of 1912 * headroom, you should not reduce this. 1913 * 1914 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 1915 * to reduce average number of cache lines per packet. 1916 * get_rps_cpus() for example only access one 64 bytes aligned block : 1917 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 1918 */ 1919#ifndef NET_SKB_PAD 1920#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 1921#endif 1922 1923int ___pskb_trim(struct sk_buff *skb, unsigned int len); 1924 1925static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 1926{ 1927 if (unlikely(skb_is_nonlinear(skb))) { 1928 WARN_ON(1); 1929 return; 1930 } 1931 skb->len = len; 1932 skb_set_tail_pointer(skb, len); 1933} 1934 1935void skb_trim(struct sk_buff *skb, unsigned int len); 1936 1937static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 1938{ 1939 if (skb->data_len) 1940 return ___pskb_trim(skb, len); 1941 __skb_trim(skb, len); 1942 return 0; 1943} 1944 1945static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 1946{ 1947 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 1948} 1949 1950/** 1951 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 1952 * @skb: buffer to alter 1953 * @len: new length 1954 * 1955 * This is identical to pskb_trim except that the caller knows that 1956 * the skb is not cloned so we should never get an error due to out- 1957 * of-memory. 1958 */ 1959static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 1960{ 1961 int err = pskb_trim(skb, len); 1962 BUG_ON(err); 1963} 1964 1965/** 1966 * skb_orphan - orphan a buffer 1967 * @skb: buffer to orphan 1968 * 1969 * If a buffer currently has an owner then we call the owner's 1970 * destructor function and make the @skb unowned. The buffer continues 1971 * to exist but is no longer charged to its former owner. 1972 */ 1973static inline void skb_orphan(struct sk_buff *skb) 1974{ 1975 if (skb->destructor) { 1976 skb->destructor(skb); 1977 skb->destructor = NULL; 1978 skb->sk = NULL; 1979 } else { 1980 BUG_ON(skb->sk); 1981 } 1982} 1983 1984/** 1985 * skb_orphan_frags - orphan the frags contained in a buffer 1986 * @skb: buffer to orphan frags from 1987 * @gfp_mask: allocation mask for replacement pages 1988 * 1989 * For each frag in the SKB which needs a destructor (i.e. has an 1990 * owner) create a copy of that frag and release the original 1991 * page by calling the destructor. 1992 */ 1993static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 1994{ 1995 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY))) 1996 return 0; 1997 return skb_copy_ubufs(skb, gfp_mask); 1998} 1999 2000/** 2001 * __skb_queue_purge - empty a list 2002 * @list: list to empty 2003 * 2004 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2005 * the list and one reference dropped. This function does not take the 2006 * list lock and the caller must hold the relevant locks to use it. 2007 */ 2008void skb_queue_purge(struct sk_buff_head *list); 2009static inline void __skb_queue_purge(struct sk_buff_head *list) 2010{ 2011 struct sk_buff *skb; 2012 while ((skb = __skb_dequeue(list)) != NULL) 2013 kfree_skb(skb); 2014} 2015 2016#define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768) 2017#define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER) 2018#define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE 2019 2020void *netdev_alloc_frag(unsigned int fragsz); 2021 2022struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2023 gfp_t gfp_mask); 2024 2025/** 2026 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2027 * @dev: network device to receive on 2028 * @length: length to allocate 2029 * 2030 * Allocate a new &sk_buff and assign it a usage count of one. The 2031 * buffer has unspecified headroom built in. Users should allocate 2032 * the headroom they think they need without accounting for the 2033 * built in space. The built in space is used for optimisations. 2034 * 2035 * %NULL is returned if there is no free memory. Although this function 2036 * allocates memory it can be called from an interrupt. 2037 */ 2038static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2039 unsigned int length) 2040{ 2041 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2042} 2043 2044/* legacy helper around __netdev_alloc_skb() */ 2045static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2046 gfp_t gfp_mask) 2047{ 2048 return __netdev_alloc_skb(NULL, length, gfp_mask); 2049} 2050 2051/* legacy helper around netdev_alloc_skb() */ 2052static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2053{ 2054 return netdev_alloc_skb(NULL, length); 2055} 2056 2057 2058static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2059 unsigned int length, gfp_t gfp) 2060{ 2061 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2062 2063 if (NET_IP_ALIGN && skb) 2064 skb_reserve(skb, NET_IP_ALIGN); 2065 return skb; 2066} 2067 2068static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2069 unsigned int length) 2070{ 2071 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2072} 2073 2074/** 2075 * __skb_alloc_pages - allocate pages for ps-rx on a skb and preserve pfmemalloc data 2076 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2077 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2078 * @order: size of the allocation 2079 * 2080 * Allocate a new page. 2081 * 2082 * %NULL is returned if there is no free memory. 2083*/ 2084static inline struct page *__skb_alloc_pages(gfp_t gfp_mask, 2085 struct sk_buff *skb, 2086 unsigned int order) 2087{ 2088 struct page *page; 2089 2090 gfp_mask |= __GFP_COLD; 2091 2092 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2093 gfp_mask |= __GFP_MEMALLOC; 2094 2095 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2096 if (skb && page && page->pfmemalloc) 2097 skb->pfmemalloc = true; 2098 2099 return page; 2100} 2101 2102/** 2103 * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data 2104 * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX 2105 * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used 2106 * 2107 * Allocate a new page. 2108 * 2109 * %NULL is returned if there is no free memory. 2110 */ 2111static inline struct page *__skb_alloc_page(gfp_t gfp_mask, 2112 struct sk_buff *skb) 2113{ 2114 return __skb_alloc_pages(gfp_mask, skb, 0); 2115} 2116 2117/** 2118 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 2119 * @page: The page that was allocated from skb_alloc_page 2120 * @skb: The skb that may need pfmemalloc set 2121 */ 2122static inline void skb_propagate_pfmemalloc(struct page *page, 2123 struct sk_buff *skb) 2124{ 2125 if (page && page->pfmemalloc) 2126 skb->pfmemalloc = true; 2127} 2128 2129/** 2130 * skb_frag_page - retrieve the page referred to by a paged fragment 2131 * @frag: the paged fragment 2132 * 2133 * Returns the &struct page associated with @frag. 2134 */ 2135static inline struct page *skb_frag_page(const skb_frag_t *frag) 2136{ 2137 return frag->page.p; 2138} 2139 2140/** 2141 * __skb_frag_ref - take an addition reference on a paged fragment. 2142 * @frag: the paged fragment 2143 * 2144 * Takes an additional reference on the paged fragment @frag. 2145 */ 2146static inline void __skb_frag_ref(skb_frag_t *frag) 2147{ 2148 get_page(skb_frag_page(frag)); 2149} 2150 2151/** 2152 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 2153 * @skb: the buffer 2154 * @f: the fragment offset. 2155 * 2156 * Takes an additional reference on the @f'th paged fragment of @skb. 2157 */ 2158static inline void skb_frag_ref(struct sk_buff *skb, int f) 2159{ 2160 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 2161} 2162 2163/** 2164 * __skb_frag_unref - release a reference on a paged fragment. 2165 * @frag: the paged fragment 2166 * 2167 * Releases a reference on the paged fragment @frag. 2168 */ 2169static inline void __skb_frag_unref(skb_frag_t *frag) 2170{ 2171 put_page(skb_frag_page(frag)); 2172} 2173 2174/** 2175 * skb_frag_unref - release a reference on a paged fragment of an skb. 2176 * @skb: the buffer 2177 * @f: the fragment offset 2178 * 2179 * Releases a reference on the @f'th paged fragment of @skb. 2180 */ 2181static inline void skb_frag_unref(struct sk_buff *skb, int f) 2182{ 2183 __skb_frag_unref(&skb_shinfo(skb)->frags[f]); 2184} 2185 2186/** 2187 * skb_frag_address - gets the address of the data contained in a paged fragment 2188 * @frag: the paged fragment buffer 2189 * 2190 * Returns the address of the data within @frag. The page must already 2191 * be mapped. 2192 */ 2193static inline void *skb_frag_address(const skb_frag_t *frag) 2194{ 2195 return page_address(skb_frag_page(frag)) + frag->page_offset; 2196} 2197 2198/** 2199 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 2200 * @frag: the paged fragment buffer 2201 * 2202 * Returns the address of the data within @frag. Checks that the page 2203 * is mapped and returns %NULL otherwise. 2204 */ 2205static inline void *skb_frag_address_safe(const skb_frag_t *frag) 2206{ 2207 void *ptr = page_address(skb_frag_page(frag)); 2208 if (unlikely(!ptr)) 2209 return NULL; 2210 2211 return ptr + frag->page_offset; 2212} 2213 2214/** 2215 * __skb_frag_set_page - sets the page contained in a paged fragment 2216 * @frag: the paged fragment 2217 * @page: the page to set 2218 * 2219 * Sets the fragment @frag to contain @page. 2220 */ 2221static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 2222{ 2223 frag->page.p = page; 2224} 2225 2226/** 2227 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 2228 * @skb: the buffer 2229 * @f: the fragment offset 2230 * @page: the page to set 2231 * 2232 * Sets the @f'th fragment of @skb to contain @page. 2233 */ 2234static inline void skb_frag_set_page(struct sk_buff *skb, int f, 2235 struct page *page) 2236{ 2237 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 2238} 2239 2240bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 2241 2242/** 2243 * skb_frag_dma_map - maps a paged fragment via the DMA API 2244 * @dev: the device to map the fragment to 2245 * @frag: the paged fragment to map 2246 * @offset: the offset within the fragment (starting at the 2247 * fragment's own offset) 2248 * @size: the number of bytes to map 2249 * @dir: the direction of the mapping (%PCI_DMA_*) 2250 * 2251 * Maps the page associated with @frag to @device. 2252 */ 2253static inline dma_addr_t skb_frag_dma_map(struct device *dev, 2254 const skb_frag_t *frag, 2255 size_t offset, size_t size, 2256 enum dma_data_direction dir) 2257{ 2258 return dma_map_page(dev, skb_frag_page(frag), 2259 frag->page_offset + offset, size, dir); 2260} 2261 2262static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 2263 gfp_t gfp_mask) 2264{ 2265 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 2266} 2267 2268 2269static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 2270 gfp_t gfp_mask) 2271{ 2272 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 2273} 2274 2275 2276/** 2277 * skb_clone_writable - is the header of a clone writable 2278 * @skb: buffer to check 2279 * @len: length up to which to write 2280 * 2281 * Returns true if modifying the header part of the cloned buffer 2282 * does not requires the data to be copied. 2283 */ 2284static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 2285{ 2286 return !skb_header_cloned(skb) && 2287 skb_headroom(skb) + len <= skb->hdr_len; 2288} 2289 2290static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 2291 int cloned) 2292{ 2293 int delta = 0; 2294 2295 if (headroom > skb_headroom(skb)) 2296 delta = headroom - skb_headroom(skb); 2297 2298 if (delta || cloned) 2299 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 2300 GFP_ATOMIC); 2301 return 0; 2302} 2303 2304/** 2305 * skb_cow - copy header of skb when it is required 2306 * @skb: buffer to cow 2307 * @headroom: needed headroom 2308 * 2309 * If the skb passed lacks sufficient headroom or its data part 2310 * is shared, data is reallocated. If reallocation fails, an error 2311 * is returned and original skb is not changed. 2312 * 2313 * The result is skb with writable area skb->head...skb->tail 2314 * and at least @headroom of space at head. 2315 */ 2316static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 2317{ 2318 return __skb_cow(skb, headroom, skb_cloned(skb)); 2319} 2320 2321/** 2322 * skb_cow_head - skb_cow but only making the head writable 2323 * @skb: buffer to cow 2324 * @headroom: needed headroom 2325 * 2326 * This function is identical to skb_cow except that we replace the 2327 * skb_cloned check by skb_header_cloned. It should be used when 2328 * you only need to push on some header and do not need to modify 2329 * the data. 2330 */ 2331static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 2332{ 2333 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 2334} 2335 2336/** 2337 * skb_padto - pad an skbuff up to a minimal size 2338 * @skb: buffer to pad 2339 * @len: minimal length 2340 * 2341 * Pads up a buffer to ensure the trailing bytes exist and are 2342 * blanked. If the buffer already contains sufficient data it 2343 * is untouched. Otherwise it is extended. Returns zero on 2344 * success. The skb is freed on error. 2345 */ 2346 2347static inline int skb_padto(struct sk_buff *skb, unsigned int len) 2348{ 2349 unsigned int size = skb->len; 2350 if (likely(size >= len)) 2351 return 0; 2352 return skb_pad(skb, len - size); 2353} 2354 2355static inline int skb_add_data(struct sk_buff *skb, 2356 char __user *from, int copy) 2357{ 2358 const int off = skb->len; 2359 2360 if (skb->ip_summed == CHECKSUM_NONE) { 2361 int err = 0; 2362 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy), 2363 copy, 0, &err); 2364 if (!err) { 2365 skb->csum = csum_block_add(skb->csum, csum, off); 2366 return 0; 2367 } 2368 } else if (!copy_from_user(skb_put(skb, copy), from, copy)) 2369 return 0; 2370 2371 __skb_trim(skb, off); 2372 return -EFAULT; 2373} 2374 2375static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 2376 const struct page *page, int off) 2377{ 2378 if (i) { 2379 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1]; 2380 2381 return page == skb_frag_page(frag) && 2382 off == frag->page_offset + skb_frag_size(frag); 2383 } 2384 return false; 2385} 2386 2387static inline int __skb_linearize(struct sk_buff *skb) 2388{ 2389 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 2390} 2391 2392/** 2393 * skb_linearize - convert paged skb to linear one 2394 * @skb: buffer to linarize 2395 * 2396 * If there is no free memory -ENOMEM is returned, otherwise zero 2397 * is returned and the old skb data released. 2398 */ 2399static inline int skb_linearize(struct sk_buff *skb) 2400{ 2401 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 2402} 2403 2404/** 2405 * skb_has_shared_frag - can any frag be overwritten 2406 * @skb: buffer to test 2407 * 2408 * Return true if the skb has at least one frag that might be modified 2409 * by an external entity (as in vmsplice()/sendfile()) 2410 */ 2411static inline bool skb_has_shared_frag(const struct sk_buff *skb) 2412{ 2413 return skb_is_nonlinear(skb) && 2414 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG; 2415} 2416 2417/** 2418 * skb_linearize_cow - make sure skb is linear and writable 2419 * @skb: buffer to process 2420 * 2421 * If there is no free memory -ENOMEM is returned, otherwise zero 2422 * is returned and the old skb data released. 2423 */ 2424static inline int skb_linearize_cow(struct sk_buff *skb) 2425{ 2426 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 2427 __skb_linearize(skb) : 0; 2428} 2429 2430/** 2431 * skb_postpull_rcsum - update checksum for received skb after pull 2432 * @skb: buffer to update 2433 * @start: start of data before pull 2434 * @len: length of data pulled 2435 * 2436 * After doing a pull on a received packet, you need to call this to 2437 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 2438 * CHECKSUM_NONE so that it can be recomputed from scratch. 2439 */ 2440 2441static inline void skb_postpull_rcsum(struct sk_buff *skb, 2442 const void *start, unsigned int len) 2443{ 2444 if (skb->ip_summed == CHECKSUM_COMPLETE) 2445 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0)); 2446} 2447 2448unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 2449 2450/** 2451 * pskb_trim_rcsum - trim received skb and update checksum 2452 * @skb: buffer to trim 2453 * @len: new length 2454 * 2455 * This is exactly the same as pskb_trim except that it ensures the 2456 * checksum of received packets are still valid after the operation. 2457 */ 2458 2459static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 2460{ 2461 if (likely(len >= skb->len)) 2462 return 0; 2463 if (skb->ip_summed == CHECKSUM_COMPLETE) 2464 skb->ip_summed = CHECKSUM_NONE; 2465 return __pskb_trim(skb, len); 2466} 2467 2468#define skb_queue_walk(queue, skb) \ 2469 for (skb = (queue)->next; \ 2470 skb != (struct sk_buff *)(queue); \ 2471 skb = skb->next) 2472 2473#define skb_queue_walk_safe(queue, skb, tmp) \ 2474 for (skb = (queue)->next, tmp = skb->next; \ 2475 skb != (struct sk_buff *)(queue); \ 2476 skb = tmp, tmp = skb->next) 2477 2478#define skb_queue_walk_from(queue, skb) \ 2479 for (; skb != (struct sk_buff *)(queue); \ 2480 skb = skb->next) 2481 2482#define skb_queue_walk_from_safe(queue, skb, tmp) \ 2483 for (tmp = skb->next; \ 2484 skb != (struct sk_buff *)(queue); \ 2485 skb = tmp, tmp = skb->next) 2486 2487#define skb_queue_reverse_walk(queue, skb) \ 2488 for (skb = (queue)->prev; \ 2489 skb != (struct sk_buff *)(queue); \ 2490 skb = skb->prev) 2491 2492#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 2493 for (skb = (queue)->prev, tmp = skb->prev; \ 2494 skb != (struct sk_buff *)(queue); \ 2495 skb = tmp, tmp = skb->prev) 2496 2497#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 2498 for (tmp = skb->prev; \ 2499 skb != (struct sk_buff *)(queue); \ 2500 skb = tmp, tmp = skb->prev) 2501 2502static inline bool skb_has_frag_list(const struct sk_buff *skb) 2503{ 2504 return skb_shinfo(skb)->frag_list != NULL; 2505} 2506 2507static inline void skb_frag_list_init(struct sk_buff *skb) 2508{ 2509 skb_shinfo(skb)->frag_list = NULL; 2510} 2511 2512static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag) 2513{ 2514 frag->next = skb_shinfo(skb)->frag_list; 2515 skb_shinfo(skb)->frag_list = frag; 2516} 2517 2518#define skb_walk_frags(skb, iter) \ 2519 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 2520 2521struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags, 2522 int *peeked, int *off, int *err); 2523struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 2524 int *err); 2525unsigned int datagram_poll(struct file *file, struct socket *sock, 2526 struct poll_table_struct *wait); 2527int skb_copy_datagram_iovec(const struct sk_buff *from, int offset, 2528 struct iovec *to, int size); 2529int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb, int hlen, 2530 struct iovec *iov); 2531int skb_copy_datagram_from_iovec(struct sk_buff *skb, int offset, 2532 const struct iovec *from, int from_offset, 2533 int len); 2534int zerocopy_sg_from_iovec(struct sk_buff *skb, const struct iovec *frm, 2535 int offset, size_t count); 2536int skb_copy_datagram_const_iovec(const struct sk_buff *from, int offset, 2537 const struct iovec *to, int to_offset, 2538 int size); 2539void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 2540void skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb); 2541int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 2542int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 2543int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 2544__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 2545 int len, __wsum csum); 2546int skb_splice_bits(struct sk_buff *skb, unsigned int offset, 2547 struct pipe_inode_info *pipe, unsigned int len, 2548 unsigned int flags); 2549void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 2550unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 2551int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 2552 int len, int hlen); 2553void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 2554int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 2555void skb_scrub_packet(struct sk_buff *skb, bool xnet); 2556unsigned int skb_gso_transport_seglen(const struct sk_buff *skb); 2557struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 2558struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 2559 2560struct skb_checksum_ops { 2561 __wsum (*update)(const void *mem, int len, __wsum wsum); 2562 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 2563}; 2564 2565__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 2566 __wsum csum, const struct skb_checksum_ops *ops); 2567__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 2568 __wsum csum); 2569 2570static inline void *skb_header_pointer(const struct sk_buff *skb, int offset, 2571 int len, void *buffer) 2572{ 2573 int hlen = skb_headlen(skb); 2574 2575 if (hlen - offset >= len) 2576 return skb->data + offset; 2577 2578 if (skb_copy_bits(skb, offset, buffer, len) < 0) 2579 return NULL; 2580 2581 return buffer; 2582} 2583 2584/** 2585 * skb_needs_linearize - check if we need to linearize a given skb 2586 * depending on the given device features. 2587 * @skb: socket buffer to check 2588 * @features: net device features 2589 * 2590 * Returns true if either: 2591 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2592 * 2. skb is fragmented and the device does not support SG. 2593 */ 2594static inline bool skb_needs_linearize(struct sk_buff *skb, 2595 netdev_features_t features) 2596{ 2597 return skb_is_nonlinear(skb) && 2598 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 2599 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 2600} 2601 2602static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 2603 void *to, 2604 const unsigned int len) 2605{ 2606 memcpy(to, skb->data, len); 2607} 2608 2609static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 2610 const int offset, void *to, 2611 const unsigned int len) 2612{ 2613 memcpy(to, skb->data + offset, len); 2614} 2615 2616static inline void skb_copy_to_linear_data(struct sk_buff *skb, 2617 const void *from, 2618 const unsigned int len) 2619{ 2620 memcpy(skb->data, from, len); 2621} 2622 2623static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 2624 const int offset, 2625 const void *from, 2626 const unsigned int len) 2627{ 2628 memcpy(skb->data + offset, from, len); 2629} 2630 2631void skb_init(void); 2632 2633static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 2634{ 2635 return skb->tstamp; 2636} 2637 2638/** 2639 * skb_get_timestamp - get timestamp from a skb 2640 * @skb: skb to get stamp from 2641 * @stamp: pointer to struct timeval to store stamp in 2642 * 2643 * Timestamps are stored in the skb as offsets to a base timestamp. 2644 * This function converts the offset back to a struct timeval and stores 2645 * it in stamp. 2646 */ 2647static inline void skb_get_timestamp(const struct sk_buff *skb, 2648 struct timeval *stamp) 2649{ 2650 *stamp = ktime_to_timeval(skb->tstamp); 2651} 2652 2653static inline void skb_get_timestampns(const struct sk_buff *skb, 2654 struct timespec *stamp) 2655{ 2656 *stamp = ktime_to_timespec(skb->tstamp); 2657} 2658 2659static inline void __net_timestamp(struct sk_buff *skb) 2660{ 2661 skb->tstamp = ktime_get_real(); 2662} 2663 2664static inline ktime_t net_timedelta(ktime_t t) 2665{ 2666 return ktime_sub(ktime_get_real(), t); 2667} 2668 2669static inline ktime_t net_invalid_timestamp(void) 2670{ 2671 return ktime_set(0, 0); 2672} 2673 2674#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2675 2676void skb_clone_tx_timestamp(struct sk_buff *skb); 2677bool skb_defer_rx_timestamp(struct sk_buff *skb); 2678 2679#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 2680 2681static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 2682{ 2683} 2684 2685static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 2686{ 2687 return false; 2688} 2689 2690#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 2691 2692/** 2693 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 2694 * 2695 * PHY drivers may accept clones of transmitted packets for 2696 * timestamping via their phy_driver.txtstamp method. These drivers 2697 * must call this function to return the skb back to the stack, with 2698 * or without a timestamp. 2699 * 2700 * @skb: clone of the the original outgoing packet 2701 * @hwtstamps: hardware time stamps, may be NULL if not available 2702 * 2703 */ 2704void skb_complete_tx_timestamp(struct sk_buff *skb, 2705 struct skb_shared_hwtstamps *hwtstamps); 2706 2707void __skb_tstamp_tx(struct sk_buff *orig_skb, 2708 struct skb_shared_hwtstamps *hwtstamps, 2709 struct sock *sk, int tstype); 2710 2711/** 2712 * skb_tstamp_tx - queue clone of skb with send time stamps 2713 * @orig_skb: the original outgoing packet 2714 * @hwtstamps: hardware time stamps, may be NULL if not available 2715 * 2716 * If the skb has a socket associated, then this function clones the 2717 * skb (thus sharing the actual data and optional structures), stores 2718 * the optional hardware time stamping information (if non NULL) or 2719 * generates a software time stamp (otherwise), then queues the clone 2720 * to the error queue of the socket. Errors are silently ignored. 2721 */ 2722void skb_tstamp_tx(struct sk_buff *orig_skb, 2723 struct skb_shared_hwtstamps *hwtstamps); 2724 2725static inline void sw_tx_timestamp(struct sk_buff *skb) 2726{ 2727 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP && 2728 !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) 2729 skb_tstamp_tx(skb, NULL); 2730} 2731 2732/** 2733 * skb_tx_timestamp() - Driver hook for transmit timestamping 2734 * 2735 * Ethernet MAC Drivers should call this function in their hard_xmit() 2736 * function immediately before giving the sk_buff to the MAC hardware. 2737 * 2738 * Specifically, one should make absolutely sure that this function is 2739 * called before TX completion of this packet can trigger. Otherwise 2740 * the packet could potentially already be freed. 2741 * 2742 * @skb: A socket buffer. 2743 */ 2744static inline void skb_tx_timestamp(struct sk_buff *skb) 2745{ 2746 skb_clone_tx_timestamp(skb); 2747 sw_tx_timestamp(skb); 2748} 2749 2750/** 2751 * skb_complete_wifi_ack - deliver skb with wifi status 2752 * 2753 * @skb: the original outgoing packet 2754 * @acked: ack status 2755 * 2756 */ 2757void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 2758 2759__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 2760__sum16 __skb_checksum_complete(struct sk_buff *skb); 2761 2762static inline int skb_csum_unnecessary(const struct sk_buff *skb) 2763{ 2764 return ((skb->ip_summed & CHECKSUM_UNNECESSARY) || skb->csum_valid); 2765} 2766 2767/** 2768 * skb_checksum_complete - Calculate checksum of an entire packet 2769 * @skb: packet to process 2770 * 2771 * This function calculates the checksum over the entire packet plus 2772 * the value of skb->csum. The latter can be used to supply the 2773 * checksum of a pseudo header as used by TCP/UDP. It returns the 2774 * checksum. 2775 * 2776 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 2777 * this function can be used to verify that checksum on received 2778 * packets. In that case the function should return zero if the 2779 * checksum is correct. In particular, this function will return zero 2780 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 2781 * hardware has already verified the correctness of the checksum. 2782 */ 2783static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 2784{ 2785 return skb_csum_unnecessary(skb) ? 2786 0 : __skb_checksum_complete(skb); 2787} 2788 2789/* Check if we need to perform checksum complete validation. 2790 * 2791 * Returns true if checksum complete is needed, false otherwise 2792 * (either checksum is unnecessary or zero checksum is allowed). 2793 */ 2794static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 2795 bool zero_okay, 2796 __sum16 check) 2797{ 2798 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 2799 skb->csum_valid = 1; 2800 return false; 2801 } 2802 2803 return true; 2804} 2805 2806/* For small packets <= CHECKSUM_BREAK peform checksum complete directly 2807 * in checksum_init. 2808 */ 2809#define CHECKSUM_BREAK 76 2810 2811/* Validate (init) checksum based on checksum complete. 2812 * 2813 * Return values: 2814 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 2815 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 2816 * checksum is stored in skb->csum for use in __skb_checksum_complete 2817 * non-zero: value of invalid checksum 2818 * 2819 */ 2820static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 2821 bool complete, 2822 __wsum psum) 2823{ 2824 if (skb->ip_summed == CHECKSUM_COMPLETE) { 2825 if (!csum_fold(csum_add(psum, skb->csum))) { 2826 skb->csum_valid = 1; 2827 return 0; 2828 } 2829 } 2830 2831 skb->csum = psum; 2832 2833 if (complete || skb->len <= CHECKSUM_BREAK) { 2834 __sum16 csum; 2835 2836 csum = __skb_checksum_complete(skb); 2837 skb->csum_valid = !csum; 2838 return csum; 2839 } 2840 2841 return 0; 2842} 2843 2844static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 2845{ 2846 return 0; 2847} 2848 2849/* Perform checksum validate (init). Note that this is a macro since we only 2850 * want to calculate the pseudo header which is an input function if necessary. 2851 * First we try to validate without any computation (checksum unnecessary) and 2852 * then calculate based on checksum complete calling the function to compute 2853 * pseudo header. 2854 * 2855 * Return values: 2856 * 0: checksum is validated or try to in skb_checksum_complete 2857 * non-zero: value of invalid checksum 2858 */ 2859#define __skb_checksum_validate(skb, proto, complete, \ 2860 zero_okay, check, compute_pseudo) \ 2861({ \ 2862 __sum16 __ret = 0; \ 2863 skb->csum_valid = 0; \ 2864 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 2865 __ret = __skb_checksum_validate_complete(skb, \ 2866 complete, compute_pseudo(skb, proto)); \ 2867 __ret; \ 2868}) 2869 2870#define skb_checksum_init(skb, proto, compute_pseudo) \ 2871 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 2872 2873#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 2874 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 2875 2876#define skb_checksum_validate(skb, proto, compute_pseudo) \ 2877 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 2878 2879#define skb_checksum_validate_zero_check(skb, proto, check, \ 2880 compute_pseudo) \ 2881 __skb_checksum_validate_(skb, proto, true, true, check, compute_pseudo) 2882 2883#define skb_checksum_simple_validate(skb) \ 2884 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 2885 2886#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2887void nf_conntrack_destroy(struct nf_conntrack *nfct); 2888static inline void nf_conntrack_put(struct nf_conntrack *nfct) 2889{ 2890 if (nfct && atomic_dec_and_test(&nfct->use)) 2891 nf_conntrack_destroy(nfct); 2892} 2893static inline void nf_conntrack_get(struct nf_conntrack *nfct) 2894{ 2895 if (nfct) 2896 atomic_inc(&nfct->use); 2897} 2898#endif 2899#ifdef CONFIG_BRIDGE_NETFILTER 2900static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge) 2901{ 2902 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use)) 2903 kfree(nf_bridge); 2904} 2905static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge) 2906{ 2907 if (nf_bridge) 2908 atomic_inc(&nf_bridge->use); 2909} 2910#endif /* CONFIG_BRIDGE_NETFILTER */ 2911static inline void nf_reset(struct sk_buff *skb) 2912{ 2913#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2914 nf_conntrack_put(skb->nfct); 2915 skb->nfct = NULL; 2916#endif 2917#ifdef CONFIG_BRIDGE_NETFILTER 2918 nf_bridge_put(skb->nf_bridge); 2919 skb->nf_bridge = NULL; 2920#endif 2921} 2922 2923static inline void nf_reset_trace(struct sk_buff *skb) 2924{ 2925#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 2926 skb->nf_trace = 0; 2927#endif 2928} 2929 2930/* Note: This doesn't put any conntrack and bridge info in dst. */ 2931static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2932{ 2933#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2934 dst->nfct = src->nfct; 2935 nf_conntrack_get(src->nfct); 2936 dst->nfctinfo = src->nfctinfo; 2937#endif 2938#ifdef CONFIG_BRIDGE_NETFILTER 2939 dst->nf_bridge = src->nf_bridge; 2940 nf_bridge_get(src->nf_bridge); 2941#endif 2942#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 2943 dst->nf_trace = src->nf_trace; 2944#endif 2945} 2946 2947static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 2948{ 2949#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 2950 nf_conntrack_put(dst->nfct); 2951#endif 2952#ifdef CONFIG_BRIDGE_NETFILTER 2953 nf_bridge_put(dst->nf_bridge); 2954#endif 2955 __nf_copy(dst, src); 2956} 2957 2958#ifdef CONFIG_NETWORK_SECMARK 2959static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2960{ 2961 to->secmark = from->secmark; 2962} 2963 2964static inline void skb_init_secmark(struct sk_buff *skb) 2965{ 2966 skb->secmark = 0; 2967} 2968#else 2969static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 2970{ } 2971 2972static inline void skb_init_secmark(struct sk_buff *skb) 2973{ } 2974#endif 2975 2976static inline bool skb_irq_freeable(const struct sk_buff *skb) 2977{ 2978 return !skb->destructor && 2979#if IS_ENABLED(CONFIG_XFRM) 2980 !skb->sp && 2981#endif 2982#if IS_ENABLED(CONFIG_NF_CONNTRACK) 2983 !skb->nfct && 2984#endif 2985 !skb->_skb_refdst && 2986 !skb_has_frag_list(skb); 2987} 2988 2989static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 2990{ 2991 skb->queue_mapping = queue_mapping; 2992} 2993 2994static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 2995{ 2996 return skb->queue_mapping; 2997} 2998 2999static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 3000{ 3001 to->queue_mapping = from->queue_mapping; 3002} 3003 3004static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 3005{ 3006 skb->queue_mapping = rx_queue + 1; 3007} 3008 3009static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 3010{ 3011 return skb->queue_mapping - 1; 3012} 3013 3014static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 3015{ 3016 return skb->queue_mapping != 0; 3017} 3018 3019u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 3020 unsigned int num_tx_queues); 3021 3022static inline struct sec_path *skb_sec_path(struct sk_buff *skb) 3023{ 3024#ifdef CONFIG_XFRM 3025 return skb->sp; 3026#else 3027 return NULL; 3028#endif 3029} 3030 3031/* Keeps track of mac header offset relative to skb->head. 3032 * It is useful for TSO of Tunneling protocol. e.g. GRE. 3033 * For non-tunnel skb it points to skb_mac_header() and for 3034 * tunnel skb it points to outer mac header. 3035 * Keeps track of level of encapsulation of network headers. 3036 */ 3037struct skb_gso_cb { 3038 int mac_offset; 3039 int encap_level; 3040 __u16 csum_start; 3041}; 3042#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb) 3043 3044static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 3045{ 3046 return (skb_mac_header(inner_skb) - inner_skb->head) - 3047 SKB_GSO_CB(inner_skb)->mac_offset; 3048} 3049 3050static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 3051{ 3052 int new_headroom, headroom; 3053 int ret; 3054 3055 headroom = skb_headroom(skb); 3056 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 3057 if (ret) 3058 return ret; 3059 3060 new_headroom = skb_headroom(skb); 3061 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 3062 return 0; 3063} 3064 3065/* Compute the checksum for a gso segment. First compute the checksum value 3066 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 3067 * then add in skb->csum (checksum from csum_start to end of packet). 3068 * skb->csum and csum_start are then updated to reflect the checksum of the 3069 * resultant packet starting from the transport header-- the resultant checksum 3070 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 3071 * header. 3072 */ 3073static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 3074{ 3075 int plen = SKB_GSO_CB(skb)->csum_start - skb_headroom(skb) - 3076 skb_transport_offset(skb); 3077 __u16 csum; 3078 3079 csum = csum_fold(csum_partial(skb_transport_header(skb), 3080 plen, skb->csum)); 3081 skb->csum = res; 3082 SKB_GSO_CB(skb)->csum_start -= plen; 3083 3084 return csum; 3085} 3086 3087static inline bool skb_is_gso(const struct sk_buff *skb) 3088{ 3089 return skb_shinfo(skb)->gso_size; 3090} 3091 3092/* Note: Should be called only if skb_is_gso(skb) is true */ 3093static inline bool skb_is_gso_v6(const struct sk_buff *skb) 3094{ 3095 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 3096} 3097 3098void __skb_warn_lro_forwarding(const struct sk_buff *skb); 3099 3100static inline bool skb_warn_if_lro(const struct sk_buff *skb) 3101{ 3102 /* LRO sets gso_size but not gso_type, whereas if GSO is really 3103 * wanted then gso_type will be set. */ 3104 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3105 3106 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 3107 unlikely(shinfo->gso_type == 0)) { 3108 __skb_warn_lro_forwarding(skb); 3109 return true; 3110 } 3111 return false; 3112} 3113 3114static inline void skb_forward_csum(struct sk_buff *skb) 3115{ 3116 /* Unfortunately we don't support this one. Any brave souls? */ 3117 if (skb->ip_summed == CHECKSUM_COMPLETE) 3118 skb->ip_summed = CHECKSUM_NONE; 3119} 3120 3121/** 3122 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 3123 * @skb: skb to check 3124 * 3125 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 3126 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 3127 * use this helper, to document places where we make this assertion. 3128 */ 3129static inline void skb_checksum_none_assert(const struct sk_buff *skb) 3130{ 3131#ifdef DEBUG 3132 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 3133#endif 3134} 3135 3136bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 3137 3138int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 3139 3140u32 __skb_get_poff(const struct sk_buff *skb); 3141 3142/** 3143 * skb_head_is_locked - Determine if the skb->head is locked down 3144 * @skb: skb to check 3145 * 3146 * The head on skbs build around a head frag can be removed if they are 3147 * not cloned. This function returns true if the skb head is locked down 3148 * due to either being allocated via kmalloc, or by being a clone with 3149 * multiple references to the head. 3150 */ 3151static inline bool skb_head_is_locked(const struct sk_buff *skb) 3152{ 3153 return !skb->head_frag || skb_cloned(skb); 3154} 3155 3156/** 3157 * skb_gso_network_seglen - Return length of individual segments of a gso packet 3158 * 3159 * @skb: GSO skb 3160 * 3161 * skb_gso_network_seglen is used to determine the real size of the 3162 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP). 3163 * 3164 * The MAC/L2 header is not accounted for. 3165 */ 3166static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb) 3167{ 3168 unsigned int hdr_len = skb_transport_header(skb) - 3169 skb_network_header(skb); 3170 return hdr_len + skb_gso_transport_seglen(skb); 3171} 3172#endif /* __KERNEL__ */ 3173#endif /* _LINUX_SKBUFF_H */