at v3.17 25 kB view raw
1/* 2 * Performance events: 3 * 4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar 6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra 7 * 8 * Data type definitions, declarations, prototypes. 9 * 10 * Started by: Thomas Gleixner and Ingo Molnar 11 * 12 * For licencing details see kernel-base/COPYING 13 */ 14#ifndef _LINUX_PERF_EVENT_H 15#define _LINUX_PERF_EVENT_H 16 17#include <uapi/linux/perf_event.h> 18 19/* 20 * Kernel-internal data types and definitions: 21 */ 22 23#ifdef CONFIG_PERF_EVENTS 24# include <asm/perf_event.h> 25# include <asm/local64.h> 26#endif 27 28struct perf_guest_info_callbacks { 29 int (*is_in_guest)(void); 30 int (*is_user_mode)(void); 31 unsigned long (*get_guest_ip)(void); 32}; 33 34#ifdef CONFIG_HAVE_HW_BREAKPOINT 35#include <asm/hw_breakpoint.h> 36#endif 37 38#include <linux/list.h> 39#include <linux/mutex.h> 40#include <linux/rculist.h> 41#include <linux/rcupdate.h> 42#include <linux/spinlock.h> 43#include <linux/hrtimer.h> 44#include <linux/fs.h> 45#include <linux/pid_namespace.h> 46#include <linux/workqueue.h> 47#include <linux/ftrace.h> 48#include <linux/cpu.h> 49#include <linux/irq_work.h> 50#include <linux/static_key.h> 51#include <linux/jump_label_ratelimit.h> 52#include <linux/atomic.h> 53#include <linux/sysfs.h> 54#include <linux/perf_regs.h> 55#include <asm/local.h> 56 57struct perf_callchain_entry { 58 __u64 nr; 59 __u64 ip[PERF_MAX_STACK_DEPTH]; 60}; 61 62struct perf_raw_record { 63 u32 size; 64 void *data; 65}; 66 67/* 68 * branch stack layout: 69 * nr: number of taken branches stored in entries[] 70 * 71 * Note that nr can vary from sample to sample 72 * branches (to, from) are stored from most recent 73 * to least recent, i.e., entries[0] contains the most 74 * recent branch. 75 */ 76struct perf_branch_stack { 77 __u64 nr; 78 struct perf_branch_entry entries[0]; 79}; 80 81struct perf_regs_user { 82 __u64 abi; 83 struct pt_regs *regs; 84}; 85 86struct task_struct; 87 88/* 89 * extra PMU register associated with an event 90 */ 91struct hw_perf_event_extra { 92 u64 config; /* register value */ 93 unsigned int reg; /* register address or index */ 94 int alloc; /* extra register already allocated */ 95 int idx; /* index in shared_regs->regs[] */ 96}; 97 98struct event_constraint; 99 100/** 101 * struct hw_perf_event - performance event hardware details: 102 */ 103struct hw_perf_event { 104#ifdef CONFIG_PERF_EVENTS 105 union { 106 struct { /* hardware */ 107 u64 config; 108 u64 last_tag; 109 unsigned long config_base; 110 unsigned long event_base; 111 int event_base_rdpmc; 112 int idx; 113 int last_cpu; 114 int flags; 115 116 struct hw_perf_event_extra extra_reg; 117 struct hw_perf_event_extra branch_reg; 118 119 struct event_constraint *constraint; 120 }; 121 struct { /* software */ 122 struct hrtimer hrtimer; 123 }; 124 struct { /* tracepoint */ 125 struct task_struct *tp_target; 126 /* for tp_event->class */ 127 struct list_head tp_list; 128 }; 129#ifdef CONFIG_HAVE_HW_BREAKPOINT 130 struct { /* breakpoint */ 131 /* 132 * Crufty hack to avoid the chicken and egg 133 * problem hw_breakpoint has with context 134 * creation and event initalization. 135 */ 136 struct task_struct *bp_target; 137 struct arch_hw_breakpoint info; 138 struct list_head bp_list; 139 }; 140#endif 141 }; 142 int state; 143 local64_t prev_count; 144 u64 sample_period; 145 u64 last_period; 146 local64_t period_left; 147 u64 interrupts_seq; 148 u64 interrupts; 149 150 u64 freq_time_stamp; 151 u64 freq_count_stamp; 152#endif 153}; 154 155/* 156 * hw_perf_event::state flags 157 */ 158#define PERF_HES_STOPPED 0x01 /* the counter is stopped */ 159#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */ 160#define PERF_HES_ARCH 0x04 161 162struct perf_event; 163 164/* 165 * Common implementation detail of pmu::{start,commit,cancel}_txn 166 */ 167#define PERF_EVENT_TXN 0x1 168 169/** 170 * pmu::capabilities flags 171 */ 172#define PERF_PMU_CAP_NO_INTERRUPT 0x01 173 174/** 175 * struct pmu - generic performance monitoring unit 176 */ 177struct pmu { 178 struct list_head entry; 179 180 struct module *module; 181 struct device *dev; 182 const struct attribute_group **attr_groups; 183 const char *name; 184 int type; 185 186 /* 187 * various common per-pmu feature flags 188 */ 189 int capabilities; 190 191 int * __percpu pmu_disable_count; 192 struct perf_cpu_context * __percpu pmu_cpu_context; 193 int task_ctx_nr; 194 int hrtimer_interval_ms; 195 196 /* 197 * Fully disable/enable this PMU, can be used to protect from the PMI 198 * as well as for lazy/batch writing of the MSRs. 199 */ 200 void (*pmu_enable) (struct pmu *pmu); /* optional */ 201 void (*pmu_disable) (struct pmu *pmu); /* optional */ 202 203 /* 204 * Try and initialize the event for this PMU. 205 * Should return -ENOENT when the @event doesn't match this PMU. 206 */ 207 int (*event_init) (struct perf_event *event); 208 209#define PERF_EF_START 0x01 /* start the counter when adding */ 210#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */ 211#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */ 212 213 /* 214 * Adds/Removes a counter to/from the PMU, can be done inside 215 * a transaction, see the ->*_txn() methods. 216 */ 217 int (*add) (struct perf_event *event, int flags); 218 void (*del) (struct perf_event *event, int flags); 219 220 /* 221 * Starts/Stops a counter present on the PMU. The PMI handler 222 * should stop the counter when perf_event_overflow() returns 223 * !0. ->start() will be used to continue. 224 */ 225 void (*start) (struct perf_event *event, int flags); 226 void (*stop) (struct perf_event *event, int flags); 227 228 /* 229 * Updates the counter value of the event. 230 */ 231 void (*read) (struct perf_event *event); 232 233 /* 234 * Group events scheduling is treated as a transaction, add 235 * group events as a whole and perform one schedulability test. 236 * If the test fails, roll back the whole group 237 * 238 * Start the transaction, after this ->add() doesn't need to 239 * do schedulability tests. 240 */ 241 void (*start_txn) (struct pmu *pmu); /* optional */ 242 /* 243 * If ->start_txn() disabled the ->add() schedulability test 244 * then ->commit_txn() is required to perform one. On success 245 * the transaction is closed. On error the transaction is kept 246 * open until ->cancel_txn() is called. 247 */ 248 int (*commit_txn) (struct pmu *pmu); /* optional */ 249 /* 250 * Will cancel the transaction, assumes ->del() is called 251 * for each successful ->add() during the transaction. 252 */ 253 void (*cancel_txn) (struct pmu *pmu); /* optional */ 254 255 /* 256 * Will return the value for perf_event_mmap_page::index for this event, 257 * if no implementation is provided it will default to: event->hw.idx + 1. 258 */ 259 int (*event_idx) (struct perf_event *event); /*optional */ 260 261 /* 262 * flush branch stack on context-switches (needed in cpu-wide mode) 263 */ 264 void (*flush_branch_stack) (void); 265}; 266 267/** 268 * enum perf_event_active_state - the states of a event 269 */ 270enum perf_event_active_state { 271 PERF_EVENT_STATE_ERROR = -2, 272 PERF_EVENT_STATE_OFF = -1, 273 PERF_EVENT_STATE_INACTIVE = 0, 274 PERF_EVENT_STATE_ACTIVE = 1, 275}; 276 277struct file; 278struct perf_sample_data; 279 280typedef void (*perf_overflow_handler_t)(struct perf_event *, 281 struct perf_sample_data *, 282 struct pt_regs *regs); 283 284enum perf_group_flag { 285 PERF_GROUP_SOFTWARE = 0x1, 286}; 287 288#define SWEVENT_HLIST_BITS 8 289#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS) 290 291struct swevent_hlist { 292 struct hlist_head heads[SWEVENT_HLIST_SIZE]; 293 struct rcu_head rcu_head; 294}; 295 296#define PERF_ATTACH_CONTEXT 0x01 297#define PERF_ATTACH_GROUP 0x02 298#define PERF_ATTACH_TASK 0x04 299 300struct perf_cgroup; 301struct ring_buffer; 302 303/** 304 * struct perf_event - performance event kernel representation: 305 */ 306struct perf_event { 307#ifdef CONFIG_PERF_EVENTS 308 /* 309 * entry onto perf_event_context::event_list; 310 * modifications require ctx->lock 311 * RCU safe iterations. 312 */ 313 struct list_head event_entry; 314 315 /* 316 * XXX: group_entry and sibling_list should be mutually exclusive; 317 * either you're a sibling on a group, or you're the group leader. 318 * Rework the code to always use the same list element. 319 * 320 * Locked for modification by both ctx->mutex and ctx->lock; holding 321 * either sufficies for read. 322 */ 323 struct list_head group_entry; 324 struct list_head sibling_list; 325 326 /* 327 * We need storage to track the entries in perf_pmu_migrate_context; we 328 * cannot use the event_entry because of RCU and we want to keep the 329 * group in tact which avoids us using the other two entries. 330 */ 331 struct list_head migrate_entry; 332 333 struct hlist_node hlist_entry; 334 struct list_head active_entry; 335 int nr_siblings; 336 int group_flags; 337 struct perf_event *group_leader; 338 struct pmu *pmu; 339 340 enum perf_event_active_state state; 341 unsigned int attach_state; 342 local64_t count; 343 atomic64_t child_count; 344 345 /* 346 * These are the total time in nanoseconds that the event 347 * has been enabled (i.e. eligible to run, and the task has 348 * been scheduled in, if this is a per-task event) 349 * and running (scheduled onto the CPU), respectively. 350 * 351 * They are computed from tstamp_enabled, tstamp_running and 352 * tstamp_stopped when the event is in INACTIVE or ACTIVE state. 353 */ 354 u64 total_time_enabled; 355 u64 total_time_running; 356 357 /* 358 * These are timestamps used for computing total_time_enabled 359 * and total_time_running when the event is in INACTIVE or 360 * ACTIVE state, measured in nanoseconds from an arbitrary point 361 * in time. 362 * tstamp_enabled: the notional time when the event was enabled 363 * tstamp_running: the notional time when the event was scheduled on 364 * tstamp_stopped: in INACTIVE state, the notional time when the 365 * event was scheduled off. 366 */ 367 u64 tstamp_enabled; 368 u64 tstamp_running; 369 u64 tstamp_stopped; 370 371 /* 372 * timestamp shadows the actual context timing but it can 373 * be safely used in NMI interrupt context. It reflects the 374 * context time as it was when the event was last scheduled in. 375 * 376 * ctx_time already accounts for ctx->timestamp. Therefore to 377 * compute ctx_time for a sample, simply add perf_clock(). 378 */ 379 u64 shadow_ctx_time; 380 381 struct perf_event_attr attr; 382 u16 header_size; 383 u16 id_header_size; 384 u16 read_size; 385 struct hw_perf_event hw; 386 387 struct perf_event_context *ctx; 388 atomic_long_t refcount; 389 390 /* 391 * These accumulate total time (in nanoseconds) that children 392 * events have been enabled and running, respectively. 393 */ 394 atomic64_t child_total_time_enabled; 395 atomic64_t child_total_time_running; 396 397 /* 398 * Protect attach/detach and child_list: 399 */ 400 struct mutex child_mutex; 401 struct list_head child_list; 402 struct perf_event *parent; 403 404 int oncpu; 405 int cpu; 406 407 struct list_head owner_entry; 408 struct task_struct *owner; 409 410 /* mmap bits */ 411 struct mutex mmap_mutex; 412 atomic_t mmap_count; 413 414 struct ring_buffer *rb; 415 struct list_head rb_entry; 416 unsigned long rcu_batches; 417 int rcu_pending; 418 419 /* poll related */ 420 wait_queue_head_t waitq; 421 struct fasync_struct *fasync; 422 423 /* delayed work for NMIs and such */ 424 int pending_wakeup; 425 int pending_kill; 426 int pending_disable; 427 struct irq_work pending; 428 429 atomic_t event_limit; 430 431 void (*destroy)(struct perf_event *); 432 struct rcu_head rcu_head; 433 434 struct pid_namespace *ns; 435 u64 id; 436 437 perf_overflow_handler_t overflow_handler; 438 void *overflow_handler_context; 439 440#ifdef CONFIG_EVENT_TRACING 441 struct ftrace_event_call *tp_event; 442 struct event_filter *filter; 443#ifdef CONFIG_FUNCTION_TRACER 444 struct ftrace_ops ftrace_ops; 445#endif 446#endif 447 448#ifdef CONFIG_CGROUP_PERF 449 struct perf_cgroup *cgrp; /* cgroup event is attach to */ 450 int cgrp_defer_enabled; 451#endif 452 453#endif /* CONFIG_PERF_EVENTS */ 454}; 455 456enum perf_event_context_type { 457 task_context, 458 cpu_context, 459}; 460 461/** 462 * struct perf_event_context - event context structure 463 * 464 * Used as a container for task events and CPU events as well: 465 */ 466struct perf_event_context { 467 struct pmu *pmu; 468 enum perf_event_context_type type; 469 /* 470 * Protect the states of the events in the list, 471 * nr_active, and the list: 472 */ 473 raw_spinlock_t lock; 474 /* 475 * Protect the list of events. Locking either mutex or lock 476 * is sufficient to ensure the list doesn't change; to change 477 * the list you need to lock both the mutex and the spinlock. 478 */ 479 struct mutex mutex; 480 481 struct list_head pinned_groups; 482 struct list_head flexible_groups; 483 struct list_head event_list; 484 int nr_events; 485 int nr_active; 486 int is_active; 487 int nr_stat; 488 int nr_freq; 489 int rotate_disable; 490 atomic_t refcount; 491 struct task_struct *task; 492 493 /* 494 * Context clock, runs when context enabled. 495 */ 496 u64 time; 497 u64 timestamp; 498 499 /* 500 * These fields let us detect when two contexts have both 501 * been cloned (inherited) from a common ancestor. 502 */ 503 struct perf_event_context *parent_ctx; 504 u64 parent_gen; 505 u64 generation; 506 int pin_count; 507 int nr_cgroups; /* cgroup evts */ 508 int nr_branch_stack; /* branch_stack evt */ 509 struct rcu_head rcu_head; 510}; 511 512/* 513 * Number of contexts where an event can trigger: 514 * task, softirq, hardirq, nmi. 515 */ 516#define PERF_NR_CONTEXTS 4 517 518/** 519 * struct perf_event_cpu_context - per cpu event context structure 520 */ 521struct perf_cpu_context { 522 struct perf_event_context ctx; 523 struct perf_event_context *task_ctx; 524 int active_oncpu; 525 int exclusive; 526 struct hrtimer hrtimer; 527 ktime_t hrtimer_interval; 528 struct list_head rotation_list; 529 struct pmu *unique_pmu; 530 struct perf_cgroup *cgrp; 531}; 532 533struct perf_output_handle { 534 struct perf_event *event; 535 struct ring_buffer *rb; 536 unsigned long wakeup; 537 unsigned long size; 538 void *addr; 539 int page; 540}; 541 542#ifdef CONFIG_PERF_EVENTS 543 544extern int perf_pmu_register(struct pmu *pmu, const char *name, int type); 545extern void perf_pmu_unregister(struct pmu *pmu); 546 547extern int perf_num_counters(void); 548extern const char *perf_pmu_name(void); 549extern void __perf_event_task_sched_in(struct task_struct *prev, 550 struct task_struct *task); 551extern void __perf_event_task_sched_out(struct task_struct *prev, 552 struct task_struct *next); 553extern int perf_event_init_task(struct task_struct *child); 554extern void perf_event_exit_task(struct task_struct *child); 555extern void perf_event_free_task(struct task_struct *task); 556extern void perf_event_delayed_put(struct task_struct *task); 557extern void perf_event_print_debug(void); 558extern void perf_pmu_disable(struct pmu *pmu); 559extern void perf_pmu_enable(struct pmu *pmu); 560extern int perf_event_task_disable(void); 561extern int perf_event_task_enable(void); 562extern int perf_event_refresh(struct perf_event *event, int refresh); 563extern void perf_event_update_userpage(struct perf_event *event); 564extern int perf_event_release_kernel(struct perf_event *event); 565extern struct perf_event * 566perf_event_create_kernel_counter(struct perf_event_attr *attr, 567 int cpu, 568 struct task_struct *task, 569 perf_overflow_handler_t callback, 570 void *context); 571extern void perf_pmu_migrate_context(struct pmu *pmu, 572 int src_cpu, int dst_cpu); 573extern u64 perf_event_read_value(struct perf_event *event, 574 u64 *enabled, u64 *running); 575 576 577struct perf_sample_data { 578 u64 type; 579 580 u64 ip; 581 struct { 582 u32 pid; 583 u32 tid; 584 } tid_entry; 585 u64 time; 586 u64 addr; 587 u64 id; 588 u64 stream_id; 589 struct { 590 u32 cpu; 591 u32 reserved; 592 } cpu_entry; 593 u64 period; 594 union perf_mem_data_src data_src; 595 struct perf_callchain_entry *callchain; 596 struct perf_raw_record *raw; 597 struct perf_branch_stack *br_stack; 598 struct perf_regs_user regs_user; 599 u64 stack_user_size; 600 u64 weight; 601 /* 602 * Transaction flags for abort events: 603 */ 604 u64 txn; 605}; 606 607static inline void perf_sample_data_init(struct perf_sample_data *data, 608 u64 addr, u64 period) 609{ 610 /* remaining struct members initialized in perf_prepare_sample() */ 611 data->addr = addr; 612 data->raw = NULL; 613 data->br_stack = NULL; 614 data->period = period; 615 data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE; 616 data->regs_user.regs = NULL; 617 data->stack_user_size = 0; 618 data->weight = 0; 619 data->data_src.val = 0; 620 data->txn = 0; 621} 622 623extern void perf_output_sample(struct perf_output_handle *handle, 624 struct perf_event_header *header, 625 struct perf_sample_data *data, 626 struct perf_event *event); 627extern void perf_prepare_sample(struct perf_event_header *header, 628 struct perf_sample_data *data, 629 struct perf_event *event, 630 struct pt_regs *regs); 631 632extern int perf_event_overflow(struct perf_event *event, 633 struct perf_sample_data *data, 634 struct pt_regs *regs); 635 636static inline bool is_sampling_event(struct perf_event *event) 637{ 638 return event->attr.sample_period != 0; 639} 640 641/* 642 * Return 1 for a software event, 0 for a hardware event 643 */ 644static inline int is_software_event(struct perf_event *event) 645{ 646 return event->pmu->task_ctx_nr == perf_sw_context; 647} 648 649extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX]; 650 651extern void __perf_sw_event(u32, u64, struct pt_regs *, u64); 652 653#ifndef perf_arch_fetch_caller_regs 654static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { } 655#endif 656 657/* 658 * Take a snapshot of the regs. Skip ip and frame pointer to 659 * the nth caller. We only need a few of the regs: 660 * - ip for PERF_SAMPLE_IP 661 * - cs for user_mode() tests 662 * - bp for callchains 663 * - eflags, for future purposes, just in case 664 */ 665static inline void perf_fetch_caller_regs(struct pt_regs *regs) 666{ 667 memset(regs, 0, sizeof(*regs)); 668 669 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0); 670} 671 672static __always_inline void 673perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) 674{ 675 struct pt_regs hot_regs; 676 677 if (static_key_false(&perf_swevent_enabled[event_id])) { 678 if (!regs) { 679 perf_fetch_caller_regs(&hot_regs); 680 regs = &hot_regs; 681 } 682 __perf_sw_event(event_id, nr, regs, addr); 683 } 684} 685 686extern struct static_key_deferred perf_sched_events; 687 688static inline void perf_event_task_sched_in(struct task_struct *prev, 689 struct task_struct *task) 690{ 691 if (static_key_false(&perf_sched_events.key)) 692 __perf_event_task_sched_in(prev, task); 693} 694 695static inline void perf_event_task_sched_out(struct task_struct *prev, 696 struct task_struct *next) 697{ 698 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0); 699 700 if (static_key_false(&perf_sched_events.key)) 701 __perf_event_task_sched_out(prev, next); 702} 703 704extern void perf_event_mmap(struct vm_area_struct *vma); 705extern struct perf_guest_info_callbacks *perf_guest_cbs; 706extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 707extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks); 708 709extern void perf_event_exec(void); 710extern void perf_event_comm(struct task_struct *tsk, bool exec); 711extern void perf_event_fork(struct task_struct *tsk); 712 713/* Callchains */ 714DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry); 715 716extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs); 717extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs); 718 719static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip) 720{ 721 if (entry->nr < PERF_MAX_STACK_DEPTH) 722 entry->ip[entry->nr++] = ip; 723} 724 725extern int sysctl_perf_event_paranoid; 726extern int sysctl_perf_event_mlock; 727extern int sysctl_perf_event_sample_rate; 728extern int sysctl_perf_cpu_time_max_percent; 729 730extern void perf_sample_event_took(u64 sample_len_ns); 731 732extern int perf_proc_update_handler(struct ctl_table *table, int write, 733 void __user *buffer, size_t *lenp, 734 loff_t *ppos); 735extern int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write, 736 void __user *buffer, size_t *lenp, 737 loff_t *ppos); 738 739 740static inline bool perf_paranoid_tracepoint_raw(void) 741{ 742 return sysctl_perf_event_paranoid > -1; 743} 744 745static inline bool perf_paranoid_cpu(void) 746{ 747 return sysctl_perf_event_paranoid > 0; 748} 749 750static inline bool perf_paranoid_kernel(void) 751{ 752 return sysctl_perf_event_paranoid > 1; 753} 754 755extern void perf_event_init(void); 756extern void perf_tp_event(u64 addr, u64 count, void *record, 757 int entry_size, struct pt_regs *regs, 758 struct hlist_head *head, int rctx, 759 struct task_struct *task); 760extern void perf_bp_event(struct perf_event *event, void *data); 761 762#ifndef perf_misc_flags 763# define perf_misc_flags(regs) \ 764 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL) 765# define perf_instruction_pointer(regs) instruction_pointer(regs) 766#endif 767 768static inline bool has_branch_stack(struct perf_event *event) 769{ 770 return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK; 771} 772 773extern int perf_output_begin(struct perf_output_handle *handle, 774 struct perf_event *event, unsigned int size); 775extern void perf_output_end(struct perf_output_handle *handle); 776extern unsigned int perf_output_copy(struct perf_output_handle *handle, 777 const void *buf, unsigned int len); 778extern unsigned int perf_output_skip(struct perf_output_handle *handle, 779 unsigned int len); 780extern int perf_swevent_get_recursion_context(void); 781extern void perf_swevent_put_recursion_context(int rctx); 782extern u64 perf_swevent_set_period(struct perf_event *event); 783extern void perf_event_enable(struct perf_event *event); 784extern void perf_event_disable(struct perf_event *event); 785extern int __perf_event_disable(void *info); 786extern void perf_event_task_tick(void); 787#else /* !CONFIG_PERF_EVENTS: */ 788static inline void 789perf_event_task_sched_in(struct task_struct *prev, 790 struct task_struct *task) { } 791static inline void 792perf_event_task_sched_out(struct task_struct *prev, 793 struct task_struct *next) { } 794static inline int perf_event_init_task(struct task_struct *child) { return 0; } 795static inline void perf_event_exit_task(struct task_struct *child) { } 796static inline void perf_event_free_task(struct task_struct *task) { } 797static inline void perf_event_delayed_put(struct task_struct *task) { } 798static inline void perf_event_print_debug(void) { } 799static inline int perf_event_task_disable(void) { return -EINVAL; } 800static inline int perf_event_task_enable(void) { return -EINVAL; } 801static inline int perf_event_refresh(struct perf_event *event, int refresh) 802{ 803 return -EINVAL; 804} 805 806static inline void 807perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { } 808static inline void 809perf_bp_event(struct perf_event *event, void *data) { } 810 811static inline int perf_register_guest_info_callbacks 812(struct perf_guest_info_callbacks *callbacks) { return 0; } 813static inline int perf_unregister_guest_info_callbacks 814(struct perf_guest_info_callbacks *callbacks) { return 0; } 815 816static inline void perf_event_mmap(struct vm_area_struct *vma) { } 817static inline void perf_event_exec(void) { } 818static inline void perf_event_comm(struct task_struct *tsk, bool exec) { } 819static inline void perf_event_fork(struct task_struct *tsk) { } 820static inline void perf_event_init(void) { } 821static inline int perf_swevent_get_recursion_context(void) { return -1; } 822static inline void perf_swevent_put_recursion_context(int rctx) { } 823static inline u64 perf_swevent_set_period(struct perf_event *event) { return 0; } 824static inline void perf_event_enable(struct perf_event *event) { } 825static inline void perf_event_disable(struct perf_event *event) { } 826static inline int __perf_event_disable(void *info) { return -1; } 827static inline void perf_event_task_tick(void) { } 828#endif 829 830#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_NO_HZ_FULL) 831extern bool perf_event_can_stop_tick(void); 832#else 833static inline bool perf_event_can_stop_tick(void) { return true; } 834#endif 835 836#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL) 837extern void perf_restore_debug_store(void); 838#else 839static inline void perf_restore_debug_store(void) { } 840#endif 841 842#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x)) 843 844/* 845 * This has to have a higher priority than migration_notifier in sched/core.c. 846 */ 847#define perf_cpu_notifier(fn) \ 848do { \ 849 static struct notifier_block fn##_nb = \ 850 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 851 unsigned long cpu = smp_processor_id(); \ 852 unsigned long flags; \ 853 \ 854 cpu_notifier_register_begin(); \ 855 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \ 856 (void *)(unsigned long)cpu); \ 857 local_irq_save(flags); \ 858 fn(&fn##_nb, (unsigned long)CPU_STARTING, \ 859 (void *)(unsigned long)cpu); \ 860 local_irq_restore(flags); \ 861 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \ 862 (void *)(unsigned long)cpu); \ 863 __register_cpu_notifier(&fn##_nb); \ 864 cpu_notifier_register_done(); \ 865} while (0) 866 867/* 868 * Bare-bones version of perf_cpu_notifier(), which doesn't invoke the 869 * callback for already online CPUs. 870 */ 871#define __perf_cpu_notifier(fn) \ 872do { \ 873 static struct notifier_block fn##_nb = \ 874 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \ 875 \ 876 __register_cpu_notifier(&fn##_nb); \ 877} while (0) 878 879struct perf_pmu_events_attr { 880 struct device_attribute attr; 881 u64 id; 882 const char *event_str; 883}; 884 885#define PMU_EVENT_ATTR(_name, _var, _id, _show) \ 886static struct perf_pmu_events_attr _var = { \ 887 .attr = __ATTR(_name, 0444, _show, NULL), \ 888 .id = _id, \ 889}; 890 891#define PMU_FORMAT_ATTR(_name, _format) \ 892static ssize_t \ 893_name##_show(struct device *dev, \ 894 struct device_attribute *attr, \ 895 char *page) \ 896{ \ 897 BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \ 898 return sprintf(page, _format "\n"); \ 899} \ 900 \ 901static struct device_attribute format_attr_##_name = __ATTR_RO(_name) 902 903#endif /* _LINUX_PERF_EVENT_H */