at v3.17 682 lines 20 kB view raw
1#ifndef _LINUX_PAGEMAP_H 2#define _LINUX_PAGEMAP_H 3 4/* 5 * Copyright 1995 Linus Torvalds 6 */ 7#include <linux/mm.h> 8#include <linux/fs.h> 9#include <linux/list.h> 10#include <linux/highmem.h> 11#include <linux/compiler.h> 12#include <asm/uaccess.h> 13#include <linux/gfp.h> 14#include <linux/bitops.h> 15#include <linux/hardirq.h> /* for in_interrupt() */ 16#include <linux/hugetlb_inline.h> 17 18/* 19 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page 20 * allocation mode flags. 21 */ 22enum mapping_flags { 23 AS_EIO = __GFP_BITS_SHIFT + 0, /* IO error on async write */ 24 AS_ENOSPC = __GFP_BITS_SHIFT + 1, /* ENOSPC on async write */ 25 AS_MM_ALL_LOCKS = __GFP_BITS_SHIFT + 2, /* under mm_take_all_locks() */ 26 AS_UNEVICTABLE = __GFP_BITS_SHIFT + 3, /* e.g., ramdisk, SHM_LOCK */ 27 AS_BALLOON_MAP = __GFP_BITS_SHIFT + 4, /* balloon page special map */ 28 AS_EXITING = __GFP_BITS_SHIFT + 5, /* final truncate in progress */ 29}; 30 31static inline void mapping_set_error(struct address_space *mapping, int error) 32{ 33 if (unlikely(error)) { 34 if (error == -ENOSPC) 35 set_bit(AS_ENOSPC, &mapping->flags); 36 else 37 set_bit(AS_EIO, &mapping->flags); 38 } 39} 40 41static inline void mapping_set_unevictable(struct address_space *mapping) 42{ 43 set_bit(AS_UNEVICTABLE, &mapping->flags); 44} 45 46static inline void mapping_clear_unevictable(struct address_space *mapping) 47{ 48 clear_bit(AS_UNEVICTABLE, &mapping->flags); 49} 50 51static inline int mapping_unevictable(struct address_space *mapping) 52{ 53 if (mapping) 54 return test_bit(AS_UNEVICTABLE, &mapping->flags); 55 return !!mapping; 56} 57 58static inline void mapping_set_balloon(struct address_space *mapping) 59{ 60 set_bit(AS_BALLOON_MAP, &mapping->flags); 61} 62 63static inline void mapping_clear_balloon(struct address_space *mapping) 64{ 65 clear_bit(AS_BALLOON_MAP, &mapping->flags); 66} 67 68static inline int mapping_balloon(struct address_space *mapping) 69{ 70 return mapping && test_bit(AS_BALLOON_MAP, &mapping->flags); 71} 72 73static inline void mapping_set_exiting(struct address_space *mapping) 74{ 75 set_bit(AS_EXITING, &mapping->flags); 76} 77 78static inline int mapping_exiting(struct address_space *mapping) 79{ 80 return test_bit(AS_EXITING, &mapping->flags); 81} 82 83static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 84{ 85 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK; 86} 87 88/* 89 * This is non-atomic. Only to be used before the mapping is activated. 90 * Probably needs a barrier... 91 */ 92static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 93{ 94 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) | 95 (__force unsigned long)mask; 96} 97 98/* 99 * The page cache can done in larger chunks than 100 * one page, because it allows for more efficient 101 * throughput (it can then be mapped into user 102 * space in smaller chunks for same flexibility). 103 * 104 * Or rather, it _will_ be done in larger chunks. 105 */ 106#define PAGE_CACHE_SHIFT PAGE_SHIFT 107#define PAGE_CACHE_SIZE PAGE_SIZE 108#define PAGE_CACHE_MASK PAGE_MASK 109#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK) 110 111#define page_cache_get(page) get_page(page) 112#define page_cache_release(page) put_page(page) 113void release_pages(struct page **pages, int nr, bool cold); 114 115/* 116 * speculatively take a reference to a page. 117 * If the page is free (_count == 0), then _count is untouched, and 0 118 * is returned. Otherwise, _count is incremented by 1 and 1 is returned. 119 * 120 * This function must be called inside the same rcu_read_lock() section as has 121 * been used to lookup the page in the pagecache radix-tree (or page table): 122 * this allows allocators to use a synchronize_rcu() to stabilize _count. 123 * 124 * Unless an RCU grace period has passed, the count of all pages coming out 125 * of the allocator must be considered unstable. page_count may return higher 126 * than expected, and put_page must be able to do the right thing when the 127 * page has been finished with, no matter what it is subsequently allocated 128 * for (because put_page is what is used here to drop an invalid speculative 129 * reference). 130 * 131 * This is the interesting part of the lockless pagecache (and lockless 132 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 133 * has the following pattern: 134 * 1. find page in radix tree 135 * 2. conditionally increment refcount 136 * 3. check the page is still in pagecache (if no, goto 1) 137 * 138 * Remove-side that cares about stability of _count (eg. reclaim) has the 139 * following (with tree_lock held for write): 140 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 141 * B. remove page from pagecache 142 * C. free the page 143 * 144 * There are 2 critical interleavings that matter: 145 * - 2 runs before A: in this case, A sees elevated refcount and bails out 146 * - A runs before 2: in this case, 2 sees zero refcount and retries; 147 * subsequently, B will complete and 1 will find no page, causing the 148 * lookup to return NULL. 149 * 150 * It is possible that between 1 and 2, the page is removed then the exact same 151 * page is inserted into the same position in pagecache. That's OK: the 152 * old find_get_page using tree_lock could equally have run before or after 153 * such a re-insertion, depending on order that locks are granted. 154 * 155 * Lookups racing against pagecache insertion isn't a big problem: either 1 156 * will find the page or it will not. Likewise, the old find_get_page could run 157 * either before the insertion or afterwards, depending on timing. 158 */ 159static inline int page_cache_get_speculative(struct page *page) 160{ 161 VM_BUG_ON(in_interrupt()); 162 163#ifdef CONFIG_TINY_RCU 164# ifdef CONFIG_PREEMPT_COUNT 165 VM_BUG_ON(!in_atomic()); 166# endif 167 /* 168 * Preempt must be disabled here - we rely on rcu_read_lock doing 169 * this for us. 170 * 171 * Pagecache won't be truncated from interrupt context, so if we have 172 * found a page in the radix tree here, we have pinned its refcount by 173 * disabling preempt, and hence no need for the "speculative get" that 174 * SMP requires. 175 */ 176 VM_BUG_ON_PAGE(page_count(page) == 0, page); 177 atomic_inc(&page->_count); 178 179#else 180 if (unlikely(!get_page_unless_zero(page))) { 181 /* 182 * Either the page has been freed, or will be freed. 183 * In either case, retry here and the caller should 184 * do the right thing (see comments above). 185 */ 186 return 0; 187 } 188#endif 189 VM_BUG_ON_PAGE(PageTail(page), page); 190 191 return 1; 192} 193 194/* 195 * Same as above, but add instead of inc (could just be merged) 196 */ 197static inline int page_cache_add_speculative(struct page *page, int count) 198{ 199 VM_BUG_ON(in_interrupt()); 200 201#if !defined(CONFIG_SMP) && defined(CONFIG_TREE_RCU) 202# ifdef CONFIG_PREEMPT_COUNT 203 VM_BUG_ON(!in_atomic()); 204# endif 205 VM_BUG_ON_PAGE(page_count(page) == 0, page); 206 atomic_add(count, &page->_count); 207 208#else 209 if (unlikely(!atomic_add_unless(&page->_count, count, 0))) 210 return 0; 211#endif 212 VM_BUG_ON_PAGE(PageCompound(page) && page != compound_head(page), page); 213 214 return 1; 215} 216 217static inline int page_freeze_refs(struct page *page, int count) 218{ 219 return likely(atomic_cmpxchg(&page->_count, count, 0) == count); 220} 221 222static inline void page_unfreeze_refs(struct page *page, int count) 223{ 224 VM_BUG_ON_PAGE(page_count(page) != 0, page); 225 VM_BUG_ON(count == 0); 226 227 atomic_set(&page->_count, count); 228} 229 230#ifdef CONFIG_NUMA 231extern struct page *__page_cache_alloc(gfp_t gfp); 232#else 233static inline struct page *__page_cache_alloc(gfp_t gfp) 234{ 235 return alloc_pages(gfp, 0); 236} 237#endif 238 239static inline struct page *page_cache_alloc(struct address_space *x) 240{ 241 return __page_cache_alloc(mapping_gfp_mask(x)); 242} 243 244static inline struct page *page_cache_alloc_cold(struct address_space *x) 245{ 246 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD); 247} 248 249static inline struct page *page_cache_alloc_readahead(struct address_space *x) 250{ 251 return __page_cache_alloc(mapping_gfp_mask(x) | 252 __GFP_COLD | __GFP_NORETRY | __GFP_NOWARN); 253} 254 255typedef int filler_t(void *, struct page *); 256 257pgoff_t page_cache_next_hole(struct address_space *mapping, 258 pgoff_t index, unsigned long max_scan); 259pgoff_t page_cache_prev_hole(struct address_space *mapping, 260 pgoff_t index, unsigned long max_scan); 261 262#define FGP_ACCESSED 0x00000001 263#define FGP_LOCK 0x00000002 264#define FGP_CREAT 0x00000004 265#define FGP_WRITE 0x00000008 266#define FGP_NOFS 0x00000010 267#define FGP_NOWAIT 0x00000020 268 269struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 270 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask); 271 272/** 273 * find_get_page - find and get a page reference 274 * @mapping: the address_space to search 275 * @offset: the page index 276 * 277 * Looks up the page cache slot at @mapping & @offset. If there is a 278 * page cache page, it is returned with an increased refcount. 279 * 280 * Otherwise, %NULL is returned. 281 */ 282static inline struct page *find_get_page(struct address_space *mapping, 283 pgoff_t offset) 284{ 285 return pagecache_get_page(mapping, offset, 0, 0, 0); 286} 287 288static inline struct page *find_get_page_flags(struct address_space *mapping, 289 pgoff_t offset, int fgp_flags) 290{ 291 return pagecache_get_page(mapping, offset, fgp_flags, 0, 0); 292} 293 294/** 295 * find_lock_page - locate, pin and lock a pagecache page 296 * pagecache_get_page - find and get a page reference 297 * @mapping: the address_space to search 298 * @offset: the page index 299 * 300 * Looks up the page cache slot at @mapping & @offset. If there is a 301 * page cache page, it is returned locked and with an increased 302 * refcount. 303 * 304 * Otherwise, %NULL is returned. 305 * 306 * find_lock_page() may sleep. 307 */ 308static inline struct page *find_lock_page(struct address_space *mapping, 309 pgoff_t offset) 310{ 311 return pagecache_get_page(mapping, offset, FGP_LOCK, 0, 0); 312} 313 314/** 315 * find_or_create_page - locate or add a pagecache page 316 * @mapping: the page's address_space 317 * @index: the page's index into the mapping 318 * @gfp_mask: page allocation mode 319 * 320 * Looks up the page cache slot at @mapping & @offset. If there is a 321 * page cache page, it is returned locked and with an increased 322 * refcount. 323 * 324 * If the page is not present, a new page is allocated using @gfp_mask 325 * and added to the page cache and the VM's LRU list. The page is 326 * returned locked and with an increased refcount. 327 * 328 * On memory exhaustion, %NULL is returned. 329 * 330 * find_or_create_page() may sleep, even if @gfp_flags specifies an 331 * atomic allocation! 332 */ 333static inline struct page *find_or_create_page(struct address_space *mapping, 334 pgoff_t offset, gfp_t gfp_mask) 335{ 336 return pagecache_get_page(mapping, offset, 337 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 338 gfp_mask, gfp_mask & GFP_RECLAIM_MASK); 339} 340 341/** 342 * grab_cache_page_nowait - returns locked page at given index in given cache 343 * @mapping: target address_space 344 * @index: the page index 345 * 346 * Same as grab_cache_page(), but do not wait if the page is unavailable. 347 * This is intended for speculative data generators, where the data can 348 * be regenerated if the page couldn't be grabbed. This routine should 349 * be safe to call while holding the lock for another page. 350 * 351 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 352 * and deadlock against the caller's locked page. 353 */ 354static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 355 pgoff_t index) 356{ 357 return pagecache_get_page(mapping, index, 358 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 359 mapping_gfp_mask(mapping), 360 GFP_NOFS); 361} 362 363struct page *find_get_entry(struct address_space *mapping, pgoff_t offset); 364struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset); 365unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 366 unsigned int nr_entries, struct page **entries, 367 pgoff_t *indices); 368unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 369 unsigned int nr_pages, struct page **pages); 370unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 371 unsigned int nr_pages, struct page **pages); 372unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 373 int tag, unsigned int nr_pages, struct page **pages); 374 375struct page *grab_cache_page_write_begin(struct address_space *mapping, 376 pgoff_t index, unsigned flags); 377 378/* 379 * Returns locked page at given index in given cache, creating it if needed. 380 */ 381static inline struct page *grab_cache_page(struct address_space *mapping, 382 pgoff_t index) 383{ 384 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 385} 386 387extern struct page * read_cache_page(struct address_space *mapping, 388 pgoff_t index, filler_t *filler, void *data); 389extern struct page * read_cache_page_gfp(struct address_space *mapping, 390 pgoff_t index, gfp_t gfp_mask); 391extern int read_cache_pages(struct address_space *mapping, 392 struct list_head *pages, filler_t *filler, void *data); 393 394static inline struct page *read_mapping_page(struct address_space *mapping, 395 pgoff_t index, void *data) 396{ 397 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 398 return read_cache_page(mapping, index, filler, data); 399} 400 401/* 402 * Get the offset in PAGE_SIZE. 403 * (TODO: hugepage should have ->index in PAGE_SIZE) 404 */ 405static inline pgoff_t page_to_pgoff(struct page *page) 406{ 407 if (unlikely(PageHeadHuge(page))) 408 return page->index << compound_order(page); 409 else 410 return page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 411} 412 413/* 414 * Return byte-offset into filesystem object for page. 415 */ 416static inline loff_t page_offset(struct page *page) 417{ 418 return ((loff_t)page->index) << PAGE_CACHE_SHIFT; 419} 420 421static inline loff_t page_file_offset(struct page *page) 422{ 423 return ((loff_t)page_file_index(page)) << PAGE_CACHE_SHIFT; 424} 425 426extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 427 unsigned long address); 428 429static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 430 unsigned long address) 431{ 432 pgoff_t pgoff; 433 if (unlikely(is_vm_hugetlb_page(vma))) 434 return linear_hugepage_index(vma, address); 435 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 436 pgoff += vma->vm_pgoff; 437 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT); 438} 439 440extern void __lock_page(struct page *page); 441extern int __lock_page_killable(struct page *page); 442extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 443 unsigned int flags); 444extern void unlock_page(struct page *page); 445 446static inline void __set_page_locked(struct page *page) 447{ 448 __set_bit(PG_locked, &page->flags); 449} 450 451static inline void __clear_page_locked(struct page *page) 452{ 453 __clear_bit(PG_locked, &page->flags); 454} 455 456static inline int trylock_page(struct page *page) 457{ 458 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 459} 460 461/* 462 * lock_page may only be called if we have the page's inode pinned. 463 */ 464static inline void lock_page(struct page *page) 465{ 466 might_sleep(); 467 if (!trylock_page(page)) 468 __lock_page(page); 469} 470 471/* 472 * lock_page_killable is like lock_page but can be interrupted by fatal 473 * signals. It returns 0 if it locked the page and -EINTR if it was 474 * killed while waiting. 475 */ 476static inline int lock_page_killable(struct page *page) 477{ 478 might_sleep(); 479 if (!trylock_page(page)) 480 return __lock_page_killable(page); 481 return 0; 482} 483 484/* 485 * lock_page_or_retry - Lock the page, unless this would block and the 486 * caller indicated that it can handle a retry. 487 * 488 * Return value and mmap_sem implications depend on flags; see 489 * __lock_page_or_retry(). 490 */ 491static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 492 unsigned int flags) 493{ 494 might_sleep(); 495 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 496} 497 498/* 499 * This is exported only for wait_on_page_locked/wait_on_page_writeback. 500 * Never use this directly! 501 */ 502extern void wait_on_page_bit(struct page *page, int bit_nr); 503 504extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 505 506static inline int wait_on_page_locked_killable(struct page *page) 507{ 508 if (PageLocked(page)) 509 return wait_on_page_bit_killable(page, PG_locked); 510 return 0; 511} 512 513/* 514 * Wait for a page to be unlocked. 515 * 516 * This must be called with the caller "holding" the page, 517 * ie with increased "page->count" so that the page won't 518 * go away during the wait.. 519 */ 520static inline void wait_on_page_locked(struct page *page) 521{ 522 if (PageLocked(page)) 523 wait_on_page_bit(page, PG_locked); 524} 525 526/* 527 * Wait for a page to complete writeback 528 */ 529static inline void wait_on_page_writeback(struct page *page) 530{ 531 if (PageWriteback(page)) 532 wait_on_page_bit(page, PG_writeback); 533} 534 535extern void end_page_writeback(struct page *page); 536void wait_for_stable_page(struct page *page); 537 538void page_endio(struct page *page, int rw, int err); 539 540/* 541 * Add an arbitrary waiter to a page's wait queue 542 */ 543extern void add_page_wait_queue(struct page *page, wait_queue_t *waiter); 544 545/* 546 * Fault a userspace page into pagetables. Return non-zero on a fault. 547 * 548 * This assumes that two userspace pages are always sufficient. That's 549 * not true if PAGE_CACHE_SIZE > PAGE_SIZE. 550 */ 551static inline int fault_in_pages_writeable(char __user *uaddr, int size) 552{ 553 int ret; 554 555 if (unlikely(size == 0)) 556 return 0; 557 558 /* 559 * Writing zeroes into userspace here is OK, because we know that if 560 * the zero gets there, we'll be overwriting it. 561 */ 562 ret = __put_user(0, uaddr); 563 if (ret == 0) { 564 char __user *end = uaddr + size - 1; 565 566 /* 567 * If the page was already mapped, this will get a cache miss 568 * for sure, so try to avoid doing it. 569 */ 570 if (((unsigned long)uaddr & PAGE_MASK) != 571 ((unsigned long)end & PAGE_MASK)) 572 ret = __put_user(0, end); 573 } 574 return ret; 575} 576 577static inline int fault_in_pages_readable(const char __user *uaddr, int size) 578{ 579 volatile char c; 580 int ret; 581 582 if (unlikely(size == 0)) 583 return 0; 584 585 ret = __get_user(c, uaddr); 586 if (ret == 0) { 587 const char __user *end = uaddr + size - 1; 588 589 if (((unsigned long)uaddr & PAGE_MASK) != 590 ((unsigned long)end & PAGE_MASK)) { 591 ret = __get_user(c, end); 592 (void)c; 593 } 594 } 595 return ret; 596} 597 598/* 599 * Multipage variants of the above prefault helpers, useful if more than 600 * PAGE_SIZE of data needs to be prefaulted. These are separate from the above 601 * functions (which only handle up to PAGE_SIZE) to avoid clobbering the 602 * filemap.c hotpaths. 603 */ 604static inline int fault_in_multipages_writeable(char __user *uaddr, int size) 605{ 606 int ret = 0; 607 char __user *end = uaddr + size - 1; 608 609 if (unlikely(size == 0)) 610 return ret; 611 612 /* 613 * Writing zeroes into userspace here is OK, because we know that if 614 * the zero gets there, we'll be overwriting it. 615 */ 616 while (uaddr <= end) { 617 ret = __put_user(0, uaddr); 618 if (ret != 0) 619 return ret; 620 uaddr += PAGE_SIZE; 621 } 622 623 /* Check whether the range spilled into the next page. */ 624 if (((unsigned long)uaddr & PAGE_MASK) == 625 ((unsigned long)end & PAGE_MASK)) 626 ret = __put_user(0, end); 627 628 return ret; 629} 630 631static inline int fault_in_multipages_readable(const char __user *uaddr, 632 int size) 633{ 634 volatile char c; 635 int ret = 0; 636 const char __user *end = uaddr + size - 1; 637 638 if (unlikely(size == 0)) 639 return ret; 640 641 while (uaddr <= end) { 642 ret = __get_user(c, uaddr); 643 if (ret != 0) 644 return ret; 645 uaddr += PAGE_SIZE; 646 } 647 648 /* Check whether the range spilled into the next page. */ 649 if (((unsigned long)uaddr & PAGE_MASK) == 650 ((unsigned long)end & PAGE_MASK)) { 651 ret = __get_user(c, end); 652 (void)c; 653 } 654 655 return ret; 656} 657 658int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 659 pgoff_t index, gfp_t gfp_mask); 660int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 661 pgoff_t index, gfp_t gfp_mask); 662extern void delete_from_page_cache(struct page *page); 663extern void __delete_from_page_cache(struct page *page, void *shadow); 664int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask); 665 666/* 667 * Like add_to_page_cache_locked, but used to add newly allocated pages: 668 * the page is new, so we can just run __set_page_locked() against it. 669 */ 670static inline int add_to_page_cache(struct page *page, 671 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 672{ 673 int error; 674 675 __set_page_locked(page); 676 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 677 if (unlikely(error)) 678 __clear_page_locked(page); 679 return error; 680} 681 682#endif /* _LINUX_PAGEMAP_H */