at v3.17 42 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66#ifdef CONFIG_CMA 67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68#else 69# define is_migrate_cma(migratetype) false 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81#define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86{ 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90} 91 92struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95}; 96 97struct pglist_data; 98 99/* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105#if defined(CONFIG_SMP) 106struct zone_padding { 107 char x[0]; 108} ____cacheline_internodealigned_in_smp; 109#define ZONE_PADDING(name) struct zone_padding name; 110#else 111#define ZONE_PADDING(name) 112#endif 113 114enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146 NR_PAGES_SCANNED, /* pages scanned since last reclaim */ 147#ifdef CONFIG_NUMA 148 NUMA_HIT, /* allocated in intended node */ 149 NUMA_MISS, /* allocated in non intended node */ 150 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 151 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 152 NUMA_LOCAL, /* allocation from local node */ 153 NUMA_OTHER, /* allocation from other node */ 154#endif 155 WORKINGSET_REFAULT, 156 WORKINGSET_ACTIVATE, 157 WORKINGSET_NODERECLAIM, 158 NR_ANON_TRANSPARENT_HUGEPAGES, 159 NR_FREE_CMA_PAGES, 160 NR_VM_ZONE_STAT_ITEMS }; 161 162/* 163 * We do arithmetic on the LRU lists in various places in the code, 164 * so it is important to keep the active lists LRU_ACTIVE higher in 165 * the array than the corresponding inactive lists, and to keep 166 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 167 * 168 * This has to be kept in sync with the statistics in zone_stat_item 169 * above and the descriptions in vmstat_text in mm/vmstat.c 170 */ 171#define LRU_BASE 0 172#define LRU_ACTIVE 1 173#define LRU_FILE 2 174 175enum lru_list { 176 LRU_INACTIVE_ANON = LRU_BASE, 177 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 178 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 179 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 180 LRU_UNEVICTABLE, 181 NR_LRU_LISTS 182}; 183 184#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 185 186#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 187 188static inline int is_file_lru(enum lru_list lru) 189{ 190 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 191} 192 193static inline int is_active_lru(enum lru_list lru) 194{ 195 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 196} 197 198static inline int is_unevictable_lru(enum lru_list lru) 199{ 200 return (lru == LRU_UNEVICTABLE); 201} 202 203struct zone_reclaim_stat { 204 /* 205 * The pageout code in vmscan.c keeps track of how many of the 206 * mem/swap backed and file backed pages are referenced. 207 * The higher the rotated/scanned ratio, the more valuable 208 * that cache is. 209 * 210 * The anon LRU stats live in [0], file LRU stats in [1] 211 */ 212 unsigned long recent_rotated[2]; 213 unsigned long recent_scanned[2]; 214}; 215 216struct lruvec { 217 struct list_head lists[NR_LRU_LISTS]; 218 struct zone_reclaim_stat reclaim_stat; 219#ifdef CONFIG_MEMCG 220 struct zone *zone; 221#endif 222}; 223 224/* Mask used at gathering information at once (see memcontrol.c) */ 225#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 226#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 227#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 228 229/* Isolate clean file */ 230#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 231/* Isolate unmapped file */ 232#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 233/* Isolate for asynchronous migration */ 234#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 235/* Isolate unevictable pages */ 236#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 237 238/* LRU Isolation modes. */ 239typedef unsigned __bitwise__ isolate_mode_t; 240 241enum zone_watermarks { 242 WMARK_MIN, 243 WMARK_LOW, 244 WMARK_HIGH, 245 NR_WMARK 246}; 247 248#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 249#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 250#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 251 252struct per_cpu_pages { 253 int count; /* number of pages in the list */ 254 int high; /* high watermark, emptying needed */ 255 int batch; /* chunk size for buddy add/remove */ 256 257 /* Lists of pages, one per migrate type stored on the pcp-lists */ 258 struct list_head lists[MIGRATE_PCPTYPES]; 259}; 260 261struct per_cpu_pageset { 262 struct per_cpu_pages pcp; 263#ifdef CONFIG_NUMA 264 s8 expire; 265#endif 266#ifdef CONFIG_SMP 267 s8 stat_threshold; 268 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 269#endif 270}; 271 272#endif /* !__GENERATING_BOUNDS.H */ 273 274enum zone_type { 275#ifdef CONFIG_ZONE_DMA 276 /* 277 * ZONE_DMA is used when there are devices that are not able 278 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 279 * carve out the portion of memory that is needed for these devices. 280 * The range is arch specific. 281 * 282 * Some examples 283 * 284 * Architecture Limit 285 * --------------------------- 286 * parisc, ia64, sparc <4G 287 * s390 <2G 288 * arm Various 289 * alpha Unlimited or 0-16MB. 290 * 291 * i386, x86_64 and multiple other arches 292 * <16M. 293 */ 294 ZONE_DMA, 295#endif 296#ifdef CONFIG_ZONE_DMA32 297 /* 298 * x86_64 needs two ZONE_DMAs because it supports devices that are 299 * only able to do DMA to the lower 16M but also 32 bit devices that 300 * can only do DMA areas below 4G. 301 */ 302 ZONE_DMA32, 303#endif 304 /* 305 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 306 * performed on pages in ZONE_NORMAL if the DMA devices support 307 * transfers to all addressable memory. 308 */ 309 ZONE_NORMAL, 310#ifdef CONFIG_HIGHMEM 311 /* 312 * A memory area that is only addressable by the kernel through 313 * mapping portions into its own address space. This is for example 314 * used by i386 to allow the kernel to address the memory beyond 315 * 900MB. The kernel will set up special mappings (page 316 * table entries on i386) for each page that the kernel needs to 317 * access. 318 */ 319 ZONE_HIGHMEM, 320#endif 321 ZONE_MOVABLE, 322 __MAX_NR_ZONES 323}; 324 325#ifndef __GENERATING_BOUNDS_H 326 327struct zone { 328 /* Read-mostly fields */ 329 330 /* zone watermarks, access with *_wmark_pages(zone) macros */ 331 unsigned long watermark[NR_WMARK]; 332 333 /* 334 * We don't know if the memory that we're going to allocate will be freeable 335 * or/and it will be released eventually, so to avoid totally wasting several 336 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 337 * to run OOM on the lower zones despite there's tons of freeable ram 338 * on the higher zones). This array is recalculated at runtime if the 339 * sysctl_lowmem_reserve_ratio sysctl changes. 340 */ 341 long lowmem_reserve[MAX_NR_ZONES]; 342 343#ifdef CONFIG_NUMA 344 int node; 345#endif 346 347 /* 348 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 349 * this zone's LRU. Maintained by the pageout code. 350 */ 351 unsigned int inactive_ratio; 352 353 struct pglist_data *zone_pgdat; 354 struct per_cpu_pageset __percpu *pageset; 355 356 /* 357 * This is a per-zone reserve of pages that should not be 358 * considered dirtyable memory. 359 */ 360 unsigned long dirty_balance_reserve; 361 362#ifndef CONFIG_SPARSEMEM 363 /* 364 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 365 * In SPARSEMEM, this map is stored in struct mem_section 366 */ 367 unsigned long *pageblock_flags; 368#endif /* CONFIG_SPARSEMEM */ 369 370#ifdef CONFIG_NUMA 371 /* 372 * zone reclaim becomes active if more unmapped pages exist. 373 */ 374 unsigned long min_unmapped_pages; 375 unsigned long min_slab_pages; 376#endif /* CONFIG_NUMA */ 377 378 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 379 unsigned long zone_start_pfn; 380 381 /* 382 * spanned_pages is the total pages spanned by the zone, including 383 * holes, which is calculated as: 384 * spanned_pages = zone_end_pfn - zone_start_pfn; 385 * 386 * present_pages is physical pages existing within the zone, which 387 * is calculated as: 388 * present_pages = spanned_pages - absent_pages(pages in holes); 389 * 390 * managed_pages is present pages managed by the buddy system, which 391 * is calculated as (reserved_pages includes pages allocated by the 392 * bootmem allocator): 393 * managed_pages = present_pages - reserved_pages; 394 * 395 * So present_pages may be used by memory hotplug or memory power 396 * management logic to figure out unmanaged pages by checking 397 * (present_pages - managed_pages). And managed_pages should be used 398 * by page allocator and vm scanner to calculate all kinds of watermarks 399 * and thresholds. 400 * 401 * Locking rules: 402 * 403 * zone_start_pfn and spanned_pages are protected by span_seqlock. 404 * It is a seqlock because it has to be read outside of zone->lock, 405 * and it is done in the main allocator path. But, it is written 406 * quite infrequently. 407 * 408 * The span_seq lock is declared along with zone->lock because it is 409 * frequently read in proximity to zone->lock. It's good to 410 * give them a chance of being in the same cacheline. 411 * 412 * Write access to present_pages at runtime should be protected by 413 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 414 * present_pages should get_online_mems() to get a stable value. 415 * 416 * Read access to managed_pages should be safe because it's unsigned 417 * long. Write access to zone->managed_pages and totalram_pages are 418 * protected by managed_page_count_lock at runtime. Idealy only 419 * adjust_managed_page_count() should be used instead of directly 420 * touching zone->managed_pages and totalram_pages. 421 */ 422 unsigned long managed_pages; 423 unsigned long spanned_pages; 424 unsigned long present_pages; 425 426 const char *name; 427 428 /* 429 * Number of MIGRATE_RESEVE page block. To maintain for just 430 * optimization. Protected by zone->lock. 431 */ 432 int nr_migrate_reserve_block; 433 434#ifdef CONFIG_MEMORY_HOTPLUG 435 /* see spanned/present_pages for more description */ 436 seqlock_t span_seqlock; 437#endif 438 439 /* 440 * wait_table -- the array holding the hash table 441 * wait_table_hash_nr_entries -- the size of the hash table array 442 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 443 * 444 * The purpose of all these is to keep track of the people 445 * waiting for a page to become available and make them 446 * runnable again when possible. The trouble is that this 447 * consumes a lot of space, especially when so few things 448 * wait on pages at a given time. So instead of using 449 * per-page waitqueues, we use a waitqueue hash table. 450 * 451 * The bucket discipline is to sleep on the same queue when 452 * colliding and wake all in that wait queue when removing. 453 * When something wakes, it must check to be sure its page is 454 * truly available, a la thundering herd. The cost of a 455 * collision is great, but given the expected load of the 456 * table, they should be so rare as to be outweighed by the 457 * benefits from the saved space. 458 * 459 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 460 * primary users of these fields, and in mm/page_alloc.c 461 * free_area_init_core() performs the initialization of them. 462 */ 463 wait_queue_head_t *wait_table; 464 unsigned long wait_table_hash_nr_entries; 465 unsigned long wait_table_bits; 466 467 ZONE_PADDING(_pad1_) 468 469 /* Write-intensive fields used from the page allocator */ 470 spinlock_t lock; 471 472 /* free areas of different sizes */ 473 struct free_area free_area[MAX_ORDER]; 474 475 /* zone flags, see below */ 476 unsigned long flags; 477 478 ZONE_PADDING(_pad2_) 479 480 /* Write-intensive fields used by page reclaim */ 481 482 /* Fields commonly accessed by the page reclaim scanner */ 483 spinlock_t lru_lock; 484 struct lruvec lruvec; 485 486 /* Evictions & activations on the inactive file list */ 487 atomic_long_t inactive_age; 488 489 /* 490 * When free pages are below this point, additional steps are taken 491 * when reading the number of free pages to avoid per-cpu counter 492 * drift allowing watermarks to be breached 493 */ 494 unsigned long percpu_drift_mark; 495 496#if defined CONFIG_COMPACTION || defined CONFIG_CMA 497 /* pfn where compaction free scanner should start */ 498 unsigned long compact_cached_free_pfn; 499 /* pfn where async and sync compaction migration scanner should start */ 500 unsigned long compact_cached_migrate_pfn[2]; 501#endif 502 503#ifdef CONFIG_COMPACTION 504 /* 505 * On compaction failure, 1<<compact_defer_shift compactions 506 * are skipped before trying again. The number attempted since 507 * last failure is tracked with compact_considered. 508 */ 509 unsigned int compact_considered; 510 unsigned int compact_defer_shift; 511 int compact_order_failed; 512#endif 513 514#if defined CONFIG_COMPACTION || defined CONFIG_CMA 515 /* Set to true when the PG_migrate_skip bits should be cleared */ 516 bool compact_blockskip_flush; 517#endif 518 519 ZONE_PADDING(_pad3_) 520 /* Zone statistics */ 521 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 522} ____cacheline_internodealigned_in_smp; 523 524typedef enum { 525 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 526 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 527 ZONE_CONGESTED, /* zone has many dirty pages backed by 528 * a congested BDI 529 */ 530 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found 531 * many dirty file pages at the tail 532 * of the LRU. 533 */ 534 ZONE_WRITEBACK, /* reclaim scanning has recently found 535 * many pages under writeback 536 */ 537 ZONE_FAIR_DEPLETED, /* fair zone policy batch depleted */ 538} zone_flags_t; 539 540static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 541{ 542 set_bit(flag, &zone->flags); 543} 544 545static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 546{ 547 return test_and_set_bit(flag, &zone->flags); 548} 549 550static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 551{ 552 clear_bit(flag, &zone->flags); 553} 554 555static inline int zone_is_reclaim_congested(const struct zone *zone) 556{ 557 return test_bit(ZONE_CONGESTED, &zone->flags); 558} 559 560static inline int zone_is_reclaim_dirty(const struct zone *zone) 561{ 562 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags); 563} 564 565static inline int zone_is_reclaim_writeback(const struct zone *zone) 566{ 567 return test_bit(ZONE_WRITEBACK, &zone->flags); 568} 569 570static inline int zone_is_reclaim_locked(const struct zone *zone) 571{ 572 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 573} 574 575static inline int zone_is_fair_depleted(const struct zone *zone) 576{ 577 return test_bit(ZONE_FAIR_DEPLETED, &zone->flags); 578} 579 580static inline int zone_is_oom_locked(const struct zone *zone) 581{ 582 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 583} 584 585static inline unsigned long zone_end_pfn(const struct zone *zone) 586{ 587 return zone->zone_start_pfn + zone->spanned_pages; 588} 589 590static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 591{ 592 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 593} 594 595static inline bool zone_is_initialized(struct zone *zone) 596{ 597 return !!zone->wait_table; 598} 599 600static inline bool zone_is_empty(struct zone *zone) 601{ 602 return zone->spanned_pages == 0; 603} 604 605/* 606 * The "priority" of VM scanning is how much of the queues we will scan in one 607 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 608 * queues ("queue_length >> 12") during an aging round. 609 */ 610#define DEF_PRIORITY 12 611 612/* Maximum number of zones on a zonelist */ 613#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 614 615#ifdef CONFIG_NUMA 616 617/* 618 * The NUMA zonelists are doubled because we need zonelists that restrict the 619 * allocations to a single node for __GFP_THISNODE. 620 * 621 * [0] : Zonelist with fallback 622 * [1] : No fallback (__GFP_THISNODE) 623 */ 624#define MAX_ZONELISTS 2 625 626 627/* 628 * We cache key information from each zonelist for smaller cache 629 * footprint when scanning for free pages in get_page_from_freelist(). 630 * 631 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 632 * up short of free memory since the last time (last_fullzone_zap) 633 * we zero'd fullzones. 634 * 2) The array z_to_n[] maps each zone in the zonelist to its node 635 * id, so that we can efficiently evaluate whether that node is 636 * set in the current tasks mems_allowed. 637 * 638 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 639 * indexed by a zones offset in the zonelist zones[] array. 640 * 641 * The get_page_from_freelist() routine does two scans. During the 642 * first scan, we skip zones whose corresponding bit in 'fullzones' 643 * is set or whose corresponding node in current->mems_allowed (which 644 * comes from cpusets) is not set. During the second scan, we bypass 645 * this zonelist_cache, to ensure we look methodically at each zone. 646 * 647 * Once per second, we zero out (zap) fullzones, forcing us to 648 * reconsider nodes that might have regained more free memory. 649 * The field last_full_zap is the time we last zapped fullzones. 650 * 651 * This mechanism reduces the amount of time we waste repeatedly 652 * reexaming zones for free memory when they just came up low on 653 * memory momentarilly ago. 654 * 655 * The zonelist_cache struct members logically belong in struct 656 * zonelist. However, the mempolicy zonelists constructed for 657 * MPOL_BIND are intentionally variable length (and usually much 658 * shorter). A general purpose mechanism for handling structs with 659 * multiple variable length members is more mechanism than we want 660 * here. We resort to some special case hackery instead. 661 * 662 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 663 * part because they are shorter), so we put the fixed length stuff 664 * at the front of the zonelist struct, ending in a variable length 665 * zones[], as is needed by MPOL_BIND. 666 * 667 * Then we put the optional zonelist cache on the end of the zonelist 668 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 669 * the fixed length portion at the front of the struct. This pointer 670 * both enables us to find the zonelist cache, and in the case of 671 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 672 * to know that the zonelist cache is not there. 673 * 674 * The end result is that struct zonelists come in two flavors: 675 * 1) The full, fixed length version, shown below, and 676 * 2) The custom zonelists for MPOL_BIND. 677 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 678 * 679 * Even though there may be multiple CPU cores on a node modifying 680 * fullzones or last_full_zap in the same zonelist_cache at the same 681 * time, we don't lock it. This is just hint data - if it is wrong now 682 * and then, the allocator will still function, perhaps a bit slower. 683 */ 684 685 686struct zonelist_cache { 687 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 688 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 689 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 690}; 691#else 692#define MAX_ZONELISTS 1 693struct zonelist_cache; 694#endif 695 696/* 697 * This struct contains information about a zone in a zonelist. It is stored 698 * here to avoid dereferences into large structures and lookups of tables 699 */ 700struct zoneref { 701 struct zone *zone; /* Pointer to actual zone */ 702 int zone_idx; /* zone_idx(zoneref->zone) */ 703}; 704 705/* 706 * One allocation request operates on a zonelist. A zonelist 707 * is a list of zones, the first one is the 'goal' of the 708 * allocation, the other zones are fallback zones, in decreasing 709 * priority. 710 * 711 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 712 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 713 * * 714 * To speed the reading of the zonelist, the zonerefs contain the zone index 715 * of the entry being read. Helper functions to access information given 716 * a struct zoneref are 717 * 718 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 719 * zonelist_zone_idx() - Return the index of the zone for an entry 720 * zonelist_node_idx() - Return the index of the node for an entry 721 */ 722struct zonelist { 723 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 724 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 725#ifdef CONFIG_NUMA 726 struct zonelist_cache zlcache; // optional ... 727#endif 728}; 729 730#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 731struct node_active_region { 732 unsigned long start_pfn; 733 unsigned long end_pfn; 734 int nid; 735}; 736#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 737 738#ifndef CONFIG_DISCONTIGMEM 739/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 740extern struct page *mem_map; 741#endif 742 743/* 744 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 745 * (mostly NUMA machines?) to denote a higher-level memory zone than the 746 * zone denotes. 747 * 748 * On NUMA machines, each NUMA node would have a pg_data_t to describe 749 * it's memory layout. 750 * 751 * Memory statistics and page replacement data structures are maintained on a 752 * per-zone basis. 753 */ 754struct bootmem_data; 755typedef struct pglist_data { 756 struct zone node_zones[MAX_NR_ZONES]; 757 struct zonelist node_zonelists[MAX_ZONELISTS]; 758 int nr_zones; 759#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 760 struct page *node_mem_map; 761#ifdef CONFIG_MEMCG 762 struct page_cgroup *node_page_cgroup; 763#endif 764#endif 765#ifndef CONFIG_NO_BOOTMEM 766 struct bootmem_data *bdata; 767#endif 768#ifdef CONFIG_MEMORY_HOTPLUG 769 /* 770 * Must be held any time you expect node_start_pfn, node_present_pages 771 * or node_spanned_pages stay constant. Holding this will also 772 * guarantee that any pfn_valid() stays that way. 773 * 774 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 775 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 776 * 777 * Nests above zone->lock and zone->span_seqlock 778 */ 779 spinlock_t node_size_lock; 780#endif 781 unsigned long node_start_pfn; 782 unsigned long node_present_pages; /* total number of physical pages */ 783 unsigned long node_spanned_pages; /* total size of physical page 784 range, including holes */ 785 int node_id; 786 wait_queue_head_t kswapd_wait; 787 wait_queue_head_t pfmemalloc_wait; 788 struct task_struct *kswapd; /* Protected by 789 mem_hotplug_begin/end() */ 790 int kswapd_max_order; 791 enum zone_type classzone_idx; 792#ifdef CONFIG_NUMA_BALANCING 793 /* Lock serializing the migrate rate limiting window */ 794 spinlock_t numabalancing_migrate_lock; 795 796 /* Rate limiting time interval */ 797 unsigned long numabalancing_migrate_next_window; 798 799 /* Number of pages migrated during the rate limiting time interval */ 800 unsigned long numabalancing_migrate_nr_pages; 801#endif 802} pg_data_t; 803 804#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 805#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 806#ifdef CONFIG_FLAT_NODE_MEM_MAP 807#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 808#else 809#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 810#endif 811#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 812 813#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 814#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 815 816static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 817{ 818 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 819} 820 821static inline bool pgdat_is_empty(pg_data_t *pgdat) 822{ 823 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 824} 825 826#include <linux/memory_hotplug.h> 827 828extern struct mutex zonelists_mutex; 829void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 830void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 831bool zone_watermark_ok(struct zone *z, unsigned int order, 832 unsigned long mark, int classzone_idx, int alloc_flags); 833bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 834 unsigned long mark, int classzone_idx, int alloc_flags); 835enum memmap_context { 836 MEMMAP_EARLY, 837 MEMMAP_HOTPLUG, 838}; 839extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 840 unsigned long size, 841 enum memmap_context context); 842 843extern void lruvec_init(struct lruvec *lruvec); 844 845static inline struct zone *lruvec_zone(struct lruvec *lruvec) 846{ 847#ifdef CONFIG_MEMCG 848 return lruvec->zone; 849#else 850 return container_of(lruvec, struct zone, lruvec); 851#endif 852} 853 854#ifdef CONFIG_HAVE_MEMORY_PRESENT 855void memory_present(int nid, unsigned long start, unsigned long end); 856#else 857static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 858#endif 859 860#ifdef CONFIG_HAVE_MEMORYLESS_NODES 861int local_memory_node(int node_id); 862#else 863static inline int local_memory_node(int node_id) { return node_id; }; 864#endif 865 866#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 867unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 868#endif 869 870/* 871 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 872 */ 873#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 874 875static inline int populated_zone(struct zone *zone) 876{ 877 return (!!zone->present_pages); 878} 879 880extern int movable_zone; 881 882static inline int zone_movable_is_highmem(void) 883{ 884#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 885 return movable_zone == ZONE_HIGHMEM; 886#elif defined(CONFIG_HIGHMEM) 887 return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM; 888#else 889 return 0; 890#endif 891} 892 893static inline int is_highmem_idx(enum zone_type idx) 894{ 895#ifdef CONFIG_HIGHMEM 896 return (idx == ZONE_HIGHMEM || 897 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 898#else 899 return 0; 900#endif 901} 902 903/** 904 * is_highmem - helper function to quickly check if a struct zone is a 905 * highmem zone or not. This is an attempt to keep references 906 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 907 * @zone - pointer to struct zone variable 908 */ 909static inline int is_highmem(struct zone *zone) 910{ 911#ifdef CONFIG_HIGHMEM 912 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 913 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 914 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 915 zone_movable_is_highmem()); 916#else 917 return 0; 918#endif 919} 920 921/* These two functions are used to setup the per zone pages min values */ 922struct ctl_table; 923int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 924 void __user *, size_t *, loff_t *); 925extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 926int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 927 void __user *, size_t *, loff_t *); 928int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 929 void __user *, size_t *, loff_t *); 930int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 931 void __user *, size_t *, loff_t *); 932int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 933 void __user *, size_t *, loff_t *); 934 935extern int numa_zonelist_order_handler(struct ctl_table *, int, 936 void __user *, size_t *, loff_t *); 937extern char numa_zonelist_order[]; 938#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 939 940#ifndef CONFIG_NEED_MULTIPLE_NODES 941 942extern struct pglist_data contig_page_data; 943#define NODE_DATA(nid) (&contig_page_data) 944#define NODE_MEM_MAP(nid) mem_map 945 946#else /* CONFIG_NEED_MULTIPLE_NODES */ 947 948#include <asm/mmzone.h> 949 950#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 951 952extern struct pglist_data *first_online_pgdat(void); 953extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 954extern struct zone *next_zone(struct zone *zone); 955 956/** 957 * for_each_online_pgdat - helper macro to iterate over all online nodes 958 * @pgdat - pointer to a pg_data_t variable 959 */ 960#define for_each_online_pgdat(pgdat) \ 961 for (pgdat = first_online_pgdat(); \ 962 pgdat; \ 963 pgdat = next_online_pgdat(pgdat)) 964/** 965 * for_each_zone - helper macro to iterate over all memory zones 966 * @zone - pointer to struct zone variable 967 * 968 * The user only needs to declare the zone variable, for_each_zone 969 * fills it in. 970 */ 971#define for_each_zone(zone) \ 972 for (zone = (first_online_pgdat())->node_zones; \ 973 zone; \ 974 zone = next_zone(zone)) 975 976#define for_each_populated_zone(zone) \ 977 for (zone = (first_online_pgdat())->node_zones; \ 978 zone; \ 979 zone = next_zone(zone)) \ 980 if (!populated_zone(zone)) \ 981 ; /* do nothing */ \ 982 else 983 984static inline struct zone *zonelist_zone(struct zoneref *zoneref) 985{ 986 return zoneref->zone; 987} 988 989static inline int zonelist_zone_idx(struct zoneref *zoneref) 990{ 991 return zoneref->zone_idx; 992} 993 994static inline int zonelist_node_idx(struct zoneref *zoneref) 995{ 996#ifdef CONFIG_NUMA 997 /* zone_to_nid not available in this context */ 998 return zoneref->zone->node; 999#else 1000 return 0; 1001#endif /* CONFIG_NUMA */ 1002} 1003 1004/** 1005 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1006 * @z - The cursor used as a starting point for the search 1007 * @highest_zoneidx - The zone index of the highest zone to return 1008 * @nodes - An optional nodemask to filter the zonelist with 1009 * @zone - The first suitable zone found is returned via this parameter 1010 * 1011 * This function returns the next zone at or below a given zone index that is 1012 * within the allowed nodemask using a cursor as the starting point for the 1013 * search. The zoneref returned is a cursor that represents the current zone 1014 * being examined. It should be advanced by one before calling 1015 * next_zones_zonelist again. 1016 */ 1017struct zoneref *next_zones_zonelist(struct zoneref *z, 1018 enum zone_type highest_zoneidx, 1019 nodemask_t *nodes, 1020 struct zone **zone); 1021 1022/** 1023 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1024 * @zonelist - The zonelist to search for a suitable zone 1025 * @highest_zoneidx - The zone index of the highest zone to return 1026 * @nodes - An optional nodemask to filter the zonelist with 1027 * @zone - The first suitable zone found is returned via this parameter 1028 * 1029 * This function returns the first zone at or below a given zone index that is 1030 * within the allowed nodemask. The zoneref returned is a cursor that can be 1031 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1032 * one before calling. 1033 */ 1034static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1035 enum zone_type highest_zoneidx, 1036 nodemask_t *nodes, 1037 struct zone **zone) 1038{ 1039 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 1040 zone); 1041} 1042 1043/** 1044 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1045 * @zone - The current zone in the iterator 1046 * @z - The current pointer within zonelist->zones being iterated 1047 * @zlist - The zonelist being iterated 1048 * @highidx - The zone index of the highest zone to return 1049 * @nodemask - Nodemask allowed by the allocator 1050 * 1051 * This iterator iterates though all zones at or below a given zone index and 1052 * within a given nodemask 1053 */ 1054#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1055 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1056 zone; \ 1057 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1058 1059/** 1060 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1061 * @zone - The current zone in the iterator 1062 * @z - The current pointer within zonelist->zones being iterated 1063 * @zlist - The zonelist being iterated 1064 * @highidx - The zone index of the highest zone to return 1065 * 1066 * This iterator iterates though all zones at or below a given zone index. 1067 */ 1068#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1069 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1070 1071#ifdef CONFIG_SPARSEMEM 1072#include <asm/sparsemem.h> 1073#endif 1074 1075#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1076 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1077static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1078{ 1079 return 0; 1080} 1081#endif 1082 1083#ifdef CONFIG_FLATMEM 1084#define pfn_to_nid(pfn) (0) 1085#endif 1086 1087#ifdef CONFIG_SPARSEMEM 1088 1089/* 1090 * SECTION_SHIFT #bits space required to store a section # 1091 * 1092 * PA_SECTION_SHIFT physical address to/from section number 1093 * PFN_SECTION_SHIFT pfn to/from section number 1094 */ 1095#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1096#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1097 1098#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1099 1100#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1101#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1102 1103#define SECTION_BLOCKFLAGS_BITS \ 1104 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1105 1106#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1107#error Allocator MAX_ORDER exceeds SECTION_SIZE 1108#endif 1109 1110#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1111#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1112 1113#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1114#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1115 1116struct page; 1117struct page_cgroup; 1118struct mem_section { 1119 /* 1120 * This is, logically, a pointer to an array of struct 1121 * pages. However, it is stored with some other magic. 1122 * (see sparse.c::sparse_init_one_section()) 1123 * 1124 * Additionally during early boot we encode node id of 1125 * the location of the section here to guide allocation. 1126 * (see sparse.c::memory_present()) 1127 * 1128 * Making it a UL at least makes someone do a cast 1129 * before using it wrong. 1130 */ 1131 unsigned long section_mem_map; 1132 1133 /* See declaration of similar field in struct zone */ 1134 unsigned long *pageblock_flags; 1135#ifdef CONFIG_MEMCG 1136 /* 1137 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1138 * section. (see memcontrol.h/page_cgroup.h about this.) 1139 */ 1140 struct page_cgroup *page_cgroup; 1141 unsigned long pad; 1142#endif 1143 /* 1144 * WARNING: mem_section must be a power-of-2 in size for the 1145 * calculation and use of SECTION_ROOT_MASK to make sense. 1146 */ 1147}; 1148 1149#ifdef CONFIG_SPARSEMEM_EXTREME 1150#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1151#else 1152#define SECTIONS_PER_ROOT 1 1153#endif 1154 1155#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1156#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1157#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1158 1159#ifdef CONFIG_SPARSEMEM_EXTREME 1160extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1161#else 1162extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1163#endif 1164 1165static inline struct mem_section *__nr_to_section(unsigned long nr) 1166{ 1167 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1168 return NULL; 1169 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1170} 1171extern int __section_nr(struct mem_section* ms); 1172extern unsigned long usemap_size(void); 1173 1174/* 1175 * We use the lower bits of the mem_map pointer to store 1176 * a little bit of information. There should be at least 1177 * 3 bits here due to 32-bit alignment. 1178 */ 1179#define SECTION_MARKED_PRESENT (1UL<<0) 1180#define SECTION_HAS_MEM_MAP (1UL<<1) 1181#define SECTION_MAP_LAST_BIT (1UL<<2) 1182#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1183#define SECTION_NID_SHIFT 2 1184 1185static inline struct page *__section_mem_map_addr(struct mem_section *section) 1186{ 1187 unsigned long map = section->section_mem_map; 1188 map &= SECTION_MAP_MASK; 1189 return (struct page *)map; 1190} 1191 1192static inline int present_section(struct mem_section *section) 1193{ 1194 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1195} 1196 1197static inline int present_section_nr(unsigned long nr) 1198{ 1199 return present_section(__nr_to_section(nr)); 1200} 1201 1202static inline int valid_section(struct mem_section *section) 1203{ 1204 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1205} 1206 1207static inline int valid_section_nr(unsigned long nr) 1208{ 1209 return valid_section(__nr_to_section(nr)); 1210} 1211 1212static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1213{ 1214 return __nr_to_section(pfn_to_section_nr(pfn)); 1215} 1216 1217#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1218static inline int pfn_valid(unsigned long pfn) 1219{ 1220 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1221 return 0; 1222 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1223} 1224#endif 1225 1226static inline int pfn_present(unsigned long pfn) 1227{ 1228 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1229 return 0; 1230 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1231} 1232 1233/* 1234 * These are _only_ used during initialisation, therefore they 1235 * can use __initdata ... They could have names to indicate 1236 * this restriction. 1237 */ 1238#ifdef CONFIG_NUMA 1239#define pfn_to_nid(pfn) \ 1240({ \ 1241 unsigned long __pfn_to_nid_pfn = (pfn); \ 1242 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1243}) 1244#else 1245#define pfn_to_nid(pfn) (0) 1246#endif 1247 1248#define early_pfn_valid(pfn) pfn_valid(pfn) 1249void sparse_init(void); 1250#else 1251#define sparse_init() do {} while (0) 1252#define sparse_index_init(_sec, _nid) do {} while (0) 1253#endif /* CONFIG_SPARSEMEM */ 1254 1255#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1256bool early_pfn_in_nid(unsigned long pfn, int nid); 1257#else 1258#define early_pfn_in_nid(pfn, nid) (1) 1259#endif 1260 1261#ifndef early_pfn_valid 1262#define early_pfn_valid(pfn) (1) 1263#endif 1264 1265void memory_present(int nid, unsigned long start, unsigned long end); 1266unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1267 1268/* 1269 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1270 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1271 * pfn_valid_within() should be used in this case; we optimise this away 1272 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1273 */ 1274#ifdef CONFIG_HOLES_IN_ZONE 1275#define pfn_valid_within(pfn) pfn_valid(pfn) 1276#else 1277#define pfn_valid_within(pfn) (1) 1278#endif 1279 1280#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1281/* 1282 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1283 * associated with it or not. In FLATMEM, it is expected that holes always 1284 * have valid memmap as long as there is valid PFNs either side of the hole. 1285 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1286 * entire section. 1287 * 1288 * However, an ARM, and maybe other embedded architectures in the future 1289 * free memmap backing holes to save memory on the assumption the memmap is 1290 * never used. The page_zone linkages are then broken even though pfn_valid() 1291 * returns true. A walker of the full memmap must then do this additional 1292 * check to ensure the memmap they are looking at is sane by making sure 1293 * the zone and PFN linkages are still valid. This is expensive, but walkers 1294 * of the full memmap are extremely rare. 1295 */ 1296int memmap_valid_within(unsigned long pfn, 1297 struct page *page, struct zone *zone); 1298#else 1299static inline int memmap_valid_within(unsigned long pfn, 1300 struct page *page, struct zone *zone) 1301{ 1302 return 1; 1303} 1304#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1305 1306#endif /* !__GENERATING_BOUNDS.H */ 1307#endif /* !__ASSEMBLY__ */ 1308#endif /* _LINUX_MMZONE_H */