at v3.17 22 kB view raw
1#ifndef _ASM_GENERIC_PGTABLE_H 2#define _ASM_GENERIC_PGTABLE_H 3 4#ifndef __ASSEMBLY__ 5#ifdef CONFIG_MMU 6 7#include <linux/mm_types.h> 8#include <linux/bug.h> 9 10/* 11 * On almost all architectures and configurations, 0 can be used as the 12 * upper ceiling to free_pgtables(): on many architectures it has the same 13 * effect as using TASK_SIZE. However, there is one configuration which 14 * must impose a more careful limit, to avoid freeing kernel pgtables. 15 */ 16#ifndef USER_PGTABLES_CEILING 17#define USER_PGTABLES_CEILING 0UL 18#endif 19 20#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 21extern int ptep_set_access_flags(struct vm_area_struct *vma, 22 unsigned long address, pte_t *ptep, 23 pte_t entry, int dirty); 24#endif 25 26#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 27extern int pmdp_set_access_flags(struct vm_area_struct *vma, 28 unsigned long address, pmd_t *pmdp, 29 pmd_t entry, int dirty); 30#endif 31 32#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 33static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 34 unsigned long address, 35 pte_t *ptep) 36{ 37 pte_t pte = *ptep; 38 int r = 1; 39 if (!pte_young(pte)) 40 r = 0; 41 else 42 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte)); 43 return r; 44} 45#endif 46 47#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 48#ifdef CONFIG_TRANSPARENT_HUGEPAGE 49static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 50 unsigned long address, 51 pmd_t *pmdp) 52{ 53 pmd_t pmd = *pmdp; 54 int r = 1; 55 if (!pmd_young(pmd)) 56 r = 0; 57 else 58 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd)); 59 return r; 60} 61#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 62static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 63 unsigned long address, 64 pmd_t *pmdp) 65{ 66 BUG(); 67 return 0; 68} 69#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 70#endif 71 72#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 73int ptep_clear_flush_young(struct vm_area_struct *vma, 74 unsigned long address, pte_t *ptep); 75#endif 76 77#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 78int pmdp_clear_flush_young(struct vm_area_struct *vma, 79 unsigned long address, pmd_t *pmdp); 80#endif 81 82#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR 83static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 84 unsigned long address, 85 pte_t *ptep) 86{ 87 pte_t pte = *ptep; 88 pte_clear(mm, address, ptep); 89 return pte; 90} 91#endif 92 93#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR 94#ifdef CONFIG_TRANSPARENT_HUGEPAGE 95static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm, 96 unsigned long address, 97 pmd_t *pmdp) 98{ 99 pmd_t pmd = *pmdp; 100 pmd_clear(pmdp); 101 return pmd; 102} 103#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 104#endif 105 106#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 107static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 108 unsigned long address, pte_t *ptep, 109 int full) 110{ 111 pte_t pte; 112 pte = ptep_get_and_clear(mm, address, ptep); 113 return pte; 114} 115#endif 116 117/* 118 * Some architectures may be able to avoid expensive synchronization 119 * primitives when modifications are made to PTE's which are already 120 * not present, or in the process of an address space destruction. 121 */ 122#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL 123static inline void pte_clear_not_present_full(struct mm_struct *mm, 124 unsigned long address, 125 pte_t *ptep, 126 int full) 127{ 128 pte_clear(mm, address, ptep); 129} 130#endif 131 132#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH 133extern pte_t ptep_clear_flush(struct vm_area_struct *vma, 134 unsigned long address, 135 pte_t *ptep); 136#endif 137 138#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH 139extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, 140 unsigned long address, 141 pmd_t *pmdp); 142#endif 143 144#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT 145struct mm_struct; 146static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 147{ 148 pte_t old_pte = *ptep; 149 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte)); 150} 151#endif 152 153#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT 154#ifdef CONFIG_TRANSPARENT_HUGEPAGE 155static inline void pmdp_set_wrprotect(struct mm_struct *mm, 156 unsigned long address, pmd_t *pmdp) 157{ 158 pmd_t old_pmd = *pmdp; 159 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd)); 160} 161#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 162static inline void pmdp_set_wrprotect(struct mm_struct *mm, 163 unsigned long address, pmd_t *pmdp) 164{ 165 BUG(); 166} 167#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 168#endif 169 170#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH 171extern void pmdp_splitting_flush(struct vm_area_struct *vma, 172 unsigned long address, pmd_t *pmdp); 173#endif 174 175#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT 176extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 177 pgtable_t pgtable); 178#endif 179 180#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW 181extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 182#endif 183 184#ifndef __HAVE_ARCH_PMDP_INVALIDATE 185extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, 186 pmd_t *pmdp); 187#endif 188 189#ifndef __HAVE_ARCH_PTE_SAME 190static inline int pte_same(pte_t pte_a, pte_t pte_b) 191{ 192 return pte_val(pte_a) == pte_val(pte_b); 193} 194#endif 195 196#ifndef __HAVE_ARCH_PTE_UNUSED 197/* 198 * Some architectures provide facilities to virtualization guests 199 * so that they can flag allocated pages as unused. This allows the 200 * host to transparently reclaim unused pages. This function returns 201 * whether the pte's page is unused. 202 */ 203static inline int pte_unused(pte_t pte) 204{ 205 return 0; 206} 207#endif 208 209#ifndef __HAVE_ARCH_PMD_SAME 210#ifdef CONFIG_TRANSPARENT_HUGEPAGE 211static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 212{ 213 return pmd_val(pmd_a) == pmd_val(pmd_b); 214} 215#else /* CONFIG_TRANSPARENT_HUGEPAGE */ 216static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) 217{ 218 BUG(); 219 return 0; 220} 221#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 222#endif 223 224#ifndef __HAVE_ARCH_PGD_OFFSET_GATE 225#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr) 226#endif 227 228#ifndef __HAVE_ARCH_MOVE_PTE 229#define move_pte(pte, prot, old_addr, new_addr) (pte) 230#endif 231 232#ifndef pte_accessible 233# define pte_accessible(mm, pte) ((void)(pte), 1) 234#endif 235 236#ifndef pte_present_nonuma 237#define pte_present_nonuma(pte) pte_present(pte) 238#endif 239 240#ifndef flush_tlb_fix_spurious_fault 241#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address) 242#endif 243 244#ifndef pgprot_noncached 245#define pgprot_noncached(prot) (prot) 246#endif 247 248#ifndef pgprot_writecombine 249#define pgprot_writecombine pgprot_noncached 250#endif 251 252/* 253 * When walking page tables, get the address of the next boundary, 254 * or the end address of the range if that comes earlier. Although no 255 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout. 256 */ 257 258#define pgd_addr_end(addr, end) \ 259({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \ 260 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 261}) 262 263#ifndef pud_addr_end 264#define pud_addr_end(addr, end) \ 265({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \ 266 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 267}) 268#endif 269 270#ifndef pmd_addr_end 271#define pmd_addr_end(addr, end) \ 272({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \ 273 (__boundary - 1 < (end) - 1)? __boundary: (end); \ 274}) 275#endif 276 277/* 278 * When walking page tables, we usually want to skip any p?d_none entries; 279 * and any p?d_bad entries - reporting the error before resetting to none. 280 * Do the tests inline, but report and clear the bad entry in mm/memory.c. 281 */ 282void pgd_clear_bad(pgd_t *); 283void pud_clear_bad(pud_t *); 284void pmd_clear_bad(pmd_t *); 285 286static inline int pgd_none_or_clear_bad(pgd_t *pgd) 287{ 288 if (pgd_none(*pgd)) 289 return 1; 290 if (unlikely(pgd_bad(*pgd))) { 291 pgd_clear_bad(pgd); 292 return 1; 293 } 294 return 0; 295} 296 297static inline int pud_none_or_clear_bad(pud_t *pud) 298{ 299 if (pud_none(*pud)) 300 return 1; 301 if (unlikely(pud_bad(*pud))) { 302 pud_clear_bad(pud); 303 return 1; 304 } 305 return 0; 306} 307 308static inline int pmd_none_or_clear_bad(pmd_t *pmd) 309{ 310 if (pmd_none(*pmd)) 311 return 1; 312 if (unlikely(pmd_bad(*pmd))) { 313 pmd_clear_bad(pmd); 314 return 1; 315 } 316 return 0; 317} 318 319static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm, 320 unsigned long addr, 321 pte_t *ptep) 322{ 323 /* 324 * Get the current pte state, but zero it out to make it 325 * non-present, preventing the hardware from asynchronously 326 * updating it. 327 */ 328 return ptep_get_and_clear(mm, addr, ptep); 329} 330 331static inline void __ptep_modify_prot_commit(struct mm_struct *mm, 332 unsigned long addr, 333 pte_t *ptep, pte_t pte) 334{ 335 /* 336 * The pte is non-present, so there's no hardware state to 337 * preserve. 338 */ 339 set_pte_at(mm, addr, ptep, pte); 340} 341 342#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 343/* 344 * Start a pte protection read-modify-write transaction, which 345 * protects against asynchronous hardware modifications to the pte. 346 * The intention is not to prevent the hardware from making pte 347 * updates, but to prevent any updates it may make from being lost. 348 * 349 * This does not protect against other software modifications of the 350 * pte; the appropriate pte lock must be held over the transation. 351 * 352 * Note that this interface is intended to be batchable, meaning that 353 * ptep_modify_prot_commit may not actually update the pte, but merely 354 * queue the update to be done at some later time. The update must be 355 * actually committed before the pte lock is released, however. 356 */ 357static inline pte_t ptep_modify_prot_start(struct mm_struct *mm, 358 unsigned long addr, 359 pte_t *ptep) 360{ 361 return __ptep_modify_prot_start(mm, addr, ptep); 362} 363 364/* 365 * Commit an update to a pte, leaving any hardware-controlled bits in 366 * the PTE unmodified. 367 */ 368static inline void ptep_modify_prot_commit(struct mm_struct *mm, 369 unsigned long addr, 370 pte_t *ptep, pte_t pte) 371{ 372 __ptep_modify_prot_commit(mm, addr, ptep, pte); 373} 374#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */ 375#endif /* CONFIG_MMU */ 376 377/* 378 * A facility to provide lazy MMU batching. This allows PTE updates and 379 * page invalidations to be delayed until a call to leave lazy MMU mode 380 * is issued. Some architectures may benefit from doing this, and it is 381 * beneficial for both shadow and direct mode hypervisors, which may batch 382 * the PTE updates which happen during this window. Note that using this 383 * interface requires that read hazards be removed from the code. A read 384 * hazard could result in the direct mode hypervisor case, since the actual 385 * write to the page tables may not yet have taken place, so reads though 386 * a raw PTE pointer after it has been modified are not guaranteed to be 387 * up to date. This mode can only be entered and left under the protection of 388 * the page table locks for all page tables which may be modified. In the UP 389 * case, this is required so that preemption is disabled, and in the SMP case, 390 * it must synchronize the delayed page table writes properly on other CPUs. 391 */ 392#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE 393#define arch_enter_lazy_mmu_mode() do {} while (0) 394#define arch_leave_lazy_mmu_mode() do {} while (0) 395#define arch_flush_lazy_mmu_mode() do {} while (0) 396#endif 397 398/* 399 * A facility to provide batching of the reload of page tables and 400 * other process state with the actual context switch code for 401 * paravirtualized guests. By convention, only one of the batched 402 * update (lazy) modes (CPU, MMU) should be active at any given time, 403 * entry should never be nested, and entry and exits should always be 404 * paired. This is for sanity of maintaining and reasoning about the 405 * kernel code. In this case, the exit (end of the context switch) is 406 * in architecture-specific code, and so doesn't need a generic 407 * definition. 408 */ 409#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH 410#define arch_start_context_switch(prev) do {} while (0) 411#endif 412 413#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY 414static inline int pte_soft_dirty(pte_t pte) 415{ 416 return 0; 417} 418 419static inline int pmd_soft_dirty(pmd_t pmd) 420{ 421 return 0; 422} 423 424static inline pte_t pte_mksoft_dirty(pte_t pte) 425{ 426 return pte; 427} 428 429static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 430{ 431 return pmd; 432} 433 434static inline pte_t pte_swp_mksoft_dirty(pte_t pte) 435{ 436 return pte; 437} 438 439static inline int pte_swp_soft_dirty(pte_t pte) 440{ 441 return 0; 442} 443 444static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) 445{ 446 return pte; 447} 448 449static inline pte_t pte_file_clear_soft_dirty(pte_t pte) 450{ 451 return pte; 452} 453 454static inline pte_t pte_file_mksoft_dirty(pte_t pte) 455{ 456 return pte; 457} 458 459static inline int pte_file_soft_dirty(pte_t pte) 460{ 461 return 0; 462} 463#endif 464 465#ifndef __HAVE_PFNMAP_TRACKING 466/* 467 * Interfaces that can be used by architecture code to keep track of 468 * memory type of pfn mappings specified by the remap_pfn_range, 469 * vm_insert_pfn. 470 */ 471 472/* 473 * track_pfn_remap is called when a _new_ pfn mapping is being established 474 * by remap_pfn_range() for physical range indicated by pfn and size. 475 */ 476static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 477 unsigned long pfn, unsigned long addr, 478 unsigned long size) 479{ 480 return 0; 481} 482 483/* 484 * track_pfn_insert is called when a _new_ single pfn is established 485 * by vm_insert_pfn(). 486 */ 487static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 488 unsigned long pfn) 489{ 490 return 0; 491} 492 493/* 494 * track_pfn_copy is called when vma that is covering the pfnmap gets 495 * copied through copy_page_range(). 496 */ 497static inline int track_pfn_copy(struct vm_area_struct *vma) 498{ 499 return 0; 500} 501 502/* 503 * untrack_pfn_vma is called while unmapping a pfnmap for a region. 504 * untrack can be called for a specific region indicated by pfn and size or 505 * can be for the entire vma (in which case pfn, size are zero). 506 */ 507static inline void untrack_pfn(struct vm_area_struct *vma, 508 unsigned long pfn, unsigned long size) 509{ 510} 511#else 512extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot, 513 unsigned long pfn, unsigned long addr, 514 unsigned long size); 515extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, 516 unsigned long pfn); 517extern int track_pfn_copy(struct vm_area_struct *vma); 518extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn, 519 unsigned long size); 520#endif 521 522#ifdef __HAVE_COLOR_ZERO_PAGE 523static inline int is_zero_pfn(unsigned long pfn) 524{ 525 extern unsigned long zero_pfn; 526 unsigned long offset_from_zero_pfn = pfn - zero_pfn; 527 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT); 528} 529 530#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr)) 531 532#else 533static inline int is_zero_pfn(unsigned long pfn) 534{ 535 extern unsigned long zero_pfn; 536 return pfn == zero_pfn; 537} 538 539static inline unsigned long my_zero_pfn(unsigned long addr) 540{ 541 extern unsigned long zero_pfn; 542 return zero_pfn; 543} 544#endif 545 546#ifdef CONFIG_MMU 547 548#ifndef CONFIG_TRANSPARENT_HUGEPAGE 549static inline int pmd_trans_huge(pmd_t pmd) 550{ 551 return 0; 552} 553static inline int pmd_trans_splitting(pmd_t pmd) 554{ 555 return 0; 556} 557#ifndef __HAVE_ARCH_PMD_WRITE 558static inline int pmd_write(pmd_t pmd) 559{ 560 BUG(); 561 return 0; 562} 563#endif /* __HAVE_ARCH_PMD_WRITE */ 564#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 565 566#ifndef pmd_read_atomic 567static inline pmd_t pmd_read_atomic(pmd_t *pmdp) 568{ 569 /* 570 * Depend on compiler for an atomic pmd read. NOTE: this is 571 * only going to work, if the pmdval_t isn't larger than 572 * an unsigned long. 573 */ 574 return *pmdp; 575} 576#endif 577 578#ifndef pmd_move_must_withdraw 579static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl, 580 spinlock_t *old_pmd_ptl) 581{ 582 /* 583 * With split pmd lock we also need to move preallocated 584 * PTE page table if new_pmd is on different PMD page table. 585 */ 586 return new_pmd_ptl != old_pmd_ptl; 587} 588#endif 589 590/* 591 * This function is meant to be used by sites walking pagetables with 592 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and 593 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd 594 * into a null pmd and the transhuge page fault can convert a null pmd 595 * into an hugepmd or into a regular pmd (if the hugepage allocation 596 * fails). While holding the mmap_sem in read mode the pmd becomes 597 * stable and stops changing under us only if it's not null and not a 598 * transhuge pmd. When those races occurs and this function makes a 599 * difference vs the standard pmd_none_or_clear_bad, the result is 600 * undefined so behaving like if the pmd was none is safe (because it 601 * can return none anyway). The compiler level barrier() is critically 602 * important to compute the two checks atomically on the same pmdval. 603 * 604 * For 32bit kernels with a 64bit large pmd_t this automatically takes 605 * care of reading the pmd atomically to avoid SMP race conditions 606 * against pmd_populate() when the mmap_sem is hold for reading by the 607 * caller (a special atomic read not done by "gcc" as in the generic 608 * version above, is also needed when THP is disabled because the page 609 * fault can populate the pmd from under us). 610 */ 611static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd) 612{ 613 pmd_t pmdval = pmd_read_atomic(pmd); 614 /* 615 * The barrier will stabilize the pmdval in a register or on 616 * the stack so that it will stop changing under the code. 617 * 618 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE, 619 * pmd_read_atomic is allowed to return a not atomic pmdval 620 * (for example pointing to an hugepage that has never been 621 * mapped in the pmd). The below checks will only care about 622 * the low part of the pmd with 32bit PAE x86 anyway, with the 623 * exception of pmd_none(). So the important thing is that if 624 * the low part of the pmd is found null, the high part will 625 * be also null or the pmd_none() check below would be 626 * confused. 627 */ 628#ifdef CONFIG_TRANSPARENT_HUGEPAGE 629 barrier(); 630#endif 631 if (pmd_none(pmdval) || pmd_trans_huge(pmdval)) 632 return 1; 633 if (unlikely(pmd_bad(pmdval))) { 634 pmd_clear_bad(pmd); 635 return 1; 636 } 637 return 0; 638} 639 640/* 641 * This is a noop if Transparent Hugepage Support is not built into 642 * the kernel. Otherwise it is equivalent to 643 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in 644 * places that already verified the pmd is not none and they want to 645 * walk ptes while holding the mmap sem in read mode (write mode don't 646 * need this). If THP is not enabled, the pmd can't go away under the 647 * code even if MADV_DONTNEED runs, but if THP is enabled we need to 648 * run a pmd_trans_unstable before walking the ptes after 649 * split_huge_page_pmd returns (because it may have run when the pmd 650 * become null, but then a page fault can map in a THP and not a 651 * regular page). 652 */ 653static inline int pmd_trans_unstable(pmd_t *pmd) 654{ 655#ifdef CONFIG_TRANSPARENT_HUGEPAGE 656 return pmd_none_or_trans_huge_or_clear_bad(pmd); 657#else 658 return 0; 659#endif 660} 661 662#ifdef CONFIG_NUMA_BALANCING 663#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 664/* 665 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the 666 * same bit too). It's set only when _PAGE_PRESET is not set and it's 667 * never set if _PAGE_PRESENT is set. 668 * 669 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page 670 * fault triggers on those regions if pte/pmd_numa returns true 671 * (because _PAGE_PRESENT is not set). 672 */ 673#ifndef pte_numa 674static inline int pte_numa(pte_t pte) 675{ 676 return (pte_flags(pte) & 677 (_PAGE_NUMA|_PAGE_PROTNONE|_PAGE_PRESENT)) == _PAGE_NUMA; 678} 679#endif 680 681#ifndef pmd_numa 682static inline int pmd_numa(pmd_t pmd) 683{ 684 return (pmd_flags(pmd) & 685 (_PAGE_NUMA|_PAGE_PROTNONE|_PAGE_PRESENT)) == _PAGE_NUMA; 686} 687#endif 688 689/* 690 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically 691 * because they're called by the NUMA hinting minor page fault. If we 692 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler 693 * would be forced to set it later while filling the TLB after we 694 * return to userland. That would trigger a second write to memory 695 * that we optimize away by setting _PAGE_ACCESSED here. 696 */ 697#ifndef pte_mknonnuma 698static inline pte_t pte_mknonnuma(pte_t pte) 699{ 700 pteval_t val = pte_val(pte); 701 702 val &= ~_PAGE_NUMA; 703 val |= (_PAGE_PRESENT|_PAGE_ACCESSED); 704 return __pte(val); 705} 706#endif 707 708#ifndef pmd_mknonnuma 709static inline pmd_t pmd_mknonnuma(pmd_t pmd) 710{ 711 pmdval_t val = pmd_val(pmd); 712 713 val &= ~_PAGE_NUMA; 714 val |= (_PAGE_PRESENT|_PAGE_ACCESSED); 715 716 return __pmd(val); 717} 718#endif 719 720#ifndef pte_mknuma 721static inline pte_t pte_mknuma(pte_t pte) 722{ 723 pteval_t val = pte_val(pte); 724 725 val &= ~_PAGE_PRESENT; 726 val |= _PAGE_NUMA; 727 728 return __pte(val); 729} 730#endif 731 732#ifndef ptep_set_numa 733static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, 734 pte_t *ptep) 735{ 736 pte_t ptent = *ptep; 737 738 ptent = pte_mknuma(ptent); 739 set_pte_at(mm, addr, ptep, ptent); 740 return; 741} 742#endif 743 744#ifndef pmd_mknuma 745static inline pmd_t pmd_mknuma(pmd_t pmd) 746{ 747 pmdval_t val = pmd_val(pmd); 748 749 val &= ~_PAGE_PRESENT; 750 val |= _PAGE_NUMA; 751 752 return __pmd(val); 753} 754#endif 755 756#ifndef pmdp_set_numa 757static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, 758 pmd_t *pmdp) 759{ 760 pmd_t pmd = *pmdp; 761 762 pmd = pmd_mknuma(pmd); 763 set_pmd_at(mm, addr, pmdp, pmd); 764 return; 765} 766#endif 767#else 768extern int pte_numa(pte_t pte); 769extern int pmd_numa(pmd_t pmd); 770extern pte_t pte_mknonnuma(pte_t pte); 771extern pmd_t pmd_mknonnuma(pmd_t pmd); 772extern pte_t pte_mknuma(pte_t pte); 773extern pmd_t pmd_mknuma(pmd_t pmd); 774extern void ptep_set_numa(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 775extern void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); 776#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */ 777#else 778static inline int pmd_numa(pmd_t pmd) 779{ 780 return 0; 781} 782 783static inline int pte_numa(pte_t pte) 784{ 785 return 0; 786} 787 788static inline pte_t pte_mknonnuma(pte_t pte) 789{ 790 return pte; 791} 792 793static inline pmd_t pmd_mknonnuma(pmd_t pmd) 794{ 795 return pmd; 796} 797 798static inline pte_t pte_mknuma(pte_t pte) 799{ 800 return pte; 801} 802 803static inline void ptep_set_numa(struct mm_struct *mm, unsigned long addr, 804 pte_t *ptep) 805{ 806 return; 807} 808 809 810static inline pmd_t pmd_mknuma(pmd_t pmd) 811{ 812 return pmd; 813} 814 815static inline void pmdp_set_numa(struct mm_struct *mm, unsigned long addr, 816 pmd_t *pmdp) 817{ 818 return ; 819} 820#endif /* CONFIG_NUMA_BALANCING */ 821 822#endif /* CONFIG_MMU */ 823 824#endif /* !__ASSEMBLY__ */ 825 826#ifndef io_remap_pfn_range 827#define io_remap_pfn_range remap_pfn_range 828#endif 829 830#endif /* _ASM_GENERIC_PGTABLE_H */