Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/errno.h>
23#include <linux/stat.h>
24#include <linux/fcntl.h>
25#include <linux/string.h>
26#include <linux/kernel.h>
27#include <linux/slab.h>
28#include <linux/mm.h>
29#include <linux/sunrpc/clnt.h>
30#include <linux/nfs_fs.h>
31#include <linux/nfs_mount.h>
32#include <linux/pagemap.h>
33#include <linux/pagevec.h>
34#include <linux/namei.h>
35#include <linux/mount.h>
36#include <linux/swap.h>
37#include <linux/sched.h>
38#include <linux/kmemleak.h>
39#include <linux/xattr.h>
40
41#include "delegation.h"
42#include "iostat.h"
43#include "internal.h"
44#include "fscache.h"
45
46#include "nfstrace.h"
47
48/* #define NFS_DEBUG_VERBOSE 1 */
49
50static int nfs_opendir(struct inode *, struct file *);
51static int nfs_closedir(struct inode *, struct file *);
52static int nfs_readdir(struct file *, struct dir_context *);
53static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
54static loff_t nfs_llseek_dir(struct file *, loff_t, int);
55static void nfs_readdir_clear_array(struct page*);
56
57const struct file_operations nfs_dir_operations = {
58 .llseek = nfs_llseek_dir,
59 .read = generic_read_dir,
60 .iterate = nfs_readdir,
61 .open = nfs_opendir,
62 .release = nfs_closedir,
63 .fsync = nfs_fsync_dir,
64};
65
66const struct address_space_operations nfs_dir_aops = {
67 .freepage = nfs_readdir_clear_array,
68};
69
70static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
71{
72 struct nfs_inode *nfsi = NFS_I(dir);
73 struct nfs_open_dir_context *ctx;
74 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
75 if (ctx != NULL) {
76 ctx->duped = 0;
77 ctx->attr_gencount = nfsi->attr_gencount;
78 ctx->dir_cookie = 0;
79 ctx->dup_cookie = 0;
80 ctx->cred = get_rpccred(cred);
81 spin_lock(&dir->i_lock);
82 list_add(&ctx->list, &nfsi->open_files);
83 spin_unlock(&dir->i_lock);
84 return ctx;
85 }
86 return ERR_PTR(-ENOMEM);
87}
88
89static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
90{
91 spin_lock(&dir->i_lock);
92 list_del(&ctx->list);
93 spin_unlock(&dir->i_lock);
94 put_rpccred(ctx->cred);
95 kfree(ctx);
96}
97
98/*
99 * Open file
100 */
101static int
102nfs_opendir(struct inode *inode, struct file *filp)
103{
104 int res = 0;
105 struct nfs_open_dir_context *ctx;
106 struct rpc_cred *cred;
107
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
109
110 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
111
112 cred = rpc_lookup_cred();
113 if (IS_ERR(cred))
114 return PTR_ERR(cred);
115 ctx = alloc_nfs_open_dir_context(inode, cred);
116 if (IS_ERR(ctx)) {
117 res = PTR_ERR(ctx);
118 goto out;
119 }
120 filp->private_data = ctx;
121 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
125 */
126 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
127 }
128out:
129 put_rpccred(cred);
130 return res;
131}
132
133static int
134nfs_closedir(struct inode *inode, struct file *filp)
135{
136 put_nfs_open_dir_context(filp->f_path.dentry->d_inode, filp->private_data);
137 return 0;
138}
139
140struct nfs_cache_array_entry {
141 u64 cookie;
142 u64 ino;
143 struct qstr string;
144 unsigned char d_type;
145};
146
147struct nfs_cache_array {
148 int size;
149 int eof_index;
150 u64 last_cookie;
151 struct nfs_cache_array_entry array[0];
152};
153
154typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
155typedef struct {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 unsigned long page_index;
160 u64 *dir_cookie;
161 u64 last_cookie;
162 loff_t current_index;
163 decode_dirent_t decode;
164
165 unsigned long timestamp;
166 unsigned long gencount;
167 unsigned int cache_entry_index;
168 unsigned int plus:1;
169 unsigned int eof:1;
170} nfs_readdir_descriptor_t;
171
172/*
173 * The caller is responsible for calling nfs_readdir_release_array(page)
174 */
175static
176struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
177{
178 void *ptr;
179 if (page == NULL)
180 return ERR_PTR(-EIO);
181 ptr = kmap(page);
182 if (ptr == NULL)
183 return ERR_PTR(-ENOMEM);
184 return ptr;
185}
186
187static
188void nfs_readdir_release_array(struct page *page)
189{
190 kunmap(page);
191}
192
193/*
194 * we are freeing strings created by nfs_add_to_readdir_array()
195 */
196static
197void nfs_readdir_clear_array(struct page *page)
198{
199 struct nfs_cache_array *array;
200 int i;
201
202 array = kmap_atomic(page);
203 for (i = 0; i < array->size; i++)
204 kfree(array->array[i].string.name);
205 kunmap_atomic(array);
206}
207
208/*
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
212 */
213static
214int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
215{
216 string->len = len;
217 string->name = kmemdup(name, len, GFP_KERNEL);
218 if (string->name == NULL)
219 return -ENOMEM;
220 /*
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
223 */
224 kmemleak_not_leak(string->name);
225 string->hash = full_name_hash(name, len);
226 return 0;
227}
228
229static
230int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
231{
232 struct nfs_cache_array *array = nfs_readdir_get_array(page);
233 struct nfs_cache_array_entry *cache_entry;
234 int ret;
235
236 if (IS_ERR(array))
237 return PTR_ERR(array);
238
239 cache_entry = &array->array[array->size];
240
241 /* Check that this entry lies within the page bounds */
242 ret = -ENOSPC;
243 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
244 goto out;
245
246 cache_entry->cookie = entry->prev_cookie;
247 cache_entry->ino = entry->ino;
248 cache_entry->d_type = entry->d_type;
249 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
250 if (ret)
251 goto out;
252 array->last_cookie = entry->cookie;
253 array->size++;
254 if (entry->eof != 0)
255 array->eof_index = array->size;
256out:
257 nfs_readdir_release_array(page);
258 return ret;
259}
260
261static
262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263{
264 loff_t diff = desc->ctx->pos - desc->current_index;
265 unsigned int index;
266
267 if (diff < 0)
268 goto out_eof;
269 if (diff >= array->size) {
270 if (array->eof_index >= 0)
271 goto out_eof;
272 return -EAGAIN;
273 }
274
275 index = (unsigned int)diff;
276 *desc->dir_cookie = array->array[index].cookie;
277 desc->cache_entry_index = index;
278 return 0;
279out_eof:
280 desc->eof = 1;
281 return -EBADCOOKIE;
282}
283
284static bool
285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286{
287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288 return false;
289 smp_rmb();
290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291}
292
293static
294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295{
296 int i;
297 loff_t new_pos;
298 int status = -EAGAIN;
299
300 for (i = 0; i < array->size; i++) {
301 if (array->array[i].cookie == *desc->dir_cookie) {
302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303 struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305 new_pos = desc->current_index + i;
306 if (ctx->attr_gencount != nfsi->attr_gencount ||
307 !nfs_readdir_inode_mapping_valid(nfsi)) {
308 ctx->duped = 0;
309 ctx->attr_gencount = nfsi->attr_gencount;
310 } else if (new_pos < desc->ctx->pos) {
311 if (ctx->duped > 0
312 && ctx->dup_cookie == *desc->dir_cookie) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc->file, array->array[i].string.len,
318 array->array[i].string.name, *desc->dir_cookie);
319 }
320 status = -ELOOP;
321 goto out;
322 }
323 ctx->dup_cookie = *desc->dir_cookie;
324 ctx->duped = -1;
325 }
326 desc->ctx->pos = new_pos;
327 desc->cache_entry_index = i;
328 return 0;
329 }
330 }
331 if (array->eof_index >= 0) {
332 status = -EBADCOOKIE;
333 if (*desc->dir_cookie == array->last_cookie)
334 desc->eof = 1;
335 }
336out:
337 return status;
338}
339
340static
341int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
342{
343 struct nfs_cache_array *array;
344 int status;
345
346 array = nfs_readdir_get_array(desc->page);
347 if (IS_ERR(array)) {
348 status = PTR_ERR(array);
349 goto out;
350 }
351
352 if (*desc->dir_cookie == 0)
353 status = nfs_readdir_search_for_pos(array, desc);
354 else
355 status = nfs_readdir_search_for_cookie(array, desc);
356
357 if (status == -EAGAIN) {
358 desc->last_cookie = array->last_cookie;
359 desc->current_index += array->size;
360 desc->page_index++;
361 }
362 nfs_readdir_release_array(desc->page);
363out:
364 return status;
365}
366
367/* Fill a page with xdr information before transferring to the cache page */
368static
369int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
370 struct nfs_entry *entry, struct file *file, struct inode *inode)
371{
372 struct nfs_open_dir_context *ctx = file->private_data;
373 struct rpc_cred *cred = ctx->cred;
374 unsigned long timestamp, gencount;
375 int error;
376
377 again:
378 timestamp = jiffies;
379 gencount = nfs_inc_attr_generation_counter();
380 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
381 NFS_SERVER(inode)->dtsize, desc->plus);
382 if (error < 0) {
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error == -ENOTSUPP && desc->plus) {
385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387 desc->plus = 0;
388 goto again;
389 }
390 goto error;
391 }
392 desc->timestamp = timestamp;
393 desc->gencount = gencount;
394error:
395 return error;
396}
397
398static int xdr_decode(nfs_readdir_descriptor_t *desc,
399 struct nfs_entry *entry, struct xdr_stream *xdr)
400{
401 int error;
402
403 error = desc->decode(xdr, entry, desc->plus);
404 if (error)
405 return error;
406 entry->fattr->time_start = desc->timestamp;
407 entry->fattr->gencount = desc->gencount;
408 return 0;
409}
410
411static
412int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
413{
414 if (dentry->d_inode == NULL)
415 goto different;
416 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
417 goto different;
418 return 1;
419different:
420 return 0;
421}
422
423static
424bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
425{
426 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
427 return false;
428 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
429 return true;
430 if (ctx->pos == 0)
431 return true;
432 return false;
433}
434
435/*
436 * This function is called by the lookup code to request the use of
437 * readdirplus to accelerate any future lookups in the same
438 * directory.
439 */
440static
441void nfs_advise_use_readdirplus(struct inode *dir)
442{
443 set_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags);
444}
445
446/*
447 * This function is mainly for use by nfs_getattr().
448 *
449 * If this is an 'ls -l', we want to force use of readdirplus.
450 * Do this by checking if there is an active file descriptor
451 * and calling nfs_advise_use_readdirplus, then forcing a
452 * cache flush.
453 */
454void nfs_force_use_readdirplus(struct inode *dir)
455{
456 if (!list_empty(&NFS_I(dir)->open_files)) {
457 nfs_advise_use_readdirplus(dir);
458 nfs_zap_mapping(dir, dir->i_mapping);
459 }
460}
461
462static
463void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
464{
465 struct qstr filename = QSTR_INIT(entry->name, entry->len);
466 struct dentry *dentry;
467 struct dentry *alias;
468 struct inode *dir = parent->d_inode;
469 struct inode *inode;
470 int status;
471
472 if (filename.name[0] == '.') {
473 if (filename.len == 1)
474 return;
475 if (filename.len == 2 && filename.name[1] == '.')
476 return;
477 }
478 filename.hash = full_name_hash(filename.name, filename.len);
479
480 dentry = d_lookup(parent, &filename);
481 if (dentry != NULL) {
482 if (nfs_same_file(dentry, entry)) {
483 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
484 status = nfs_refresh_inode(dentry->d_inode, entry->fattr);
485 if (!status)
486 nfs_setsecurity(dentry->d_inode, entry->fattr, entry->label);
487 goto out;
488 } else {
489 if (d_invalidate(dentry) != 0)
490 goto out;
491 dput(dentry);
492 }
493 }
494
495 dentry = d_alloc(parent, &filename);
496 if (dentry == NULL)
497 return;
498
499 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
500 if (IS_ERR(inode))
501 goto out;
502
503 alias = d_materialise_unique(dentry, inode);
504 if (IS_ERR(alias))
505 goto out;
506 else if (alias) {
507 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
508 dput(alias);
509 } else
510 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
511
512out:
513 dput(dentry);
514}
515
516/* Perform conversion from xdr to cache array */
517static
518int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
519 struct page **xdr_pages, struct page *page, unsigned int buflen)
520{
521 struct xdr_stream stream;
522 struct xdr_buf buf;
523 struct page *scratch;
524 struct nfs_cache_array *array;
525 unsigned int count = 0;
526 int status;
527
528 scratch = alloc_page(GFP_KERNEL);
529 if (scratch == NULL)
530 return -ENOMEM;
531
532 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
533 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
534
535 do {
536 status = xdr_decode(desc, entry, &stream);
537 if (status != 0) {
538 if (status == -EAGAIN)
539 status = 0;
540 break;
541 }
542
543 count++;
544
545 if (desc->plus != 0)
546 nfs_prime_dcache(desc->file->f_path.dentry, entry);
547
548 status = nfs_readdir_add_to_array(entry, page);
549 if (status != 0)
550 break;
551 } while (!entry->eof);
552
553 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
554 array = nfs_readdir_get_array(page);
555 if (!IS_ERR(array)) {
556 array->eof_index = array->size;
557 status = 0;
558 nfs_readdir_release_array(page);
559 } else
560 status = PTR_ERR(array);
561 }
562
563 put_page(scratch);
564 return status;
565}
566
567static
568void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
569{
570 unsigned int i;
571 for (i = 0; i < npages; i++)
572 put_page(pages[i]);
573}
574
575static
576void nfs_readdir_free_large_page(void *ptr, struct page **pages,
577 unsigned int npages)
578{
579 nfs_readdir_free_pagearray(pages, npages);
580}
581
582/*
583 * nfs_readdir_large_page will allocate pages that must be freed with a call
584 * to nfs_readdir_free_large_page
585 */
586static
587int nfs_readdir_large_page(struct page **pages, unsigned int npages)
588{
589 unsigned int i;
590
591 for (i = 0; i < npages; i++) {
592 struct page *page = alloc_page(GFP_KERNEL);
593 if (page == NULL)
594 goto out_freepages;
595 pages[i] = page;
596 }
597 return 0;
598
599out_freepages:
600 nfs_readdir_free_pagearray(pages, i);
601 return -ENOMEM;
602}
603
604static
605int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
606{
607 struct page *pages[NFS_MAX_READDIR_PAGES];
608 void *pages_ptr = NULL;
609 struct nfs_entry entry;
610 struct file *file = desc->file;
611 struct nfs_cache_array *array;
612 int status = -ENOMEM;
613 unsigned int array_size = ARRAY_SIZE(pages);
614
615 entry.prev_cookie = 0;
616 entry.cookie = desc->last_cookie;
617 entry.eof = 0;
618 entry.fh = nfs_alloc_fhandle();
619 entry.fattr = nfs_alloc_fattr();
620 entry.server = NFS_SERVER(inode);
621 if (entry.fh == NULL || entry.fattr == NULL)
622 goto out;
623
624 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
625 if (IS_ERR(entry.label)) {
626 status = PTR_ERR(entry.label);
627 goto out;
628 }
629
630 array = nfs_readdir_get_array(page);
631 if (IS_ERR(array)) {
632 status = PTR_ERR(array);
633 goto out_label_free;
634 }
635 memset(array, 0, sizeof(struct nfs_cache_array));
636 array->eof_index = -1;
637
638 status = nfs_readdir_large_page(pages, array_size);
639 if (status < 0)
640 goto out_release_array;
641 do {
642 unsigned int pglen;
643 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
644
645 if (status < 0)
646 break;
647 pglen = status;
648 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
649 if (status < 0) {
650 if (status == -ENOSPC)
651 status = 0;
652 break;
653 }
654 } while (array->eof_index < 0);
655
656 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
657out_release_array:
658 nfs_readdir_release_array(page);
659out_label_free:
660 nfs4_label_free(entry.label);
661out:
662 nfs_free_fattr(entry.fattr);
663 nfs_free_fhandle(entry.fh);
664 return status;
665}
666
667/*
668 * Now we cache directories properly, by converting xdr information
669 * to an array that can be used for lookups later. This results in
670 * fewer cache pages, since we can store more information on each page.
671 * We only need to convert from xdr once so future lookups are much simpler
672 */
673static
674int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
675{
676 struct inode *inode = file_inode(desc->file);
677 int ret;
678
679 ret = nfs_readdir_xdr_to_array(desc, page, inode);
680 if (ret < 0)
681 goto error;
682 SetPageUptodate(page);
683
684 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
685 /* Should never happen */
686 nfs_zap_mapping(inode, inode->i_mapping);
687 }
688 unlock_page(page);
689 return 0;
690 error:
691 unlock_page(page);
692 return ret;
693}
694
695static
696void cache_page_release(nfs_readdir_descriptor_t *desc)
697{
698 if (!desc->page->mapping)
699 nfs_readdir_clear_array(desc->page);
700 page_cache_release(desc->page);
701 desc->page = NULL;
702}
703
704static
705struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
706{
707 return read_cache_page(file_inode(desc->file)->i_mapping,
708 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
709}
710
711/*
712 * Returns 0 if desc->dir_cookie was found on page desc->page_index
713 */
714static
715int find_cache_page(nfs_readdir_descriptor_t *desc)
716{
717 int res;
718
719 desc->page = get_cache_page(desc);
720 if (IS_ERR(desc->page))
721 return PTR_ERR(desc->page);
722
723 res = nfs_readdir_search_array(desc);
724 if (res != 0)
725 cache_page_release(desc);
726 return res;
727}
728
729/* Search for desc->dir_cookie from the beginning of the page cache */
730static inline
731int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
732{
733 int res;
734
735 if (desc->page_index == 0) {
736 desc->current_index = 0;
737 desc->last_cookie = 0;
738 }
739 do {
740 res = find_cache_page(desc);
741 } while (res == -EAGAIN);
742 return res;
743}
744
745/*
746 * Once we've found the start of the dirent within a page: fill 'er up...
747 */
748static
749int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
750{
751 struct file *file = desc->file;
752 int i = 0;
753 int res = 0;
754 struct nfs_cache_array *array = NULL;
755 struct nfs_open_dir_context *ctx = file->private_data;
756
757 array = nfs_readdir_get_array(desc->page);
758 if (IS_ERR(array)) {
759 res = PTR_ERR(array);
760 goto out;
761 }
762
763 for (i = desc->cache_entry_index; i < array->size; i++) {
764 struct nfs_cache_array_entry *ent;
765
766 ent = &array->array[i];
767 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
768 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
769 desc->eof = 1;
770 break;
771 }
772 desc->ctx->pos++;
773 if (i < (array->size-1))
774 *desc->dir_cookie = array->array[i+1].cookie;
775 else
776 *desc->dir_cookie = array->last_cookie;
777 if (ctx->duped != 0)
778 ctx->duped = 1;
779 }
780 if (array->eof_index >= 0)
781 desc->eof = 1;
782
783 nfs_readdir_release_array(desc->page);
784out:
785 cache_page_release(desc);
786 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
787 (unsigned long long)*desc->dir_cookie, res);
788 return res;
789}
790
791/*
792 * If we cannot find a cookie in our cache, we suspect that this is
793 * because it points to a deleted file, so we ask the server to return
794 * whatever it thinks is the next entry. We then feed this to filldir.
795 * If all goes well, we should then be able to find our way round the
796 * cache on the next call to readdir_search_pagecache();
797 *
798 * NOTE: we cannot add the anonymous page to the pagecache because
799 * the data it contains might not be page aligned. Besides,
800 * we should already have a complete representation of the
801 * directory in the page cache by the time we get here.
802 */
803static inline
804int uncached_readdir(nfs_readdir_descriptor_t *desc)
805{
806 struct page *page = NULL;
807 int status;
808 struct inode *inode = file_inode(desc->file);
809 struct nfs_open_dir_context *ctx = desc->file->private_data;
810
811 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
812 (unsigned long long)*desc->dir_cookie);
813
814 page = alloc_page(GFP_HIGHUSER);
815 if (!page) {
816 status = -ENOMEM;
817 goto out;
818 }
819
820 desc->page_index = 0;
821 desc->last_cookie = *desc->dir_cookie;
822 desc->page = page;
823 ctx->duped = 0;
824
825 status = nfs_readdir_xdr_to_array(desc, page, inode);
826 if (status < 0)
827 goto out_release;
828
829 status = nfs_do_filldir(desc);
830
831 out:
832 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
833 __func__, status);
834 return status;
835 out_release:
836 cache_page_release(desc);
837 goto out;
838}
839
840static bool nfs_dir_mapping_need_revalidate(struct inode *dir)
841{
842 struct nfs_inode *nfsi = NFS_I(dir);
843
844 if (nfs_attribute_cache_expired(dir))
845 return true;
846 if (nfsi->cache_validity & NFS_INO_INVALID_DATA)
847 return true;
848 return false;
849}
850
851/* The file offset position represents the dirent entry number. A
852 last cookie cache takes care of the common case of reading the
853 whole directory.
854 */
855static int nfs_readdir(struct file *file, struct dir_context *ctx)
856{
857 struct dentry *dentry = file->f_path.dentry;
858 struct inode *inode = dentry->d_inode;
859 nfs_readdir_descriptor_t my_desc,
860 *desc = &my_desc;
861 struct nfs_open_dir_context *dir_ctx = file->private_data;
862 int res = 0;
863
864 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
865 file, (long long)ctx->pos);
866 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
867
868 /*
869 * ctx->pos points to the dirent entry number.
870 * *desc->dir_cookie has the cookie for the next entry. We have
871 * to either find the entry with the appropriate number or
872 * revalidate the cookie.
873 */
874 memset(desc, 0, sizeof(*desc));
875
876 desc->file = file;
877 desc->ctx = ctx;
878 desc->dir_cookie = &dir_ctx->dir_cookie;
879 desc->decode = NFS_PROTO(inode)->decode_dirent;
880 desc->plus = nfs_use_readdirplus(inode, ctx) ? 1 : 0;
881
882 nfs_block_sillyrename(dentry);
883 if (ctx->pos == 0 || nfs_dir_mapping_need_revalidate(inode))
884 res = nfs_revalidate_mapping(inode, file->f_mapping);
885 if (res < 0)
886 goto out;
887
888 do {
889 res = readdir_search_pagecache(desc);
890
891 if (res == -EBADCOOKIE) {
892 res = 0;
893 /* This means either end of directory */
894 if (*desc->dir_cookie && desc->eof == 0) {
895 /* Or that the server has 'lost' a cookie */
896 res = uncached_readdir(desc);
897 if (res == 0)
898 continue;
899 }
900 break;
901 }
902 if (res == -ETOOSMALL && desc->plus) {
903 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
904 nfs_zap_caches(inode);
905 desc->page_index = 0;
906 desc->plus = 0;
907 desc->eof = 0;
908 continue;
909 }
910 if (res < 0)
911 break;
912
913 res = nfs_do_filldir(desc);
914 if (res < 0)
915 break;
916 } while (!desc->eof);
917out:
918 nfs_unblock_sillyrename(dentry);
919 if (res > 0)
920 res = 0;
921 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
922 return res;
923}
924
925static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
926{
927 struct inode *inode = file_inode(filp);
928 struct nfs_open_dir_context *dir_ctx = filp->private_data;
929
930 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
931 filp, offset, whence);
932
933 mutex_lock(&inode->i_mutex);
934 switch (whence) {
935 case 1:
936 offset += filp->f_pos;
937 case 0:
938 if (offset >= 0)
939 break;
940 default:
941 offset = -EINVAL;
942 goto out;
943 }
944 if (offset != filp->f_pos) {
945 filp->f_pos = offset;
946 dir_ctx->dir_cookie = 0;
947 dir_ctx->duped = 0;
948 }
949out:
950 mutex_unlock(&inode->i_mutex);
951 return offset;
952}
953
954/*
955 * All directory operations under NFS are synchronous, so fsync()
956 * is a dummy operation.
957 */
958static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
959 int datasync)
960{
961 struct inode *inode = file_inode(filp);
962
963 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
964
965 mutex_lock(&inode->i_mutex);
966 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
967 mutex_unlock(&inode->i_mutex);
968 return 0;
969}
970
971/**
972 * nfs_force_lookup_revalidate - Mark the directory as having changed
973 * @dir - pointer to directory inode
974 *
975 * This forces the revalidation code in nfs_lookup_revalidate() to do a
976 * full lookup on all child dentries of 'dir' whenever a change occurs
977 * on the server that might have invalidated our dcache.
978 *
979 * The caller should be holding dir->i_lock
980 */
981void nfs_force_lookup_revalidate(struct inode *dir)
982{
983 NFS_I(dir)->cache_change_attribute++;
984}
985EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
986
987/*
988 * A check for whether or not the parent directory has changed.
989 * In the case it has, we assume that the dentries are untrustworthy
990 * and may need to be looked up again.
991 * If rcu_walk prevents us from performing a full check, return 0.
992 */
993static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
994 int rcu_walk)
995{
996 int ret;
997
998 if (IS_ROOT(dentry))
999 return 1;
1000 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1001 return 0;
1002 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1003 return 0;
1004 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1005 if (rcu_walk)
1006 ret = nfs_revalidate_inode_rcu(NFS_SERVER(dir), dir);
1007 else
1008 ret = nfs_revalidate_inode(NFS_SERVER(dir), dir);
1009 if (ret < 0)
1010 return 0;
1011 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1012 return 0;
1013 return 1;
1014}
1015
1016/*
1017 * Use intent information to check whether or not we're going to do
1018 * an O_EXCL create using this path component.
1019 */
1020static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1021{
1022 if (NFS_PROTO(dir)->version == 2)
1023 return 0;
1024 return flags & LOOKUP_EXCL;
1025}
1026
1027/*
1028 * Inode and filehandle revalidation for lookups.
1029 *
1030 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1031 * or if the intent information indicates that we're about to open this
1032 * particular file and the "nocto" mount flag is not set.
1033 *
1034 */
1035static
1036int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1037{
1038 struct nfs_server *server = NFS_SERVER(inode);
1039 int ret;
1040
1041 if (IS_AUTOMOUNT(inode))
1042 return 0;
1043 /* VFS wants an on-the-wire revalidation */
1044 if (flags & LOOKUP_REVAL)
1045 goto out_force;
1046 /* This is an open(2) */
1047 if ((flags & LOOKUP_OPEN) && !(server->flags & NFS_MOUNT_NOCTO) &&
1048 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
1049 goto out_force;
1050out:
1051 return (inode->i_nlink == 0) ? -ENOENT : 0;
1052out_force:
1053 if (flags & LOOKUP_RCU)
1054 return -ECHILD;
1055 ret = __nfs_revalidate_inode(server, inode);
1056 if (ret != 0)
1057 return ret;
1058 goto out;
1059}
1060
1061/*
1062 * We judge how long we want to trust negative
1063 * dentries by looking at the parent inode mtime.
1064 *
1065 * If parent mtime has changed, we revalidate, else we wait for a
1066 * period corresponding to the parent's attribute cache timeout value.
1067 *
1068 * If LOOKUP_RCU prevents us from performing a full check, return 1
1069 * suggesting a reval is needed.
1070 */
1071static inline
1072int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1073 unsigned int flags)
1074{
1075 /* Don't revalidate a negative dentry if we're creating a new file */
1076 if (flags & LOOKUP_CREATE)
1077 return 0;
1078 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1079 return 1;
1080 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1081}
1082
1083/*
1084 * This is called every time the dcache has a lookup hit,
1085 * and we should check whether we can really trust that
1086 * lookup.
1087 *
1088 * NOTE! The hit can be a negative hit too, don't assume
1089 * we have an inode!
1090 *
1091 * If the parent directory is seen to have changed, we throw out the
1092 * cached dentry and do a new lookup.
1093 */
1094static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1095{
1096 struct inode *dir;
1097 struct inode *inode;
1098 struct dentry *parent;
1099 struct nfs_fh *fhandle = NULL;
1100 struct nfs_fattr *fattr = NULL;
1101 struct nfs4_label *label = NULL;
1102 int error;
1103
1104 if (flags & LOOKUP_RCU) {
1105 parent = ACCESS_ONCE(dentry->d_parent);
1106 dir = ACCESS_ONCE(parent->d_inode);
1107 if (!dir)
1108 return -ECHILD;
1109 } else {
1110 parent = dget_parent(dentry);
1111 dir = parent->d_inode;
1112 }
1113 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1114 inode = dentry->d_inode;
1115
1116 if (!inode) {
1117 if (nfs_neg_need_reval(dir, dentry, flags)) {
1118 if (flags & LOOKUP_RCU)
1119 return -ECHILD;
1120 goto out_bad;
1121 }
1122 goto out_valid_noent;
1123 }
1124
1125 if (is_bad_inode(inode)) {
1126 if (flags & LOOKUP_RCU)
1127 return -ECHILD;
1128 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1129 __func__, dentry);
1130 goto out_bad;
1131 }
1132
1133 if (NFS_PROTO(dir)->have_delegation(inode, FMODE_READ))
1134 goto out_set_verifier;
1135
1136 /* Force a full look up iff the parent directory has changed */
1137 if (!nfs_is_exclusive_create(dir, flags) &&
1138 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1139
1140 if (nfs_lookup_verify_inode(inode, flags)) {
1141 if (flags & LOOKUP_RCU)
1142 return -ECHILD;
1143 goto out_zap_parent;
1144 }
1145 goto out_valid;
1146 }
1147
1148 if (flags & LOOKUP_RCU)
1149 return -ECHILD;
1150
1151 if (NFS_STALE(inode))
1152 goto out_bad;
1153
1154 error = -ENOMEM;
1155 fhandle = nfs_alloc_fhandle();
1156 fattr = nfs_alloc_fattr();
1157 if (fhandle == NULL || fattr == NULL)
1158 goto out_error;
1159
1160 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
1161 if (IS_ERR(label))
1162 goto out_error;
1163
1164 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1165 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1166 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1167 if (error)
1168 goto out_bad;
1169 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1170 goto out_bad;
1171 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1172 goto out_bad;
1173
1174 nfs_setsecurity(inode, fattr, label);
1175
1176 nfs_free_fattr(fattr);
1177 nfs_free_fhandle(fhandle);
1178 nfs4_label_free(label);
1179
1180out_set_verifier:
1181 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1182 out_valid:
1183 /* Success: notify readdir to use READDIRPLUS */
1184 nfs_advise_use_readdirplus(dir);
1185 out_valid_noent:
1186 if (flags & LOOKUP_RCU) {
1187 if (parent != ACCESS_ONCE(dentry->d_parent))
1188 return -ECHILD;
1189 } else
1190 dput(parent);
1191 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1192 __func__, dentry);
1193 return 1;
1194out_zap_parent:
1195 nfs_zap_caches(dir);
1196 out_bad:
1197 WARN_ON(flags & LOOKUP_RCU);
1198 nfs_free_fattr(fattr);
1199 nfs_free_fhandle(fhandle);
1200 nfs4_label_free(label);
1201 nfs_mark_for_revalidate(dir);
1202 if (inode && S_ISDIR(inode->i_mode)) {
1203 /* Purge readdir caches. */
1204 nfs_zap_caches(inode);
1205 /*
1206 * We can't d_drop the root of a disconnected tree:
1207 * its d_hash is on the s_anon list and d_drop() would hide
1208 * it from shrink_dcache_for_unmount(), leading to busy
1209 * inodes on unmount and further oopses.
1210 */
1211 if (IS_ROOT(dentry))
1212 goto out_valid;
1213 }
1214 /* If we have submounts, don't unhash ! */
1215 if (check_submounts_and_drop(dentry) != 0)
1216 goto out_valid;
1217
1218 dput(parent);
1219 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1220 __func__, dentry);
1221 return 0;
1222out_error:
1223 WARN_ON(flags & LOOKUP_RCU);
1224 nfs_free_fattr(fattr);
1225 nfs_free_fhandle(fhandle);
1226 nfs4_label_free(label);
1227 dput(parent);
1228 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1229 __func__, dentry, error);
1230 return error;
1231}
1232
1233/*
1234 * A weaker form of d_revalidate for revalidating just the dentry->d_inode
1235 * when we don't really care about the dentry name. This is called when a
1236 * pathwalk ends on a dentry that was not found via a normal lookup in the
1237 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1238 *
1239 * In this situation, we just want to verify that the inode itself is OK
1240 * since the dentry might have changed on the server.
1241 */
1242static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1243{
1244 int error;
1245 struct inode *inode = dentry->d_inode;
1246
1247 /*
1248 * I believe we can only get a negative dentry here in the case of a
1249 * procfs-style symlink. Just assume it's correct for now, but we may
1250 * eventually need to do something more here.
1251 */
1252 if (!inode) {
1253 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1254 __func__, dentry);
1255 return 1;
1256 }
1257
1258 if (is_bad_inode(inode)) {
1259 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1260 __func__, dentry);
1261 return 0;
1262 }
1263
1264 error = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1265 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1266 __func__, inode->i_ino, error ? "invalid" : "valid");
1267 return !error;
1268}
1269
1270/*
1271 * This is called from dput() when d_count is going to 0.
1272 */
1273static int nfs_dentry_delete(const struct dentry *dentry)
1274{
1275 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1276 dentry, dentry->d_flags);
1277
1278 /* Unhash any dentry with a stale inode */
1279 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1280 return 1;
1281
1282 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1283 /* Unhash it, so that ->d_iput() would be called */
1284 return 1;
1285 }
1286 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1287 /* Unhash it, so that ancestors of killed async unlink
1288 * files will be cleaned up during umount */
1289 return 1;
1290 }
1291 return 0;
1292
1293}
1294
1295/* Ensure that we revalidate inode->i_nlink */
1296static void nfs_drop_nlink(struct inode *inode)
1297{
1298 spin_lock(&inode->i_lock);
1299 /* drop the inode if we're reasonably sure this is the last link */
1300 if (inode->i_nlink == 1)
1301 clear_nlink(inode);
1302 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1303 spin_unlock(&inode->i_lock);
1304}
1305
1306/*
1307 * Called when the dentry loses inode.
1308 * We use it to clean up silly-renamed files.
1309 */
1310static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1311{
1312 if (S_ISDIR(inode->i_mode))
1313 /* drop any readdir cache as it could easily be old */
1314 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1315
1316 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1317 nfs_complete_unlink(dentry, inode);
1318 nfs_drop_nlink(inode);
1319 }
1320 iput(inode);
1321}
1322
1323static void nfs_d_release(struct dentry *dentry)
1324{
1325 /* free cached devname value, if it survived that far */
1326 if (unlikely(dentry->d_fsdata)) {
1327 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1328 WARN_ON(1);
1329 else
1330 kfree(dentry->d_fsdata);
1331 }
1332}
1333
1334const struct dentry_operations nfs_dentry_operations = {
1335 .d_revalidate = nfs_lookup_revalidate,
1336 .d_weak_revalidate = nfs_weak_revalidate,
1337 .d_delete = nfs_dentry_delete,
1338 .d_iput = nfs_dentry_iput,
1339 .d_automount = nfs_d_automount,
1340 .d_release = nfs_d_release,
1341};
1342EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1343
1344struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1345{
1346 struct dentry *res;
1347 struct dentry *parent;
1348 struct inode *inode = NULL;
1349 struct nfs_fh *fhandle = NULL;
1350 struct nfs_fattr *fattr = NULL;
1351 struct nfs4_label *label = NULL;
1352 int error;
1353
1354 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1355 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1356
1357 res = ERR_PTR(-ENAMETOOLONG);
1358 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1359 goto out;
1360
1361 /*
1362 * If we're doing an exclusive create, optimize away the lookup
1363 * but don't hash the dentry.
1364 */
1365 if (nfs_is_exclusive_create(dir, flags)) {
1366 d_instantiate(dentry, NULL);
1367 res = NULL;
1368 goto out;
1369 }
1370
1371 res = ERR_PTR(-ENOMEM);
1372 fhandle = nfs_alloc_fhandle();
1373 fattr = nfs_alloc_fattr();
1374 if (fhandle == NULL || fattr == NULL)
1375 goto out;
1376
1377 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1378 if (IS_ERR(label))
1379 goto out;
1380
1381 parent = dentry->d_parent;
1382 /* Protect against concurrent sillydeletes */
1383 trace_nfs_lookup_enter(dir, dentry, flags);
1384 nfs_block_sillyrename(parent);
1385 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, label);
1386 if (error == -ENOENT)
1387 goto no_entry;
1388 if (error < 0) {
1389 res = ERR_PTR(error);
1390 goto out_unblock_sillyrename;
1391 }
1392 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1393 res = ERR_CAST(inode);
1394 if (IS_ERR(res))
1395 goto out_unblock_sillyrename;
1396
1397 /* Success: notify readdir to use READDIRPLUS */
1398 nfs_advise_use_readdirplus(dir);
1399
1400no_entry:
1401 res = d_materialise_unique(dentry, inode);
1402 if (res != NULL) {
1403 if (IS_ERR(res))
1404 goto out_unblock_sillyrename;
1405 dentry = res;
1406 }
1407 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1408out_unblock_sillyrename:
1409 nfs_unblock_sillyrename(parent);
1410 trace_nfs_lookup_exit(dir, dentry, flags, error);
1411 nfs4_label_free(label);
1412out:
1413 nfs_free_fattr(fattr);
1414 nfs_free_fhandle(fhandle);
1415 return res;
1416}
1417EXPORT_SYMBOL_GPL(nfs_lookup);
1418
1419#if IS_ENABLED(CONFIG_NFS_V4)
1420static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1421
1422const struct dentry_operations nfs4_dentry_operations = {
1423 .d_revalidate = nfs4_lookup_revalidate,
1424 .d_delete = nfs_dentry_delete,
1425 .d_iput = nfs_dentry_iput,
1426 .d_automount = nfs_d_automount,
1427 .d_release = nfs_d_release,
1428};
1429EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1430
1431static fmode_t flags_to_mode(int flags)
1432{
1433 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1434 if ((flags & O_ACCMODE) != O_WRONLY)
1435 res |= FMODE_READ;
1436 if ((flags & O_ACCMODE) != O_RDONLY)
1437 res |= FMODE_WRITE;
1438 return res;
1439}
1440
1441static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1442{
1443 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1444}
1445
1446static int do_open(struct inode *inode, struct file *filp)
1447{
1448 nfs_fscache_open_file(inode, filp);
1449 return 0;
1450}
1451
1452static int nfs_finish_open(struct nfs_open_context *ctx,
1453 struct dentry *dentry,
1454 struct file *file, unsigned open_flags,
1455 int *opened)
1456{
1457 int err;
1458
1459 if ((open_flags & (O_CREAT | O_EXCL)) == (O_CREAT | O_EXCL))
1460 *opened |= FILE_CREATED;
1461
1462 err = finish_open(file, dentry, do_open, opened);
1463 if (err)
1464 goto out;
1465 nfs_file_set_open_context(file, ctx);
1466
1467out:
1468 return err;
1469}
1470
1471int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1472 struct file *file, unsigned open_flags,
1473 umode_t mode, int *opened)
1474{
1475 struct nfs_open_context *ctx;
1476 struct dentry *res;
1477 struct iattr attr = { .ia_valid = ATTR_OPEN };
1478 struct inode *inode;
1479 unsigned int lookup_flags = 0;
1480 int err;
1481
1482 /* Expect a negative dentry */
1483 BUG_ON(dentry->d_inode);
1484
1485 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1486 dir->i_sb->s_id, dir->i_ino, dentry);
1487
1488 err = nfs_check_flags(open_flags);
1489 if (err)
1490 return err;
1491
1492 /* NFS only supports OPEN on regular files */
1493 if ((open_flags & O_DIRECTORY)) {
1494 if (!d_unhashed(dentry)) {
1495 /*
1496 * Hashed negative dentry with O_DIRECTORY: dentry was
1497 * revalidated and is fine, no need to perform lookup
1498 * again
1499 */
1500 return -ENOENT;
1501 }
1502 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1503 goto no_open;
1504 }
1505
1506 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1507 return -ENAMETOOLONG;
1508
1509 if (open_flags & O_CREAT) {
1510 attr.ia_valid |= ATTR_MODE;
1511 attr.ia_mode = mode & ~current_umask();
1512 }
1513 if (open_flags & O_TRUNC) {
1514 attr.ia_valid |= ATTR_SIZE;
1515 attr.ia_size = 0;
1516 }
1517
1518 ctx = create_nfs_open_context(dentry, open_flags);
1519 err = PTR_ERR(ctx);
1520 if (IS_ERR(ctx))
1521 goto out;
1522
1523 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1524 nfs_block_sillyrename(dentry->d_parent);
1525 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, opened);
1526 nfs_unblock_sillyrename(dentry->d_parent);
1527 if (IS_ERR(inode)) {
1528 err = PTR_ERR(inode);
1529 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1530 put_nfs_open_context(ctx);
1531 switch (err) {
1532 case -ENOENT:
1533 d_drop(dentry);
1534 d_add(dentry, NULL);
1535 break;
1536 case -EISDIR:
1537 case -ENOTDIR:
1538 goto no_open;
1539 case -ELOOP:
1540 if (!(open_flags & O_NOFOLLOW))
1541 goto no_open;
1542 break;
1543 /* case -EINVAL: */
1544 default:
1545 break;
1546 }
1547 goto out;
1548 }
1549
1550 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags, opened);
1551 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1552 put_nfs_open_context(ctx);
1553out:
1554 return err;
1555
1556no_open:
1557 res = nfs_lookup(dir, dentry, lookup_flags);
1558 err = PTR_ERR(res);
1559 if (IS_ERR(res))
1560 goto out;
1561
1562 return finish_no_open(file, res);
1563}
1564EXPORT_SYMBOL_GPL(nfs_atomic_open);
1565
1566static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1567{
1568 struct inode *inode;
1569 int ret = 0;
1570
1571 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1572 goto no_open;
1573 if (d_mountpoint(dentry))
1574 goto no_open;
1575 if (NFS_SB(dentry->d_sb)->caps & NFS_CAP_ATOMIC_OPEN_V1)
1576 goto no_open;
1577
1578 inode = dentry->d_inode;
1579
1580 /* We can't create new files in nfs_open_revalidate(), so we
1581 * optimize away revalidation of negative dentries.
1582 */
1583 if (inode == NULL) {
1584 struct dentry *parent;
1585 struct inode *dir;
1586
1587 if (flags & LOOKUP_RCU) {
1588 parent = ACCESS_ONCE(dentry->d_parent);
1589 dir = ACCESS_ONCE(parent->d_inode);
1590 if (!dir)
1591 return -ECHILD;
1592 } else {
1593 parent = dget_parent(dentry);
1594 dir = parent->d_inode;
1595 }
1596 if (!nfs_neg_need_reval(dir, dentry, flags))
1597 ret = 1;
1598 else if (flags & LOOKUP_RCU)
1599 ret = -ECHILD;
1600 if (!(flags & LOOKUP_RCU))
1601 dput(parent);
1602 else if (parent != ACCESS_ONCE(dentry->d_parent))
1603 return -ECHILD;
1604 goto out;
1605 }
1606
1607 /* NFS only supports OPEN on regular files */
1608 if (!S_ISREG(inode->i_mode))
1609 goto no_open;
1610 /* We cannot do exclusive creation on a positive dentry */
1611 if (flags & LOOKUP_EXCL)
1612 goto no_open;
1613
1614 /* Let f_op->open() actually open (and revalidate) the file */
1615 ret = 1;
1616
1617out:
1618 return ret;
1619
1620no_open:
1621 return nfs_lookup_revalidate(dentry, flags);
1622}
1623
1624#endif /* CONFIG_NFSV4 */
1625
1626/*
1627 * Code common to create, mkdir, and mknod.
1628 */
1629int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1630 struct nfs_fattr *fattr,
1631 struct nfs4_label *label)
1632{
1633 struct dentry *parent = dget_parent(dentry);
1634 struct inode *dir = parent->d_inode;
1635 struct inode *inode;
1636 int error = -EACCES;
1637
1638 d_drop(dentry);
1639
1640 /* We may have been initialized further down */
1641 if (dentry->d_inode)
1642 goto out;
1643 if (fhandle->size == 0) {
1644 error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr, NULL);
1645 if (error)
1646 goto out_error;
1647 }
1648 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1649 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1650 struct nfs_server *server = NFS_SB(dentry->d_sb);
1651 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr, NULL);
1652 if (error < 0)
1653 goto out_error;
1654 }
1655 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1656 error = PTR_ERR(inode);
1657 if (IS_ERR(inode))
1658 goto out_error;
1659 d_add(dentry, inode);
1660out:
1661 dput(parent);
1662 return 0;
1663out_error:
1664 nfs_mark_for_revalidate(dir);
1665 dput(parent);
1666 return error;
1667}
1668EXPORT_SYMBOL_GPL(nfs_instantiate);
1669
1670/*
1671 * Following a failed create operation, we drop the dentry rather
1672 * than retain a negative dentry. This avoids a problem in the event
1673 * that the operation succeeded on the server, but an error in the
1674 * reply path made it appear to have failed.
1675 */
1676int nfs_create(struct inode *dir, struct dentry *dentry,
1677 umode_t mode, bool excl)
1678{
1679 struct iattr attr;
1680 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1681 int error;
1682
1683 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1684 dir->i_sb->s_id, dir->i_ino, dentry);
1685
1686 attr.ia_mode = mode;
1687 attr.ia_valid = ATTR_MODE;
1688
1689 trace_nfs_create_enter(dir, dentry, open_flags);
1690 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1691 trace_nfs_create_exit(dir, dentry, open_flags, error);
1692 if (error != 0)
1693 goto out_err;
1694 return 0;
1695out_err:
1696 d_drop(dentry);
1697 return error;
1698}
1699EXPORT_SYMBOL_GPL(nfs_create);
1700
1701/*
1702 * See comments for nfs_proc_create regarding failed operations.
1703 */
1704int
1705nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1706{
1707 struct iattr attr;
1708 int status;
1709
1710 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1711 dir->i_sb->s_id, dir->i_ino, dentry);
1712
1713 if (!new_valid_dev(rdev))
1714 return -EINVAL;
1715
1716 attr.ia_mode = mode;
1717 attr.ia_valid = ATTR_MODE;
1718
1719 trace_nfs_mknod_enter(dir, dentry);
1720 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1721 trace_nfs_mknod_exit(dir, dentry, status);
1722 if (status != 0)
1723 goto out_err;
1724 return 0;
1725out_err:
1726 d_drop(dentry);
1727 return status;
1728}
1729EXPORT_SYMBOL_GPL(nfs_mknod);
1730
1731/*
1732 * See comments for nfs_proc_create regarding failed operations.
1733 */
1734int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1735{
1736 struct iattr attr;
1737 int error;
1738
1739 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1740 dir->i_sb->s_id, dir->i_ino, dentry);
1741
1742 attr.ia_valid = ATTR_MODE;
1743 attr.ia_mode = mode | S_IFDIR;
1744
1745 trace_nfs_mkdir_enter(dir, dentry);
1746 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1747 trace_nfs_mkdir_exit(dir, dentry, error);
1748 if (error != 0)
1749 goto out_err;
1750 return 0;
1751out_err:
1752 d_drop(dentry);
1753 return error;
1754}
1755EXPORT_SYMBOL_GPL(nfs_mkdir);
1756
1757static void nfs_dentry_handle_enoent(struct dentry *dentry)
1758{
1759 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1760 d_delete(dentry);
1761}
1762
1763int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1764{
1765 int error;
1766
1767 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
1768 dir->i_sb->s_id, dir->i_ino, dentry);
1769
1770 trace_nfs_rmdir_enter(dir, dentry);
1771 if (dentry->d_inode) {
1772 nfs_wait_on_sillyrename(dentry);
1773 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1774 /* Ensure the VFS deletes this inode */
1775 switch (error) {
1776 case 0:
1777 clear_nlink(dentry->d_inode);
1778 break;
1779 case -ENOENT:
1780 nfs_dentry_handle_enoent(dentry);
1781 }
1782 } else
1783 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1784 trace_nfs_rmdir_exit(dir, dentry, error);
1785
1786 return error;
1787}
1788EXPORT_SYMBOL_GPL(nfs_rmdir);
1789
1790/*
1791 * Remove a file after making sure there are no pending writes,
1792 * and after checking that the file has only one user.
1793 *
1794 * We invalidate the attribute cache and free the inode prior to the operation
1795 * to avoid possible races if the server reuses the inode.
1796 */
1797static int nfs_safe_remove(struct dentry *dentry)
1798{
1799 struct inode *dir = dentry->d_parent->d_inode;
1800 struct inode *inode = dentry->d_inode;
1801 int error = -EBUSY;
1802
1803 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
1804
1805 /* If the dentry was sillyrenamed, we simply call d_delete() */
1806 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1807 error = 0;
1808 goto out;
1809 }
1810
1811 trace_nfs_remove_enter(dir, dentry);
1812 if (inode != NULL) {
1813 NFS_PROTO(inode)->return_delegation(inode);
1814 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1815 if (error == 0)
1816 nfs_drop_nlink(inode);
1817 } else
1818 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1819 if (error == -ENOENT)
1820 nfs_dentry_handle_enoent(dentry);
1821 trace_nfs_remove_exit(dir, dentry, error);
1822out:
1823 return error;
1824}
1825
1826/* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1827 * belongs to an active ".nfs..." file and we return -EBUSY.
1828 *
1829 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1830 */
1831int nfs_unlink(struct inode *dir, struct dentry *dentry)
1832{
1833 int error;
1834 int need_rehash = 0;
1835
1836 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
1837 dir->i_ino, dentry);
1838
1839 trace_nfs_unlink_enter(dir, dentry);
1840 spin_lock(&dentry->d_lock);
1841 if (d_count(dentry) > 1) {
1842 spin_unlock(&dentry->d_lock);
1843 /* Start asynchronous writeout of the inode */
1844 write_inode_now(dentry->d_inode, 0);
1845 error = nfs_sillyrename(dir, dentry);
1846 goto out;
1847 }
1848 if (!d_unhashed(dentry)) {
1849 __d_drop(dentry);
1850 need_rehash = 1;
1851 }
1852 spin_unlock(&dentry->d_lock);
1853 error = nfs_safe_remove(dentry);
1854 if (!error || error == -ENOENT) {
1855 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1856 } else if (need_rehash)
1857 d_rehash(dentry);
1858out:
1859 trace_nfs_unlink_exit(dir, dentry, error);
1860 return error;
1861}
1862EXPORT_SYMBOL_GPL(nfs_unlink);
1863
1864/*
1865 * To create a symbolic link, most file systems instantiate a new inode,
1866 * add a page to it containing the path, then write it out to the disk
1867 * using prepare_write/commit_write.
1868 *
1869 * Unfortunately the NFS client can't create the in-core inode first
1870 * because it needs a file handle to create an in-core inode (see
1871 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1872 * symlink request has completed on the server.
1873 *
1874 * So instead we allocate a raw page, copy the symname into it, then do
1875 * the SYMLINK request with the page as the buffer. If it succeeds, we
1876 * now have a new file handle and can instantiate an in-core NFS inode
1877 * and move the raw page into its mapping.
1878 */
1879int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1880{
1881 struct page *page;
1882 char *kaddr;
1883 struct iattr attr;
1884 unsigned int pathlen = strlen(symname);
1885 int error;
1886
1887 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
1888 dir->i_ino, dentry, symname);
1889
1890 if (pathlen > PAGE_SIZE)
1891 return -ENAMETOOLONG;
1892
1893 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1894 attr.ia_valid = ATTR_MODE;
1895
1896 page = alloc_page(GFP_HIGHUSER);
1897 if (!page)
1898 return -ENOMEM;
1899
1900 kaddr = kmap_atomic(page);
1901 memcpy(kaddr, symname, pathlen);
1902 if (pathlen < PAGE_SIZE)
1903 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1904 kunmap_atomic(kaddr);
1905
1906 trace_nfs_symlink_enter(dir, dentry);
1907 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1908 trace_nfs_symlink_exit(dir, dentry, error);
1909 if (error != 0) {
1910 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1911 dir->i_sb->s_id, dir->i_ino,
1912 dentry, symname, error);
1913 d_drop(dentry);
1914 __free_page(page);
1915 return error;
1916 }
1917
1918 /*
1919 * No big deal if we can't add this page to the page cache here.
1920 * READLINK will get the missing page from the server if needed.
1921 */
1922 if (!add_to_page_cache_lru(page, dentry->d_inode->i_mapping, 0,
1923 GFP_KERNEL)) {
1924 SetPageUptodate(page);
1925 unlock_page(page);
1926 /*
1927 * add_to_page_cache_lru() grabs an extra page refcount.
1928 * Drop it here to avoid leaking this page later.
1929 */
1930 page_cache_release(page);
1931 } else
1932 __free_page(page);
1933
1934 return 0;
1935}
1936EXPORT_SYMBOL_GPL(nfs_symlink);
1937
1938int
1939nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1940{
1941 struct inode *inode = old_dentry->d_inode;
1942 int error;
1943
1944 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
1945 old_dentry, dentry);
1946
1947 trace_nfs_link_enter(inode, dir, dentry);
1948 NFS_PROTO(inode)->return_delegation(inode);
1949
1950 d_drop(dentry);
1951 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1952 if (error == 0) {
1953 ihold(inode);
1954 d_add(dentry, inode);
1955 }
1956 trace_nfs_link_exit(inode, dir, dentry, error);
1957 return error;
1958}
1959EXPORT_SYMBOL_GPL(nfs_link);
1960
1961/*
1962 * RENAME
1963 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1964 * different file handle for the same inode after a rename (e.g. when
1965 * moving to a different directory). A fail-safe method to do so would
1966 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1967 * rename the old file using the sillyrename stuff. This way, the original
1968 * file in old_dir will go away when the last process iput()s the inode.
1969 *
1970 * FIXED.
1971 *
1972 * It actually works quite well. One needs to have the possibility for
1973 * at least one ".nfs..." file in each directory the file ever gets
1974 * moved or linked to which happens automagically with the new
1975 * implementation that only depends on the dcache stuff instead of
1976 * using the inode layer
1977 *
1978 * Unfortunately, things are a little more complicated than indicated
1979 * above. For a cross-directory move, we want to make sure we can get
1980 * rid of the old inode after the operation. This means there must be
1981 * no pending writes (if it's a file), and the use count must be 1.
1982 * If these conditions are met, we can drop the dentries before doing
1983 * the rename.
1984 */
1985int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1986 struct inode *new_dir, struct dentry *new_dentry)
1987{
1988 struct inode *old_inode = old_dentry->d_inode;
1989 struct inode *new_inode = new_dentry->d_inode;
1990 struct dentry *dentry = NULL, *rehash = NULL;
1991 struct rpc_task *task;
1992 int error = -EBUSY;
1993
1994 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
1995 old_dentry, new_dentry,
1996 d_count(new_dentry));
1997
1998 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
1999 /*
2000 * For non-directories, check whether the target is busy and if so,
2001 * make a copy of the dentry and then do a silly-rename. If the
2002 * silly-rename succeeds, the copied dentry is hashed and becomes
2003 * the new target.
2004 */
2005 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2006 /*
2007 * To prevent any new references to the target during the
2008 * rename, we unhash the dentry in advance.
2009 */
2010 if (!d_unhashed(new_dentry)) {
2011 d_drop(new_dentry);
2012 rehash = new_dentry;
2013 }
2014
2015 if (d_count(new_dentry) > 2) {
2016 int err;
2017
2018 /* copy the target dentry's name */
2019 dentry = d_alloc(new_dentry->d_parent,
2020 &new_dentry->d_name);
2021 if (!dentry)
2022 goto out;
2023
2024 /* silly-rename the existing target ... */
2025 err = nfs_sillyrename(new_dir, new_dentry);
2026 if (err)
2027 goto out;
2028
2029 new_dentry = dentry;
2030 rehash = NULL;
2031 new_inode = NULL;
2032 }
2033 }
2034
2035 NFS_PROTO(old_inode)->return_delegation(old_inode);
2036 if (new_inode != NULL)
2037 NFS_PROTO(new_inode)->return_delegation(new_inode);
2038
2039 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2040 if (IS_ERR(task)) {
2041 error = PTR_ERR(task);
2042 goto out;
2043 }
2044
2045 error = rpc_wait_for_completion_task(task);
2046 if (error == 0)
2047 error = task->tk_status;
2048 rpc_put_task(task);
2049 nfs_mark_for_revalidate(old_inode);
2050out:
2051 if (rehash)
2052 d_rehash(rehash);
2053 trace_nfs_rename_exit(old_dir, old_dentry,
2054 new_dir, new_dentry, error);
2055 if (!error) {
2056 if (new_inode != NULL)
2057 nfs_drop_nlink(new_inode);
2058 d_move(old_dentry, new_dentry);
2059 nfs_set_verifier(new_dentry,
2060 nfs_save_change_attribute(new_dir));
2061 } else if (error == -ENOENT)
2062 nfs_dentry_handle_enoent(old_dentry);
2063
2064 /* new dentry created? */
2065 if (dentry)
2066 dput(dentry);
2067 return error;
2068}
2069EXPORT_SYMBOL_GPL(nfs_rename);
2070
2071static DEFINE_SPINLOCK(nfs_access_lru_lock);
2072static LIST_HEAD(nfs_access_lru_list);
2073static atomic_long_t nfs_access_nr_entries;
2074
2075static unsigned long nfs_access_max_cachesize = ULONG_MAX;
2076module_param(nfs_access_max_cachesize, ulong, 0644);
2077MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2078
2079static void nfs_access_free_entry(struct nfs_access_entry *entry)
2080{
2081 put_rpccred(entry->cred);
2082 kfree_rcu(entry, rcu_head);
2083 smp_mb__before_atomic();
2084 atomic_long_dec(&nfs_access_nr_entries);
2085 smp_mb__after_atomic();
2086}
2087
2088static void nfs_access_free_list(struct list_head *head)
2089{
2090 struct nfs_access_entry *cache;
2091
2092 while (!list_empty(head)) {
2093 cache = list_entry(head->next, struct nfs_access_entry, lru);
2094 list_del(&cache->lru);
2095 nfs_access_free_entry(cache);
2096 }
2097}
2098
2099static unsigned long
2100nfs_do_access_cache_scan(unsigned int nr_to_scan)
2101{
2102 LIST_HEAD(head);
2103 struct nfs_inode *nfsi, *next;
2104 struct nfs_access_entry *cache;
2105 long freed = 0;
2106
2107 spin_lock(&nfs_access_lru_lock);
2108 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2109 struct inode *inode;
2110
2111 if (nr_to_scan-- == 0)
2112 break;
2113 inode = &nfsi->vfs_inode;
2114 spin_lock(&inode->i_lock);
2115 if (list_empty(&nfsi->access_cache_entry_lru))
2116 goto remove_lru_entry;
2117 cache = list_entry(nfsi->access_cache_entry_lru.next,
2118 struct nfs_access_entry, lru);
2119 list_move(&cache->lru, &head);
2120 rb_erase(&cache->rb_node, &nfsi->access_cache);
2121 freed++;
2122 if (!list_empty(&nfsi->access_cache_entry_lru))
2123 list_move_tail(&nfsi->access_cache_inode_lru,
2124 &nfs_access_lru_list);
2125 else {
2126remove_lru_entry:
2127 list_del_init(&nfsi->access_cache_inode_lru);
2128 smp_mb__before_atomic();
2129 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2130 smp_mb__after_atomic();
2131 }
2132 spin_unlock(&inode->i_lock);
2133 }
2134 spin_unlock(&nfs_access_lru_lock);
2135 nfs_access_free_list(&head);
2136 return freed;
2137}
2138
2139unsigned long
2140nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2141{
2142 int nr_to_scan = sc->nr_to_scan;
2143 gfp_t gfp_mask = sc->gfp_mask;
2144
2145 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2146 return SHRINK_STOP;
2147 return nfs_do_access_cache_scan(nr_to_scan);
2148}
2149
2150
2151unsigned long
2152nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2153{
2154 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2155}
2156
2157static void
2158nfs_access_cache_enforce_limit(void)
2159{
2160 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2161 unsigned long diff;
2162 unsigned int nr_to_scan;
2163
2164 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2165 return;
2166 nr_to_scan = 100;
2167 diff = nr_entries - nfs_access_max_cachesize;
2168 if (diff < nr_to_scan)
2169 nr_to_scan = diff;
2170 nfs_do_access_cache_scan(nr_to_scan);
2171}
2172
2173static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2174{
2175 struct rb_root *root_node = &nfsi->access_cache;
2176 struct rb_node *n;
2177 struct nfs_access_entry *entry;
2178
2179 /* Unhook entries from the cache */
2180 while ((n = rb_first(root_node)) != NULL) {
2181 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2182 rb_erase(n, root_node);
2183 list_move(&entry->lru, head);
2184 }
2185 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2186}
2187
2188void nfs_access_zap_cache(struct inode *inode)
2189{
2190 LIST_HEAD(head);
2191
2192 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2193 return;
2194 /* Remove from global LRU init */
2195 spin_lock(&nfs_access_lru_lock);
2196 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2197 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2198
2199 spin_lock(&inode->i_lock);
2200 __nfs_access_zap_cache(NFS_I(inode), &head);
2201 spin_unlock(&inode->i_lock);
2202 spin_unlock(&nfs_access_lru_lock);
2203 nfs_access_free_list(&head);
2204}
2205EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2206
2207static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2208{
2209 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2210 struct nfs_access_entry *entry;
2211
2212 while (n != NULL) {
2213 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2214
2215 if (cred < entry->cred)
2216 n = n->rb_left;
2217 else if (cred > entry->cred)
2218 n = n->rb_right;
2219 else
2220 return entry;
2221 }
2222 return NULL;
2223}
2224
2225static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2226{
2227 struct nfs_inode *nfsi = NFS_I(inode);
2228 struct nfs_access_entry *cache;
2229 int err = -ENOENT;
2230
2231 spin_lock(&inode->i_lock);
2232 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2233 goto out_zap;
2234 cache = nfs_access_search_rbtree(inode, cred);
2235 if (cache == NULL)
2236 goto out;
2237 if (!nfs_have_delegated_attributes(inode) &&
2238 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2239 goto out_stale;
2240 res->jiffies = cache->jiffies;
2241 res->cred = cache->cred;
2242 res->mask = cache->mask;
2243 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2244 err = 0;
2245out:
2246 spin_unlock(&inode->i_lock);
2247 return err;
2248out_stale:
2249 rb_erase(&cache->rb_node, &nfsi->access_cache);
2250 list_del(&cache->lru);
2251 spin_unlock(&inode->i_lock);
2252 nfs_access_free_entry(cache);
2253 return -ENOENT;
2254out_zap:
2255 spin_unlock(&inode->i_lock);
2256 nfs_access_zap_cache(inode);
2257 return -ENOENT;
2258}
2259
2260static int nfs_access_get_cached_rcu(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2261{
2262 /* Only check the most recently returned cache entry,
2263 * but do it without locking.
2264 */
2265 struct nfs_inode *nfsi = NFS_I(inode);
2266 struct nfs_access_entry *cache;
2267 int err = -ECHILD;
2268 struct list_head *lh;
2269
2270 rcu_read_lock();
2271 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2272 goto out;
2273 lh = rcu_dereference(nfsi->access_cache_entry_lru.prev);
2274 cache = list_entry(lh, struct nfs_access_entry, lru);
2275 if (lh == &nfsi->access_cache_entry_lru ||
2276 cred != cache->cred)
2277 cache = NULL;
2278 if (cache == NULL)
2279 goto out;
2280 if (!nfs_have_delegated_attributes(inode) &&
2281 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2282 goto out;
2283 res->jiffies = cache->jiffies;
2284 res->cred = cache->cred;
2285 res->mask = cache->mask;
2286 err = 0;
2287out:
2288 rcu_read_unlock();
2289 return err;
2290}
2291
2292static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2293{
2294 struct nfs_inode *nfsi = NFS_I(inode);
2295 struct rb_root *root_node = &nfsi->access_cache;
2296 struct rb_node **p = &root_node->rb_node;
2297 struct rb_node *parent = NULL;
2298 struct nfs_access_entry *entry;
2299
2300 spin_lock(&inode->i_lock);
2301 while (*p != NULL) {
2302 parent = *p;
2303 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2304
2305 if (set->cred < entry->cred)
2306 p = &parent->rb_left;
2307 else if (set->cred > entry->cred)
2308 p = &parent->rb_right;
2309 else
2310 goto found;
2311 }
2312 rb_link_node(&set->rb_node, parent, p);
2313 rb_insert_color(&set->rb_node, root_node);
2314 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2315 spin_unlock(&inode->i_lock);
2316 return;
2317found:
2318 rb_replace_node(parent, &set->rb_node, root_node);
2319 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2320 list_del(&entry->lru);
2321 spin_unlock(&inode->i_lock);
2322 nfs_access_free_entry(entry);
2323}
2324
2325void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2326{
2327 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2328 if (cache == NULL)
2329 return;
2330 RB_CLEAR_NODE(&cache->rb_node);
2331 cache->jiffies = set->jiffies;
2332 cache->cred = get_rpccred(set->cred);
2333 cache->mask = set->mask;
2334
2335 /* The above field assignments must be visible
2336 * before this item appears on the lru. We cannot easily
2337 * use rcu_assign_pointer, so just force the memory barrier.
2338 */
2339 smp_wmb();
2340 nfs_access_add_rbtree(inode, cache);
2341
2342 /* Update accounting */
2343 smp_mb__before_atomic();
2344 atomic_long_inc(&nfs_access_nr_entries);
2345 smp_mb__after_atomic();
2346
2347 /* Add inode to global LRU list */
2348 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2349 spin_lock(&nfs_access_lru_lock);
2350 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2351 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2352 &nfs_access_lru_list);
2353 spin_unlock(&nfs_access_lru_lock);
2354 }
2355 nfs_access_cache_enforce_limit();
2356}
2357EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2358
2359void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2360{
2361 entry->mask = 0;
2362 if (access_result & NFS4_ACCESS_READ)
2363 entry->mask |= MAY_READ;
2364 if (access_result &
2365 (NFS4_ACCESS_MODIFY | NFS4_ACCESS_EXTEND | NFS4_ACCESS_DELETE))
2366 entry->mask |= MAY_WRITE;
2367 if (access_result & (NFS4_ACCESS_LOOKUP|NFS4_ACCESS_EXECUTE))
2368 entry->mask |= MAY_EXEC;
2369}
2370EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2371
2372static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2373{
2374 struct nfs_access_entry cache;
2375 int status;
2376
2377 trace_nfs_access_enter(inode);
2378
2379 status = nfs_access_get_cached_rcu(inode, cred, &cache);
2380 if (status != 0)
2381 status = nfs_access_get_cached(inode, cred, &cache);
2382 if (status == 0)
2383 goto out_cached;
2384
2385 status = -ECHILD;
2386 if (mask & MAY_NOT_BLOCK)
2387 goto out;
2388
2389 /* Be clever: ask server to check for all possible rights */
2390 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2391 cache.cred = cred;
2392 cache.jiffies = jiffies;
2393 status = NFS_PROTO(inode)->access(inode, &cache);
2394 if (status != 0) {
2395 if (status == -ESTALE) {
2396 nfs_zap_caches(inode);
2397 if (!S_ISDIR(inode->i_mode))
2398 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2399 }
2400 goto out;
2401 }
2402 nfs_access_add_cache(inode, &cache);
2403out_cached:
2404 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2405 status = -EACCES;
2406out:
2407 trace_nfs_access_exit(inode, status);
2408 return status;
2409}
2410
2411static int nfs_open_permission_mask(int openflags)
2412{
2413 int mask = 0;
2414
2415 if (openflags & __FMODE_EXEC) {
2416 /* ONLY check exec rights */
2417 mask = MAY_EXEC;
2418 } else {
2419 if ((openflags & O_ACCMODE) != O_WRONLY)
2420 mask |= MAY_READ;
2421 if ((openflags & O_ACCMODE) != O_RDONLY)
2422 mask |= MAY_WRITE;
2423 }
2424
2425 return mask;
2426}
2427
2428int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2429{
2430 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2431}
2432EXPORT_SYMBOL_GPL(nfs_may_open);
2433
2434int nfs_permission(struct inode *inode, int mask)
2435{
2436 struct rpc_cred *cred;
2437 int res = 0;
2438
2439 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2440
2441 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2442 goto out;
2443 /* Is this sys_access() ? */
2444 if (mask & (MAY_ACCESS | MAY_CHDIR))
2445 goto force_lookup;
2446
2447 switch (inode->i_mode & S_IFMT) {
2448 case S_IFLNK:
2449 goto out;
2450 case S_IFREG:
2451 break;
2452 case S_IFDIR:
2453 /*
2454 * Optimize away all write operations, since the server
2455 * will check permissions when we perform the op.
2456 */
2457 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2458 goto out;
2459 }
2460
2461force_lookup:
2462 if (!NFS_PROTO(inode)->access)
2463 goto out_notsup;
2464
2465 /* Always try fast lookups first */
2466 rcu_read_lock();
2467 cred = rpc_lookup_cred_nonblock();
2468 if (!IS_ERR(cred))
2469 res = nfs_do_access(inode, cred, mask|MAY_NOT_BLOCK);
2470 else
2471 res = PTR_ERR(cred);
2472 rcu_read_unlock();
2473 if (res == -ECHILD && !(mask & MAY_NOT_BLOCK)) {
2474 /* Fast lookup failed, try the slow way */
2475 cred = rpc_lookup_cred();
2476 if (!IS_ERR(cred)) {
2477 res = nfs_do_access(inode, cred, mask);
2478 put_rpccred(cred);
2479 } else
2480 res = PTR_ERR(cred);
2481 }
2482out:
2483 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2484 res = -EACCES;
2485
2486 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2487 inode->i_sb->s_id, inode->i_ino, mask, res);
2488 return res;
2489out_notsup:
2490 if (mask & MAY_NOT_BLOCK)
2491 return -ECHILD;
2492
2493 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2494 if (res == 0)
2495 res = generic_permission(inode, mask);
2496 goto out;
2497}
2498EXPORT_SYMBOL_GPL(nfs_permission);
2499
2500/*
2501 * Local variables:
2502 * version-control: t
2503 * kept-new-versions: 5
2504 * End:
2505 */