at v3.17 11 kB view raw
1/* 2 * fs/f2fs/node.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11/* start node id of a node block dedicated to the given node id */ 12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK) 13 14/* node block offset on the NAT area dedicated to the given start node id */ 15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK) 16 17/* # of pages to perform readahead before building free nids */ 18#define FREE_NID_PAGES 4 19 20/* maximum readahead size for node during getting data blocks */ 21#define MAX_RA_NODE 128 22 23/* control the memory footprint threshold (10MB per 1GB ram) */ 24#define DEF_RAM_THRESHOLD 10 25 26/* vector size for gang look-up from nat cache that consists of radix tree */ 27#define NATVEC_SIZE 64 28 29/* return value for read_node_page */ 30#define LOCKED_PAGE 1 31 32/* 33 * For node information 34 */ 35struct node_info { 36 nid_t nid; /* node id */ 37 nid_t ino; /* inode number of the node's owner */ 38 block_t blk_addr; /* block address of the node */ 39 unsigned char version; /* version of the node */ 40}; 41 42struct nat_entry { 43 struct list_head list; /* for clean or dirty nat list */ 44 bool checkpointed; /* whether it is checkpointed or not */ 45 bool fsync_done; /* whether the latest node has fsync mark */ 46 struct node_info ni; /* in-memory node information */ 47}; 48 49#define nat_get_nid(nat) (nat->ni.nid) 50#define nat_set_nid(nat, n) (nat->ni.nid = n) 51#define nat_get_blkaddr(nat) (nat->ni.blk_addr) 52#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b) 53#define nat_get_ino(nat) (nat->ni.ino) 54#define nat_set_ino(nat, i) (nat->ni.ino = i) 55#define nat_get_version(nat) (nat->ni.version) 56#define nat_set_version(nat, v) (nat->ni.version = v) 57 58#define __set_nat_cache_dirty(nm_i, ne) \ 59 do { \ 60 ne->checkpointed = false; \ 61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries); \ 62 } while (0) 63#define __clear_nat_cache_dirty(nm_i, ne) \ 64 do { \ 65 ne->checkpointed = true; \ 66 list_move_tail(&ne->list, &nm_i->nat_entries); \ 67 } while (0) 68#define inc_node_version(version) (++version) 69 70static inline void node_info_from_raw_nat(struct node_info *ni, 71 struct f2fs_nat_entry *raw_ne) 72{ 73 ni->ino = le32_to_cpu(raw_ne->ino); 74 ni->blk_addr = le32_to_cpu(raw_ne->block_addr); 75 ni->version = raw_ne->version; 76} 77 78static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne, 79 struct node_info *ni) 80{ 81 raw_ne->ino = cpu_to_le32(ni->ino); 82 raw_ne->block_addr = cpu_to_le32(ni->blk_addr); 83 raw_ne->version = ni->version; 84} 85 86enum mem_type { 87 FREE_NIDS, /* indicates the free nid list */ 88 NAT_ENTRIES, /* indicates the cached nat entry */ 89 DIRTY_DENTS /* indicates dirty dentry pages */ 90}; 91 92struct nat_entry_set { 93 struct list_head set_list; /* link with all nat sets */ 94 struct list_head entry_list; /* link with dirty nat entries */ 95 nid_t start_nid; /* start nid of nats in set */ 96 unsigned int entry_cnt; /* the # of nat entries in set */ 97}; 98 99/* 100 * For free nid mangement 101 */ 102enum nid_state { 103 NID_NEW, /* newly added to free nid list */ 104 NID_ALLOC /* it is allocated */ 105}; 106 107struct free_nid { 108 struct list_head list; /* for free node id list */ 109 nid_t nid; /* node id */ 110 int state; /* in use or not: NID_NEW or NID_ALLOC */ 111}; 112 113static inline int next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid) 114{ 115 struct f2fs_nm_info *nm_i = NM_I(sbi); 116 struct free_nid *fnid; 117 118 if (nm_i->fcnt <= 0) 119 return -1; 120 spin_lock(&nm_i->free_nid_list_lock); 121 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list); 122 *nid = fnid->nid; 123 spin_unlock(&nm_i->free_nid_list_lock); 124 return 0; 125} 126 127/* 128 * inline functions 129 */ 130static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr) 131{ 132 struct f2fs_nm_info *nm_i = NM_I(sbi); 133 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size); 134} 135 136static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start) 137{ 138 struct f2fs_nm_info *nm_i = NM_I(sbi); 139 pgoff_t block_off; 140 pgoff_t block_addr; 141 int seg_off; 142 143 block_off = NAT_BLOCK_OFFSET(start); 144 seg_off = block_off >> sbi->log_blocks_per_seg; 145 146 block_addr = (pgoff_t)(nm_i->nat_blkaddr + 147 (seg_off << sbi->log_blocks_per_seg << 1) + 148 (block_off & ((1 << sbi->log_blocks_per_seg) - 1))); 149 150 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 151 block_addr += sbi->blocks_per_seg; 152 153 return block_addr; 154} 155 156static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi, 157 pgoff_t block_addr) 158{ 159 struct f2fs_nm_info *nm_i = NM_I(sbi); 160 161 block_addr -= nm_i->nat_blkaddr; 162 if ((block_addr >> sbi->log_blocks_per_seg) % 2) 163 block_addr -= sbi->blocks_per_seg; 164 else 165 block_addr += sbi->blocks_per_seg; 166 167 return block_addr + nm_i->nat_blkaddr; 168} 169 170static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid) 171{ 172 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid); 173 174 if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) 175 f2fs_clear_bit(block_off, nm_i->nat_bitmap); 176 else 177 f2fs_set_bit(block_off, nm_i->nat_bitmap); 178} 179 180static inline void fill_node_footer(struct page *page, nid_t nid, 181 nid_t ino, unsigned int ofs, bool reset) 182{ 183 struct f2fs_node *rn = F2FS_NODE(page); 184 if (reset) 185 memset(rn, 0, sizeof(*rn)); 186 rn->footer.nid = cpu_to_le32(nid); 187 rn->footer.ino = cpu_to_le32(ino); 188 rn->footer.flag = cpu_to_le32(ofs << OFFSET_BIT_SHIFT); 189} 190 191static inline void copy_node_footer(struct page *dst, struct page *src) 192{ 193 struct f2fs_node *src_rn = F2FS_NODE(src); 194 struct f2fs_node *dst_rn = F2FS_NODE(dst); 195 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer)); 196} 197 198static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr) 199{ 200 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 201 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 202 struct f2fs_node *rn = F2FS_NODE(page); 203 204 rn->footer.cp_ver = ckpt->checkpoint_ver; 205 rn->footer.next_blkaddr = cpu_to_le32(blkaddr); 206} 207 208static inline nid_t ino_of_node(struct page *node_page) 209{ 210 struct f2fs_node *rn = F2FS_NODE(node_page); 211 return le32_to_cpu(rn->footer.ino); 212} 213 214static inline nid_t nid_of_node(struct page *node_page) 215{ 216 struct f2fs_node *rn = F2FS_NODE(node_page); 217 return le32_to_cpu(rn->footer.nid); 218} 219 220static inline unsigned int ofs_of_node(struct page *node_page) 221{ 222 struct f2fs_node *rn = F2FS_NODE(node_page); 223 unsigned flag = le32_to_cpu(rn->footer.flag); 224 return flag >> OFFSET_BIT_SHIFT; 225} 226 227static inline unsigned long long cpver_of_node(struct page *node_page) 228{ 229 struct f2fs_node *rn = F2FS_NODE(node_page); 230 return le64_to_cpu(rn->footer.cp_ver); 231} 232 233static inline block_t next_blkaddr_of_node(struct page *node_page) 234{ 235 struct f2fs_node *rn = F2FS_NODE(node_page); 236 return le32_to_cpu(rn->footer.next_blkaddr); 237} 238 239/* 240 * f2fs assigns the following node offsets described as (num). 241 * N = NIDS_PER_BLOCK 242 * 243 * Inode block (0) 244 * |- direct node (1) 245 * |- direct node (2) 246 * |- indirect node (3) 247 * | `- direct node (4 => 4 + N - 1) 248 * |- indirect node (4 + N) 249 * | `- direct node (5 + N => 5 + 2N - 1) 250 * `- double indirect node (5 + 2N) 251 * `- indirect node (6 + 2N) 252 * `- direct node 253 * ...... 254 * `- indirect node ((6 + 2N) + x(N + 1)) 255 * `- direct node 256 * ...... 257 * `- indirect node ((6 + 2N) + (N - 1)(N + 1)) 258 * `- direct node 259 */ 260static inline bool IS_DNODE(struct page *node_page) 261{ 262 unsigned int ofs = ofs_of_node(node_page); 263 264 if (f2fs_has_xattr_block(ofs)) 265 return false; 266 267 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK || 268 ofs == 5 + 2 * NIDS_PER_BLOCK) 269 return false; 270 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) { 271 ofs -= 6 + 2 * NIDS_PER_BLOCK; 272 if (!((long int)ofs % (NIDS_PER_BLOCK + 1))) 273 return false; 274 } 275 return true; 276} 277 278static inline void set_nid(struct page *p, int off, nid_t nid, bool i) 279{ 280 struct f2fs_node *rn = F2FS_NODE(p); 281 282 f2fs_wait_on_page_writeback(p, NODE); 283 284 if (i) 285 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid); 286 else 287 rn->in.nid[off] = cpu_to_le32(nid); 288 set_page_dirty(p); 289} 290 291static inline nid_t get_nid(struct page *p, int off, bool i) 292{ 293 struct f2fs_node *rn = F2FS_NODE(p); 294 295 if (i) 296 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]); 297 return le32_to_cpu(rn->in.nid[off]); 298} 299 300/* 301 * Coldness identification: 302 * - Mark cold files in f2fs_inode_info 303 * - Mark cold node blocks in their node footer 304 * - Mark cold data pages in page cache 305 */ 306static inline int is_file(struct inode *inode, int type) 307{ 308 return F2FS_I(inode)->i_advise & type; 309} 310 311static inline void set_file(struct inode *inode, int type) 312{ 313 F2FS_I(inode)->i_advise |= type; 314} 315 316static inline void clear_file(struct inode *inode, int type) 317{ 318 F2FS_I(inode)->i_advise &= ~type; 319} 320 321#define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT) 322#define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT) 323#define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT) 324#define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT) 325#define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT) 326#define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT) 327 328static inline int is_cold_data(struct page *page) 329{ 330 return PageChecked(page); 331} 332 333static inline void set_cold_data(struct page *page) 334{ 335 SetPageChecked(page); 336} 337 338static inline void clear_cold_data(struct page *page) 339{ 340 ClearPageChecked(page); 341} 342 343static inline int is_node(struct page *page, int type) 344{ 345 struct f2fs_node *rn = F2FS_NODE(page); 346 return le32_to_cpu(rn->footer.flag) & (1 << type); 347} 348 349#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT) 350#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT) 351#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT) 352 353static inline void set_cold_node(struct inode *inode, struct page *page) 354{ 355 struct f2fs_node *rn = F2FS_NODE(page); 356 unsigned int flag = le32_to_cpu(rn->footer.flag); 357 358 if (S_ISDIR(inode->i_mode)) 359 flag &= ~(0x1 << COLD_BIT_SHIFT); 360 else 361 flag |= (0x1 << COLD_BIT_SHIFT); 362 rn->footer.flag = cpu_to_le32(flag); 363} 364 365static inline void set_mark(struct page *page, int mark, int type) 366{ 367 struct f2fs_node *rn = F2FS_NODE(page); 368 unsigned int flag = le32_to_cpu(rn->footer.flag); 369 if (mark) 370 flag |= (0x1 << type); 371 else 372 flag &= ~(0x1 << type); 373 rn->footer.flag = cpu_to_le32(flag); 374} 375#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT) 376#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)