at v3.17 45 kB view raw
1/* 2 * linux/fs/block_dev.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE 6 */ 7 8#include <linux/init.h> 9#include <linux/mm.h> 10#include <linux/fcntl.h> 11#include <linux/slab.h> 12#include <linux/kmod.h> 13#include <linux/major.h> 14#include <linux/device_cgroup.h> 15#include <linux/highmem.h> 16#include <linux/blkdev.h> 17#include <linux/module.h> 18#include <linux/blkpg.h> 19#include <linux/magic.h> 20#include <linux/buffer_head.h> 21#include <linux/swap.h> 22#include <linux/pagevec.h> 23#include <linux/writeback.h> 24#include <linux/mpage.h> 25#include <linux/mount.h> 26#include <linux/uio.h> 27#include <linux/namei.h> 28#include <linux/log2.h> 29#include <linux/cleancache.h> 30#include <linux/aio.h> 31#include <asm/uaccess.h> 32#include "internal.h" 33 34struct bdev_inode { 35 struct block_device bdev; 36 struct inode vfs_inode; 37}; 38 39static const struct address_space_operations def_blk_aops; 40 41static inline struct bdev_inode *BDEV_I(struct inode *inode) 42{ 43 return container_of(inode, struct bdev_inode, vfs_inode); 44} 45 46inline struct block_device *I_BDEV(struct inode *inode) 47{ 48 return &BDEV_I(inode)->bdev; 49} 50EXPORT_SYMBOL(I_BDEV); 51 52/* 53 * Move the inode from its current bdi to a new bdi. If the inode is dirty we 54 * need to move it onto the dirty list of @dst so that the inode is always on 55 * the right list. 56 */ 57static void bdev_inode_switch_bdi(struct inode *inode, 58 struct backing_dev_info *dst) 59{ 60 struct backing_dev_info *old = inode->i_data.backing_dev_info; 61 bool wakeup_bdi = false; 62 63 if (unlikely(dst == old)) /* deadlock avoidance */ 64 return; 65 bdi_lock_two(&old->wb, &dst->wb); 66 spin_lock(&inode->i_lock); 67 inode->i_data.backing_dev_info = dst; 68 if (inode->i_state & I_DIRTY) { 69 if (bdi_cap_writeback_dirty(dst) && !wb_has_dirty_io(&dst->wb)) 70 wakeup_bdi = true; 71 list_move(&inode->i_wb_list, &dst->wb.b_dirty); 72 } 73 spin_unlock(&inode->i_lock); 74 spin_unlock(&old->wb.list_lock); 75 spin_unlock(&dst->wb.list_lock); 76 77 if (wakeup_bdi) 78 bdi_wakeup_thread_delayed(dst); 79} 80 81/* Kill _all_ buffers and pagecache , dirty or not.. */ 82void kill_bdev(struct block_device *bdev) 83{ 84 struct address_space *mapping = bdev->bd_inode->i_mapping; 85 86 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 87 return; 88 89 invalidate_bh_lrus(); 90 truncate_inode_pages(mapping, 0); 91} 92EXPORT_SYMBOL(kill_bdev); 93 94/* Invalidate clean unused buffers and pagecache. */ 95void invalidate_bdev(struct block_device *bdev) 96{ 97 struct address_space *mapping = bdev->bd_inode->i_mapping; 98 99 if (mapping->nrpages == 0) 100 return; 101 102 invalidate_bh_lrus(); 103 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 104 invalidate_mapping_pages(mapping, 0, -1); 105 /* 99% of the time, we don't need to flush the cleancache on the bdev. 106 * But, for the strange corners, lets be cautious 107 */ 108 cleancache_invalidate_inode(mapping); 109} 110EXPORT_SYMBOL(invalidate_bdev); 111 112int set_blocksize(struct block_device *bdev, int size) 113{ 114 /* Size must be a power of two, and between 512 and PAGE_SIZE */ 115 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size)) 116 return -EINVAL; 117 118 /* Size cannot be smaller than the size supported by the device */ 119 if (size < bdev_logical_block_size(bdev)) 120 return -EINVAL; 121 122 /* Don't change the size if it is same as current */ 123 if (bdev->bd_block_size != size) { 124 sync_blockdev(bdev); 125 bdev->bd_block_size = size; 126 bdev->bd_inode->i_blkbits = blksize_bits(size); 127 kill_bdev(bdev); 128 } 129 return 0; 130} 131 132EXPORT_SYMBOL(set_blocksize); 133 134int sb_set_blocksize(struct super_block *sb, int size) 135{ 136 if (set_blocksize(sb->s_bdev, size)) 137 return 0; 138 /* If we get here, we know size is power of two 139 * and it's value is between 512 and PAGE_SIZE */ 140 sb->s_blocksize = size; 141 sb->s_blocksize_bits = blksize_bits(size); 142 return sb->s_blocksize; 143} 144 145EXPORT_SYMBOL(sb_set_blocksize); 146 147int sb_min_blocksize(struct super_block *sb, int size) 148{ 149 int minsize = bdev_logical_block_size(sb->s_bdev); 150 if (size < minsize) 151 size = minsize; 152 return sb_set_blocksize(sb, size); 153} 154 155EXPORT_SYMBOL(sb_min_blocksize); 156 157static int 158blkdev_get_block(struct inode *inode, sector_t iblock, 159 struct buffer_head *bh, int create) 160{ 161 bh->b_bdev = I_BDEV(inode); 162 bh->b_blocknr = iblock; 163 set_buffer_mapped(bh); 164 return 0; 165} 166 167static ssize_t 168blkdev_direct_IO(int rw, struct kiocb *iocb, struct iov_iter *iter, 169 loff_t offset) 170{ 171 struct file *file = iocb->ki_filp; 172 struct inode *inode = file->f_mapping->host; 173 174 return __blockdev_direct_IO(rw, iocb, inode, I_BDEV(inode), iter, 175 offset, blkdev_get_block, 176 NULL, NULL, 0); 177} 178 179int __sync_blockdev(struct block_device *bdev, int wait) 180{ 181 if (!bdev) 182 return 0; 183 if (!wait) 184 return filemap_flush(bdev->bd_inode->i_mapping); 185 return filemap_write_and_wait(bdev->bd_inode->i_mapping); 186} 187 188/* 189 * Write out and wait upon all the dirty data associated with a block 190 * device via its mapping. Does not take the superblock lock. 191 */ 192int sync_blockdev(struct block_device *bdev) 193{ 194 return __sync_blockdev(bdev, 1); 195} 196EXPORT_SYMBOL(sync_blockdev); 197 198/* 199 * Write out and wait upon all dirty data associated with this 200 * device. Filesystem data as well as the underlying block 201 * device. Takes the superblock lock. 202 */ 203int fsync_bdev(struct block_device *bdev) 204{ 205 struct super_block *sb = get_super(bdev); 206 if (sb) { 207 int res = sync_filesystem(sb); 208 drop_super(sb); 209 return res; 210 } 211 return sync_blockdev(bdev); 212} 213EXPORT_SYMBOL(fsync_bdev); 214 215/** 216 * freeze_bdev -- lock a filesystem and force it into a consistent state 217 * @bdev: blockdevice to lock 218 * 219 * If a superblock is found on this device, we take the s_umount semaphore 220 * on it to make sure nobody unmounts until the snapshot creation is done. 221 * The reference counter (bd_fsfreeze_count) guarantees that only the last 222 * unfreeze process can unfreeze the frozen filesystem actually when multiple 223 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and 224 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze 225 * actually. 226 */ 227struct super_block *freeze_bdev(struct block_device *bdev) 228{ 229 struct super_block *sb; 230 int error = 0; 231 232 mutex_lock(&bdev->bd_fsfreeze_mutex); 233 if (++bdev->bd_fsfreeze_count > 1) { 234 /* 235 * We don't even need to grab a reference - the first call 236 * to freeze_bdev grab an active reference and only the last 237 * thaw_bdev drops it. 238 */ 239 sb = get_super(bdev); 240 drop_super(sb); 241 mutex_unlock(&bdev->bd_fsfreeze_mutex); 242 return sb; 243 } 244 245 sb = get_active_super(bdev); 246 if (!sb) 247 goto out; 248 error = freeze_super(sb); 249 if (error) { 250 deactivate_super(sb); 251 bdev->bd_fsfreeze_count--; 252 mutex_unlock(&bdev->bd_fsfreeze_mutex); 253 return ERR_PTR(error); 254 } 255 deactivate_super(sb); 256 out: 257 sync_blockdev(bdev); 258 mutex_unlock(&bdev->bd_fsfreeze_mutex); 259 return sb; /* thaw_bdev releases s->s_umount */ 260} 261EXPORT_SYMBOL(freeze_bdev); 262 263/** 264 * thaw_bdev -- unlock filesystem 265 * @bdev: blockdevice to unlock 266 * @sb: associated superblock 267 * 268 * Unlocks the filesystem and marks it writeable again after freeze_bdev(). 269 */ 270int thaw_bdev(struct block_device *bdev, struct super_block *sb) 271{ 272 int error = -EINVAL; 273 274 mutex_lock(&bdev->bd_fsfreeze_mutex); 275 if (!bdev->bd_fsfreeze_count) 276 goto out; 277 278 error = 0; 279 if (--bdev->bd_fsfreeze_count > 0) 280 goto out; 281 282 if (!sb) 283 goto out; 284 285 error = thaw_super(sb); 286 if (error) { 287 bdev->bd_fsfreeze_count++; 288 mutex_unlock(&bdev->bd_fsfreeze_mutex); 289 return error; 290 } 291out: 292 mutex_unlock(&bdev->bd_fsfreeze_mutex); 293 return 0; 294} 295EXPORT_SYMBOL(thaw_bdev); 296 297static int blkdev_writepage(struct page *page, struct writeback_control *wbc) 298{ 299 return block_write_full_page(page, blkdev_get_block, wbc); 300} 301 302static int blkdev_readpage(struct file * file, struct page * page) 303{ 304 return block_read_full_page(page, blkdev_get_block); 305} 306 307static int blkdev_write_begin(struct file *file, struct address_space *mapping, 308 loff_t pos, unsigned len, unsigned flags, 309 struct page **pagep, void **fsdata) 310{ 311 return block_write_begin(mapping, pos, len, flags, pagep, 312 blkdev_get_block); 313} 314 315static int blkdev_write_end(struct file *file, struct address_space *mapping, 316 loff_t pos, unsigned len, unsigned copied, 317 struct page *page, void *fsdata) 318{ 319 int ret; 320 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata); 321 322 unlock_page(page); 323 page_cache_release(page); 324 325 return ret; 326} 327 328/* 329 * private llseek: 330 * for a block special file file_inode(file)->i_size is zero 331 * so we compute the size by hand (just as in block_read/write above) 332 */ 333static loff_t block_llseek(struct file *file, loff_t offset, int whence) 334{ 335 struct inode *bd_inode = file->f_mapping->host; 336 loff_t retval; 337 338 mutex_lock(&bd_inode->i_mutex); 339 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode)); 340 mutex_unlock(&bd_inode->i_mutex); 341 return retval; 342} 343 344int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync) 345{ 346 struct inode *bd_inode = filp->f_mapping->host; 347 struct block_device *bdev = I_BDEV(bd_inode); 348 int error; 349 350 error = filemap_write_and_wait_range(filp->f_mapping, start, end); 351 if (error) 352 return error; 353 354 /* 355 * There is no need to serialise calls to blkdev_issue_flush with 356 * i_mutex and doing so causes performance issues with concurrent 357 * O_SYNC writers to a block device. 358 */ 359 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL); 360 if (error == -EOPNOTSUPP) 361 error = 0; 362 363 return error; 364} 365EXPORT_SYMBOL(blkdev_fsync); 366 367/** 368 * bdev_read_page() - Start reading a page from a block device 369 * @bdev: The device to read the page from 370 * @sector: The offset on the device to read the page to (need not be aligned) 371 * @page: The page to read 372 * 373 * On entry, the page should be locked. It will be unlocked when the page 374 * has been read. If the block driver implements rw_page synchronously, 375 * that will be true on exit from this function, but it need not be. 376 * 377 * Errors returned by this function are usually "soft", eg out of memory, or 378 * queue full; callers should try a different route to read this page rather 379 * than propagate an error back up the stack. 380 * 381 * Return: negative errno if an error occurs, 0 if submission was successful. 382 */ 383int bdev_read_page(struct block_device *bdev, sector_t sector, 384 struct page *page) 385{ 386 const struct block_device_operations *ops = bdev->bd_disk->fops; 387 if (!ops->rw_page) 388 return -EOPNOTSUPP; 389 return ops->rw_page(bdev, sector + get_start_sect(bdev), page, READ); 390} 391EXPORT_SYMBOL_GPL(bdev_read_page); 392 393/** 394 * bdev_write_page() - Start writing a page to a block device 395 * @bdev: The device to write the page to 396 * @sector: The offset on the device to write the page to (need not be aligned) 397 * @page: The page to write 398 * @wbc: The writeback_control for the write 399 * 400 * On entry, the page should be locked and not currently under writeback. 401 * On exit, if the write started successfully, the page will be unlocked and 402 * under writeback. If the write failed already (eg the driver failed to 403 * queue the page to the device), the page will still be locked. If the 404 * caller is a ->writepage implementation, it will need to unlock the page. 405 * 406 * Errors returned by this function are usually "soft", eg out of memory, or 407 * queue full; callers should try a different route to write this page rather 408 * than propagate an error back up the stack. 409 * 410 * Return: negative errno if an error occurs, 0 if submission was successful. 411 */ 412int bdev_write_page(struct block_device *bdev, sector_t sector, 413 struct page *page, struct writeback_control *wbc) 414{ 415 int result; 416 int rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE; 417 const struct block_device_operations *ops = bdev->bd_disk->fops; 418 if (!ops->rw_page) 419 return -EOPNOTSUPP; 420 set_page_writeback(page); 421 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, rw); 422 if (result) 423 end_page_writeback(page); 424 else 425 unlock_page(page); 426 return result; 427} 428EXPORT_SYMBOL_GPL(bdev_write_page); 429 430/* 431 * pseudo-fs 432 */ 433 434static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock); 435static struct kmem_cache * bdev_cachep __read_mostly; 436 437static struct inode *bdev_alloc_inode(struct super_block *sb) 438{ 439 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL); 440 if (!ei) 441 return NULL; 442 return &ei->vfs_inode; 443} 444 445static void bdev_i_callback(struct rcu_head *head) 446{ 447 struct inode *inode = container_of(head, struct inode, i_rcu); 448 struct bdev_inode *bdi = BDEV_I(inode); 449 450 kmem_cache_free(bdev_cachep, bdi); 451} 452 453static void bdev_destroy_inode(struct inode *inode) 454{ 455 call_rcu(&inode->i_rcu, bdev_i_callback); 456} 457 458static void init_once(void *foo) 459{ 460 struct bdev_inode *ei = (struct bdev_inode *) foo; 461 struct block_device *bdev = &ei->bdev; 462 463 memset(bdev, 0, sizeof(*bdev)); 464 mutex_init(&bdev->bd_mutex); 465 INIT_LIST_HEAD(&bdev->bd_inodes); 466 INIT_LIST_HEAD(&bdev->bd_list); 467#ifdef CONFIG_SYSFS 468 INIT_LIST_HEAD(&bdev->bd_holder_disks); 469#endif 470 inode_init_once(&ei->vfs_inode); 471 /* Initialize mutex for freeze. */ 472 mutex_init(&bdev->bd_fsfreeze_mutex); 473} 474 475static inline void __bd_forget(struct inode *inode) 476{ 477 list_del_init(&inode->i_devices); 478 inode->i_bdev = NULL; 479 inode->i_mapping = &inode->i_data; 480} 481 482static void bdev_evict_inode(struct inode *inode) 483{ 484 struct block_device *bdev = &BDEV_I(inode)->bdev; 485 struct list_head *p; 486 truncate_inode_pages_final(&inode->i_data); 487 invalidate_inode_buffers(inode); /* is it needed here? */ 488 clear_inode(inode); 489 spin_lock(&bdev_lock); 490 while ( (p = bdev->bd_inodes.next) != &bdev->bd_inodes ) { 491 __bd_forget(list_entry(p, struct inode, i_devices)); 492 } 493 list_del_init(&bdev->bd_list); 494 spin_unlock(&bdev_lock); 495} 496 497static const struct super_operations bdev_sops = { 498 .statfs = simple_statfs, 499 .alloc_inode = bdev_alloc_inode, 500 .destroy_inode = bdev_destroy_inode, 501 .drop_inode = generic_delete_inode, 502 .evict_inode = bdev_evict_inode, 503}; 504 505static struct dentry *bd_mount(struct file_system_type *fs_type, 506 int flags, const char *dev_name, void *data) 507{ 508 return mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC); 509} 510 511static struct file_system_type bd_type = { 512 .name = "bdev", 513 .mount = bd_mount, 514 .kill_sb = kill_anon_super, 515}; 516 517static struct super_block *blockdev_superblock __read_mostly; 518 519void __init bdev_cache_init(void) 520{ 521 int err; 522 static struct vfsmount *bd_mnt; 523 524 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode), 525 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT| 526 SLAB_MEM_SPREAD|SLAB_PANIC), 527 init_once); 528 err = register_filesystem(&bd_type); 529 if (err) 530 panic("Cannot register bdev pseudo-fs"); 531 bd_mnt = kern_mount(&bd_type); 532 if (IS_ERR(bd_mnt)) 533 panic("Cannot create bdev pseudo-fs"); 534 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */ 535} 536 537/* 538 * Most likely _very_ bad one - but then it's hardly critical for small 539 * /dev and can be fixed when somebody will need really large one. 540 * Keep in mind that it will be fed through icache hash function too. 541 */ 542static inline unsigned long hash(dev_t dev) 543{ 544 return MAJOR(dev)+MINOR(dev); 545} 546 547static int bdev_test(struct inode *inode, void *data) 548{ 549 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data; 550} 551 552static int bdev_set(struct inode *inode, void *data) 553{ 554 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data; 555 return 0; 556} 557 558static LIST_HEAD(all_bdevs); 559 560struct block_device *bdget(dev_t dev) 561{ 562 struct block_device *bdev; 563 struct inode *inode; 564 565 inode = iget5_locked(blockdev_superblock, hash(dev), 566 bdev_test, bdev_set, &dev); 567 568 if (!inode) 569 return NULL; 570 571 bdev = &BDEV_I(inode)->bdev; 572 573 if (inode->i_state & I_NEW) { 574 bdev->bd_contains = NULL; 575 bdev->bd_super = NULL; 576 bdev->bd_inode = inode; 577 bdev->bd_block_size = (1 << inode->i_blkbits); 578 bdev->bd_part_count = 0; 579 bdev->bd_invalidated = 0; 580 inode->i_mode = S_IFBLK; 581 inode->i_rdev = dev; 582 inode->i_bdev = bdev; 583 inode->i_data.a_ops = &def_blk_aops; 584 mapping_set_gfp_mask(&inode->i_data, GFP_USER); 585 inode->i_data.backing_dev_info = &default_backing_dev_info; 586 spin_lock(&bdev_lock); 587 list_add(&bdev->bd_list, &all_bdevs); 588 spin_unlock(&bdev_lock); 589 unlock_new_inode(inode); 590 } 591 return bdev; 592} 593 594EXPORT_SYMBOL(bdget); 595 596/** 597 * bdgrab -- Grab a reference to an already referenced block device 598 * @bdev: Block device to grab a reference to. 599 */ 600struct block_device *bdgrab(struct block_device *bdev) 601{ 602 ihold(bdev->bd_inode); 603 return bdev; 604} 605EXPORT_SYMBOL(bdgrab); 606 607long nr_blockdev_pages(void) 608{ 609 struct block_device *bdev; 610 long ret = 0; 611 spin_lock(&bdev_lock); 612 list_for_each_entry(bdev, &all_bdevs, bd_list) { 613 ret += bdev->bd_inode->i_mapping->nrpages; 614 } 615 spin_unlock(&bdev_lock); 616 return ret; 617} 618 619void bdput(struct block_device *bdev) 620{ 621 iput(bdev->bd_inode); 622} 623 624EXPORT_SYMBOL(bdput); 625 626static struct block_device *bd_acquire(struct inode *inode) 627{ 628 struct block_device *bdev; 629 630 spin_lock(&bdev_lock); 631 bdev = inode->i_bdev; 632 if (bdev) { 633 ihold(bdev->bd_inode); 634 spin_unlock(&bdev_lock); 635 return bdev; 636 } 637 spin_unlock(&bdev_lock); 638 639 bdev = bdget(inode->i_rdev); 640 if (bdev) { 641 spin_lock(&bdev_lock); 642 if (!inode->i_bdev) { 643 /* 644 * We take an additional reference to bd_inode, 645 * and it's released in clear_inode() of inode. 646 * So, we can access it via ->i_mapping always 647 * without igrab(). 648 */ 649 ihold(bdev->bd_inode); 650 inode->i_bdev = bdev; 651 inode->i_mapping = bdev->bd_inode->i_mapping; 652 list_add(&inode->i_devices, &bdev->bd_inodes); 653 } 654 spin_unlock(&bdev_lock); 655 } 656 return bdev; 657} 658 659int sb_is_blkdev_sb(struct super_block *sb) 660{ 661 return sb == blockdev_superblock; 662} 663 664/* Call when you free inode */ 665 666void bd_forget(struct inode *inode) 667{ 668 struct block_device *bdev = NULL; 669 670 spin_lock(&bdev_lock); 671 if (!sb_is_blkdev_sb(inode->i_sb)) 672 bdev = inode->i_bdev; 673 __bd_forget(inode); 674 spin_unlock(&bdev_lock); 675 676 if (bdev) 677 iput(bdev->bd_inode); 678} 679 680/** 681 * bd_may_claim - test whether a block device can be claimed 682 * @bdev: block device of interest 683 * @whole: whole block device containing @bdev, may equal @bdev 684 * @holder: holder trying to claim @bdev 685 * 686 * Test whether @bdev can be claimed by @holder. 687 * 688 * CONTEXT: 689 * spin_lock(&bdev_lock). 690 * 691 * RETURNS: 692 * %true if @bdev can be claimed, %false otherwise. 693 */ 694static bool bd_may_claim(struct block_device *bdev, struct block_device *whole, 695 void *holder) 696{ 697 if (bdev->bd_holder == holder) 698 return true; /* already a holder */ 699 else if (bdev->bd_holder != NULL) 700 return false; /* held by someone else */ 701 else if (bdev->bd_contains == bdev) 702 return true; /* is a whole device which isn't held */ 703 704 else if (whole->bd_holder == bd_may_claim) 705 return true; /* is a partition of a device that is being partitioned */ 706 else if (whole->bd_holder != NULL) 707 return false; /* is a partition of a held device */ 708 else 709 return true; /* is a partition of an un-held device */ 710} 711 712/** 713 * bd_prepare_to_claim - prepare to claim a block device 714 * @bdev: block device of interest 715 * @whole: the whole device containing @bdev, may equal @bdev 716 * @holder: holder trying to claim @bdev 717 * 718 * Prepare to claim @bdev. This function fails if @bdev is already 719 * claimed by another holder and waits if another claiming is in 720 * progress. This function doesn't actually claim. On successful 721 * return, the caller has ownership of bd_claiming and bd_holder[s]. 722 * 723 * CONTEXT: 724 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab 725 * it multiple times. 726 * 727 * RETURNS: 728 * 0 if @bdev can be claimed, -EBUSY otherwise. 729 */ 730static int bd_prepare_to_claim(struct block_device *bdev, 731 struct block_device *whole, void *holder) 732{ 733retry: 734 /* if someone else claimed, fail */ 735 if (!bd_may_claim(bdev, whole, holder)) 736 return -EBUSY; 737 738 /* if claiming is already in progress, wait for it to finish */ 739 if (whole->bd_claiming) { 740 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0); 741 DEFINE_WAIT(wait); 742 743 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE); 744 spin_unlock(&bdev_lock); 745 schedule(); 746 finish_wait(wq, &wait); 747 spin_lock(&bdev_lock); 748 goto retry; 749 } 750 751 /* yay, all mine */ 752 return 0; 753} 754 755/** 756 * bd_start_claiming - start claiming a block device 757 * @bdev: block device of interest 758 * @holder: holder trying to claim @bdev 759 * 760 * @bdev is about to be opened exclusively. Check @bdev can be opened 761 * exclusively and mark that an exclusive open is in progress. Each 762 * successful call to this function must be matched with a call to 763 * either bd_finish_claiming() or bd_abort_claiming() (which do not 764 * fail). 765 * 766 * This function is used to gain exclusive access to the block device 767 * without actually causing other exclusive open attempts to fail. It 768 * should be used when the open sequence itself requires exclusive 769 * access but may subsequently fail. 770 * 771 * CONTEXT: 772 * Might sleep. 773 * 774 * RETURNS: 775 * Pointer to the block device containing @bdev on success, ERR_PTR() 776 * value on failure. 777 */ 778static struct block_device *bd_start_claiming(struct block_device *bdev, 779 void *holder) 780{ 781 struct gendisk *disk; 782 struct block_device *whole; 783 int partno, err; 784 785 might_sleep(); 786 787 /* 788 * @bdev might not have been initialized properly yet, look up 789 * and grab the outer block device the hard way. 790 */ 791 disk = get_gendisk(bdev->bd_dev, &partno); 792 if (!disk) 793 return ERR_PTR(-ENXIO); 794 795 /* 796 * Normally, @bdev should equal what's returned from bdget_disk() 797 * if partno is 0; however, some drivers (floppy) use multiple 798 * bdev's for the same physical device and @bdev may be one of the 799 * aliases. Keep @bdev if partno is 0. This means claimer 800 * tracking is broken for those devices but it has always been that 801 * way. 802 */ 803 if (partno) 804 whole = bdget_disk(disk, 0); 805 else 806 whole = bdgrab(bdev); 807 808 module_put(disk->fops->owner); 809 put_disk(disk); 810 if (!whole) 811 return ERR_PTR(-ENOMEM); 812 813 /* prepare to claim, if successful, mark claiming in progress */ 814 spin_lock(&bdev_lock); 815 816 err = bd_prepare_to_claim(bdev, whole, holder); 817 if (err == 0) { 818 whole->bd_claiming = holder; 819 spin_unlock(&bdev_lock); 820 return whole; 821 } else { 822 spin_unlock(&bdev_lock); 823 bdput(whole); 824 return ERR_PTR(err); 825 } 826} 827 828#ifdef CONFIG_SYSFS 829struct bd_holder_disk { 830 struct list_head list; 831 struct gendisk *disk; 832 int refcnt; 833}; 834 835static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev, 836 struct gendisk *disk) 837{ 838 struct bd_holder_disk *holder; 839 840 list_for_each_entry(holder, &bdev->bd_holder_disks, list) 841 if (holder->disk == disk) 842 return holder; 843 return NULL; 844} 845 846static int add_symlink(struct kobject *from, struct kobject *to) 847{ 848 return sysfs_create_link(from, to, kobject_name(to)); 849} 850 851static void del_symlink(struct kobject *from, struct kobject *to) 852{ 853 sysfs_remove_link(from, kobject_name(to)); 854} 855 856/** 857 * bd_link_disk_holder - create symlinks between holding disk and slave bdev 858 * @bdev: the claimed slave bdev 859 * @disk: the holding disk 860 * 861 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 862 * 863 * This functions creates the following sysfs symlinks. 864 * 865 * - from "slaves" directory of the holder @disk to the claimed @bdev 866 * - from "holders" directory of the @bdev to the holder @disk 867 * 868 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is 869 * passed to bd_link_disk_holder(), then: 870 * 871 * /sys/block/dm-0/slaves/sda --> /sys/block/sda 872 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0 873 * 874 * The caller must have claimed @bdev before calling this function and 875 * ensure that both @bdev and @disk are valid during the creation and 876 * lifetime of these symlinks. 877 * 878 * CONTEXT: 879 * Might sleep. 880 * 881 * RETURNS: 882 * 0 on success, -errno on failure. 883 */ 884int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk) 885{ 886 struct bd_holder_disk *holder; 887 int ret = 0; 888 889 mutex_lock(&bdev->bd_mutex); 890 891 WARN_ON_ONCE(!bdev->bd_holder); 892 893 /* FIXME: remove the following once add_disk() handles errors */ 894 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir)) 895 goto out_unlock; 896 897 holder = bd_find_holder_disk(bdev, disk); 898 if (holder) { 899 holder->refcnt++; 900 goto out_unlock; 901 } 902 903 holder = kzalloc(sizeof(*holder), GFP_KERNEL); 904 if (!holder) { 905 ret = -ENOMEM; 906 goto out_unlock; 907 } 908 909 INIT_LIST_HEAD(&holder->list); 910 holder->disk = disk; 911 holder->refcnt = 1; 912 913 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 914 if (ret) 915 goto out_free; 916 917 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj); 918 if (ret) 919 goto out_del; 920 /* 921 * bdev could be deleted beneath us which would implicitly destroy 922 * the holder directory. Hold on to it. 923 */ 924 kobject_get(bdev->bd_part->holder_dir); 925 926 list_add(&holder->list, &bdev->bd_holder_disks); 927 goto out_unlock; 928 929out_del: 930 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 931out_free: 932 kfree(holder); 933out_unlock: 934 mutex_unlock(&bdev->bd_mutex); 935 return ret; 936} 937EXPORT_SYMBOL_GPL(bd_link_disk_holder); 938 939/** 940 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder() 941 * @bdev: the calimed slave bdev 942 * @disk: the holding disk 943 * 944 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT. 945 * 946 * CONTEXT: 947 * Might sleep. 948 */ 949void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk) 950{ 951 struct bd_holder_disk *holder; 952 953 mutex_lock(&bdev->bd_mutex); 954 955 holder = bd_find_holder_disk(bdev, disk); 956 957 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) { 958 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj); 959 del_symlink(bdev->bd_part->holder_dir, 960 &disk_to_dev(disk)->kobj); 961 kobject_put(bdev->bd_part->holder_dir); 962 list_del_init(&holder->list); 963 kfree(holder); 964 } 965 966 mutex_unlock(&bdev->bd_mutex); 967} 968EXPORT_SYMBOL_GPL(bd_unlink_disk_holder); 969#endif 970 971/** 972 * flush_disk - invalidates all buffer-cache entries on a disk 973 * 974 * @bdev: struct block device to be flushed 975 * @kill_dirty: flag to guide handling of dirty inodes 976 * 977 * Invalidates all buffer-cache entries on a disk. It should be called 978 * when a disk has been changed -- either by a media change or online 979 * resize. 980 */ 981static void flush_disk(struct block_device *bdev, bool kill_dirty) 982{ 983 if (__invalidate_device(bdev, kill_dirty)) { 984 char name[BDEVNAME_SIZE] = ""; 985 986 if (bdev->bd_disk) 987 disk_name(bdev->bd_disk, 0, name); 988 printk(KERN_WARNING "VFS: busy inodes on changed media or " 989 "resized disk %s\n", name); 990 } 991 992 if (!bdev->bd_disk) 993 return; 994 if (disk_part_scan_enabled(bdev->bd_disk)) 995 bdev->bd_invalidated = 1; 996} 997 998/** 999 * check_disk_size_change - checks for disk size change and adjusts bdev size. 1000 * @disk: struct gendisk to check 1001 * @bdev: struct bdev to adjust. 1002 * 1003 * This routine checks to see if the bdev size does not match the disk size 1004 * and adjusts it if it differs. 1005 */ 1006void check_disk_size_change(struct gendisk *disk, struct block_device *bdev) 1007{ 1008 loff_t disk_size, bdev_size; 1009 1010 disk_size = (loff_t)get_capacity(disk) << 9; 1011 bdev_size = i_size_read(bdev->bd_inode); 1012 if (disk_size != bdev_size) { 1013 char name[BDEVNAME_SIZE]; 1014 1015 disk_name(disk, 0, name); 1016 printk(KERN_INFO 1017 "%s: detected capacity change from %lld to %lld\n", 1018 name, bdev_size, disk_size); 1019 i_size_write(bdev->bd_inode, disk_size); 1020 flush_disk(bdev, false); 1021 } 1022} 1023EXPORT_SYMBOL(check_disk_size_change); 1024 1025/** 1026 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back 1027 * @disk: struct gendisk to be revalidated 1028 * 1029 * This routine is a wrapper for lower-level driver's revalidate_disk 1030 * call-backs. It is used to do common pre and post operations needed 1031 * for all revalidate_disk operations. 1032 */ 1033int revalidate_disk(struct gendisk *disk) 1034{ 1035 struct block_device *bdev; 1036 int ret = 0; 1037 1038 if (disk->fops->revalidate_disk) 1039 ret = disk->fops->revalidate_disk(disk); 1040 1041 bdev = bdget_disk(disk, 0); 1042 if (!bdev) 1043 return ret; 1044 1045 mutex_lock(&bdev->bd_mutex); 1046 check_disk_size_change(disk, bdev); 1047 bdev->bd_invalidated = 0; 1048 mutex_unlock(&bdev->bd_mutex); 1049 bdput(bdev); 1050 return ret; 1051} 1052EXPORT_SYMBOL(revalidate_disk); 1053 1054/* 1055 * This routine checks whether a removable media has been changed, 1056 * and invalidates all buffer-cache-entries in that case. This 1057 * is a relatively slow routine, so we have to try to minimize using 1058 * it. Thus it is called only upon a 'mount' or 'open'. This 1059 * is the best way of combining speed and utility, I think. 1060 * People changing diskettes in the middle of an operation deserve 1061 * to lose :-) 1062 */ 1063int check_disk_change(struct block_device *bdev) 1064{ 1065 struct gendisk *disk = bdev->bd_disk; 1066 const struct block_device_operations *bdops = disk->fops; 1067 unsigned int events; 1068 1069 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE | 1070 DISK_EVENT_EJECT_REQUEST); 1071 if (!(events & DISK_EVENT_MEDIA_CHANGE)) 1072 return 0; 1073 1074 flush_disk(bdev, true); 1075 if (bdops->revalidate_disk) 1076 bdops->revalidate_disk(bdev->bd_disk); 1077 return 1; 1078} 1079 1080EXPORT_SYMBOL(check_disk_change); 1081 1082void bd_set_size(struct block_device *bdev, loff_t size) 1083{ 1084 unsigned bsize = bdev_logical_block_size(bdev); 1085 1086 mutex_lock(&bdev->bd_inode->i_mutex); 1087 i_size_write(bdev->bd_inode, size); 1088 mutex_unlock(&bdev->bd_inode->i_mutex); 1089 while (bsize < PAGE_CACHE_SIZE) { 1090 if (size & bsize) 1091 break; 1092 bsize <<= 1; 1093 } 1094 bdev->bd_block_size = bsize; 1095 bdev->bd_inode->i_blkbits = blksize_bits(bsize); 1096} 1097EXPORT_SYMBOL(bd_set_size); 1098 1099static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part); 1100 1101/* 1102 * bd_mutex locking: 1103 * 1104 * mutex_lock(part->bd_mutex) 1105 * mutex_lock_nested(whole->bd_mutex, 1) 1106 */ 1107 1108static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part) 1109{ 1110 struct gendisk *disk; 1111 struct module *owner; 1112 int ret; 1113 int partno; 1114 int perm = 0; 1115 1116 if (mode & FMODE_READ) 1117 perm |= MAY_READ; 1118 if (mode & FMODE_WRITE) 1119 perm |= MAY_WRITE; 1120 /* 1121 * hooks: /n/, see "layering violations". 1122 */ 1123 if (!for_part) { 1124 ret = devcgroup_inode_permission(bdev->bd_inode, perm); 1125 if (ret != 0) { 1126 bdput(bdev); 1127 return ret; 1128 } 1129 } 1130 1131 restart: 1132 1133 ret = -ENXIO; 1134 disk = get_gendisk(bdev->bd_dev, &partno); 1135 if (!disk) 1136 goto out; 1137 owner = disk->fops->owner; 1138 1139 disk_block_events(disk); 1140 mutex_lock_nested(&bdev->bd_mutex, for_part); 1141 if (!bdev->bd_openers) { 1142 bdev->bd_disk = disk; 1143 bdev->bd_queue = disk->queue; 1144 bdev->bd_contains = bdev; 1145 if (!partno) { 1146 struct backing_dev_info *bdi; 1147 1148 ret = -ENXIO; 1149 bdev->bd_part = disk_get_part(disk, partno); 1150 if (!bdev->bd_part) 1151 goto out_clear; 1152 1153 ret = 0; 1154 if (disk->fops->open) { 1155 ret = disk->fops->open(bdev, mode); 1156 if (ret == -ERESTARTSYS) { 1157 /* Lost a race with 'disk' being 1158 * deleted, try again. 1159 * See md.c 1160 */ 1161 disk_put_part(bdev->bd_part); 1162 bdev->bd_part = NULL; 1163 bdev->bd_disk = NULL; 1164 bdev->bd_queue = NULL; 1165 mutex_unlock(&bdev->bd_mutex); 1166 disk_unblock_events(disk); 1167 put_disk(disk); 1168 module_put(owner); 1169 goto restart; 1170 } 1171 } 1172 1173 if (!ret) { 1174 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9); 1175 bdi = blk_get_backing_dev_info(bdev); 1176 if (bdi == NULL) 1177 bdi = &default_backing_dev_info; 1178 bdev_inode_switch_bdi(bdev->bd_inode, bdi); 1179 } 1180 1181 /* 1182 * If the device is invalidated, rescan partition 1183 * if open succeeded or failed with -ENOMEDIUM. 1184 * The latter is necessary to prevent ghost 1185 * partitions on a removed medium. 1186 */ 1187 if (bdev->bd_invalidated) { 1188 if (!ret) 1189 rescan_partitions(disk, bdev); 1190 else if (ret == -ENOMEDIUM) 1191 invalidate_partitions(disk, bdev); 1192 } 1193 if (ret) 1194 goto out_clear; 1195 } else { 1196 struct block_device *whole; 1197 whole = bdget_disk(disk, 0); 1198 ret = -ENOMEM; 1199 if (!whole) 1200 goto out_clear; 1201 BUG_ON(for_part); 1202 ret = __blkdev_get(whole, mode, 1); 1203 if (ret) 1204 goto out_clear; 1205 bdev->bd_contains = whole; 1206 bdev_inode_switch_bdi(bdev->bd_inode, 1207 whole->bd_inode->i_data.backing_dev_info); 1208 bdev->bd_part = disk_get_part(disk, partno); 1209 if (!(disk->flags & GENHD_FL_UP) || 1210 !bdev->bd_part || !bdev->bd_part->nr_sects) { 1211 ret = -ENXIO; 1212 goto out_clear; 1213 } 1214 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9); 1215 } 1216 } else { 1217 if (bdev->bd_contains == bdev) { 1218 ret = 0; 1219 if (bdev->bd_disk->fops->open) 1220 ret = bdev->bd_disk->fops->open(bdev, mode); 1221 /* the same as first opener case, read comment there */ 1222 if (bdev->bd_invalidated) { 1223 if (!ret) 1224 rescan_partitions(bdev->bd_disk, bdev); 1225 else if (ret == -ENOMEDIUM) 1226 invalidate_partitions(bdev->bd_disk, bdev); 1227 } 1228 if (ret) 1229 goto out_unlock_bdev; 1230 } 1231 /* only one opener holds refs to the module and disk */ 1232 put_disk(disk); 1233 module_put(owner); 1234 } 1235 bdev->bd_openers++; 1236 if (for_part) 1237 bdev->bd_part_count++; 1238 mutex_unlock(&bdev->bd_mutex); 1239 disk_unblock_events(disk); 1240 return 0; 1241 1242 out_clear: 1243 disk_put_part(bdev->bd_part); 1244 bdev->bd_disk = NULL; 1245 bdev->bd_part = NULL; 1246 bdev->bd_queue = NULL; 1247 bdev_inode_switch_bdi(bdev->bd_inode, &default_backing_dev_info); 1248 if (bdev != bdev->bd_contains) 1249 __blkdev_put(bdev->bd_contains, mode, 1); 1250 bdev->bd_contains = NULL; 1251 out_unlock_bdev: 1252 mutex_unlock(&bdev->bd_mutex); 1253 disk_unblock_events(disk); 1254 put_disk(disk); 1255 module_put(owner); 1256 out: 1257 bdput(bdev); 1258 1259 return ret; 1260} 1261 1262/** 1263 * blkdev_get - open a block device 1264 * @bdev: block_device to open 1265 * @mode: FMODE_* mask 1266 * @holder: exclusive holder identifier 1267 * 1268 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is 1269 * open with exclusive access. Specifying %FMODE_EXCL with %NULL 1270 * @holder is invalid. Exclusive opens may nest for the same @holder. 1271 * 1272 * On success, the reference count of @bdev is unchanged. On failure, 1273 * @bdev is put. 1274 * 1275 * CONTEXT: 1276 * Might sleep. 1277 * 1278 * RETURNS: 1279 * 0 on success, -errno on failure. 1280 */ 1281int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder) 1282{ 1283 struct block_device *whole = NULL; 1284 int res; 1285 1286 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder); 1287 1288 if ((mode & FMODE_EXCL) && holder) { 1289 whole = bd_start_claiming(bdev, holder); 1290 if (IS_ERR(whole)) { 1291 bdput(bdev); 1292 return PTR_ERR(whole); 1293 } 1294 } 1295 1296 res = __blkdev_get(bdev, mode, 0); 1297 1298 if (whole) { 1299 struct gendisk *disk = whole->bd_disk; 1300 1301 /* finish claiming */ 1302 mutex_lock(&bdev->bd_mutex); 1303 spin_lock(&bdev_lock); 1304 1305 if (!res) { 1306 BUG_ON(!bd_may_claim(bdev, whole, holder)); 1307 /* 1308 * Note that for a whole device bd_holders 1309 * will be incremented twice, and bd_holder 1310 * will be set to bd_may_claim before being 1311 * set to holder 1312 */ 1313 whole->bd_holders++; 1314 whole->bd_holder = bd_may_claim; 1315 bdev->bd_holders++; 1316 bdev->bd_holder = holder; 1317 } 1318 1319 /* tell others that we're done */ 1320 BUG_ON(whole->bd_claiming != holder); 1321 whole->bd_claiming = NULL; 1322 wake_up_bit(&whole->bd_claiming, 0); 1323 1324 spin_unlock(&bdev_lock); 1325 1326 /* 1327 * Block event polling for write claims if requested. Any 1328 * write holder makes the write_holder state stick until 1329 * all are released. This is good enough and tracking 1330 * individual writeable reference is too fragile given the 1331 * way @mode is used in blkdev_get/put(). 1332 */ 1333 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder && 1334 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) { 1335 bdev->bd_write_holder = true; 1336 disk_block_events(disk); 1337 } 1338 1339 mutex_unlock(&bdev->bd_mutex); 1340 bdput(whole); 1341 } 1342 1343 return res; 1344} 1345EXPORT_SYMBOL(blkdev_get); 1346 1347/** 1348 * blkdev_get_by_path - open a block device by name 1349 * @path: path to the block device to open 1350 * @mode: FMODE_* mask 1351 * @holder: exclusive holder identifier 1352 * 1353 * Open the blockdevice described by the device file at @path. @mode 1354 * and @holder are identical to blkdev_get(). 1355 * 1356 * On success, the returned block_device has reference count of one. 1357 * 1358 * CONTEXT: 1359 * Might sleep. 1360 * 1361 * RETURNS: 1362 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1363 */ 1364struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1365 void *holder) 1366{ 1367 struct block_device *bdev; 1368 int err; 1369 1370 bdev = lookup_bdev(path); 1371 if (IS_ERR(bdev)) 1372 return bdev; 1373 1374 err = blkdev_get(bdev, mode, holder); 1375 if (err) 1376 return ERR_PTR(err); 1377 1378 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) { 1379 blkdev_put(bdev, mode); 1380 return ERR_PTR(-EACCES); 1381 } 1382 1383 return bdev; 1384} 1385EXPORT_SYMBOL(blkdev_get_by_path); 1386 1387/** 1388 * blkdev_get_by_dev - open a block device by device number 1389 * @dev: device number of block device to open 1390 * @mode: FMODE_* mask 1391 * @holder: exclusive holder identifier 1392 * 1393 * Open the blockdevice described by device number @dev. @mode and 1394 * @holder are identical to blkdev_get(). 1395 * 1396 * Use it ONLY if you really do not have anything better - i.e. when 1397 * you are behind a truly sucky interface and all you are given is a 1398 * device number. _Never_ to be used for internal purposes. If you 1399 * ever need it - reconsider your API. 1400 * 1401 * On success, the returned block_device has reference count of one. 1402 * 1403 * CONTEXT: 1404 * Might sleep. 1405 * 1406 * RETURNS: 1407 * Pointer to block_device on success, ERR_PTR(-errno) on failure. 1408 */ 1409struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder) 1410{ 1411 struct block_device *bdev; 1412 int err; 1413 1414 bdev = bdget(dev); 1415 if (!bdev) 1416 return ERR_PTR(-ENOMEM); 1417 1418 err = blkdev_get(bdev, mode, holder); 1419 if (err) 1420 return ERR_PTR(err); 1421 1422 return bdev; 1423} 1424EXPORT_SYMBOL(blkdev_get_by_dev); 1425 1426static int blkdev_open(struct inode * inode, struct file * filp) 1427{ 1428 struct block_device *bdev; 1429 1430 /* 1431 * Preserve backwards compatibility and allow large file access 1432 * even if userspace doesn't ask for it explicitly. Some mkfs 1433 * binary needs it. We might want to drop this workaround 1434 * during an unstable branch. 1435 */ 1436 filp->f_flags |= O_LARGEFILE; 1437 1438 if (filp->f_flags & O_NDELAY) 1439 filp->f_mode |= FMODE_NDELAY; 1440 if (filp->f_flags & O_EXCL) 1441 filp->f_mode |= FMODE_EXCL; 1442 if ((filp->f_flags & O_ACCMODE) == 3) 1443 filp->f_mode |= FMODE_WRITE_IOCTL; 1444 1445 bdev = bd_acquire(inode); 1446 if (bdev == NULL) 1447 return -ENOMEM; 1448 1449 filp->f_mapping = bdev->bd_inode->i_mapping; 1450 1451 return blkdev_get(bdev, filp->f_mode, filp); 1452} 1453 1454static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part) 1455{ 1456 struct gendisk *disk = bdev->bd_disk; 1457 struct block_device *victim = NULL; 1458 1459 mutex_lock_nested(&bdev->bd_mutex, for_part); 1460 if (for_part) 1461 bdev->bd_part_count--; 1462 1463 if (!--bdev->bd_openers) { 1464 WARN_ON_ONCE(bdev->bd_holders); 1465 sync_blockdev(bdev); 1466 kill_bdev(bdev); 1467 /* ->release can cause the old bdi to disappear, 1468 * so must switch it out first 1469 */ 1470 bdev_inode_switch_bdi(bdev->bd_inode, 1471 &default_backing_dev_info); 1472 } 1473 if (bdev->bd_contains == bdev) { 1474 if (disk->fops->release) 1475 disk->fops->release(disk, mode); 1476 } 1477 if (!bdev->bd_openers) { 1478 struct module *owner = disk->fops->owner; 1479 1480 disk_put_part(bdev->bd_part); 1481 bdev->bd_part = NULL; 1482 bdev->bd_disk = NULL; 1483 if (bdev != bdev->bd_contains) 1484 victim = bdev->bd_contains; 1485 bdev->bd_contains = NULL; 1486 1487 put_disk(disk); 1488 module_put(owner); 1489 } 1490 mutex_unlock(&bdev->bd_mutex); 1491 bdput(bdev); 1492 if (victim) 1493 __blkdev_put(victim, mode, 1); 1494} 1495 1496void blkdev_put(struct block_device *bdev, fmode_t mode) 1497{ 1498 mutex_lock(&bdev->bd_mutex); 1499 1500 if (mode & FMODE_EXCL) { 1501 bool bdev_free; 1502 1503 /* 1504 * Release a claim on the device. The holder fields 1505 * are protected with bdev_lock. bd_mutex is to 1506 * synchronize disk_holder unlinking. 1507 */ 1508 spin_lock(&bdev_lock); 1509 1510 WARN_ON_ONCE(--bdev->bd_holders < 0); 1511 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0); 1512 1513 /* bd_contains might point to self, check in a separate step */ 1514 if ((bdev_free = !bdev->bd_holders)) 1515 bdev->bd_holder = NULL; 1516 if (!bdev->bd_contains->bd_holders) 1517 bdev->bd_contains->bd_holder = NULL; 1518 1519 spin_unlock(&bdev_lock); 1520 1521 /* 1522 * If this was the last claim, remove holder link and 1523 * unblock evpoll if it was a write holder. 1524 */ 1525 if (bdev_free && bdev->bd_write_holder) { 1526 disk_unblock_events(bdev->bd_disk); 1527 bdev->bd_write_holder = false; 1528 } 1529 } 1530 1531 /* 1532 * Trigger event checking and tell drivers to flush MEDIA_CHANGE 1533 * event. This is to ensure detection of media removal commanded 1534 * from userland - e.g. eject(1). 1535 */ 1536 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE); 1537 1538 mutex_unlock(&bdev->bd_mutex); 1539 1540 __blkdev_put(bdev, mode, 0); 1541} 1542EXPORT_SYMBOL(blkdev_put); 1543 1544static int blkdev_close(struct inode * inode, struct file * filp) 1545{ 1546 struct block_device *bdev = I_BDEV(filp->f_mapping->host); 1547 blkdev_put(bdev, filp->f_mode); 1548 return 0; 1549} 1550 1551static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1552{ 1553 struct block_device *bdev = I_BDEV(file->f_mapping->host); 1554 fmode_t mode = file->f_mode; 1555 1556 /* 1557 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have 1558 * to updated it before every ioctl. 1559 */ 1560 if (file->f_flags & O_NDELAY) 1561 mode |= FMODE_NDELAY; 1562 else 1563 mode &= ~FMODE_NDELAY; 1564 1565 return blkdev_ioctl(bdev, mode, cmd, arg); 1566} 1567 1568/* 1569 * Write data to the block device. Only intended for the block device itself 1570 * and the raw driver which basically is a fake block device. 1571 * 1572 * Does not take i_mutex for the write and thus is not for general purpose 1573 * use. 1574 */ 1575ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from) 1576{ 1577 struct file *file = iocb->ki_filp; 1578 struct blk_plug plug; 1579 ssize_t ret; 1580 1581 blk_start_plug(&plug); 1582 ret = __generic_file_write_iter(iocb, from); 1583 if (ret > 0) { 1584 ssize_t err; 1585 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 1586 if (err < 0) 1587 ret = err; 1588 } 1589 blk_finish_plug(&plug); 1590 return ret; 1591} 1592EXPORT_SYMBOL_GPL(blkdev_write_iter); 1593 1594static ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to) 1595{ 1596 struct file *file = iocb->ki_filp; 1597 struct inode *bd_inode = file->f_mapping->host; 1598 loff_t size = i_size_read(bd_inode); 1599 loff_t pos = iocb->ki_pos; 1600 1601 if (pos >= size) 1602 return 0; 1603 1604 size -= pos; 1605 iov_iter_truncate(to, size); 1606 return generic_file_read_iter(iocb, to); 1607} 1608 1609/* 1610 * Try to release a page associated with block device when the system 1611 * is under memory pressure. 1612 */ 1613static int blkdev_releasepage(struct page *page, gfp_t wait) 1614{ 1615 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super; 1616 1617 if (super && super->s_op->bdev_try_to_free_page) 1618 return super->s_op->bdev_try_to_free_page(super, page, wait); 1619 1620 return try_to_free_buffers(page); 1621} 1622 1623static const struct address_space_operations def_blk_aops = { 1624 .readpage = blkdev_readpage, 1625 .writepage = blkdev_writepage, 1626 .write_begin = blkdev_write_begin, 1627 .write_end = blkdev_write_end, 1628 .writepages = generic_writepages, 1629 .releasepage = blkdev_releasepage, 1630 .direct_IO = blkdev_direct_IO, 1631 .is_dirty_writeback = buffer_check_dirty_writeback, 1632}; 1633 1634const struct file_operations def_blk_fops = { 1635 .open = blkdev_open, 1636 .release = blkdev_close, 1637 .llseek = block_llseek, 1638 .read = new_sync_read, 1639 .write = new_sync_write, 1640 .read_iter = blkdev_read_iter, 1641 .write_iter = blkdev_write_iter, 1642 .mmap = generic_file_mmap, 1643 .fsync = blkdev_fsync, 1644 .unlocked_ioctl = block_ioctl, 1645#ifdef CONFIG_COMPAT 1646 .compat_ioctl = compat_blkdev_ioctl, 1647#endif 1648 .splice_read = generic_file_splice_read, 1649 .splice_write = iter_file_splice_write, 1650}; 1651 1652int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg) 1653{ 1654 int res; 1655 mm_segment_t old_fs = get_fs(); 1656 set_fs(KERNEL_DS); 1657 res = blkdev_ioctl(bdev, 0, cmd, arg); 1658 set_fs(old_fs); 1659 return res; 1660} 1661 1662EXPORT_SYMBOL(ioctl_by_bdev); 1663 1664/** 1665 * lookup_bdev - lookup a struct block_device by name 1666 * @pathname: special file representing the block device 1667 * 1668 * Get a reference to the blockdevice at @pathname in the current 1669 * namespace if possible and return it. Return ERR_PTR(error) 1670 * otherwise. 1671 */ 1672struct block_device *lookup_bdev(const char *pathname) 1673{ 1674 struct block_device *bdev; 1675 struct inode *inode; 1676 struct path path; 1677 int error; 1678 1679 if (!pathname || !*pathname) 1680 return ERR_PTR(-EINVAL); 1681 1682 error = kern_path(pathname, LOOKUP_FOLLOW, &path); 1683 if (error) 1684 return ERR_PTR(error); 1685 1686 inode = path.dentry->d_inode; 1687 error = -ENOTBLK; 1688 if (!S_ISBLK(inode->i_mode)) 1689 goto fail; 1690 error = -EACCES; 1691 if (path.mnt->mnt_flags & MNT_NODEV) 1692 goto fail; 1693 error = -ENOMEM; 1694 bdev = bd_acquire(inode); 1695 if (!bdev) 1696 goto fail; 1697out: 1698 path_put(&path); 1699 return bdev; 1700fail: 1701 bdev = ERR_PTR(error); 1702 goto out; 1703} 1704EXPORT_SYMBOL(lookup_bdev); 1705 1706int __invalidate_device(struct block_device *bdev, bool kill_dirty) 1707{ 1708 struct super_block *sb = get_super(bdev); 1709 int res = 0; 1710 1711 if (sb) { 1712 /* 1713 * no need to lock the super, get_super holds the 1714 * read mutex so the filesystem cannot go away 1715 * under us (->put_super runs with the write lock 1716 * hold). 1717 */ 1718 shrink_dcache_sb(sb); 1719 res = invalidate_inodes(sb, kill_dirty); 1720 drop_super(sb); 1721 } 1722 invalidate_bdev(bdev); 1723 return res; 1724} 1725EXPORT_SYMBOL(__invalidate_device); 1726 1727void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg) 1728{ 1729 struct inode *inode, *old_inode = NULL; 1730 1731 spin_lock(&inode_sb_list_lock); 1732 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) { 1733 struct address_space *mapping = inode->i_mapping; 1734 1735 spin_lock(&inode->i_lock); 1736 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) || 1737 mapping->nrpages == 0) { 1738 spin_unlock(&inode->i_lock); 1739 continue; 1740 } 1741 __iget(inode); 1742 spin_unlock(&inode->i_lock); 1743 spin_unlock(&inode_sb_list_lock); 1744 /* 1745 * We hold a reference to 'inode' so it couldn't have been 1746 * removed from s_inodes list while we dropped the 1747 * inode_sb_list_lock. We cannot iput the inode now as we can 1748 * be holding the last reference and we cannot iput it under 1749 * inode_sb_list_lock. So we keep the reference and iput it 1750 * later. 1751 */ 1752 iput(old_inode); 1753 old_inode = inode; 1754 1755 func(I_BDEV(inode), arg); 1756 1757 spin_lock(&inode_sb_list_lock); 1758 } 1759 spin_unlock(&inode_sb_list_lock); 1760 iput(old_inode); 1761}