Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11#ifndef _ASM_S390_PGTABLE_H
12#define _ASM_S390_PGTABLE_H
13
14/*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29#ifndef __ASSEMBLY__
30#include <linux/sched.h>
31#include <linux/mm_types.h>
32#include <linux/page-flags.h>
33#include <asm/bug.h>
34#include <asm/page.h>
35
36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37extern void paging_init(void);
38extern void vmem_map_init(void);
39
40/*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44#define update_mmu_cache(vma, address, ptep) do { } while (0)
45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46
47/*
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
50 */
51
52extern unsigned long empty_zero_page;
53extern unsigned long zero_page_mask;
54
55#define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58#define __HAVE_COLOR_ZERO_PAGE
59
60/* TODO: s390 cannot support io_remap_pfn_range... */
61#endif /* !__ASSEMBLY__ */
62
63/*
64 * PMD_SHIFT determines the size of the area a second-level page
65 * table can map
66 * PGDIR_SHIFT determines what a third-level page table entry can map
67 */
68#ifndef CONFIG_64BIT
69# define PMD_SHIFT 20
70# define PUD_SHIFT 20
71# define PGDIR_SHIFT 20
72#else /* CONFIG_64BIT */
73# define PMD_SHIFT 20
74# define PUD_SHIFT 31
75# define PGDIR_SHIFT 42
76#endif /* CONFIG_64BIT */
77
78#define PMD_SIZE (1UL << PMD_SHIFT)
79#define PMD_MASK (~(PMD_SIZE-1))
80#define PUD_SIZE (1UL << PUD_SHIFT)
81#define PUD_MASK (~(PUD_SIZE-1))
82#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
83#define PGDIR_MASK (~(PGDIR_SIZE-1))
84
85/*
86 * entries per page directory level: the S390 is two-level, so
87 * we don't really have any PMD directory physically.
88 * for S390 segment-table entries are combined to one PGD
89 * that leads to 1024 pte per pgd
90 */
91#define PTRS_PER_PTE 256
92#ifndef CONFIG_64BIT
93#define PTRS_PER_PMD 1
94#define PTRS_PER_PUD 1
95#else /* CONFIG_64BIT */
96#define PTRS_PER_PMD 2048
97#define PTRS_PER_PUD 2048
98#endif /* CONFIG_64BIT */
99#define PTRS_PER_PGD 2048
100
101#define FIRST_USER_ADDRESS 0
102
103#define pte_ERROR(e) \
104 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
105#define pmd_ERROR(e) \
106 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
107#define pud_ERROR(e) \
108 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
109#define pgd_ERROR(e) \
110 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
111
112#ifndef __ASSEMBLY__
113/*
114 * The vmalloc and module area will always be on the topmost area of the kernel
115 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
116 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
117 * modules will reside. That makes sure that inter module branches always
118 * happen without trampolines and in addition the placement within a 2GB frame
119 * is branch prediction unit friendly.
120 */
121extern unsigned long VMALLOC_START;
122extern unsigned long VMALLOC_END;
123extern struct page *vmemmap;
124
125#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
126
127#ifdef CONFIG_64BIT
128extern unsigned long MODULES_VADDR;
129extern unsigned long MODULES_END;
130#define MODULES_VADDR MODULES_VADDR
131#define MODULES_END MODULES_END
132#define MODULES_LEN (1UL << 31)
133#endif
134
135/*
136 * A 31 bit pagetable entry of S390 has following format:
137 * | PFRA | | OS |
138 * 0 0IP0
139 * 00000000001111111111222222222233
140 * 01234567890123456789012345678901
141 *
142 * I Page-Invalid Bit: Page is not available for address-translation
143 * P Page-Protection Bit: Store access not possible for page
144 *
145 * A 31 bit segmenttable entry of S390 has following format:
146 * | P-table origin | |PTL
147 * 0 IC
148 * 00000000001111111111222222222233
149 * 01234567890123456789012345678901
150 *
151 * I Segment-Invalid Bit: Segment is not available for address-translation
152 * C Common-Segment Bit: Segment is not private (PoP 3-30)
153 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
154 *
155 * The 31 bit segmenttable origin of S390 has following format:
156 *
157 * |S-table origin | | STL |
158 * X **GPS
159 * 00000000001111111111222222222233
160 * 01234567890123456789012345678901
161 *
162 * X Space-Switch event:
163 * G Segment-Invalid Bit: *
164 * P Private-Space Bit: Segment is not private (PoP 3-30)
165 * S Storage-Alteration:
166 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
167 *
168 * A 64 bit pagetable entry of S390 has following format:
169 * | PFRA |0IPC| OS |
170 * 0000000000111111111122222222223333333333444444444455555555556666
171 * 0123456789012345678901234567890123456789012345678901234567890123
172 *
173 * I Page-Invalid Bit: Page is not available for address-translation
174 * P Page-Protection Bit: Store access not possible for page
175 * C Change-bit override: HW is not required to set change bit
176 *
177 * A 64 bit segmenttable entry of S390 has following format:
178 * | P-table origin | TT
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
181 *
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * C Common-Segment Bit: Segment is not private (PoP 3-30)
184 * P Page-Protection Bit: Store access not possible for page
185 * TT Type 00
186 *
187 * A 64 bit region table entry of S390 has following format:
188 * | S-table origin | TF TTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
191 *
192 * I Segment-Invalid Bit: Segment is not available for address-translation
193 * TT Type 01
194 * TF
195 * TL Table length
196 *
197 * The 64 bit regiontable origin of S390 has following format:
198 * | region table origon | DTTL
199 * 0000000000111111111122222222223333333333444444444455555555556666
200 * 0123456789012345678901234567890123456789012345678901234567890123
201 *
202 * X Space-Switch event:
203 * G Segment-Invalid Bit:
204 * P Private-Space Bit:
205 * S Storage-Alteration:
206 * R Real space
207 * TL Table-Length:
208 *
209 * A storage key has the following format:
210 * | ACC |F|R|C|0|
211 * 0 3 4 5 6 7
212 * ACC: access key
213 * F : fetch protection bit
214 * R : referenced bit
215 * C : changed bit
216 */
217
218/* Hardware bits in the page table entry */
219#define _PAGE_CO 0x100 /* HW Change-bit override */
220#define _PAGE_PROTECT 0x200 /* HW read-only bit */
221#define _PAGE_INVALID 0x400 /* HW invalid bit */
222#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
223
224/* Software bits in the page table entry */
225#define _PAGE_PRESENT 0x001 /* SW pte present bit */
226#define _PAGE_TYPE 0x002 /* SW pte type bit */
227#define _PAGE_YOUNG 0x004 /* SW pte young bit */
228#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
229#define _PAGE_READ 0x010 /* SW pte read bit */
230#define _PAGE_WRITE 0x020 /* SW pte write bit */
231#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
232#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
233#define __HAVE_ARCH_PTE_SPECIAL
234
235/* Set of bits not changed in pte_modify */
236#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 _PAGE_DIRTY | _PAGE_YOUNG)
238
239/*
240 * handle_pte_fault uses pte_present, pte_none and pte_file to find out the
241 * pte type WITHOUT holding the page table lock. The _PAGE_PRESENT bit
242 * is used to distinguish present from not-present ptes. It is changed only
243 * with the page table lock held.
244 *
245 * The following table gives the different possible bit combinations for
246 * the pte hardware and software bits in the last 12 bits of a pte:
247 *
248 * 842100000000
249 * 000084210000
250 * 000000008421
251 * .IR...wrdytp
252 * empty .10...000000
253 * swap .10...xxxx10
254 * file .11...xxxxx0
255 * prot-none, clean, old .11...000001
256 * prot-none, clean, young .11...000101
257 * prot-none, dirty, old .10...001001
258 * prot-none, dirty, young .10...001101
259 * read-only, clean, old .11...010001
260 * read-only, clean, young .01...010101
261 * read-only, dirty, old .11...011001
262 * read-only, dirty, young .01...011101
263 * read-write, clean, old .11...110001
264 * read-write, clean, young .01...110101
265 * read-write, dirty, old .10...111001
266 * read-write, dirty, young .00...111101
267 *
268 * pte_present is true for the bit pattern .xx...xxxxx1, (pte & 0x001) == 0x001
269 * pte_none is true for the bit pattern .10...xxxx00, (pte & 0x603) == 0x400
270 * pte_file is true for the bit pattern .11...xxxxx0, (pte & 0x601) == 0x600
271 * pte_swap is true for the bit pattern .10...xxxx10, (pte & 0x603) == 0x402
272 */
273
274#ifndef CONFIG_64BIT
275
276/* Bits in the segment table address-space-control-element */
277#define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
278#define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
279#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
280#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
281#define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
282
283/* Bits in the segment table entry */
284#define _SEGMENT_ENTRY_BITS 0x7fffffffUL /* Valid segment table bits */
285#define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
286#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
287#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
288#define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
289#define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
290
291#define _SEGMENT_ENTRY_DIRTY 0 /* No sw dirty bit for 31-bit */
292#define _SEGMENT_ENTRY_YOUNG 0 /* No sw young bit for 31-bit */
293#define _SEGMENT_ENTRY_READ 0 /* No sw read bit for 31-bit */
294#define _SEGMENT_ENTRY_WRITE 0 /* No sw write bit for 31-bit */
295#define _SEGMENT_ENTRY_LARGE 0 /* No large pages for 31-bit */
296#define _SEGMENT_ENTRY_BITS_LARGE 0
297#define _SEGMENT_ENTRY_ORIGIN_LARGE 0
298
299#define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
300#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
301
302/*
303 * Segment table entry encoding (I = invalid, R = read-only bit):
304 * ..R...I.....
305 * prot-none ..1...1.....
306 * read-only ..1...0.....
307 * read-write ..0...0.....
308 * empty ..0...1.....
309 */
310
311/* Page status table bits for virtualization */
312#define PGSTE_ACC_BITS 0xf0000000UL
313#define PGSTE_FP_BIT 0x08000000UL
314#define PGSTE_PCL_BIT 0x00800000UL
315#define PGSTE_HR_BIT 0x00400000UL
316#define PGSTE_HC_BIT 0x00200000UL
317#define PGSTE_GR_BIT 0x00040000UL
318#define PGSTE_GC_BIT 0x00020000UL
319#define PGSTE_UC_BIT 0x00008000UL /* user dirty (migration) */
320#define PGSTE_IN_BIT 0x00004000UL /* IPTE notify bit */
321
322#else /* CONFIG_64BIT */
323
324/* Bits in the segment/region table address-space-control-element */
325#define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
326#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
327#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
328#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
329#define _ASCE_REAL_SPACE 0x20 /* real space control */
330#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
331#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
332#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
333#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
334#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
335#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
336
337/* Bits in the region table entry */
338#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
339#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
340#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
341#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
342#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
343#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
344#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
345#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
346
347#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
348#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
349#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
350#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
351#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
352#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
353
354#define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
355#define _REGION3_ENTRY_RO 0x200 /* page protection bit */
356#define _REGION3_ENTRY_CO 0x100 /* change-recording override */
357
358/* Bits in the segment table entry */
359#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
360#define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
361#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
362#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
363#define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
364#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
365
366#define _SEGMENT_ENTRY (0)
367#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
368
369#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
370#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
371#define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
372#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
373#define _SEGMENT_ENTRY_CO 0x0100 /* change-recording override */
374#define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
375#define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
376
377/*
378 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
379 * dy..R...I...wr
380 * prot-none, clean, old 00..1...1...00
381 * prot-none, clean, young 01..1...1...00
382 * prot-none, dirty, old 10..1...1...00
383 * prot-none, dirty, young 11..1...1...00
384 * read-only, clean, old 00..1...1...01
385 * read-only, clean, young 01..1...0...01
386 * read-only, dirty, old 10..1...1...01
387 * read-only, dirty, young 11..1...0...01
388 * read-write, clean, old 00..1...1...11
389 * read-write, clean, young 01..1...0...11
390 * read-write, dirty, old 10..0...1...11
391 * read-write, dirty, young 11..0...0...11
392 * The segment table origin is used to distinguish empty (origin==0) from
393 * read-write, old segment table entries (origin!=0)
394 */
395
396#define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
397
398/* Page status table bits for virtualization */
399#define PGSTE_ACC_BITS 0xf000000000000000UL
400#define PGSTE_FP_BIT 0x0800000000000000UL
401#define PGSTE_PCL_BIT 0x0080000000000000UL
402#define PGSTE_HR_BIT 0x0040000000000000UL
403#define PGSTE_HC_BIT 0x0020000000000000UL
404#define PGSTE_GR_BIT 0x0004000000000000UL
405#define PGSTE_GC_BIT 0x0002000000000000UL
406#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
407#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
408
409#endif /* CONFIG_64BIT */
410
411/* Guest Page State used for virtualization */
412#define _PGSTE_GPS_ZERO 0x0000000080000000UL
413#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
414#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
415#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
416
417/*
418 * A user page table pointer has the space-switch-event bit, the
419 * private-space-control bit and the storage-alteration-event-control
420 * bit set. A kernel page table pointer doesn't need them.
421 */
422#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
423 _ASCE_ALT_EVENT)
424
425/*
426 * Page protection definitions.
427 */
428#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
429#define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
430 _PAGE_INVALID | _PAGE_PROTECT)
431#define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
432 _PAGE_INVALID | _PAGE_PROTECT)
433
434#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
435 _PAGE_YOUNG | _PAGE_DIRTY)
436#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
437 _PAGE_YOUNG | _PAGE_DIRTY)
438#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
439 _PAGE_PROTECT)
440
441/*
442 * On s390 the page table entry has an invalid bit and a read-only bit.
443 * Read permission implies execute permission and write permission
444 * implies read permission.
445 */
446 /*xwr*/
447#define __P000 PAGE_NONE
448#define __P001 PAGE_READ
449#define __P010 PAGE_READ
450#define __P011 PAGE_READ
451#define __P100 PAGE_READ
452#define __P101 PAGE_READ
453#define __P110 PAGE_READ
454#define __P111 PAGE_READ
455
456#define __S000 PAGE_NONE
457#define __S001 PAGE_READ
458#define __S010 PAGE_WRITE
459#define __S011 PAGE_WRITE
460#define __S100 PAGE_READ
461#define __S101 PAGE_READ
462#define __S110 PAGE_WRITE
463#define __S111 PAGE_WRITE
464
465/*
466 * Segment entry (large page) protection definitions.
467 */
468#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
469 _SEGMENT_ENTRY_PROTECT)
470#define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
471 _SEGMENT_ENTRY_READ)
472#define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
473 _SEGMENT_ENTRY_WRITE)
474
475static inline int mm_has_pgste(struct mm_struct *mm)
476{
477#ifdef CONFIG_PGSTE
478 if (unlikely(mm->context.has_pgste))
479 return 1;
480#endif
481 return 0;
482}
483
484static inline int mm_use_skey(struct mm_struct *mm)
485{
486#ifdef CONFIG_PGSTE
487 if (mm->context.use_skey)
488 return 1;
489#endif
490 return 0;
491}
492
493/*
494 * pgd/pmd/pte query functions
495 */
496#ifndef CONFIG_64BIT
497
498static inline int pgd_present(pgd_t pgd) { return 1; }
499static inline int pgd_none(pgd_t pgd) { return 0; }
500static inline int pgd_bad(pgd_t pgd) { return 0; }
501
502static inline int pud_present(pud_t pud) { return 1; }
503static inline int pud_none(pud_t pud) { return 0; }
504static inline int pud_large(pud_t pud) { return 0; }
505static inline int pud_bad(pud_t pud) { return 0; }
506
507#else /* CONFIG_64BIT */
508
509static inline int pgd_present(pgd_t pgd)
510{
511 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
512 return 1;
513 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
514}
515
516static inline int pgd_none(pgd_t pgd)
517{
518 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
519 return 0;
520 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
521}
522
523static inline int pgd_bad(pgd_t pgd)
524{
525 /*
526 * With dynamic page table levels the pgd can be a region table
527 * entry or a segment table entry. Check for the bit that are
528 * invalid for either table entry.
529 */
530 unsigned long mask =
531 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
532 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
533 return (pgd_val(pgd) & mask) != 0;
534}
535
536static inline int pud_present(pud_t pud)
537{
538 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
539 return 1;
540 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
541}
542
543static inline int pud_none(pud_t pud)
544{
545 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
546 return 0;
547 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
548}
549
550static inline int pud_large(pud_t pud)
551{
552 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
553 return 0;
554 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
555}
556
557static inline int pud_bad(pud_t pud)
558{
559 /*
560 * With dynamic page table levels the pud can be a region table
561 * entry or a segment table entry. Check for the bit that are
562 * invalid for either table entry.
563 */
564 unsigned long mask =
565 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
566 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
567 return (pud_val(pud) & mask) != 0;
568}
569
570#endif /* CONFIG_64BIT */
571
572static inline int pmd_present(pmd_t pmd)
573{
574 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
575}
576
577static inline int pmd_none(pmd_t pmd)
578{
579 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
580}
581
582static inline int pmd_large(pmd_t pmd)
583{
584 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
585}
586
587static inline int pmd_pfn(pmd_t pmd)
588{
589 unsigned long origin_mask;
590
591 origin_mask = _SEGMENT_ENTRY_ORIGIN;
592 if (pmd_large(pmd))
593 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
594 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
595}
596
597static inline int pmd_bad(pmd_t pmd)
598{
599 if (pmd_large(pmd))
600 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
601 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
602}
603
604#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
605extern void pmdp_splitting_flush(struct vm_area_struct *vma,
606 unsigned long addr, pmd_t *pmdp);
607
608#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
609extern int pmdp_set_access_flags(struct vm_area_struct *vma,
610 unsigned long address, pmd_t *pmdp,
611 pmd_t entry, int dirty);
612
613#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
614extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
615 unsigned long address, pmd_t *pmdp);
616
617#define __HAVE_ARCH_PMD_WRITE
618static inline int pmd_write(pmd_t pmd)
619{
620 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
621}
622
623static inline int pmd_dirty(pmd_t pmd)
624{
625 int dirty = 1;
626 if (pmd_large(pmd))
627 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
628 return dirty;
629}
630
631static inline int pmd_young(pmd_t pmd)
632{
633 int young = 1;
634 if (pmd_large(pmd))
635 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
636 return young;
637}
638
639static inline int pte_present(pte_t pte)
640{
641 /* Bit pattern: (pte & 0x001) == 0x001 */
642 return (pte_val(pte) & _PAGE_PRESENT) != 0;
643}
644
645static inline int pte_none(pte_t pte)
646{
647 /* Bit pattern: pte == 0x400 */
648 return pte_val(pte) == _PAGE_INVALID;
649}
650
651static inline int pte_swap(pte_t pte)
652{
653 /* Bit pattern: (pte & 0x603) == 0x402 */
654 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT |
655 _PAGE_TYPE | _PAGE_PRESENT))
656 == (_PAGE_INVALID | _PAGE_TYPE);
657}
658
659static inline int pte_file(pte_t pte)
660{
661 /* Bit pattern: (pte & 0x601) == 0x600 */
662 return (pte_val(pte) & (_PAGE_INVALID | _PAGE_PROTECT | _PAGE_PRESENT))
663 == (_PAGE_INVALID | _PAGE_PROTECT);
664}
665
666static inline int pte_special(pte_t pte)
667{
668 return (pte_val(pte) & _PAGE_SPECIAL);
669}
670
671#define __HAVE_ARCH_PTE_SAME
672static inline int pte_same(pte_t a, pte_t b)
673{
674 return pte_val(a) == pte_val(b);
675}
676
677static inline pgste_t pgste_get_lock(pte_t *ptep)
678{
679 unsigned long new = 0;
680#ifdef CONFIG_PGSTE
681 unsigned long old;
682
683 preempt_disable();
684 asm(
685 " lg %0,%2\n"
686 "0: lgr %1,%0\n"
687 " nihh %0,0xff7f\n" /* clear PCL bit in old */
688 " oihh %1,0x0080\n" /* set PCL bit in new */
689 " csg %0,%1,%2\n"
690 " jl 0b\n"
691 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
692 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
693#endif
694 return __pgste(new);
695}
696
697static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
698{
699#ifdef CONFIG_PGSTE
700 asm(
701 " nihh %1,0xff7f\n" /* clear PCL bit */
702 " stg %1,%0\n"
703 : "=Q" (ptep[PTRS_PER_PTE])
704 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
705 : "cc", "memory");
706 preempt_enable();
707#endif
708}
709
710static inline pgste_t pgste_get(pte_t *ptep)
711{
712 unsigned long pgste = 0;
713#ifdef CONFIG_PGSTE
714 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
715#endif
716 return __pgste(pgste);
717}
718
719static inline void pgste_set(pte_t *ptep, pgste_t pgste)
720{
721#ifdef CONFIG_PGSTE
722 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
723#endif
724}
725
726static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
727 struct mm_struct *mm)
728{
729#ifdef CONFIG_PGSTE
730 unsigned long address, bits, skey;
731
732 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
733 return pgste;
734 address = pte_val(*ptep) & PAGE_MASK;
735 skey = (unsigned long) page_get_storage_key(address);
736 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
737 /* Transfer page changed & referenced bit to guest bits in pgste */
738 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
739 /* Copy page access key and fetch protection bit to pgste */
740 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
741 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
742#endif
743 return pgste;
744
745}
746
747static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
748 struct mm_struct *mm)
749{
750#ifdef CONFIG_PGSTE
751 unsigned long address;
752 unsigned long nkey;
753
754 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
755 return;
756 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
757 address = pte_val(entry) & PAGE_MASK;
758 /*
759 * Set page access key and fetch protection bit from pgste.
760 * The guest C/R information is still in the PGSTE, set real
761 * key C/R to 0.
762 */
763 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
764 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
765 page_set_storage_key(address, nkey, 0);
766#endif
767}
768
769static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
770{
771 if ((pte_val(entry) & _PAGE_PRESENT) &&
772 (pte_val(entry) & _PAGE_WRITE) &&
773 !(pte_val(entry) & _PAGE_INVALID)) {
774 if (!MACHINE_HAS_ESOP) {
775 /*
776 * Without enhanced suppression-on-protection force
777 * the dirty bit on for all writable ptes.
778 */
779 pte_val(entry) |= _PAGE_DIRTY;
780 pte_val(entry) &= ~_PAGE_PROTECT;
781 }
782 if (!(pte_val(entry) & _PAGE_PROTECT))
783 /* This pte allows write access, set user-dirty */
784 pgste_val(pgste) |= PGSTE_UC_BIT;
785 }
786 *ptep = entry;
787 return pgste;
788}
789
790/**
791 * struct gmap_struct - guest address space
792 * @mm: pointer to the parent mm_struct
793 * @table: pointer to the page directory
794 * @asce: address space control element for gmap page table
795 * @crst_list: list of all crst tables used in the guest address space
796 * @pfault_enabled: defines if pfaults are applicable for the guest
797 */
798struct gmap {
799 struct list_head list;
800 struct mm_struct *mm;
801 unsigned long *table;
802 unsigned long asce;
803 void *private;
804 struct list_head crst_list;
805 bool pfault_enabled;
806};
807
808/**
809 * struct gmap_rmap - reverse mapping for segment table entries
810 * @gmap: pointer to the gmap_struct
811 * @entry: pointer to a segment table entry
812 * @vmaddr: virtual address in the guest address space
813 */
814struct gmap_rmap {
815 struct list_head list;
816 struct gmap *gmap;
817 unsigned long *entry;
818 unsigned long vmaddr;
819};
820
821/**
822 * struct gmap_pgtable - gmap information attached to a page table
823 * @vmaddr: address of the 1MB segment in the process virtual memory
824 * @mapper: list of segment table entries mapping a page table
825 */
826struct gmap_pgtable {
827 unsigned long vmaddr;
828 struct list_head mapper;
829};
830
831/**
832 * struct gmap_notifier - notify function block for page invalidation
833 * @notifier_call: address of callback function
834 */
835struct gmap_notifier {
836 struct list_head list;
837 void (*notifier_call)(struct gmap *gmap, unsigned long address);
838};
839
840struct gmap *gmap_alloc(struct mm_struct *mm);
841void gmap_free(struct gmap *gmap);
842void gmap_enable(struct gmap *gmap);
843void gmap_disable(struct gmap *gmap);
844int gmap_map_segment(struct gmap *gmap, unsigned long from,
845 unsigned long to, unsigned long len);
846int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
847unsigned long __gmap_translate(unsigned long address, struct gmap *);
848unsigned long gmap_translate(unsigned long address, struct gmap *);
849unsigned long __gmap_fault(unsigned long address, struct gmap *);
850unsigned long gmap_fault(unsigned long address, struct gmap *);
851void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
852void __gmap_zap(unsigned long address, struct gmap *);
853bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
854
855
856void gmap_register_ipte_notifier(struct gmap_notifier *);
857void gmap_unregister_ipte_notifier(struct gmap_notifier *);
858int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
859void gmap_do_ipte_notify(struct mm_struct *, pte_t *);
860
861static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
862 pte_t *ptep, pgste_t pgste)
863{
864#ifdef CONFIG_PGSTE
865 if (pgste_val(pgste) & PGSTE_IN_BIT) {
866 pgste_val(pgste) &= ~PGSTE_IN_BIT;
867 gmap_do_ipte_notify(mm, ptep);
868 }
869#endif
870 return pgste;
871}
872
873/*
874 * Certain architectures need to do special things when PTEs
875 * within a page table are directly modified. Thus, the following
876 * hook is made available.
877 */
878static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
879 pte_t *ptep, pte_t entry)
880{
881 pgste_t pgste;
882
883 if (mm_has_pgste(mm)) {
884 pgste = pgste_get_lock(ptep);
885 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
886 pgste_set_key(ptep, pgste, entry, mm);
887 pgste = pgste_set_pte(ptep, pgste, entry);
888 pgste_set_unlock(ptep, pgste);
889 } else {
890 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
891 pte_val(entry) |= _PAGE_CO;
892 *ptep = entry;
893 }
894}
895
896/*
897 * query functions pte_write/pte_dirty/pte_young only work if
898 * pte_present() is true. Undefined behaviour if not..
899 */
900static inline int pte_write(pte_t pte)
901{
902 return (pte_val(pte) & _PAGE_WRITE) != 0;
903}
904
905static inline int pte_dirty(pte_t pte)
906{
907 return (pte_val(pte) & _PAGE_DIRTY) != 0;
908}
909
910static inline int pte_young(pte_t pte)
911{
912 return (pte_val(pte) & _PAGE_YOUNG) != 0;
913}
914
915#define __HAVE_ARCH_PTE_UNUSED
916static inline int pte_unused(pte_t pte)
917{
918 return pte_val(pte) & _PAGE_UNUSED;
919}
920
921/*
922 * pgd/pmd/pte modification functions
923 */
924
925static inline void pgd_clear(pgd_t *pgd)
926{
927#ifdef CONFIG_64BIT
928 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
929 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
930#endif
931}
932
933static inline void pud_clear(pud_t *pud)
934{
935#ifdef CONFIG_64BIT
936 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
937 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
938#endif
939}
940
941static inline void pmd_clear(pmd_t *pmdp)
942{
943 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
944}
945
946static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
947{
948 pte_val(*ptep) = _PAGE_INVALID;
949}
950
951/*
952 * The following pte modification functions only work if
953 * pte_present() is true. Undefined behaviour if not..
954 */
955static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
956{
957 pte_val(pte) &= _PAGE_CHG_MASK;
958 pte_val(pte) |= pgprot_val(newprot);
959 /*
960 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
961 * invalid bit set, clear it again for readable, young pages
962 */
963 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
964 pte_val(pte) &= ~_PAGE_INVALID;
965 /*
966 * newprot for PAGE_READ and PAGE_WRITE has the page protection
967 * bit set, clear it again for writable, dirty pages
968 */
969 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
970 pte_val(pte) &= ~_PAGE_PROTECT;
971 return pte;
972}
973
974static inline pte_t pte_wrprotect(pte_t pte)
975{
976 pte_val(pte) &= ~_PAGE_WRITE;
977 pte_val(pte) |= _PAGE_PROTECT;
978 return pte;
979}
980
981static inline pte_t pte_mkwrite(pte_t pte)
982{
983 pte_val(pte) |= _PAGE_WRITE;
984 if (pte_val(pte) & _PAGE_DIRTY)
985 pte_val(pte) &= ~_PAGE_PROTECT;
986 return pte;
987}
988
989static inline pte_t pte_mkclean(pte_t pte)
990{
991 pte_val(pte) &= ~_PAGE_DIRTY;
992 pte_val(pte) |= _PAGE_PROTECT;
993 return pte;
994}
995
996static inline pte_t pte_mkdirty(pte_t pte)
997{
998 pte_val(pte) |= _PAGE_DIRTY;
999 if (pte_val(pte) & _PAGE_WRITE)
1000 pte_val(pte) &= ~_PAGE_PROTECT;
1001 return pte;
1002}
1003
1004static inline pte_t pte_mkold(pte_t pte)
1005{
1006 pte_val(pte) &= ~_PAGE_YOUNG;
1007 pte_val(pte) |= _PAGE_INVALID;
1008 return pte;
1009}
1010
1011static inline pte_t pte_mkyoung(pte_t pte)
1012{
1013 pte_val(pte) |= _PAGE_YOUNG;
1014 if (pte_val(pte) & _PAGE_READ)
1015 pte_val(pte) &= ~_PAGE_INVALID;
1016 return pte;
1017}
1018
1019static inline pte_t pte_mkspecial(pte_t pte)
1020{
1021 pte_val(pte) |= _PAGE_SPECIAL;
1022 return pte;
1023}
1024
1025#ifdef CONFIG_HUGETLB_PAGE
1026static inline pte_t pte_mkhuge(pte_t pte)
1027{
1028 pte_val(pte) |= _PAGE_LARGE;
1029 return pte;
1030}
1031#endif
1032
1033static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1034{
1035 unsigned long pto = (unsigned long) ptep;
1036
1037#ifndef CONFIG_64BIT
1038 /* pto in ESA mode must point to the start of the segment table */
1039 pto &= 0x7ffffc00;
1040#endif
1041 /* Invalidation + global TLB flush for the pte */
1042 asm volatile(
1043 " ipte %2,%3"
1044 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1045}
1046
1047static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
1048{
1049 unsigned long pto = (unsigned long) ptep;
1050
1051#ifndef CONFIG_64BIT
1052 /* pto in ESA mode must point to the start of the segment table */
1053 pto &= 0x7ffffc00;
1054#endif
1055 /* Invalidation + local TLB flush for the pte */
1056 asm volatile(
1057 " .insn rrf,0xb2210000,%2,%3,0,1"
1058 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
1059}
1060
1061static inline void ptep_flush_direct(struct mm_struct *mm,
1062 unsigned long address, pte_t *ptep)
1063{
1064 int active, count;
1065
1066 if (pte_val(*ptep) & _PAGE_INVALID)
1067 return;
1068 active = (mm == current->active_mm) ? 1 : 0;
1069 count = atomic_add_return(0x10000, &mm->context.attach_count);
1070 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1071 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1072 __ptep_ipte_local(address, ptep);
1073 else
1074 __ptep_ipte(address, ptep);
1075 atomic_sub(0x10000, &mm->context.attach_count);
1076}
1077
1078static inline void ptep_flush_lazy(struct mm_struct *mm,
1079 unsigned long address, pte_t *ptep)
1080{
1081 int active, count;
1082
1083 if (pte_val(*ptep) & _PAGE_INVALID)
1084 return;
1085 active = (mm == current->active_mm) ? 1 : 0;
1086 count = atomic_add_return(0x10000, &mm->context.attach_count);
1087 if ((count & 0xffff) <= active) {
1088 pte_val(*ptep) |= _PAGE_INVALID;
1089 mm->context.flush_mm = 1;
1090 } else
1091 __ptep_ipte(address, ptep);
1092 atomic_sub(0x10000, &mm->context.attach_count);
1093}
1094
1095/*
1096 * Get (and clear) the user dirty bit for a pte.
1097 */
1098static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
1099 unsigned long addr,
1100 pte_t *ptep)
1101{
1102 pgste_t pgste;
1103 pte_t pte;
1104 int dirty;
1105
1106 if (!mm_has_pgste(mm))
1107 return 0;
1108 pgste = pgste_get_lock(ptep);
1109 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
1110 pgste_val(pgste) &= ~PGSTE_UC_BIT;
1111 pte = *ptep;
1112 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
1113 pgste = pgste_ipte_notify(mm, ptep, pgste);
1114 __ptep_ipte(addr, ptep);
1115 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1116 pte_val(pte) |= _PAGE_PROTECT;
1117 else
1118 pte_val(pte) |= _PAGE_INVALID;
1119 *ptep = pte;
1120 }
1121 pgste_set_unlock(ptep, pgste);
1122 return dirty;
1123}
1124
1125#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1126static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1127 unsigned long addr, pte_t *ptep)
1128{
1129 pgste_t pgste;
1130 pte_t pte, oldpte;
1131 int young;
1132
1133 if (mm_has_pgste(vma->vm_mm)) {
1134 pgste = pgste_get_lock(ptep);
1135 pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1136 }
1137
1138 oldpte = pte = *ptep;
1139 ptep_flush_direct(vma->vm_mm, addr, ptep);
1140 young = pte_young(pte);
1141 pte = pte_mkold(pte);
1142
1143 if (mm_has_pgste(vma->vm_mm)) {
1144 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1145 pgste = pgste_set_pte(ptep, pgste, pte);
1146 pgste_set_unlock(ptep, pgste);
1147 } else
1148 *ptep = pte;
1149
1150 return young;
1151}
1152
1153#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1154static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1155 unsigned long address, pte_t *ptep)
1156{
1157 return ptep_test_and_clear_young(vma, address, ptep);
1158}
1159
1160/*
1161 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1162 * both clear the TLB for the unmapped pte. The reason is that
1163 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1164 * to modify an active pte. The sequence is
1165 * 1) ptep_get_and_clear
1166 * 2) set_pte_at
1167 * 3) flush_tlb_range
1168 * On s390 the tlb needs to get flushed with the modification of the pte
1169 * if the pte is active. The only way how this can be implemented is to
1170 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1171 * is a nop.
1172 */
1173#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1174static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1175 unsigned long address, pte_t *ptep)
1176{
1177 pgste_t pgste;
1178 pte_t pte;
1179
1180 if (mm_has_pgste(mm)) {
1181 pgste = pgste_get_lock(ptep);
1182 pgste = pgste_ipte_notify(mm, ptep, pgste);
1183 }
1184
1185 pte = *ptep;
1186 ptep_flush_lazy(mm, address, ptep);
1187 pte_val(*ptep) = _PAGE_INVALID;
1188
1189 if (mm_has_pgste(mm)) {
1190 pgste = pgste_update_all(&pte, pgste, mm);
1191 pgste_set_unlock(ptep, pgste);
1192 }
1193 return pte;
1194}
1195
1196#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1197static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1198 unsigned long address,
1199 pte_t *ptep)
1200{
1201 pgste_t pgste;
1202 pte_t pte;
1203
1204 if (mm_has_pgste(mm)) {
1205 pgste = pgste_get_lock(ptep);
1206 pgste_ipte_notify(mm, ptep, pgste);
1207 }
1208
1209 pte = *ptep;
1210 ptep_flush_lazy(mm, address, ptep);
1211
1212 if (mm_has_pgste(mm)) {
1213 pgste = pgste_update_all(&pte, pgste, mm);
1214 pgste_set(ptep, pgste);
1215 }
1216 return pte;
1217}
1218
1219static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1220 unsigned long address,
1221 pte_t *ptep, pte_t pte)
1222{
1223 pgste_t pgste;
1224
1225 if (mm_has_pgste(mm)) {
1226 pgste = pgste_get(ptep);
1227 pgste_set_key(ptep, pgste, pte, mm);
1228 pgste = pgste_set_pte(ptep, pgste, pte);
1229 pgste_set_unlock(ptep, pgste);
1230 } else
1231 *ptep = pte;
1232}
1233
1234#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1235static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1236 unsigned long address, pte_t *ptep)
1237{
1238 pgste_t pgste;
1239 pte_t pte;
1240
1241 if (mm_has_pgste(vma->vm_mm)) {
1242 pgste = pgste_get_lock(ptep);
1243 pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1244 }
1245
1246 pte = *ptep;
1247 ptep_flush_direct(vma->vm_mm, address, ptep);
1248 pte_val(*ptep) = _PAGE_INVALID;
1249
1250 if (mm_has_pgste(vma->vm_mm)) {
1251 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1252 _PGSTE_GPS_USAGE_UNUSED)
1253 pte_val(pte) |= _PAGE_UNUSED;
1254 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1255 pgste_set_unlock(ptep, pgste);
1256 }
1257 return pte;
1258}
1259
1260/*
1261 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1262 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1263 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1264 * cannot be accessed while the batched unmap is running. In this case
1265 * full==1 and a simple pte_clear is enough. See tlb.h.
1266 */
1267#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1268static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1269 unsigned long address,
1270 pte_t *ptep, int full)
1271{
1272 pgste_t pgste;
1273 pte_t pte;
1274
1275 if (!full && mm_has_pgste(mm)) {
1276 pgste = pgste_get_lock(ptep);
1277 pgste = pgste_ipte_notify(mm, ptep, pgste);
1278 }
1279
1280 pte = *ptep;
1281 if (!full)
1282 ptep_flush_lazy(mm, address, ptep);
1283 pte_val(*ptep) = _PAGE_INVALID;
1284
1285 if (!full && mm_has_pgste(mm)) {
1286 pgste = pgste_update_all(&pte, pgste, mm);
1287 pgste_set_unlock(ptep, pgste);
1288 }
1289 return pte;
1290}
1291
1292#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1293static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1294 unsigned long address, pte_t *ptep)
1295{
1296 pgste_t pgste;
1297 pte_t pte = *ptep;
1298
1299 if (pte_write(pte)) {
1300 if (mm_has_pgste(mm)) {
1301 pgste = pgste_get_lock(ptep);
1302 pgste = pgste_ipte_notify(mm, ptep, pgste);
1303 }
1304
1305 ptep_flush_lazy(mm, address, ptep);
1306 pte = pte_wrprotect(pte);
1307
1308 if (mm_has_pgste(mm)) {
1309 pgste = pgste_set_pte(ptep, pgste, pte);
1310 pgste_set_unlock(ptep, pgste);
1311 } else
1312 *ptep = pte;
1313 }
1314 return pte;
1315}
1316
1317#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1318static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1319 unsigned long address, pte_t *ptep,
1320 pte_t entry, int dirty)
1321{
1322 pgste_t pgste;
1323
1324 if (pte_same(*ptep, entry))
1325 return 0;
1326 if (mm_has_pgste(vma->vm_mm)) {
1327 pgste = pgste_get_lock(ptep);
1328 pgste = pgste_ipte_notify(vma->vm_mm, ptep, pgste);
1329 }
1330
1331 ptep_flush_direct(vma->vm_mm, address, ptep);
1332
1333 if (mm_has_pgste(vma->vm_mm)) {
1334 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1335 pgste = pgste_set_pte(ptep, pgste, entry);
1336 pgste_set_unlock(ptep, pgste);
1337 } else
1338 *ptep = entry;
1339 return 1;
1340}
1341
1342/*
1343 * Conversion functions: convert a page and protection to a page entry,
1344 * and a page entry and page directory to the page they refer to.
1345 */
1346static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1347{
1348 pte_t __pte;
1349 pte_val(__pte) = physpage + pgprot_val(pgprot);
1350 return pte_mkyoung(__pte);
1351}
1352
1353static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1354{
1355 unsigned long physpage = page_to_phys(page);
1356 pte_t __pte = mk_pte_phys(physpage, pgprot);
1357
1358 if (pte_write(__pte) && PageDirty(page))
1359 __pte = pte_mkdirty(__pte);
1360 return __pte;
1361}
1362
1363#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1364#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1365#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1366#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1367
1368#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1369#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1370
1371#ifndef CONFIG_64BIT
1372
1373#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1374#define pud_deref(pmd) ({ BUG(); 0UL; })
1375#define pgd_deref(pmd) ({ BUG(); 0UL; })
1376
1377#define pud_offset(pgd, address) ((pud_t *) pgd)
1378#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1379
1380#else /* CONFIG_64BIT */
1381
1382#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1383#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1384#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1385
1386static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1387{
1388 pud_t *pud = (pud_t *) pgd;
1389 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1390 pud = (pud_t *) pgd_deref(*pgd);
1391 return pud + pud_index(address);
1392}
1393
1394static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1395{
1396 pmd_t *pmd = (pmd_t *) pud;
1397 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1398 pmd = (pmd_t *) pud_deref(*pud);
1399 return pmd + pmd_index(address);
1400}
1401
1402#endif /* CONFIG_64BIT */
1403
1404#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1405#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1406#define pte_page(x) pfn_to_page(pte_pfn(x))
1407
1408#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1409
1410/* Find an entry in the lowest level page table.. */
1411#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1412#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1413#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1414#define pte_unmap(pte) do { } while (0)
1415
1416#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1417static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1418{
1419 /*
1420 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1421 * Convert to segment table entry format.
1422 */
1423 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1424 return pgprot_val(SEGMENT_NONE);
1425 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1426 return pgprot_val(SEGMENT_READ);
1427 return pgprot_val(SEGMENT_WRITE);
1428}
1429
1430static inline pmd_t pmd_wrprotect(pmd_t pmd)
1431{
1432 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1433 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1434 return pmd;
1435}
1436
1437static inline pmd_t pmd_mkwrite(pmd_t pmd)
1438{
1439 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1440 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1441 return pmd;
1442 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1443 return pmd;
1444}
1445
1446static inline pmd_t pmd_mkclean(pmd_t pmd)
1447{
1448 if (pmd_large(pmd)) {
1449 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1450 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1451 }
1452 return pmd;
1453}
1454
1455static inline pmd_t pmd_mkdirty(pmd_t pmd)
1456{
1457 if (pmd_large(pmd)) {
1458 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1459 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1460 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1461 }
1462 return pmd;
1463}
1464
1465static inline pmd_t pmd_mkyoung(pmd_t pmd)
1466{
1467 if (pmd_large(pmd)) {
1468 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1469 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1470 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1471 }
1472 return pmd;
1473}
1474
1475static inline pmd_t pmd_mkold(pmd_t pmd)
1476{
1477 if (pmd_large(pmd)) {
1478 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1479 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1480 }
1481 return pmd;
1482}
1483
1484static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1485{
1486 if (pmd_large(pmd)) {
1487 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1488 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1489 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1490 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1491 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1492 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1493 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1494 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1495 return pmd;
1496 }
1497 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1498 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1499 return pmd;
1500}
1501
1502static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1503{
1504 pmd_t __pmd;
1505 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1506 return __pmd;
1507}
1508
1509#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1510
1511static inline void __pmdp_csp(pmd_t *pmdp)
1512{
1513 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1514 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1515 _SEGMENT_ENTRY_INVALID;
1516 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1517
1518 asm volatile(
1519 " csp %1,%3"
1520 : "=m" (*pmdp)
1521 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1522}
1523
1524static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1525{
1526 unsigned long sto;
1527
1528 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1529 asm volatile(
1530 " .insn rrf,0xb98e0000,%2,%3,0,0"
1531 : "=m" (*pmdp)
1532 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1533 : "cc" );
1534}
1535
1536static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1537{
1538 unsigned long sto;
1539
1540 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1541 asm volatile(
1542 " .insn rrf,0xb98e0000,%2,%3,0,1"
1543 : "=m" (*pmdp)
1544 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1545 : "cc" );
1546}
1547
1548static inline void pmdp_flush_direct(struct mm_struct *mm,
1549 unsigned long address, pmd_t *pmdp)
1550{
1551 int active, count;
1552
1553 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1554 return;
1555 if (!MACHINE_HAS_IDTE) {
1556 __pmdp_csp(pmdp);
1557 return;
1558 }
1559 active = (mm == current->active_mm) ? 1 : 0;
1560 count = atomic_add_return(0x10000, &mm->context.attach_count);
1561 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1562 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1563 __pmdp_idte_local(address, pmdp);
1564 else
1565 __pmdp_idte(address, pmdp);
1566 atomic_sub(0x10000, &mm->context.attach_count);
1567}
1568
1569static inline void pmdp_flush_lazy(struct mm_struct *mm,
1570 unsigned long address, pmd_t *pmdp)
1571{
1572 int active, count;
1573
1574 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1575 return;
1576 active = (mm == current->active_mm) ? 1 : 0;
1577 count = atomic_add_return(0x10000, &mm->context.attach_count);
1578 if ((count & 0xffff) <= active) {
1579 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1580 mm->context.flush_mm = 1;
1581 } else if (MACHINE_HAS_IDTE)
1582 __pmdp_idte(address, pmdp);
1583 else
1584 __pmdp_csp(pmdp);
1585 atomic_sub(0x10000, &mm->context.attach_count);
1586}
1587
1588#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1589
1590#define __HAVE_ARCH_PGTABLE_DEPOSIT
1591extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1592 pgtable_t pgtable);
1593
1594#define __HAVE_ARCH_PGTABLE_WITHDRAW
1595extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1596
1597static inline int pmd_trans_splitting(pmd_t pmd)
1598{
1599 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1600 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1601}
1602
1603static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1604 pmd_t *pmdp, pmd_t entry)
1605{
1606 *pmdp = entry;
1607}
1608
1609static inline pmd_t pmd_mkhuge(pmd_t pmd)
1610{
1611 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1612 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1613 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1614 return pmd;
1615}
1616
1617#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1618static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1619 unsigned long address, pmd_t *pmdp)
1620{
1621 pmd_t pmd;
1622
1623 pmd = *pmdp;
1624 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1625 *pmdp = pmd_mkold(pmd);
1626 return pmd_young(pmd);
1627}
1628
1629#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1630static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1631 unsigned long address, pmd_t *pmdp)
1632{
1633 pmd_t pmd = *pmdp;
1634
1635 pmdp_flush_direct(mm, address, pmdp);
1636 pmd_clear(pmdp);
1637 return pmd;
1638}
1639
1640#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1641static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1642 unsigned long address, pmd_t *pmdp)
1643{
1644 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1645}
1646
1647#define __HAVE_ARCH_PMDP_INVALIDATE
1648static inline void pmdp_invalidate(struct vm_area_struct *vma,
1649 unsigned long address, pmd_t *pmdp)
1650{
1651 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1652}
1653
1654#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1655static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1656 unsigned long address, pmd_t *pmdp)
1657{
1658 pmd_t pmd = *pmdp;
1659
1660 if (pmd_write(pmd)) {
1661 pmdp_flush_direct(mm, address, pmdp);
1662 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1663 }
1664}
1665
1666#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1667#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1668
1669static inline int pmd_trans_huge(pmd_t pmd)
1670{
1671 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1672}
1673
1674static inline int has_transparent_hugepage(void)
1675{
1676 return MACHINE_HAS_HPAGE ? 1 : 0;
1677}
1678#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1679
1680/*
1681 * 31 bit swap entry format:
1682 * A page-table entry has some bits we have to treat in a special way.
1683 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1684 * exception will occur instead of a page translation exception. The
1685 * specifiation exception has the bad habit not to store necessary
1686 * information in the lowcore.
1687 * Bits 21, 22, 30 and 31 are used to indicate the page type.
1688 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1689 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1690 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1691 * plus 24 for the offset.
1692 * 0| offset |0110|o|type |00|
1693 * 0 0000000001111111111 2222 2 22222 33
1694 * 0 1234567890123456789 0123 4 56789 01
1695 *
1696 * 64 bit swap entry format:
1697 * A page-table entry has some bits we have to treat in a special way.
1698 * Bits 52 and bit 55 have to be zero, otherwise an specification
1699 * exception will occur instead of a page translation exception. The
1700 * specifiation exception has the bad habit not to store necessary
1701 * information in the lowcore.
1702 * Bits 53, 54, 62 and 63 are used to indicate the page type.
1703 * A swap pte is indicated by bit pattern (pte & 0x603) == 0x402
1704 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1705 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1706 * plus 56 for the offset.
1707 * | offset |0110|o|type |00|
1708 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1709 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1710 */
1711#ifndef CONFIG_64BIT
1712#define __SWP_OFFSET_MASK (~0UL >> 12)
1713#else
1714#define __SWP_OFFSET_MASK (~0UL >> 11)
1715#endif
1716static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1717{
1718 pte_t pte;
1719 offset &= __SWP_OFFSET_MASK;
1720 pte_val(pte) = _PAGE_INVALID | _PAGE_TYPE | ((type & 0x1f) << 2) |
1721 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1722 return pte;
1723}
1724
1725#define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1726#define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1727#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1728
1729#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1730#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1731
1732#ifndef CONFIG_64BIT
1733# define PTE_FILE_MAX_BITS 26
1734#else /* CONFIG_64BIT */
1735# define PTE_FILE_MAX_BITS 59
1736#endif /* CONFIG_64BIT */
1737
1738#define pte_to_pgoff(__pte) \
1739 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1740
1741#define pgoff_to_pte(__off) \
1742 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1743 | _PAGE_INVALID | _PAGE_PROTECT })
1744
1745#endif /* !__ASSEMBLY__ */
1746
1747#define kern_addr_valid(addr) (1)
1748
1749extern int vmem_add_mapping(unsigned long start, unsigned long size);
1750extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1751extern int s390_enable_sie(void);
1752extern void s390_enable_skey(void);
1753
1754/*
1755 * No page table caches to initialise
1756 */
1757static inline void pgtable_cache_init(void) { }
1758static inline void check_pgt_cache(void) { }
1759
1760#include <asm-generic/pgtable.h>
1761
1762#endif /* _S390_PAGE_H */