at v3.17-rc2 1488 lines 36 kB view raw
1/* 2 * linux/mm/vmstat.c 3 * 4 * Manages VM statistics 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * zoned VM statistics 8 * Copyright (C) 2006 Silicon Graphics, Inc., 9 * Christoph Lameter <christoph@lameter.com> 10 */ 11#include <linux/fs.h> 12#include <linux/mm.h> 13#include <linux/err.h> 14#include <linux/module.h> 15#include <linux/slab.h> 16#include <linux/cpu.h> 17#include <linux/vmstat.h> 18#include <linux/sched.h> 19#include <linux/math64.h> 20#include <linux/writeback.h> 21#include <linux/compaction.h> 22#include <linux/mm_inline.h> 23 24#include "internal.h" 25 26#ifdef CONFIG_VM_EVENT_COUNTERS 27DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}}; 28EXPORT_PER_CPU_SYMBOL(vm_event_states); 29 30static void sum_vm_events(unsigned long *ret) 31{ 32 int cpu; 33 int i; 34 35 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long)); 36 37 for_each_online_cpu(cpu) { 38 struct vm_event_state *this = &per_cpu(vm_event_states, cpu); 39 40 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) 41 ret[i] += this->event[i]; 42 } 43} 44 45/* 46 * Accumulate the vm event counters across all CPUs. 47 * The result is unavoidably approximate - it can change 48 * during and after execution of this function. 49*/ 50void all_vm_events(unsigned long *ret) 51{ 52 get_online_cpus(); 53 sum_vm_events(ret); 54 put_online_cpus(); 55} 56EXPORT_SYMBOL_GPL(all_vm_events); 57 58/* 59 * Fold the foreign cpu events into our own. 60 * 61 * This is adding to the events on one processor 62 * but keeps the global counts constant. 63 */ 64void vm_events_fold_cpu(int cpu) 65{ 66 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu); 67 int i; 68 69 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) { 70 count_vm_events(i, fold_state->event[i]); 71 fold_state->event[i] = 0; 72 } 73} 74 75#endif /* CONFIG_VM_EVENT_COUNTERS */ 76 77/* 78 * Manage combined zone based / global counters 79 * 80 * vm_stat contains the global counters 81 */ 82atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp; 83EXPORT_SYMBOL(vm_stat); 84 85#ifdef CONFIG_SMP 86 87int calculate_pressure_threshold(struct zone *zone) 88{ 89 int threshold; 90 int watermark_distance; 91 92 /* 93 * As vmstats are not up to date, there is drift between the estimated 94 * and real values. For high thresholds and a high number of CPUs, it 95 * is possible for the min watermark to be breached while the estimated 96 * value looks fine. The pressure threshold is a reduced value such 97 * that even the maximum amount of drift will not accidentally breach 98 * the min watermark 99 */ 100 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone); 101 threshold = max(1, (int)(watermark_distance / num_online_cpus())); 102 103 /* 104 * Maximum threshold is 125 105 */ 106 threshold = min(125, threshold); 107 108 return threshold; 109} 110 111int calculate_normal_threshold(struct zone *zone) 112{ 113 int threshold; 114 int mem; /* memory in 128 MB units */ 115 116 /* 117 * The threshold scales with the number of processors and the amount 118 * of memory per zone. More memory means that we can defer updates for 119 * longer, more processors could lead to more contention. 120 * fls() is used to have a cheap way of logarithmic scaling. 121 * 122 * Some sample thresholds: 123 * 124 * Threshold Processors (fls) Zonesize fls(mem+1) 125 * ------------------------------------------------------------------ 126 * 8 1 1 0.9-1 GB 4 127 * 16 2 2 0.9-1 GB 4 128 * 20 2 2 1-2 GB 5 129 * 24 2 2 2-4 GB 6 130 * 28 2 2 4-8 GB 7 131 * 32 2 2 8-16 GB 8 132 * 4 2 2 <128M 1 133 * 30 4 3 2-4 GB 5 134 * 48 4 3 8-16 GB 8 135 * 32 8 4 1-2 GB 4 136 * 32 8 4 0.9-1GB 4 137 * 10 16 5 <128M 1 138 * 40 16 5 900M 4 139 * 70 64 7 2-4 GB 5 140 * 84 64 7 4-8 GB 6 141 * 108 512 9 4-8 GB 6 142 * 125 1024 10 8-16 GB 8 143 * 125 1024 10 16-32 GB 9 144 */ 145 146 mem = zone->managed_pages >> (27 - PAGE_SHIFT); 147 148 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem)); 149 150 /* 151 * Maximum threshold is 125 152 */ 153 threshold = min(125, threshold); 154 155 return threshold; 156} 157 158/* 159 * Refresh the thresholds for each zone. 160 */ 161void refresh_zone_stat_thresholds(void) 162{ 163 struct zone *zone; 164 int cpu; 165 int threshold; 166 167 for_each_populated_zone(zone) { 168 unsigned long max_drift, tolerate_drift; 169 170 threshold = calculate_normal_threshold(zone); 171 172 for_each_online_cpu(cpu) 173 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 174 = threshold; 175 176 /* 177 * Only set percpu_drift_mark if there is a danger that 178 * NR_FREE_PAGES reports the low watermark is ok when in fact 179 * the min watermark could be breached by an allocation 180 */ 181 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone); 182 max_drift = num_online_cpus() * threshold; 183 if (max_drift > tolerate_drift) 184 zone->percpu_drift_mark = high_wmark_pages(zone) + 185 max_drift; 186 } 187} 188 189void set_pgdat_percpu_threshold(pg_data_t *pgdat, 190 int (*calculate_pressure)(struct zone *)) 191{ 192 struct zone *zone; 193 int cpu; 194 int threshold; 195 int i; 196 197 for (i = 0; i < pgdat->nr_zones; i++) { 198 zone = &pgdat->node_zones[i]; 199 if (!zone->percpu_drift_mark) 200 continue; 201 202 threshold = (*calculate_pressure)(zone); 203 for_each_online_cpu(cpu) 204 per_cpu_ptr(zone->pageset, cpu)->stat_threshold 205 = threshold; 206 } 207} 208 209/* 210 * For use when we know that interrupts are disabled, 211 * or when we know that preemption is disabled and that 212 * particular counter cannot be updated from interrupt context. 213 */ 214void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 215 int delta) 216{ 217 struct per_cpu_pageset __percpu *pcp = zone->pageset; 218 s8 __percpu *p = pcp->vm_stat_diff + item; 219 long x; 220 long t; 221 222 x = delta + __this_cpu_read(*p); 223 224 t = __this_cpu_read(pcp->stat_threshold); 225 226 if (unlikely(x > t || x < -t)) { 227 zone_page_state_add(x, zone, item); 228 x = 0; 229 } 230 __this_cpu_write(*p, x); 231} 232EXPORT_SYMBOL(__mod_zone_page_state); 233 234/* 235 * Optimized increment and decrement functions. 236 * 237 * These are only for a single page and therefore can take a struct page * 238 * argument instead of struct zone *. This allows the inclusion of the code 239 * generated for page_zone(page) into the optimized functions. 240 * 241 * No overflow check is necessary and therefore the differential can be 242 * incremented or decremented in place which may allow the compilers to 243 * generate better code. 244 * The increment or decrement is known and therefore one boundary check can 245 * be omitted. 246 * 247 * NOTE: These functions are very performance sensitive. Change only 248 * with care. 249 * 250 * Some processors have inc/dec instructions that are atomic vs an interrupt. 251 * However, the code must first determine the differential location in a zone 252 * based on the processor number and then inc/dec the counter. There is no 253 * guarantee without disabling preemption that the processor will not change 254 * in between and therefore the atomicity vs. interrupt cannot be exploited 255 * in a useful way here. 256 */ 257void __inc_zone_state(struct zone *zone, enum zone_stat_item item) 258{ 259 struct per_cpu_pageset __percpu *pcp = zone->pageset; 260 s8 __percpu *p = pcp->vm_stat_diff + item; 261 s8 v, t; 262 263 v = __this_cpu_inc_return(*p); 264 t = __this_cpu_read(pcp->stat_threshold); 265 if (unlikely(v > t)) { 266 s8 overstep = t >> 1; 267 268 zone_page_state_add(v + overstep, zone, item); 269 __this_cpu_write(*p, -overstep); 270 } 271} 272 273void __inc_zone_page_state(struct page *page, enum zone_stat_item item) 274{ 275 __inc_zone_state(page_zone(page), item); 276} 277EXPORT_SYMBOL(__inc_zone_page_state); 278 279void __dec_zone_state(struct zone *zone, enum zone_stat_item item) 280{ 281 struct per_cpu_pageset __percpu *pcp = zone->pageset; 282 s8 __percpu *p = pcp->vm_stat_diff + item; 283 s8 v, t; 284 285 v = __this_cpu_dec_return(*p); 286 t = __this_cpu_read(pcp->stat_threshold); 287 if (unlikely(v < - t)) { 288 s8 overstep = t >> 1; 289 290 zone_page_state_add(v - overstep, zone, item); 291 __this_cpu_write(*p, overstep); 292 } 293} 294 295void __dec_zone_page_state(struct page *page, enum zone_stat_item item) 296{ 297 __dec_zone_state(page_zone(page), item); 298} 299EXPORT_SYMBOL(__dec_zone_page_state); 300 301#ifdef CONFIG_HAVE_CMPXCHG_LOCAL 302/* 303 * If we have cmpxchg_local support then we do not need to incur the overhead 304 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg. 305 * 306 * mod_state() modifies the zone counter state through atomic per cpu 307 * operations. 308 * 309 * Overstep mode specifies how overstep should handled: 310 * 0 No overstepping 311 * 1 Overstepping half of threshold 312 * -1 Overstepping minus half of threshold 313*/ 314static inline void mod_state(struct zone *zone, 315 enum zone_stat_item item, int delta, int overstep_mode) 316{ 317 struct per_cpu_pageset __percpu *pcp = zone->pageset; 318 s8 __percpu *p = pcp->vm_stat_diff + item; 319 long o, n, t, z; 320 321 do { 322 z = 0; /* overflow to zone counters */ 323 324 /* 325 * The fetching of the stat_threshold is racy. We may apply 326 * a counter threshold to the wrong the cpu if we get 327 * rescheduled while executing here. However, the next 328 * counter update will apply the threshold again and 329 * therefore bring the counter under the threshold again. 330 * 331 * Most of the time the thresholds are the same anyways 332 * for all cpus in a zone. 333 */ 334 t = this_cpu_read(pcp->stat_threshold); 335 336 o = this_cpu_read(*p); 337 n = delta + o; 338 339 if (n > t || n < -t) { 340 int os = overstep_mode * (t >> 1) ; 341 342 /* Overflow must be added to zone counters */ 343 z = n + os; 344 n = -os; 345 } 346 } while (this_cpu_cmpxchg(*p, o, n) != o); 347 348 if (z) 349 zone_page_state_add(z, zone, item); 350} 351 352void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 353 int delta) 354{ 355 mod_state(zone, item, delta, 0); 356} 357EXPORT_SYMBOL(mod_zone_page_state); 358 359void inc_zone_state(struct zone *zone, enum zone_stat_item item) 360{ 361 mod_state(zone, item, 1, 1); 362} 363 364void inc_zone_page_state(struct page *page, enum zone_stat_item item) 365{ 366 mod_state(page_zone(page), item, 1, 1); 367} 368EXPORT_SYMBOL(inc_zone_page_state); 369 370void dec_zone_page_state(struct page *page, enum zone_stat_item item) 371{ 372 mod_state(page_zone(page), item, -1, -1); 373} 374EXPORT_SYMBOL(dec_zone_page_state); 375#else 376/* 377 * Use interrupt disable to serialize counter updates 378 */ 379void mod_zone_page_state(struct zone *zone, enum zone_stat_item item, 380 int delta) 381{ 382 unsigned long flags; 383 384 local_irq_save(flags); 385 __mod_zone_page_state(zone, item, delta); 386 local_irq_restore(flags); 387} 388EXPORT_SYMBOL(mod_zone_page_state); 389 390void inc_zone_state(struct zone *zone, enum zone_stat_item item) 391{ 392 unsigned long flags; 393 394 local_irq_save(flags); 395 __inc_zone_state(zone, item); 396 local_irq_restore(flags); 397} 398 399void inc_zone_page_state(struct page *page, enum zone_stat_item item) 400{ 401 unsigned long flags; 402 struct zone *zone; 403 404 zone = page_zone(page); 405 local_irq_save(flags); 406 __inc_zone_state(zone, item); 407 local_irq_restore(flags); 408} 409EXPORT_SYMBOL(inc_zone_page_state); 410 411void dec_zone_page_state(struct page *page, enum zone_stat_item item) 412{ 413 unsigned long flags; 414 415 local_irq_save(flags); 416 __dec_zone_page_state(page, item); 417 local_irq_restore(flags); 418} 419EXPORT_SYMBOL(dec_zone_page_state); 420#endif 421 422static inline void fold_diff(int *diff) 423{ 424 int i; 425 426 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 427 if (diff[i]) 428 atomic_long_add(diff[i], &vm_stat[i]); 429} 430 431/* 432 * Update the zone counters for the current cpu. 433 * 434 * Note that refresh_cpu_vm_stats strives to only access 435 * node local memory. The per cpu pagesets on remote zones are placed 436 * in the memory local to the processor using that pageset. So the 437 * loop over all zones will access a series of cachelines local to 438 * the processor. 439 * 440 * The call to zone_page_state_add updates the cachelines with the 441 * statistics in the remote zone struct as well as the global cachelines 442 * with the global counters. These could cause remote node cache line 443 * bouncing and will have to be only done when necessary. 444 */ 445static void refresh_cpu_vm_stats(void) 446{ 447 struct zone *zone; 448 int i; 449 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 450 451 for_each_populated_zone(zone) { 452 struct per_cpu_pageset __percpu *p = zone->pageset; 453 454 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) { 455 int v; 456 457 v = this_cpu_xchg(p->vm_stat_diff[i], 0); 458 if (v) { 459 460 atomic_long_add(v, &zone->vm_stat[i]); 461 global_diff[i] += v; 462#ifdef CONFIG_NUMA 463 /* 3 seconds idle till flush */ 464 __this_cpu_write(p->expire, 3); 465#endif 466 } 467 } 468 cond_resched(); 469#ifdef CONFIG_NUMA 470 /* 471 * Deal with draining the remote pageset of this 472 * processor 473 * 474 * Check if there are pages remaining in this pageset 475 * if not then there is nothing to expire. 476 */ 477 if (!__this_cpu_read(p->expire) || 478 !__this_cpu_read(p->pcp.count)) 479 continue; 480 481 /* 482 * We never drain zones local to this processor. 483 */ 484 if (zone_to_nid(zone) == numa_node_id()) { 485 __this_cpu_write(p->expire, 0); 486 continue; 487 } 488 489 490 if (__this_cpu_dec_return(p->expire)) 491 continue; 492 493 if (__this_cpu_read(p->pcp.count)) 494 drain_zone_pages(zone, this_cpu_ptr(&p->pcp)); 495#endif 496 } 497 fold_diff(global_diff); 498} 499 500/* 501 * Fold the data for an offline cpu into the global array. 502 * There cannot be any access by the offline cpu and therefore 503 * synchronization is simplified. 504 */ 505void cpu_vm_stats_fold(int cpu) 506{ 507 struct zone *zone; 508 int i; 509 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, }; 510 511 for_each_populated_zone(zone) { 512 struct per_cpu_pageset *p; 513 514 p = per_cpu_ptr(zone->pageset, cpu); 515 516 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 517 if (p->vm_stat_diff[i]) { 518 int v; 519 520 v = p->vm_stat_diff[i]; 521 p->vm_stat_diff[i] = 0; 522 atomic_long_add(v, &zone->vm_stat[i]); 523 global_diff[i] += v; 524 } 525 } 526 527 fold_diff(global_diff); 528} 529 530/* 531 * this is only called if !populated_zone(zone), which implies no other users of 532 * pset->vm_stat_diff[] exsist. 533 */ 534void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset) 535{ 536 int i; 537 538 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 539 if (pset->vm_stat_diff[i]) { 540 int v = pset->vm_stat_diff[i]; 541 pset->vm_stat_diff[i] = 0; 542 atomic_long_add(v, &zone->vm_stat[i]); 543 atomic_long_add(v, &vm_stat[i]); 544 } 545} 546#endif 547 548#ifdef CONFIG_NUMA 549/* 550 * zonelist = the list of zones passed to the allocator 551 * z = the zone from which the allocation occurred. 552 * 553 * Must be called with interrupts disabled. 554 * 555 * When __GFP_OTHER_NODE is set assume the node of the preferred 556 * zone is the local node. This is useful for daemons who allocate 557 * memory on behalf of other processes. 558 */ 559void zone_statistics(struct zone *preferred_zone, struct zone *z, gfp_t flags) 560{ 561 if (z->zone_pgdat == preferred_zone->zone_pgdat) { 562 __inc_zone_state(z, NUMA_HIT); 563 } else { 564 __inc_zone_state(z, NUMA_MISS); 565 __inc_zone_state(preferred_zone, NUMA_FOREIGN); 566 } 567 if (z->node == ((flags & __GFP_OTHER_NODE) ? 568 preferred_zone->node : numa_node_id())) 569 __inc_zone_state(z, NUMA_LOCAL); 570 else 571 __inc_zone_state(z, NUMA_OTHER); 572} 573#endif 574 575#ifdef CONFIG_COMPACTION 576 577struct contig_page_info { 578 unsigned long free_pages; 579 unsigned long free_blocks_total; 580 unsigned long free_blocks_suitable; 581}; 582 583/* 584 * Calculate the number of free pages in a zone, how many contiguous 585 * pages are free and how many are large enough to satisfy an allocation of 586 * the target size. Note that this function makes no attempt to estimate 587 * how many suitable free blocks there *might* be if MOVABLE pages were 588 * migrated. Calculating that is possible, but expensive and can be 589 * figured out from userspace 590 */ 591static void fill_contig_page_info(struct zone *zone, 592 unsigned int suitable_order, 593 struct contig_page_info *info) 594{ 595 unsigned int order; 596 597 info->free_pages = 0; 598 info->free_blocks_total = 0; 599 info->free_blocks_suitable = 0; 600 601 for (order = 0; order < MAX_ORDER; order++) { 602 unsigned long blocks; 603 604 /* Count number of free blocks */ 605 blocks = zone->free_area[order].nr_free; 606 info->free_blocks_total += blocks; 607 608 /* Count free base pages */ 609 info->free_pages += blocks << order; 610 611 /* Count the suitable free blocks */ 612 if (order >= suitable_order) 613 info->free_blocks_suitable += blocks << 614 (order - suitable_order); 615 } 616} 617 618/* 619 * A fragmentation index only makes sense if an allocation of a requested 620 * size would fail. If that is true, the fragmentation index indicates 621 * whether external fragmentation or a lack of memory was the problem. 622 * The value can be used to determine if page reclaim or compaction 623 * should be used 624 */ 625static int __fragmentation_index(unsigned int order, struct contig_page_info *info) 626{ 627 unsigned long requested = 1UL << order; 628 629 if (!info->free_blocks_total) 630 return 0; 631 632 /* Fragmentation index only makes sense when a request would fail */ 633 if (info->free_blocks_suitable) 634 return -1000; 635 636 /* 637 * Index is between 0 and 1 so return within 3 decimal places 638 * 639 * 0 => allocation would fail due to lack of memory 640 * 1 => allocation would fail due to fragmentation 641 */ 642 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total); 643} 644 645/* Same as __fragmentation index but allocs contig_page_info on stack */ 646int fragmentation_index(struct zone *zone, unsigned int order) 647{ 648 struct contig_page_info info; 649 650 fill_contig_page_info(zone, order, &info); 651 return __fragmentation_index(order, &info); 652} 653#endif 654 655#if defined(CONFIG_PROC_FS) || defined(CONFIG_COMPACTION) 656#include <linux/proc_fs.h> 657#include <linux/seq_file.h> 658 659static char * const migratetype_names[MIGRATE_TYPES] = { 660 "Unmovable", 661 "Reclaimable", 662 "Movable", 663 "Reserve", 664#ifdef CONFIG_CMA 665 "CMA", 666#endif 667#ifdef CONFIG_MEMORY_ISOLATION 668 "Isolate", 669#endif 670}; 671 672static void *frag_start(struct seq_file *m, loff_t *pos) 673{ 674 pg_data_t *pgdat; 675 loff_t node = *pos; 676 for (pgdat = first_online_pgdat(); 677 pgdat && node; 678 pgdat = next_online_pgdat(pgdat)) 679 --node; 680 681 return pgdat; 682} 683 684static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 685{ 686 pg_data_t *pgdat = (pg_data_t *)arg; 687 688 (*pos)++; 689 return next_online_pgdat(pgdat); 690} 691 692static void frag_stop(struct seq_file *m, void *arg) 693{ 694} 695 696/* Walk all the zones in a node and print using a callback */ 697static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat, 698 void (*print)(struct seq_file *m, pg_data_t *, struct zone *)) 699{ 700 struct zone *zone; 701 struct zone *node_zones = pgdat->node_zones; 702 unsigned long flags; 703 704 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 705 if (!populated_zone(zone)) 706 continue; 707 708 spin_lock_irqsave(&zone->lock, flags); 709 print(m, pgdat, zone); 710 spin_unlock_irqrestore(&zone->lock, flags); 711 } 712} 713#endif 714 715#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || defined(CONFIG_NUMA) 716#ifdef CONFIG_ZONE_DMA 717#define TEXT_FOR_DMA(xx) xx "_dma", 718#else 719#define TEXT_FOR_DMA(xx) 720#endif 721 722#ifdef CONFIG_ZONE_DMA32 723#define TEXT_FOR_DMA32(xx) xx "_dma32", 724#else 725#define TEXT_FOR_DMA32(xx) 726#endif 727 728#ifdef CONFIG_HIGHMEM 729#define TEXT_FOR_HIGHMEM(xx) xx "_high", 730#else 731#define TEXT_FOR_HIGHMEM(xx) 732#endif 733 734#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \ 735 TEXT_FOR_HIGHMEM(xx) xx "_movable", 736 737const char * const vmstat_text[] = { 738 /* Zoned VM counters */ 739 "nr_free_pages", 740 "nr_alloc_batch", 741 "nr_inactive_anon", 742 "nr_active_anon", 743 "nr_inactive_file", 744 "nr_active_file", 745 "nr_unevictable", 746 "nr_mlock", 747 "nr_anon_pages", 748 "nr_mapped", 749 "nr_file_pages", 750 "nr_dirty", 751 "nr_writeback", 752 "nr_slab_reclaimable", 753 "nr_slab_unreclaimable", 754 "nr_page_table_pages", 755 "nr_kernel_stack", 756 "nr_unstable", 757 "nr_bounce", 758 "nr_vmscan_write", 759 "nr_vmscan_immediate_reclaim", 760 "nr_writeback_temp", 761 "nr_isolated_anon", 762 "nr_isolated_file", 763 "nr_shmem", 764 "nr_dirtied", 765 "nr_written", 766 "nr_pages_scanned", 767 768#ifdef CONFIG_NUMA 769 "numa_hit", 770 "numa_miss", 771 "numa_foreign", 772 "numa_interleave", 773 "numa_local", 774 "numa_other", 775#endif 776 "workingset_refault", 777 "workingset_activate", 778 "workingset_nodereclaim", 779 "nr_anon_transparent_hugepages", 780 "nr_free_cma", 781 "nr_dirty_threshold", 782 "nr_dirty_background_threshold", 783 784#ifdef CONFIG_VM_EVENT_COUNTERS 785 "pgpgin", 786 "pgpgout", 787 "pswpin", 788 "pswpout", 789 790 TEXTS_FOR_ZONES("pgalloc") 791 792 "pgfree", 793 "pgactivate", 794 "pgdeactivate", 795 796 "pgfault", 797 "pgmajfault", 798 799 TEXTS_FOR_ZONES("pgrefill") 800 TEXTS_FOR_ZONES("pgsteal_kswapd") 801 TEXTS_FOR_ZONES("pgsteal_direct") 802 TEXTS_FOR_ZONES("pgscan_kswapd") 803 TEXTS_FOR_ZONES("pgscan_direct") 804 "pgscan_direct_throttle", 805 806#ifdef CONFIG_NUMA 807 "zone_reclaim_failed", 808#endif 809 "pginodesteal", 810 "slabs_scanned", 811 "kswapd_inodesteal", 812 "kswapd_low_wmark_hit_quickly", 813 "kswapd_high_wmark_hit_quickly", 814 "pageoutrun", 815 "allocstall", 816 817 "pgrotated", 818 819 "drop_pagecache", 820 "drop_slab", 821 822#ifdef CONFIG_NUMA_BALANCING 823 "numa_pte_updates", 824 "numa_huge_pte_updates", 825 "numa_hint_faults", 826 "numa_hint_faults_local", 827 "numa_pages_migrated", 828#endif 829#ifdef CONFIG_MIGRATION 830 "pgmigrate_success", 831 "pgmigrate_fail", 832#endif 833#ifdef CONFIG_COMPACTION 834 "compact_migrate_scanned", 835 "compact_free_scanned", 836 "compact_isolated", 837 "compact_stall", 838 "compact_fail", 839 "compact_success", 840#endif 841 842#ifdef CONFIG_HUGETLB_PAGE 843 "htlb_buddy_alloc_success", 844 "htlb_buddy_alloc_fail", 845#endif 846 "unevictable_pgs_culled", 847 "unevictable_pgs_scanned", 848 "unevictable_pgs_rescued", 849 "unevictable_pgs_mlocked", 850 "unevictable_pgs_munlocked", 851 "unevictable_pgs_cleared", 852 "unevictable_pgs_stranded", 853 854#ifdef CONFIG_TRANSPARENT_HUGEPAGE 855 "thp_fault_alloc", 856 "thp_fault_fallback", 857 "thp_collapse_alloc", 858 "thp_collapse_alloc_failed", 859 "thp_split", 860 "thp_zero_page_alloc", 861 "thp_zero_page_alloc_failed", 862#endif 863#ifdef CONFIG_DEBUG_TLBFLUSH 864#ifdef CONFIG_SMP 865 "nr_tlb_remote_flush", 866 "nr_tlb_remote_flush_received", 867#endif /* CONFIG_SMP */ 868 "nr_tlb_local_flush_all", 869 "nr_tlb_local_flush_one", 870#endif /* CONFIG_DEBUG_TLBFLUSH */ 871 872#ifdef CONFIG_DEBUG_VM_VMACACHE 873 "vmacache_find_calls", 874 "vmacache_find_hits", 875#endif 876#endif /* CONFIG_VM_EVENTS_COUNTERS */ 877}; 878#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA */ 879 880 881#ifdef CONFIG_PROC_FS 882static void frag_show_print(struct seq_file *m, pg_data_t *pgdat, 883 struct zone *zone) 884{ 885 int order; 886 887 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 888 for (order = 0; order < MAX_ORDER; ++order) 889 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 890 seq_putc(m, '\n'); 891} 892 893/* 894 * This walks the free areas for each zone. 895 */ 896static int frag_show(struct seq_file *m, void *arg) 897{ 898 pg_data_t *pgdat = (pg_data_t *)arg; 899 walk_zones_in_node(m, pgdat, frag_show_print); 900 return 0; 901} 902 903static void pagetypeinfo_showfree_print(struct seq_file *m, 904 pg_data_t *pgdat, struct zone *zone) 905{ 906 int order, mtype; 907 908 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) { 909 seq_printf(m, "Node %4d, zone %8s, type %12s ", 910 pgdat->node_id, 911 zone->name, 912 migratetype_names[mtype]); 913 for (order = 0; order < MAX_ORDER; ++order) { 914 unsigned long freecount = 0; 915 struct free_area *area; 916 struct list_head *curr; 917 918 area = &(zone->free_area[order]); 919 920 list_for_each(curr, &area->free_list[mtype]) 921 freecount++; 922 seq_printf(m, "%6lu ", freecount); 923 } 924 seq_putc(m, '\n'); 925 } 926} 927 928/* Print out the free pages at each order for each migatetype */ 929static int pagetypeinfo_showfree(struct seq_file *m, void *arg) 930{ 931 int order; 932 pg_data_t *pgdat = (pg_data_t *)arg; 933 934 /* Print header */ 935 seq_printf(m, "%-43s ", "Free pages count per migrate type at order"); 936 for (order = 0; order < MAX_ORDER; ++order) 937 seq_printf(m, "%6d ", order); 938 seq_putc(m, '\n'); 939 940 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print); 941 942 return 0; 943} 944 945static void pagetypeinfo_showblockcount_print(struct seq_file *m, 946 pg_data_t *pgdat, struct zone *zone) 947{ 948 int mtype; 949 unsigned long pfn; 950 unsigned long start_pfn = zone->zone_start_pfn; 951 unsigned long end_pfn = zone_end_pfn(zone); 952 unsigned long count[MIGRATE_TYPES] = { 0, }; 953 954 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 955 struct page *page; 956 957 if (!pfn_valid(pfn)) 958 continue; 959 960 page = pfn_to_page(pfn); 961 962 /* Watch for unexpected holes punched in the memmap */ 963 if (!memmap_valid_within(pfn, page, zone)) 964 continue; 965 966 mtype = get_pageblock_migratetype(page); 967 968 if (mtype < MIGRATE_TYPES) 969 count[mtype]++; 970 } 971 972 /* Print counts */ 973 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 974 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 975 seq_printf(m, "%12lu ", count[mtype]); 976 seq_putc(m, '\n'); 977} 978 979/* Print out the free pages at each order for each migratetype */ 980static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg) 981{ 982 int mtype; 983 pg_data_t *pgdat = (pg_data_t *)arg; 984 985 seq_printf(m, "\n%-23s", "Number of blocks type "); 986 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) 987 seq_printf(m, "%12s ", migratetype_names[mtype]); 988 seq_putc(m, '\n'); 989 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print); 990 991 return 0; 992} 993 994/* 995 * This prints out statistics in relation to grouping pages by mobility. 996 * It is expensive to collect so do not constantly read the file. 997 */ 998static int pagetypeinfo_show(struct seq_file *m, void *arg) 999{ 1000 pg_data_t *pgdat = (pg_data_t *)arg; 1001 1002 /* check memoryless node */ 1003 if (!node_state(pgdat->node_id, N_MEMORY)) 1004 return 0; 1005 1006 seq_printf(m, "Page block order: %d\n", pageblock_order); 1007 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages); 1008 seq_putc(m, '\n'); 1009 pagetypeinfo_showfree(m, pgdat); 1010 pagetypeinfo_showblockcount(m, pgdat); 1011 1012 return 0; 1013} 1014 1015static const struct seq_operations fragmentation_op = { 1016 .start = frag_start, 1017 .next = frag_next, 1018 .stop = frag_stop, 1019 .show = frag_show, 1020}; 1021 1022static int fragmentation_open(struct inode *inode, struct file *file) 1023{ 1024 return seq_open(file, &fragmentation_op); 1025} 1026 1027static const struct file_operations fragmentation_file_operations = { 1028 .open = fragmentation_open, 1029 .read = seq_read, 1030 .llseek = seq_lseek, 1031 .release = seq_release, 1032}; 1033 1034static const struct seq_operations pagetypeinfo_op = { 1035 .start = frag_start, 1036 .next = frag_next, 1037 .stop = frag_stop, 1038 .show = pagetypeinfo_show, 1039}; 1040 1041static int pagetypeinfo_open(struct inode *inode, struct file *file) 1042{ 1043 return seq_open(file, &pagetypeinfo_op); 1044} 1045 1046static const struct file_operations pagetypeinfo_file_ops = { 1047 .open = pagetypeinfo_open, 1048 .read = seq_read, 1049 .llseek = seq_lseek, 1050 .release = seq_release, 1051}; 1052 1053static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat, 1054 struct zone *zone) 1055{ 1056 int i; 1057 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 1058 seq_printf(m, 1059 "\n pages free %lu" 1060 "\n min %lu" 1061 "\n low %lu" 1062 "\n high %lu" 1063 "\n scanned %lu" 1064 "\n spanned %lu" 1065 "\n present %lu" 1066 "\n managed %lu", 1067 zone_page_state(zone, NR_FREE_PAGES), 1068 min_wmark_pages(zone), 1069 low_wmark_pages(zone), 1070 high_wmark_pages(zone), 1071 zone_page_state(zone, NR_PAGES_SCANNED), 1072 zone->spanned_pages, 1073 zone->present_pages, 1074 zone->managed_pages); 1075 1076 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1077 seq_printf(m, "\n %-12s %lu", vmstat_text[i], 1078 zone_page_state(zone, i)); 1079 1080 seq_printf(m, 1081 "\n protection: (%ld", 1082 zone->lowmem_reserve[0]); 1083 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 1084 seq_printf(m, ", %ld", zone->lowmem_reserve[i]); 1085 seq_printf(m, 1086 ")" 1087 "\n pagesets"); 1088 for_each_online_cpu(i) { 1089 struct per_cpu_pageset *pageset; 1090 1091 pageset = per_cpu_ptr(zone->pageset, i); 1092 seq_printf(m, 1093 "\n cpu: %i" 1094 "\n count: %i" 1095 "\n high: %i" 1096 "\n batch: %i", 1097 i, 1098 pageset->pcp.count, 1099 pageset->pcp.high, 1100 pageset->pcp.batch); 1101#ifdef CONFIG_SMP 1102 seq_printf(m, "\n vm stats threshold: %d", 1103 pageset->stat_threshold); 1104#endif 1105 } 1106 seq_printf(m, 1107 "\n all_unreclaimable: %u" 1108 "\n start_pfn: %lu" 1109 "\n inactive_ratio: %u", 1110 !zone_reclaimable(zone), 1111 zone->zone_start_pfn, 1112 zone->inactive_ratio); 1113 seq_putc(m, '\n'); 1114} 1115 1116/* 1117 * Output information about zones in @pgdat. 1118 */ 1119static int zoneinfo_show(struct seq_file *m, void *arg) 1120{ 1121 pg_data_t *pgdat = (pg_data_t *)arg; 1122 walk_zones_in_node(m, pgdat, zoneinfo_show_print); 1123 return 0; 1124} 1125 1126static const struct seq_operations zoneinfo_op = { 1127 .start = frag_start, /* iterate over all zones. The same as in 1128 * fragmentation. */ 1129 .next = frag_next, 1130 .stop = frag_stop, 1131 .show = zoneinfo_show, 1132}; 1133 1134static int zoneinfo_open(struct inode *inode, struct file *file) 1135{ 1136 return seq_open(file, &zoneinfo_op); 1137} 1138 1139static const struct file_operations proc_zoneinfo_file_operations = { 1140 .open = zoneinfo_open, 1141 .read = seq_read, 1142 .llseek = seq_lseek, 1143 .release = seq_release, 1144}; 1145 1146enum writeback_stat_item { 1147 NR_DIRTY_THRESHOLD, 1148 NR_DIRTY_BG_THRESHOLD, 1149 NR_VM_WRITEBACK_STAT_ITEMS, 1150}; 1151 1152static void *vmstat_start(struct seq_file *m, loff_t *pos) 1153{ 1154 unsigned long *v; 1155 int i, stat_items_size; 1156 1157 if (*pos >= ARRAY_SIZE(vmstat_text)) 1158 return NULL; 1159 stat_items_size = NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long) + 1160 NR_VM_WRITEBACK_STAT_ITEMS * sizeof(unsigned long); 1161 1162#ifdef CONFIG_VM_EVENT_COUNTERS 1163 stat_items_size += sizeof(struct vm_event_state); 1164#endif 1165 1166 v = kmalloc(stat_items_size, GFP_KERNEL); 1167 m->private = v; 1168 if (!v) 1169 return ERR_PTR(-ENOMEM); 1170 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) 1171 v[i] = global_page_state(i); 1172 v += NR_VM_ZONE_STAT_ITEMS; 1173 1174 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD, 1175 v + NR_DIRTY_THRESHOLD); 1176 v += NR_VM_WRITEBACK_STAT_ITEMS; 1177 1178#ifdef CONFIG_VM_EVENT_COUNTERS 1179 all_vm_events(v); 1180 v[PGPGIN] /= 2; /* sectors -> kbytes */ 1181 v[PGPGOUT] /= 2; 1182#endif 1183 return (unsigned long *)m->private + *pos; 1184} 1185 1186static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 1187{ 1188 (*pos)++; 1189 if (*pos >= ARRAY_SIZE(vmstat_text)) 1190 return NULL; 1191 return (unsigned long *)m->private + *pos; 1192} 1193 1194static int vmstat_show(struct seq_file *m, void *arg) 1195{ 1196 unsigned long *l = arg; 1197 unsigned long off = l - (unsigned long *)m->private; 1198 1199 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 1200 return 0; 1201} 1202 1203static void vmstat_stop(struct seq_file *m, void *arg) 1204{ 1205 kfree(m->private); 1206 m->private = NULL; 1207} 1208 1209static const struct seq_operations vmstat_op = { 1210 .start = vmstat_start, 1211 .next = vmstat_next, 1212 .stop = vmstat_stop, 1213 .show = vmstat_show, 1214}; 1215 1216static int vmstat_open(struct inode *inode, struct file *file) 1217{ 1218 return seq_open(file, &vmstat_op); 1219} 1220 1221static const struct file_operations proc_vmstat_file_operations = { 1222 .open = vmstat_open, 1223 .read = seq_read, 1224 .llseek = seq_lseek, 1225 .release = seq_release, 1226}; 1227#endif /* CONFIG_PROC_FS */ 1228 1229#ifdef CONFIG_SMP 1230static DEFINE_PER_CPU(struct delayed_work, vmstat_work); 1231int sysctl_stat_interval __read_mostly = HZ; 1232 1233static void vmstat_update(struct work_struct *w) 1234{ 1235 refresh_cpu_vm_stats(); 1236 schedule_delayed_work(this_cpu_ptr(&vmstat_work), 1237 round_jiffies_relative(sysctl_stat_interval)); 1238} 1239 1240static void start_cpu_timer(int cpu) 1241{ 1242 struct delayed_work *work = &per_cpu(vmstat_work, cpu); 1243 1244 INIT_DEFERRABLE_WORK(work, vmstat_update); 1245 schedule_delayed_work_on(cpu, work, __round_jiffies_relative(HZ, cpu)); 1246} 1247 1248static void vmstat_cpu_dead(int node) 1249{ 1250 int cpu; 1251 1252 get_online_cpus(); 1253 for_each_online_cpu(cpu) 1254 if (cpu_to_node(cpu) == node) 1255 goto end; 1256 1257 node_clear_state(node, N_CPU); 1258end: 1259 put_online_cpus(); 1260} 1261 1262/* 1263 * Use the cpu notifier to insure that the thresholds are recalculated 1264 * when necessary. 1265 */ 1266static int vmstat_cpuup_callback(struct notifier_block *nfb, 1267 unsigned long action, 1268 void *hcpu) 1269{ 1270 long cpu = (long)hcpu; 1271 1272 switch (action) { 1273 case CPU_ONLINE: 1274 case CPU_ONLINE_FROZEN: 1275 refresh_zone_stat_thresholds(); 1276 start_cpu_timer(cpu); 1277 node_set_state(cpu_to_node(cpu), N_CPU); 1278 break; 1279 case CPU_DOWN_PREPARE: 1280 case CPU_DOWN_PREPARE_FROZEN: 1281 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu)); 1282 per_cpu(vmstat_work, cpu).work.func = NULL; 1283 break; 1284 case CPU_DOWN_FAILED: 1285 case CPU_DOWN_FAILED_FROZEN: 1286 start_cpu_timer(cpu); 1287 break; 1288 case CPU_DEAD: 1289 case CPU_DEAD_FROZEN: 1290 refresh_zone_stat_thresholds(); 1291 vmstat_cpu_dead(cpu_to_node(cpu)); 1292 break; 1293 default: 1294 break; 1295 } 1296 return NOTIFY_OK; 1297} 1298 1299static struct notifier_block vmstat_notifier = 1300 { &vmstat_cpuup_callback, NULL, 0 }; 1301#endif 1302 1303static int __init setup_vmstat(void) 1304{ 1305#ifdef CONFIG_SMP 1306 int cpu; 1307 1308 cpu_notifier_register_begin(); 1309 __register_cpu_notifier(&vmstat_notifier); 1310 1311 for_each_online_cpu(cpu) { 1312 start_cpu_timer(cpu); 1313 node_set_state(cpu_to_node(cpu), N_CPU); 1314 } 1315 cpu_notifier_register_done(); 1316#endif 1317#ifdef CONFIG_PROC_FS 1318 proc_create("buddyinfo", S_IRUGO, NULL, &fragmentation_file_operations); 1319 proc_create("pagetypeinfo", S_IRUGO, NULL, &pagetypeinfo_file_ops); 1320 proc_create("vmstat", S_IRUGO, NULL, &proc_vmstat_file_operations); 1321 proc_create("zoneinfo", S_IRUGO, NULL, &proc_zoneinfo_file_operations); 1322#endif 1323 return 0; 1324} 1325module_init(setup_vmstat) 1326 1327#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION) 1328#include <linux/debugfs.h> 1329 1330 1331/* 1332 * Return an index indicating how much of the available free memory is 1333 * unusable for an allocation of the requested size. 1334 */ 1335static int unusable_free_index(unsigned int order, 1336 struct contig_page_info *info) 1337{ 1338 /* No free memory is interpreted as all free memory is unusable */ 1339 if (info->free_pages == 0) 1340 return 1000; 1341 1342 /* 1343 * Index should be a value between 0 and 1. Return a value to 3 1344 * decimal places. 1345 * 1346 * 0 => no fragmentation 1347 * 1 => high fragmentation 1348 */ 1349 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages); 1350 1351} 1352 1353static void unusable_show_print(struct seq_file *m, 1354 pg_data_t *pgdat, struct zone *zone) 1355{ 1356 unsigned int order; 1357 int index; 1358 struct contig_page_info info; 1359 1360 seq_printf(m, "Node %d, zone %8s ", 1361 pgdat->node_id, 1362 zone->name); 1363 for (order = 0; order < MAX_ORDER; ++order) { 1364 fill_contig_page_info(zone, order, &info); 1365 index = unusable_free_index(order, &info); 1366 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1367 } 1368 1369 seq_putc(m, '\n'); 1370} 1371 1372/* 1373 * Display unusable free space index 1374 * 1375 * The unusable free space index measures how much of the available free 1376 * memory cannot be used to satisfy an allocation of a given size and is a 1377 * value between 0 and 1. The higher the value, the more of free memory is 1378 * unusable and by implication, the worse the external fragmentation is. This 1379 * can be expressed as a percentage by multiplying by 100. 1380 */ 1381static int unusable_show(struct seq_file *m, void *arg) 1382{ 1383 pg_data_t *pgdat = (pg_data_t *)arg; 1384 1385 /* check memoryless node */ 1386 if (!node_state(pgdat->node_id, N_MEMORY)) 1387 return 0; 1388 1389 walk_zones_in_node(m, pgdat, unusable_show_print); 1390 1391 return 0; 1392} 1393 1394static const struct seq_operations unusable_op = { 1395 .start = frag_start, 1396 .next = frag_next, 1397 .stop = frag_stop, 1398 .show = unusable_show, 1399}; 1400 1401static int unusable_open(struct inode *inode, struct file *file) 1402{ 1403 return seq_open(file, &unusable_op); 1404} 1405 1406static const struct file_operations unusable_file_ops = { 1407 .open = unusable_open, 1408 .read = seq_read, 1409 .llseek = seq_lseek, 1410 .release = seq_release, 1411}; 1412 1413static void extfrag_show_print(struct seq_file *m, 1414 pg_data_t *pgdat, struct zone *zone) 1415{ 1416 unsigned int order; 1417 int index; 1418 1419 /* Alloc on stack as interrupts are disabled for zone walk */ 1420 struct contig_page_info info; 1421 1422 seq_printf(m, "Node %d, zone %8s ", 1423 pgdat->node_id, 1424 zone->name); 1425 for (order = 0; order < MAX_ORDER; ++order) { 1426 fill_contig_page_info(zone, order, &info); 1427 index = __fragmentation_index(order, &info); 1428 seq_printf(m, "%d.%03d ", index / 1000, index % 1000); 1429 } 1430 1431 seq_putc(m, '\n'); 1432} 1433 1434/* 1435 * Display fragmentation index for orders that allocations would fail for 1436 */ 1437static int extfrag_show(struct seq_file *m, void *arg) 1438{ 1439 pg_data_t *pgdat = (pg_data_t *)arg; 1440 1441 walk_zones_in_node(m, pgdat, extfrag_show_print); 1442 1443 return 0; 1444} 1445 1446static const struct seq_operations extfrag_op = { 1447 .start = frag_start, 1448 .next = frag_next, 1449 .stop = frag_stop, 1450 .show = extfrag_show, 1451}; 1452 1453static int extfrag_open(struct inode *inode, struct file *file) 1454{ 1455 return seq_open(file, &extfrag_op); 1456} 1457 1458static const struct file_operations extfrag_file_ops = { 1459 .open = extfrag_open, 1460 .read = seq_read, 1461 .llseek = seq_lseek, 1462 .release = seq_release, 1463}; 1464 1465static int __init extfrag_debug_init(void) 1466{ 1467 struct dentry *extfrag_debug_root; 1468 1469 extfrag_debug_root = debugfs_create_dir("extfrag", NULL); 1470 if (!extfrag_debug_root) 1471 return -ENOMEM; 1472 1473 if (!debugfs_create_file("unusable_index", 0444, 1474 extfrag_debug_root, NULL, &unusable_file_ops)) 1475 goto fail; 1476 1477 if (!debugfs_create_file("extfrag_index", 0444, 1478 extfrag_debug_root, NULL, &extfrag_file_ops)) 1479 goto fail; 1480 1481 return 0; 1482fail: 1483 debugfs_remove_recursive(extfrag_debug_root); 1484 return -ENOMEM; 1485} 1486 1487module_init(extfrag_debug_init); 1488#endif