Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/fs/proc/base.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * proc base directory handling functions
7 *
8 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
9 * Instead of using magical inumbers to determine the kind of object
10 * we allocate and fill in-core inodes upon lookup. They don't even
11 * go into icache. We cache the reference to task_struct upon lookup too.
12 * Eventually it should become a filesystem in its own. We don't use the
13 * rest of procfs anymore.
14 *
15 *
16 * Changelog:
17 * 17-Jan-2005
18 * Allan Bezerra
19 * Bruna Moreira <bruna.moreira@indt.org.br>
20 * Edjard Mota <edjard.mota@indt.org.br>
21 * Ilias Biris <ilias.biris@indt.org.br>
22 * Mauricio Lin <mauricio.lin@indt.org.br>
23 *
24 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
25 *
26 * A new process specific entry (smaps) included in /proc. It shows the
27 * size of rss for each memory area. The maps entry lacks information
28 * about physical memory size (rss) for each mapped file, i.e.,
29 * rss information for executables and library files.
30 * This additional information is useful for any tools that need to know
31 * about physical memory consumption for a process specific library.
32 *
33 * Changelog:
34 * 21-Feb-2005
35 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
36 * Pud inclusion in the page table walking.
37 *
38 * ChangeLog:
39 * 10-Mar-2005
40 * 10LE Instituto Nokia de Tecnologia - INdT:
41 * A better way to walks through the page table as suggested by Hugh Dickins.
42 *
43 * Simo Piiroinen <simo.piiroinen@nokia.com>:
44 * Smaps information related to shared, private, clean and dirty pages.
45 *
46 * Paul Mundt <paul.mundt@nokia.com>:
47 * Overall revision about smaps.
48 */
49
50#include <asm/uaccess.h>
51
52#include <linux/errno.h>
53#include <linux/time.h>
54#include <linux/proc_fs.h>
55#include <linux/stat.h>
56#include <linux/task_io_accounting_ops.h>
57#include <linux/init.h>
58#include <linux/capability.h>
59#include <linux/file.h>
60#include <linux/fdtable.h>
61#include <linux/string.h>
62#include <linux/seq_file.h>
63#include <linux/namei.h>
64#include <linux/mnt_namespace.h>
65#include <linux/mm.h>
66#include <linux/swap.h>
67#include <linux/rcupdate.h>
68#include <linux/kallsyms.h>
69#include <linux/stacktrace.h>
70#include <linux/resource.h>
71#include <linux/module.h>
72#include <linux/mount.h>
73#include <linux/security.h>
74#include <linux/ptrace.h>
75#include <linux/tracehook.h>
76#include <linux/printk.h>
77#include <linux/cgroup.h>
78#include <linux/cpuset.h>
79#include <linux/audit.h>
80#include <linux/poll.h>
81#include <linux/nsproxy.h>
82#include <linux/oom.h>
83#include <linux/elf.h>
84#include <linux/pid_namespace.h>
85#include <linux/user_namespace.h>
86#include <linux/fs_struct.h>
87#include <linux/slab.h>
88#include <linux/flex_array.h>
89#include <linux/posix-timers.h>
90#ifdef CONFIG_HARDWALL
91#include <asm/hardwall.h>
92#endif
93#include <trace/events/oom.h>
94#include "internal.h"
95#include "fd.h"
96
97/* NOTE:
98 * Implementing inode permission operations in /proc is almost
99 * certainly an error. Permission checks need to happen during
100 * each system call not at open time. The reason is that most of
101 * what we wish to check for permissions in /proc varies at runtime.
102 *
103 * The classic example of a problem is opening file descriptors
104 * in /proc for a task before it execs a suid executable.
105 */
106
107struct pid_entry {
108 const char *name;
109 int len;
110 umode_t mode;
111 const struct inode_operations *iop;
112 const struct file_operations *fop;
113 union proc_op op;
114};
115
116#define NOD(NAME, MODE, IOP, FOP, OP) { \
117 .name = (NAME), \
118 .len = sizeof(NAME) - 1, \
119 .mode = MODE, \
120 .iop = IOP, \
121 .fop = FOP, \
122 .op = OP, \
123}
124
125#define DIR(NAME, MODE, iops, fops) \
126 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
127#define LNK(NAME, get_link) \
128 NOD(NAME, (S_IFLNK|S_IRWXUGO), \
129 &proc_pid_link_inode_operations, NULL, \
130 { .proc_get_link = get_link } )
131#define REG(NAME, MODE, fops) \
132 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
133#define ONE(NAME, MODE, show) \
134 NOD(NAME, (S_IFREG|(MODE)), \
135 NULL, &proc_single_file_operations, \
136 { .proc_show = show } )
137
138/*
139 * Count the number of hardlinks for the pid_entry table, excluding the .
140 * and .. links.
141 */
142static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
143 unsigned int n)
144{
145 unsigned int i;
146 unsigned int count;
147
148 count = 0;
149 for (i = 0; i < n; ++i) {
150 if (S_ISDIR(entries[i].mode))
151 ++count;
152 }
153
154 return count;
155}
156
157static int get_task_root(struct task_struct *task, struct path *root)
158{
159 int result = -ENOENT;
160
161 task_lock(task);
162 if (task->fs) {
163 get_fs_root(task->fs, root);
164 result = 0;
165 }
166 task_unlock(task);
167 return result;
168}
169
170static int proc_cwd_link(struct dentry *dentry, struct path *path)
171{
172 struct task_struct *task = get_proc_task(dentry->d_inode);
173 int result = -ENOENT;
174
175 if (task) {
176 task_lock(task);
177 if (task->fs) {
178 get_fs_pwd(task->fs, path);
179 result = 0;
180 }
181 task_unlock(task);
182 put_task_struct(task);
183 }
184 return result;
185}
186
187static int proc_root_link(struct dentry *dentry, struct path *path)
188{
189 struct task_struct *task = get_proc_task(dentry->d_inode);
190 int result = -ENOENT;
191
192 if (task) {
193 result = get_task_root(task, path);
194 put_task_struct(task);
195 }
196 return result;
197}
198
199static int proc_pid_cmdline(struct seq_file *m, struct pid_namespace *ns,
200 struct pid *pid, struct task_struct *task)
201{
202 /*
203 * Rely on struct seq_operations::show() being called once
204 * per internal buffer allocation. See single_open(), traverse().
205 */
206 BUG_ON(m->size < PAGE_SIZE);
207 m->count += get_cmdline(task, m->buf, PAGE_SIZE);
208 return 0;
209}
210
211static int proc_pid_auxv(struct seq_file *m, struct pid_namespace *ns,
212 struct pid *pid, struct task_struct *task)
213{
214 struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
215 if (mm && !IS_ERR(mm)) {
216 unsigned int nwords = 0;
217 do {
218 nwords += 2;
219 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
220 seq_write(m, mm->saved_auxv, nwords * sizeof(mm->saved_auxv[0]));
221 mmput(mm);
222 return 0;
223 } else
224 return PTR_ERR(mm);
225}
226
227
228#ifdef CONFIG_KALLSYMS
229/*
230 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
231 * Returns the resolved symbol. If that fails, simply return the address.
232 */
233static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
234 struct pid *pid, struct task_struct *task)
235{
236 unsigned long wchan;
237 char symname[KSYM_NAME_LEN];
238
239 wchan = get_wchan(task);
240
241 if (lookup_symbol_name(wchan, symname) < 0)
242 if (!ptrace_may_access(task, PTRACE_MODE_READ))
243 return 0;
244 else
245 return seq_printf(m, "%lu", wchan);
246 else
247 return seq_printf(m, "%s", symname);
248}
249#endif /* CONFIG_KALLSYMS */
250
251static int lock_trace(struct task_struct *task)
252{
253 int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
254 if (err)
255 return err;
256 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
257 mutex_unlock(&task->signal->cred_guard_mutex);
258 return -EPERM;
259 }
260 return 0;
261}
262
263static void unlock_trace(struct task_struct *task)
264{
265 mutex_unlock(&task->signal->cred_guard_mutex);
266}
267
268#ifdef CONFIG_STACKTRACE
269
270#define MAX_STACK_TRACE_DEPTH 64
271
272static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
273 struct pid *pid, struct task_struct *task)
274{
275 struct stack_trace trace;
276 unsigned long *entries;
277 int err;
278 int i;
279
280 entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
281 if (!entries)
282 return -ENOMEM;
283
284 trace.nr_entries = 0;
285 trace.max_entries = MAX_STACK_TRACE_DEPTH;
286 trace.entries = entries;
287 trace.skip = 0;
288
289 err = lock_trace(task);
290 if (!err) {
291 save_stack_trace_tsk(task, &trace);
292
293 for (i = 0; i < trace.nr_entries; i++) {
294 seq_printf(m, "[<%pK>] %pS\n",
295 (void *)entries[i], (void *)entries[i]);
296 }
297 unlock_trace(task);
298 }
299 kfree(entries);
300
301 return err;
302}
303#endif
304
305#ifdef CONFIG_SCHEDSTATS
306/*
307 * Provides /proc/PID/schedstat
308 */
309static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
310 struct pid *pid, struct task_struct *task)
311{
312 return seq_printf(m, "%llu %llu %lu\n",
313 (unsigned long long)task->se.sum_exec_runtime,
314 (unsigned long long)task->sched_info.run_delay,
315 task->sched_info.pcount);
316}
317#endif
318
319#ifdef CONFIG_LATENCYTOP
320static int lstats_show_proc(struct seq_file *m, void *v)
321{
322 int i;
323 struct inode *inode = m->private;
324 struct task_struct *task = get_proc_task(inode);
325
326 if (!task)
327 return -ESRCH;
328 seq_puts(m, "Latency Top version : v0.1\n");
329 for (i = 0; i < 32; i++) {
330 struct latency_record *lr = &task->latency_record[i];
331 if (lr->backtrace[0]) {
332 int q;
333 seq_printf(m, "%i %li %li",
334 lr->count, lr->time, lr->max);
335 for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
336 unsigned long bt = lr->backtrace[q];
337 if (!bt)
338 break;
339 if (bt == ULONG_MAX)
340 break;
341 seq_printf(m, " %ps", (void *)bt);
342 }
343 seq_putc(m, '\n');
344 }
345
346 }
347 put_task_struct(task);
348 return 0;
349}
350
351static int lstats_open(struct inode *inode, struct file *file)
352{
353 return single_open(file, lstats_show_proc, inode);
354}
355
356static ssize_t lstats_write(struct file *file, const char __user *buf,
357 size_t count, loff_t *offs)
358{
359 struct task_struct *task = get_proc_task(file_inode(file));
360
361 if (!task)
362 return -ESRCH;
363 clear_all_latency_tracing(task);
364 put_task_struct(task);
365
366 return count;
367}
368
369static const struct file_operations proc_lstats_operations = {
370 .open = lstats_open,
371 .read = seq_read,
372 .write = lstats_write,
373 .llseek = seq_lseek,
374 .release = single_release,
375};
376
377#endif
378
379#ifdef CONFIG_CGROUPS
380static int cgroup_open(struct inode *inode, struct file *file)
381{
382 struct pid *pid = PROC_I(inode)->pid;
383 return single_open(file, proc_cgroup_show, pid);
384}
385
386static const struct file_operations proc_cgroup_operations = {
387 .open = cgroup_open,
388 .read = seq_read,
389 .llseek = seq_lseek,
390 .release = single_release,
391};
392#endif
393
394#ifdef CONFIG_PROC_PID_CPUSET
395
396static int cpuset_open(struct inode *inode, struct file *file)
397{
398 struct pid *pid = PROC_I(inode)->pid;
399 return single_open(file, proc_cpuset_show, pid);
400}
401
402static const struct file_operations proc_cpuset_operations = {
403 .open = cpuset_open,
404 .read = seq_read,
405 .llseek = seq_lseek,
406 .release = single_release,
407};
408#endif
409
410static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
411 struct pid *pid, struct task_struct *task)
412{
413 unsigned long totalpages = totalram_pages + total_swap_pages;
414 unsigned long points = 0;
415
416 read_lock(&tasklist_lock);
417 if (pid_alive(task))
418 points = oom_badness(task, NULL, NULL, totalpages) *
419 1000 / totalpages;
420 read_unlock(&tasklist_lock);
421 return seq_printf(m, "%lu\n", points);
422}
423
424struct limit_names {
425 const char *name;
426 const char *unit;
427};
428
429static const struct limit_names lnames[RLIM_NLIMITS] = {
430 [RLIMIT_CPU] = {"Max cpu time", "seconds"},
431 [RLIMIT_FSIZE] = {"Max file size", "bytes"},
432 [RLIMIT_DATA] = {"Max data size", "bytes"},
433 [RLIMIT_STACK] = {"Max stack size", "bytes"},
434 [RLIMIT_CORE] = {"Max core file size", "bytes"},
435 [RLIMIT_RSS] = {"Max resident set", "bytes"},
436 [RLIMIT_NPROC] = {"Max processes", "processes"},
437 [RLIMIT_NOFILE] = {"Max open files", "files"},
438 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
439 [RLIMIT_AS] = {"Max address space", "bytes"},
440 [RLIMIT_LOCKS] = {"Max file locks", "locks"},
441 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
442 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
443 [RLIMIT_NICE] = {"Max nice priority", NULL},
444 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
445 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
446};
447
448/* Display limits for a process */
449static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
450 struct pid *pid, struct task_struct *task)
451{
452 unsigned int i;
453 unsigned long flags;
454
455 struct rlimit rlim[RLIM_NLIMITS];
456
457 if (!lock_task_sighand(task, &flags))
458 return 0;
459 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
460 unlock_task_sighand(task, &flags);
461
462 /*
463 * print the file header
464 */
465 seq_printf(m, "%-25s %-20s %-20s %-10s\n",
466 "Limit", "Soft Limit", "Hard Limit", "Units");
467
468 for (i = 0; i < RLIM_NLIMITS; i++) {
469 if (rlim[i].rlim_cur == RLIM_INFINITY)
470 seq_printf(m, "%-25s %-20s ",
471 lnames[i].name, "unlimited");
472 else
473 seq_printf(m, "%-25s %-20lu ",
474 lnames[i].name, rlim[i].rlim_cur);
475
476 if (rlim[i].rlim_max == RLIM_INFINITY)
477 seq_printf(m, "%-20s ", "unlimited");
478 else
479 seq_printf(m, "%-20lu ", rlim[i].rlim_max);
480
481 if (lnames[i].unit)
482 seq_printf(m, "%-10s\n", lnames[i].unit);
483 else
484 seq_putc(m, '\n');
485 }
486
487 return 0;
488}
489
490#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
491static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
492 struct pid *pid, struct task_struct *task)
493{
494 long nr;
495 unsigned long args[6], sp, pc;
496 int res = lock_trace(task);
497 if (res)
498 return res;
499
500 if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
501 seq_puts(m, "running\n");
502 else if (nr < 0)
503 seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
504 else
505 seq_printf(m,
506 "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
507 nr,
508 args[0], args[1], args[2], args[3], args[4], args[5],
509 sp, pc);
510 unlock_trace(task);
511 return res;
512}
513#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
514
515/************************************************************************/
516/* Here the fs part begins */
517/************************************************************************/
518
519/* permission checks */
520static int proc_fd_access_allowed(struct inode *inode)
521{
522 struct task_struct *task;
523 int allowed = 0;
524 /* Allow access to a task's file descriptors if it is us or we
525 * may use ptrace attach to the process and find out that
526 * information.
527 */
528 task = get_proc_task(inode);
529 if (task) {
530 allowed = ptrace_may_access(task, PTRACE_MODE_READ);
531 put_task_struct(task);
532 }
533 return allowed;
534}
535
536int proc_setattr(struct dentry *dentry, struct iattr *attr)
537{
538 int error;
539 struct inode *inode = dentry->d_inode;
540
541 if (attr->ia_valid & ATTR_MODE)
542 return -EPERM;
543
544 error = inode_change_ok(inode, attr);
545 if (error)
546 return error;
547
548 setattr_copy(inode, attr);
549 mark_inode_dirty(inode);
550 return 0;
551}
552
553/*
554 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
555 * or euid/egid (for hide_pid_min=2)?
556 */
557static bool has_pid_permissions(struct pid_namespace *pid,
558 struct task_struct *task,
559 int hide_pid_min)
560{
561 if (pid->hide_pid < hide_pid_min)
562 return true;
563 if (in_group_p(pid->pid_gid))
564 return true;
565 return ptrace_may_access(task, PTRACE_MODE_READ);
566}
567
568
569static int proc_pid_permission(struct inode *inode, int mask)
570{
571 struct pid_namespace *pid = inode->i_sb->s_fs_info;
572 struct task_struct *task;
573 bool has_perms;
574
575 task = get_proc_task(inode);
576 if (!task)
577 return -ESRCH;
578 has_perms = has_pid_permissions(pid, task, 1);
579 put_task_struct(task);
580
581 if (!has_perms) {
582 if (pid->hide_pid == 2) {
583 /*
584 * Let's make getdents(), stat(), and open()
585 * consistent with each other. If a process
586 * may not stat() a file, it shouldn't be seen
587 * in procfs at all.
588 */
589 return -ENOENT;
590 }
591
592 return -EPERM;
593 }
594 return generic_permission(inode, mask);
595}
596
597
598
599static const struct inode_operations proc_def_inode_operations = {
600 .setattr = proc_setattr,
601};
602
603static int proc_single_show(struct seq_file *m, void *v)
604{
605 struct inode *inode = m->private;
606 struct pid_namespace *ns;
607 struct pid *pid;
608 struct task_struct *task;
609 int ret;
610
611 ns = inode->i_sb->s_fs_info;
612 pid = proc_pid(inode);
613 task = get_pid_task(pid, PIDTYPE_PID);
614 if (!task)
615 return -ESRCH;
616
617 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
618
619 put_task_struct(task);
620 return ret;
621}
622
623static int proc_single_open(struct inode *inode, struct file *filp)
624{
625 return single_open(filp, proc_single_show, inode);
626}
627
628static const struct file_operations proc_single_file_operations = {
629 .open = proc_single_open,
630 .read = seq_read,
631 .llseek = seq_lseek,
632 .release = single_release,
633};
634
635static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
636{
637 struct task_struct *task = get_proc_task(file_inode(file));
638 struct mm_struct *mm;
639
640 if (!task)
641 return -ESRCH;
642
643 mm = mm_access(task, mode);
644 put_task_struct(task);
645
646 if (IS_ERR(mm))
647 return PTR_ERR(mm);
648
649 if (mm) {
650 /* ensure this mm_struct can't be freed */
651 atomic_inc(&mm->mm_count);
652 /* but do not pin its memory */
653 mmput(mm);
654 }
655
656 file->private_data = mm;
657
658 return 0;
659}
660
661static int mem_open(struct inode *inode, struct file *file)
662{
663 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
664
665 /* OK to pass negative loff_t, we can catch out-of-range */
666 file->f_mode |= FMODE_UNSIGNED_OFFSET;
667
668 return ret;
669}
670
671static ssize_t mem_rw(struct file *file, char __user *buf,
672 size_t count, loff_t *ppos, int write)
673{
674 struct mm_struct *mm = file->private_data;
675 unsigned long addr = *ppos;
676 ssize_t copied;
677 char *page;
678
679 if (!mm)
680 return 0;
681
682 page = (char *)__get_free_page(GFP_TEMPORARY);
683 if (!page)
684 return -ENOMEM;
685
686 copied = 0;
687 if (!atomic_inc_not_zero(&mm->mm_users))
688 goto free;
689
690 while (count > 0) {
691 int this_len = min_t(int, count, PAGE_SIZE);
692
693 if (write && copy_from_user(page, buf, this_len)) {
694 copied = -EFAULT;
695 break;
696 }
697
698 this_len = access_remote_vm(mm, addr, page, this_len, write);
699 if (!this_len) {
700 if (!copied)
701 copied = -EIO;
702 break;
703 }
704
705 if (!write && copy_to_user(buf, page, this_len)) {
706 copied = -EFAULT;
707 break;
708 }
709
710 buf += this_len;
711 addr += this_len;
712 copied += this_len;
713 count -= this_len;
714 }
715 *ppos = addr;
716
717 mmput(mm);
718free:
719 free_page((unsigned long) page);
720 return copied;
721}
722
723static ssize_t mem_read(struct file *file, char __user *buf,
724 size_t count, loff_t *ppos)
725{
726 return mem_rw(file, buf, count, ppos, 0);
727}
728
729static ssize_t mem_write(struct file *file, const char __user *buf,
730 size_t count, loff_t *ppos)
731{
732 return mem_rw(file, (char __user*)buf, count, ppos, 1);
733}
734
735loff_t mem_lseek(struct file *file, loff_t offset, int orig)
736{
737 switch (orig) {
738 case 0:
739 file->f_pos = offset;
740 break;
741 case 1:
742 file->f_pos += offset;
743 break;
744 default:
745 return -EINVAL;
746 }
747 force_successful_syscall_return();
748 return file->f_pos;
749}
750
751static int mem_release(struct inode *inode, struct file *file)
752{
753 struct mm_struct *mm = file->private_data;
754 if (mm)
755 mmdrop(mm);
756 return 0;
757}
758
759static const struct file_operations proc_mem_operations = {
760 .llseek = mem_lseek,
761 .read = mem_read,
762 .write = mem_write,
763 .open = mem_open,
764 .release = mem_release,
765};
766
767static int environ_open(struct inode *inode, struct file *file)
768{
769 return __mem_open(inode, file, PTRACE_MODE_READ);
770}
771
772static ssize_t environ_read(struct file *file, char __user *buf,
773 size_t count, loff_t *ppos)
774{
775 char *page;
776 unsigned long src = *ppos;
777 int ret = 0;
778 struct mm_struct *mm = file->private_data;
779
780 if (!mm)
781 return 0;
782
783 page = (char *)__get_free_page(GFP_TEMPORARY);
784 if (!page)
785 return -ENOMEM;
786
787 ret = 0;
788 if (!atomic_inc_not_zero(&mm->mm_users))
789 goto free;
790 while (count > 0) {
791 size_t this_len, max_len;
792 int retval;
793
794 if (src >= (mm->env_end - mm->env_start))
795 break;
796
797 this_len = mm->env_end - (mm->env_start + src);
798
799 max_len = min_t(size_t, PAGE_SIZE, count);
800 this_len = min(max_len, this_len);
801
802 retval = access_remote_vm(mm, (mm->env_start + src),
803 page, this_len, 0);
804
805 if (retval <= 0) {
806 ret = retval;
807 break;
808 }
809
810 if (copy_to_user(buf, page, retval)) {
811 ret = -EFAULT;
812 break;
813 }
814
815 ret += retval;
816 src += retval;
817 buf += retval;
818 count -= retval;
819 }
820 *ppos = src;
821 mmput(mm);
822
823free:
824 free_page((unsigned long) page);
825 return ret;
826}
827
828static const struct file_operations proc_environ_operations = {
829 .open = environ_open,
830 .read = environ_read,
831 .llseek = generic_file_llseek,
832 .release = mem_release,
833};
834
835static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
836 loff_t *ppos)
837{
838 struct task_struct *task = get_proc_task(file_inode(file));
839 char buffer[PROC_NUMBUF];
840 int oom_adj = OOM_ADJUST_MIN;
841 size_t len;
842 unsigned long flags;
843
844 if (!task)
845 return -ESRCH;
846 if (lock_task_sighand(task, &flags)) {
847 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
848 oom_adj = OOM_ADJUST_MAX;
849 else
850 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
851 OOM_SCORE_ADJ_MAX;
852 unlock_task_sighand(task, &flags);
853 }
854 put_task_struct(task);
855 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
856 return simple_read_from_buffer(buf, count, ppos, buffer, len);
857}
858
859static ssize_t oom_adj_write(struct file *file, const char __user *buf,
860 size_t count, loff_t *ppos)
861{
862 struct task_struct *task;
863 char buffer[PROC_NUMBUF];
864 int oom_adj;
865 unsigned long flags;
866 int err;
867
868 memset(buffer, 0, sizeof(buffer));
869 if (count > sizeof(buffer) - 1)
870 count = sizeof(buffer) - 1;
871 if (copy_from_user(buffer, buf, count)) {
872 err = -EFAULT;
873 goto out;
874 }
875
876 err = kstrtoint(strstrip(buffer), 0, &oom_adj);
877 if (err)
878 goto out;
879 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
880 oom_adj != OOM_DISABLE) {
881 err = -EINVAL;
882 goto out;
883 }
884
885 task = get_proc_task(file_inode(file));
886 if (!task) {
887 err = -ESRCH;
888 goto out;
889 }
890
891 task_lock(task);
892 if (!task->mm) {
893 err = -EINVAL;
894 goto err_task_lock;
895 }
896
897 if (!lock_task_sighand(task, &flags)) {
898 err = -ESRCH;
899 goto err_task_lock;
900 }
901
902 /*
903 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
904 * value is always attainable.
905 */
906 if (oom_adj == OOM_ADJUST_MAX)
907 oom_adj = OOM_SCORE_ADJ_MAX;
908 else
909 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
910
911 if (oom_adj < task->signal->oom_score_adj &&
912 !capable(CAP_SYS_RESOURCE)) {
913 err = -EACCES;
914 goto err_sighand;
915 }
916
917 /*
918 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
919 * /proc/pid/oom_score_adj instead.
920 */
921 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
922 current->comm, task_pid_nr(current), task_pid_nr(task),
923 task_pid_nr(task));
924
925 task->signal->oom_score_adj = oom_adj;
926 trace_oom_score_adj_update(task);
927err_sighand:
928 unlock_task_sighand(task, &flags);
929err_task_lock:
930 task_unlock(task);
931 put_task_struct(task);
932out:
933 return err < 0 ? err : count;
934}
935
936static const struct file_operations proc_oom_adj_operations = {
937 .read = oom_adj_read,
938 .write = oom_adj_write,
939 .llseek = generic_file_llseek,
940};
941
942static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
943 size_t count, loff_t *ppos)
944{
945 struct task_struct *task = get_proc_task(file_inode(file));
946 char buffer[PROC_NUMBUF];
947 short oom_score_adj = OOM_SCORE_ADJ_MIN;
948 unsigned long flags;
949 size_t len;
950
951 if (!task)
952 return -ESRCH;
953 if (lock_task_sighand(task, &flags)) {
954 oom_score_adj = task->signal->oom_score_adj;
955 unlock_task_sighand(task, &flags);
956 }
957 put_task_struct(task);
958 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
959 return simple_read_from_buffer(buf, count, ppos, buffer, len);
960}
961
962static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
963 size_t count, loff_t *ppos)
964{
965 struct task_struct *task;
966 char buffer[PROC_NUMBUF];
967 unsigned long flags;
968 int oom_score_adj;
969 int err;
970
971 memset(buffer, 0, sizeof(buffer));
972 if (count > sizeof(buffer) - 1)
973 count = sizeof(buffer) - 1;
974 if (copy_from_user(buffer, buf, count)) {
975 err = -EFAULT;
976 goto out;
977 }
978
979 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
980 if (err)
981 goto out;
982 if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
983 oom_score_adj > OOM_SCORE_ADJ_MAX) {
984 err = -EINVAL;
985 goto out;
986 }
987
988 task = get_proc_task(file_inode(file));
989 if (!task) {
990 err = -ESRCH;
991 goto out;
992 }
993
994 task_lock(task);
995 if (!task->mm) {
996 err = -EINVAL;
997 goto err_task_lock;
998 }
999
1000 if (!lock_task_sighand(task, &flags)) {
1001 err = -ESRCH;
1002 goto err_task_lock;
1003 }
1004
1005 if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1006 !capable(CAP_SYS_RESOURCE)) {
1007 err = -EACCES;
1008 goto err_sighand;
1009 }
1010
1011 task->signal->oom_score_adj = (short)oom_score_adj;
1012 if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1013 task->signal->oom_score_adj_min = (short)oom_score_adj;
1014 trace_oom_score_adj_update(task);
1015
1016err_sighand:
1017 unlock_task_sighand(task, &flags);
1018err_task_lock:
1019 task_unlock(task);
1020 put_task_struct(task);
1021out:
1022 return err < 0 ? err : count;
1023}
1024
1025static const struct file_operations proc_oom_score_adj_operations = {
1026 .read = oom_score_adj_read,
1027 .write = oom_score_adj_write,
1028 .llseek = default_llseek,
1029};
1030
1031#ifdef CONFIG_AUDITSYSCALL
1032#define TMPBUFLEN 21
1033static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1034 size_t count, loff_t *ppos)
1035{
1036 struct inode * inode = file_inode(file);
1037 struct task_struct *task = get_proc_task(inode);
1038 ssize_t length;
1039 char tmpbuf[TMPBUFLEN];
1040
1041 if (!task)
1042 return -ESRCH;
1043 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1044 from_kuid(file->f_cred->user_ns,
1045 audit_get_loginuid(task)));
1046 put_task_struct(task);
1047 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1048}
1049
1050static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1051 size_t count, loff_t *ppos)
1052{
1053 struct inode * inode = file_inode(file);
1054 char *page, *tmp;
1055 ssize_t length;
1056 uid_t loginuid;
1057 kuid_t kloginuid;
1058
1059 rcu_read_lock();
1060 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1061 rcu_read_unlock();
1062 return -EPERM;
1063 }
1064 rcu_read_unlock();
1065
1066 if (count >= PAGE_SIZE)
1067 count = PAGE_SIZE - 1;
1068
1069 if (*ppos != 0) {
1070 /* No partial writes. */
1071 return -EINVAL;
1072 }
1073 page = (char*)__get_free_page(GFP_TEMPORARY);
1074 if (!page)
1075 return -ENOMEM;
1076 length = -EFAULT;
1077 if (copy_from_user(page, buf, count))
1078 goto out_free_page;
1079
1080 page[count] = '\0';
1081 loginuid = simple_strtoul(page, &tmp, 10);
1082 if (tmp == page) {
1083 length = -EINVAL;
1084 goto out_free_page;
1085
1086 }
1087
1088 /* is userspace tring to explicitly UNSET the loginuid? */
1089 if (loginuid == AUDIT_UID_UNSET) {
1090 kloginuid = INVALID_UID;
1091 } else {
1092 kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1093 if (!uid_valid(kloginuid)) {
1094 length = -EINVAL;
1095 goto out_free_page;
1096 }
1097 }
1098
1099 length = audit_set_loginuid(kloginuid);
1100 if (likely(length == 0))
1101 length = count;
1102
1103out_free_page:
1104 free_page((unsigned long) page);
1105 return length;
1106}
1107
1108static const struct file_operations proc_loginuid_operations = {
1109 .read = proc_loginuid_read,
1110 .write = proc_loginuid_write,
1111 .llseek = generic_file_llseek,
1112};
1113
1114static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1115 size_t count, loff_t *ppos)
1116{
1117 struct inode * inode = file_inode(file);
1118 struct task_struct *task = get_proc_task(inode);
1119 ssize_t length;
1120 char tmpbuf[TMPBUFLEN];
1121
1122 if (!task)
1123 return -ESRCH;
1124 length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1125 audit_get_sessionid(task));
1126 put_task_struct(task);
1127 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1128}
1129
1130static const struct file_operations proc_sessionid_operations = {
1131 .read = proc_sessionid_read,
1132 .llseek = generic_file_llseek,
1133};
1134#endif
1135
1136#ifdef CONFIG_FAULT_INJECTION
1137static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1138 size_t count, loff_t *ppos)
1139{
1140 struct task_struct *task = get_proc_task(file_inode(file));
1141 char buffer[PROC_NUMBUF];
1142 size_t len;
1143 int make_it_fail;
1144
1145 if (!task)
1146 return -ESRCH;
1147 make_it_fail = task->make_it_fail;
1148 put_task_struct(task);
1149
1150 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1151
1152 return simple_read_from_buffer(buf, count, ppos, buffer, len);
1153}
1154
1155static ssize_t proc_fault_inject_write(struct file * file,
1156 const char __user * buf, size_t count, loff_t *ppos)
1157{
1158 struct task_struct *task;
1159 char buffer[PROC_NUMBUF], *end;
1160 int make_it_fail;
1161
1162 if (!capable(CAP_SYS_RESOURCE))
1163 return -EPERM;
1164 memset(buffer, 0, sizeof(buffer));
1165 if (count > sizeof(buffer) - 1)
1166 count = sizeof(buffer) - 1;
1167 if (copy_from_user(buffer, buf, count))
1168 return -EFAULT;
1169 make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1170 if (*end)
1171 return -EINVAL;
1172 if (make_it_fail < 0 || make_it_fail > 1)
1173 return -EINVAL;
1174
1175 task = get_proc_task(file_inode(file));
1176 if (!task)
1177 return -ESRCH;
1178 task->make_it_fail = make_it_fail;
1179 put_task_struct(task);
1180
1181 return count;
1182}
1183
1184static const struct file_operations proc_fault_inject_operations = {
1185 .read = proc_fault_inject_read,
1186 .write = proc_fault_inject_write,
1187 .llseek = generic_file_llseek,
1188};
1189#endif
1190
1191
1192#ifdef CONFIG_SCHED_DEBUG
1193/*
1194 * Print out various scheduling related per-task fields:
1195 */
1196static int sched_show(struct seq_file *m, void *v)
1197{
1198 struct inode *inode = m->private;
1199 struct task_struct *p;
1200
1201 p = get_proc_task(inode);
1202 if (!p)
1203 return -ESRCH;
1204 proc_sched_show_task(p, m);
1205
1206 put_task_struct(p);
1207
1208 return 0;
1209}
1210
1211static ssize_t
1212sched_write(struct file *file, const char __user *buf,
1213 size_t count, loff_t *offset)
1214{
1215 struct inode *inode = file_inode(file);
1216 struct task_struct *p;
1217
1218 p = get_proc_task(inode);
1219 if (!p)
1220 return -ESRCH;
1221 proc_sched_set_task(p);
1222
1223 put_task_struct(p);
1224
1225 return count;
1226}
1227
1228static int sched_open(struct inode *inode, struct file *filp)
1229{
1230 return single_open(filp, sched_show, inode);
1231}
1232
1233static const struct file_operations proc_pid_sched_operations = {
1234 .open = sched_open,
1235 .read = seq_read,
1236 .write = sched_write,
1237 .llseek = seq_lseek,
1238 .release = single_release,
1239};
1240
1241#endif
1242
1243#ifdef CONFIG_SCHED_AUTOGROUP
1244/*
1245 * Print out autogroup related information:
1246 */
1247static int sched_autogroup_show(struct seq_file *m, void *v)
1248{
1249 struct inode *inode = m->private;
1250 struct task_struct *p;
1251
1252 p = get_proc_task(inode);
1253 if (!p)
1254 return -ESRCH;
1255 proc_sched_autogroup_show_task(p, m);
1256
1257 put_task_struct(p);
1258
1259 return 0;
1260}
1261
1262static ssize_t
1263sched_autogroup_write(struct file *file, const char __user *buf,
1264 size_t count, loff_t *offset)
1265{
1266 struct inode *inode = file_inode(file);
1267 struct task_struct *p;
1268 char buffer[PROC_NUMBUF];
1269 int nice;
1270 int err;
1271
1272 memset(buffer, 0, sizeof(buffer));
1273 if (count > sizeof(buffer) - 1)
1274 count = sizeof(buffer) - 1;
1275 if (copy_from_user(buffer, buf, count))
1276 return -EFAULT;
1277
1278 err = kstrtoint(strstrip(buffer), 0, &nice);
1279 if (err < 0)
1280 return err;
1281
1282 p = get_proc_task(inode);
1283 if (!p)
1284 return -ESRCH;
1285
1286 err = proc_sched_autogroup_set_nice(p, nice);
1287 if (err)
1288 count = err;
1289
1290 put_task_struct(p);
1291
1292 return count;
1293}
1294
1295static int sched_autogroup_open(struct inode *inode, struct file *filp)
1296{
1297 int ret;
1298
1299 ret = single_open(filp, sched_autogroup_show, NULL);
1300 if (!ret) {
1301 struct seq_file *m = filp->private_data;
1302
1303 m->private = inode;
1304 }
1305 return ret;
1306}
1307
1308static const struct file_operations proc_pid_sched_autogroup_operations = {
1309 .open = sched_autogroup_open,
1310 .read = seq_read,
1311 .write = sched_autogroup_write,
1312 .llseek = seq_lseek,
1313 .release = single_release,
1314};
1315
1316#endif /* CONFIG_SCHED_AUTOGROUP */
1317
1318static ssize_t comm_write(struct file *file, const char __user *buf,
1319 size_t count, loff_t *offset)
1320{
1321 struct inode *inode = file_inode(file);
1322 struct task_struct *p;
1323 char buffer[TASK_COMM_LEN];
1324 const size_t maxlen = sizeof(buffer) - 1;
1325
1326 memset(buffer, 0, sizeof(buffer));
1327 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1328 return -EFAULT;
1329
1330 p = get_proc_task(inode);
1331 if (!p)
1332 return -ESRCH;
1333
1334 if (same_thread_group(current, p))
1335 set_task_comm(p, buffer);
1336 else
1337 count = -EINVAL;
1338
1339 put_task_struct(p);
1340
1341 return count;
1342}
1343
1344static int comm_show(struct seq_file *m, void *v)
1345{
1346 struct inode *inode = m->private;
1347 struct task_struct *p;
1348
1349 p = get_proc_task(inode);
1350 if (!p)
1351 return -ESRCH;
1352
1353 task_lock(p);
1354 seq_printf(m, "%s\n", p->comm);
1355 task_unlock(p);
1356
1357 put_task_struct(p);
1358
1359 return 0;
1360}
1361
1362static int comm_open(struct inode *inode, struct file *filp)
1363{
1364 return single_open(filp, comm_show, inode);
1365}
1366
1367static const struct file_operations proc_pid_set_comm_operations = {
1368 .open = comm_open,
1369 .read = seq_read,
1370 .write = comm_write,
1371 .llseek = seq_lseek,
1372 .release = single_release,
1373};
1374
1375static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1376{
1377 struct task_struct *task;
1378 struct mm_struct *mm;
1379 struct file *exe_file;
1380
1381 task = get_proc_task(dentry->d_inode);
1382 if (!task)
1383 return -ENOENT;
1384 mm = get_task_mm(task);
1385 put_task_struct(task);
1386 if (!mm)
1387 return -ENOENT;
1388 exe_file = get_mm_exe_file(mm);
1389 mmput(mm);
1390 if (exe_file) {
1391 *exe_path = exe_file->f_path;
1392 path_get(&exe_file->f_path);
1393 fput(exe_file);
1394 return 0;
1395 } else
1396 return -ENOENT;
1397}
1398
1399static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
1400{
1401 struct inode *inode = dentry->d_inode;
1402 struct path path;
1403 int error = -EACCES;
1404
1405 /* Are we allowed to snoop on the tasks file descriptors? */
1406 if (!proc_fd_access_allowed(inode))
1407 goto out;
1408
1409 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1410 if (error)
1411 goto out;
1412
1413 nd_jump_link(nd, &path);
1414 return NULL;
1415out:
1416 return ERR_PTR(error);
1417}
1418
1419static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1420{
1421 char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1422 char *pathname;
1423 int len;
1424
1425 if (!tmp)
1426 return -ENOMEM;
1427
1428 pathname = d_path(path, tmp, PAGE_SIZE);
1429 len = PTR_ERR(pathname);
1430 if (IS_ERR(pathname))
1431 goto out;
1432 len = tmp + PAGE_SIZE - 1 - pathname;
1433
1434 if (len > buflen)
1435 len = buflen;
1436 if (copy_to_user(buffer, pathname, len))
1437 len = -EFAULT;
1438 out:
1439 free_page((unsigned long)tmp);
1440 return len;
1441}
1442
1443static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1444{
1445 int error = -EACCES;
1446 struct inode *inode = dentry->d_inode;
1447 struct path path;
1448
1449 /* Are we allowed to snoop on the tasks file descriptors? */
1450 if (!proc_fd_access_allowed(inode))
1451 goto out;
1452
1453 error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1454 if (error)
1455 goto out;
1456
1457 error = do_proc_readlink(&path, buffer, buflen);
1458 path_put(&path);
1459out:
1460 return error;
1461}
1462
1463const struct inode_operations proc_pid_link_inode_operations = {
1464 .readlink = proc_pid_readlink,
1465 .follow_link = proc_pid_follow_link,
1466 .setattr = proc_setattr,
1467};
1468
1469
1470/* building an inode */
1471
1472struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1473{
1474 struct inode * inode;
1475 struct proc_inode *ei;
1476 const struct cred *cred;
1477
1478 /* We need a new inode */
1479
1480 inode = new_inode(sb);
1481 if (!inode)
1482 goto out;
1483
1484 /* Common stuff */
1485 ei = PROC_I(inode);
1486 inode->i_ino = get_next_ino();
1487 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1488 inode->i_op = &proc_def_inode_operations;
1489
1490 /*
1491 * grab the reference to task.
1492 */
1493 ei->pid = get_task_pid(task, PIDTYPE_PID);
1494 if (!ei->pid)
1495 goto out_unlock;
1496
1497 if (task_dumpable(task)) {
1498 rcu_read_lock();
1499 cred = __task_cred(task);
1500 inode->i_uid = cred->euid;
1501 inode->i_gid = cred->egid;
1502 rcu_read_unlock();
1503 }
1504 security_task_to_inode(task, inode);
1505
1506out:
1507 return inode;
1508
1509out_unlock:
1510 iput(inode);
1511 return NULL;
1512}
1513
1514int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1515{
1516 struct inode *inode = dentry->d_inode;
1517 struct task_struct *task;
1518 const struct cred *cred;
1519 struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1520
1521 generic_fillattr(inode, stat);
1522
1523 rcu_read_lock();
1524 stat->uid = GLOBAL_ROOT_UID;
1525 stat->gid = GLOBAL_ROOT_GID;
1526 task = pid_task(proc_pid(inode), PIDTYPE_PID);
1527 if (task) {
1528 if (!has_pid_permissions(pid, task, 2)) {
1529 rcu_read_unlock();
1530 /*
1531 * This doesn't prevent learning whether PID exists,
1532 * it only makes getattr() consistent with readdir().
1533 */
1534 return -ENOENT;
1535 }
1536 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1537 task_dumpable(task)) {
1538 cred = __task_cred(task);
1539 stat->uid = cred->euid;
1540 stat->gid = cred->egid;
1541 }
1542 }
1543 rcu_read_unlock();
1544 return 0;
1545}
1546
1547/* dentry stuff */
1548
1549/*
1550 * Exceptional case: normally we are not allowed to unhash a busy
1551 * directory. In this case, however, we can do it - no aliasing problems
1552 * due to the way we treat inodes.
1553 *
1554 * Rewrite the inode's ownerships here because the owning task may have
1555 * performed a setuid(), etc.
1556 *
1557 * Before the /proc/pid/status file was created the only way to read
1558 * the effective uid of a /process was to stat /proc/pid. Reading
1559 * /proc/pid/status is slow enough that procps and other packages
1560 * kept stating /proc/pid. To keep the rules in /proc simple I have
1561 * made this apply to all per process world readable and executable
1562 * directories.
1563 */
1564int pid_revalidate(struct dentry *dentry, unsigned int flags)
1565{
1566 struct inode *inode;
1567 struct task_struct *task;
1568 const struct cred *cred;
1569
1570 if (flags & LOOKUP_RCU)
1571 return -ECHILD;
1572
1573 inode = dentry->d_inode;
1574 task = get_proc_task(inode);
1575
1576 if (task) {
1577 if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1578 task_dumpable(task)) {
1579 rcu_read_lock();
1580 cred = __task_cred(task);
1581 inode->i_uid = cred->euid;
1582 inode->i_gid = cred->egid;
1583 rcu_read_unlock();
1584 } else {
1585 inode->i_uid = GLOBAL_ROOT_UID;
1586 inode->i_gid = GLOBAL_ROOT_GID;
1587 }
1588 inode->i_mode &= ~(S_ISUID | S_ISGID);
1589 security_task_to_inode(task, inode);
1590 put_task_struct(task);
1591 return 1;
1592 }
1593 d_drop(dentry);
1594 return 0;
1595}
1596
1597static inline bool proc_inode_is_dead(struct inode *inode)
1598{
1599 return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1600}
1601
1602int pid_delete_dentry(const struct dentry *dentry)
1603{
1604 /* Is the task we represent dead?
1605 * If so, then don't put the dentry on the lru list,
1606 * kill it immediately.
1607 */
1608 return proc_inode_is_dead(dentry->d_inode);
1609}
1610
1611const struct dentry_operations pid_dentry_operations =
1612{
1613 .d_revalidate = pid_revalidate,
1614 .d_delete = pid_delete_dentry,
1615};
1616
1617/* Lookups */
1618
1619/*
1620 * Fill a directory entry.
1621 *
1622 * If possible create the dcache entry and derive our inode number and
1623 * file type from dcache entry.
1624 *
1625 * Since all of the proc inode numbers are dynamically generated, the inode
1626 * numbers do not exist until the inode is cache. This means creating the
1627 * the dcache entry in readdir is necessary to keep the inode numbers
1628 * reported by readdir in sync with the inode numbers reported
1629 * by stat.
1630 */
1631bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1632 const char *name, int len,
1633 instantiate_t instantiate, struct task_struct *task, const void *ptr)
1634{
1635 struct dentry *child, *dir = file->f_path.dentry;
1636 struct qstr qname = QSTR_INIT(name, len);
1637 struct inode *inode;
1638 unsigned type;
1639 ino_t ino;
1640
1641 child = d_hash_and_lookup(dir, &qname);
1642 if (!child) {
1643 child = d_alloc(dir, &qname);
1644 if (!child)
1645 goto end_instantiate;
1646 if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1647 dput(child);
1648 goto end_instantiate;
1649 }
1650 }
1651 inode = child->d_inode;
1652 ino = inode->i_ino;
1653 type = inode->i_mode >> 12;
1654 dput(child);
1655 return dir_emit(ctx, name, len, ino, type);
1656
1657end_instantiate:
1658 return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1659}
1660
1661#ifdef CONFIG_CHECKPOINT_RESTORE
1662
1663/*
1664 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1665 * which represent vma start and end addresses.
1666 */
1667static int dname_to_vma_addr(struct dentry *dentry,
1668 unsigned long *start, unsigned long *end)
1669{
1670 if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1671 return -EINVAL;
1672
1673 return 0;
1674}
1675
1676static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1677{
1678 unsigned long vm_start, vm_end;
1679 bool exact_vma_exists = false;
1680 struct mm_struct *mm = NULL;
1681 struct task_struct *task;
1682 const struct cred *cred;
1683 struct inode *inode;
1684 int status = 0;
1685
1686 if (flags & LOOKUP_RCU)
1687 return -ECHILD;
1688
1689 if (!capable(CAP_SYS_ADMIN)) {
1690 status = -EPERM;
1691 goto out_notask;
1692 }
1693
1694 inode = dentry->d_inode;
1695 task = get_proc_task(inode);
1696 if (!task)
1697 goto out_notask;
1698
1699 mm = mm_access(task, PTRACE_MODE_READ);
1700 if (IS_ERR_OR_NULL(mm))
1701 goto out;
1702
1703 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1704 down_read(&mm->mmap_sem);
1705 exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1706 up_read(&mm->mmap_sem);
1707 }
1708
1709 mmput(mm);
1710
1711 if (exact_vma_exists) {
1712 if (task_dumpable(task)) {
1713 rcu_read_lock();
1714 cred = __task_cred(task);
1715 inode->i_uid = cred->euid;
1716 inode->i_gid = cred->egid;
1717 rcu_read_unlock();
1718 } else {
1719 inode->i_uid = GLOBAL_ROOT_UID;
1720 inode->i_gid = GLOBAL_ROOT_GID;
1721 }
1722 security_task_to_inode(task, inode);
1723 status = 1;
1724 }
1725
1726out:
1727 put_task_struct(task);
1728
1729out_notask:
1730 if (status <= 0)
1731 d_drop(dentry);
1732
1733 return status;
1734}
1735
1736static const struct dentry_operations tid_map_files_dentry_operations = {
1737 .d_revalidate = map_files_d_revalidate,
1738 .d_delete = pid_delete_dentry,
1739};
1740
1741static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1742{
1743 unsigned long vm_start, vm_end;
1744 struct vm_area_struct *vma;
1745 struct task_struct *task;
1746 struct mm_struct *mm;
1747 int rc;
1748
1749 rc = -ENOENT;
1750 task = get_proc_task(dentry->d_inode);
1751 if (!task)
1752 goto out;
1753
1754 mm = get_task_mm(task);
1755 put_task_struct(task);
1756 if (!mm)
1757 goto out;
1758
1759 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1760 if (rc)
1761 goto out_mmput;
1762
1763 rc = -ENOENT;
1764 down_read(&mm->mmap_sem);
1765 vma = find_exact_vma(mm, vm_start, vm_end);
1766 if (vma && vma->vm_file) {
1767 *path = vma->vm_file->f_path;
1768 path_get(path);
1769 rc = 0;
1770 }
1771 up_read(&mm->mmap_sem);
1772
1773out_mmput:
1774 mmput(mm);
1775out:
1776 return rc;
1777}
1778
1779struct map_files_info {
1780 fmode_t mode;
1781 unsigned long len;
1782 unsigned char name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1783};
1784
1785static int
1786proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1787 struct task_struct *task, const void *ptr)
1788{
1789 fmode_t mode = (fmode_t)(unsigned long)ptr;
1790 struct proc_inode *ei;
1791 struct inode *inode;
1792
1793 inode = proc_pid_make_inode(dir->i_sb, task);
1794 if (!inode)
1795 return -ENOENT;
1796
1797 ei = PROC_I(inode);
1798 ei->op.proc_get_link = proc_map_files_get_link;
1799
1800 inode->i_op = &proc_pid_link_inode_operations;
1801 inode->i_size = 64;
1802 inode->i_mode = S_IFLNK;
1803
1804 if (mode & FMODE_READ)
1805 inode->i_mode |= S_IRUSR;
1806 if (mode & FMODE_WRITE)
1807 inode->i_mode |= S_IWUSR;
1808
1809 d_set_d_op(dentry, &tid_map_files_dentry_operations);
1810 d_add(dentry, inode);
1811
1812 return 0;
1813}
1814
1815static struct dentry *proc_map_files_lookup(struct inode *dir,
1816 struct dentry *dentry, unsigned int flags)
1817{
1818 unsigned long vm_start, vm_end;
1819 struct vm_area_struct *vma;
1820 struct task_struct *task;
1821 int result;
1822 struct mm_struct *mm;
1823
1824 result = -EPERM;
1825 if (!capable(CAP_SYS_ADMIN))
1826 goto out;
1827
1828 result = -ENOENT;
1829 task = get_proc_task(dir);
1830 if (!task)
1831 goto out;
1832
1833 result = -EACCES;
1834 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1835 goto out_put_task;
1836
1837 result = -ENOENT;
1838 if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1839 goto out_put_task;
1840
1841 mm = get_task_mm(task);
1842 if (!mm)
1843 goto out_put_task;
1844
1845 down_read(&mm->mmap_sem);
1846 vma = find_exact_vma(mm, vm_start, vm_end);
1847 if (!vma)
1848 goto out_no_vma;
1849
1850 if (vma->vm_file)
1851 result = proc_map_files_instantiate(dir, dentry, task,
1852 (void *)(unsigned long)vma->vm_file->f_mode);
1853
1854out_no_vma:
1855 up_read(&mm->mmap_sem);
1856 mmput(mm);
1857out_put_task:
1858 put_task_struct(task);
1859out:
1860 return ERR_PTR(result);
1861}
1862
1863static const struct inode_operations proc_map_files_inode_operations = {
1864 .lookup = proc_map_files_lookup,
1865 .permission = proc_fd_permission,
1866 .setattr = proc_setattr,
1867};
1868
1869static int
1870proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1871{
1872 struct vm_area_struct *vma;
1873 struct task_struct *task;
1874 struct mm_struct *mm;
1875 unsigned long nr_files, pos, i;
1876 struct flex_array *fa = NULL;
1877 struct map_files_info info;
1878 struct map_files_info *p;
1879 int ret;
1880
1881 ret = -EPERM;
1882 if (!capable(CAP_SYS_ADMIN))
1883 goto out;
1884
1885 ret = -ENOENT;
1886 task = get_proc_task(file_inode(file));
1887 if (!task)
1888 goto out;
1889
1890 ret = -EACCES;
1891 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1892 goto out_put_task;
1893
1894 ret = 0;
1895 if (!dir_emit_dots(file, ctx))
1896 goto out_put_task;
1897
1898 mm = get_task_mm(task);
1899 if (!mm)
1900 goto out_put_task;
1901 down_read(&mm->mmap_sem);
1902
1903 nr_files = 0;
1904
1905 /*
1906 * We need two passes here:
1907 *
1908 * 1) Collect vmas of mapped files with mmap_sem taken
1909 * 2) Release mmap_sem and instantiate entries
1910 *
1911 * otherwise we get lockdep complained, since filldir()
1912 * routine might require mmap_sem taken in might_fault().
1913 */
1914
1915 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1916 if (vma->vm_file && ++pos > ctx->pos)
1917 nr_files++;
1918 }
1919
1920 if (nr_files) {
1921 fa = flex_array_alloc(sizeof(info), nr_files,
1922 GFP_KERNEL);
1923 if (!fa || flex_array_prealloc(fa, 0, nr_files,
1924 GFP_KERNEL)) {
1925 ret = -ENOMEM;
1926 if (fa)
1927 flex_array_free(fa);
1928 up_read(&mm->mmap_sem);
1929 mmput(mm);
1930 goto out_put_task;
1931 }
1932 for (i = 0, vma = mm->mmap, pos = 2; vma;
1933 vma = vma->vm_next) {
1934 if (!vma->vm_file)
1935 continue;
1936 if (++pos <= ctx->pos)
1937 continue;
1938
1939 info.mode = vma->vm_file->f_mode;
1940 info.len = snprintf(info.name,
1941 sizeof(info.name), "%lx-%lx",
1942 vma->vm_start, vma->vm_end);
1943 if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1944 BUG();
1945 }
1946 }
1947 up_read(&mm->mmap_sem);
1948
1949 for (i = 0; i < nr_files; i++) {
1950 p = flex_array_get(fa, i);
1951 if (!proc_fill_cache(file, ctx,
1952 p->name, p->len,
1953 proc_map_files_instantiate,
1954 task,
1955 (void *)(unsigned long)p->mode))
1956 break;
1957 ctx->pos++;
1958 }
1959 if (fa)
1960 flex_array_free(fa);
1961 mmput(mm);
1962
1963out_put_task:
1964 put_task_struct(task);
1965out:
1966 return ret;
1967}
1968
1969static const struct file_operations proc_map_files_operations = {
1970 .read = generic_read_dir,
1971 .iterate = proc_map_files_readdir,
1972 .llseek = default_llseek,
1973};
1974
1975struct timers_private {
1976 struct pid *pid;
1977 struct task_struct *task;
1978 struct sighand_struct *sighand;
1979 struct pid_namespace *ns;
1980 unsigned long flags;
1981};
1982
1983static void *timers_start(struct seq_file *m, loff_t *pos)
1984{
1985 struct timers_private *tp = m->private;
1986
1987 tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
1988 if (!tp->task)
1989 return ERR_PTR(-ESRCH);
1990
1991 tp->sighand = lock_task_sighand(tp->task, &tp->flags);
1992 if (!tp->sighand)
1993 return ERR_PTR(-ESRCH);
1994
1995 return seq_list_start(&tp->task->signal->posix_timers, *pos);
1996}
1997
1998static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
1999{
2000 struct timers_private *tp = m->private;
2001 return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2002}
2003
2004static void timers_stop(struct seq_file *m, void *v)
2005{
2006 struct timers_private *tp = m->private;
2007
2008 if (tp->sighand) {
2009 unlock_task_sighand(tp->task, &tp->flags);
2010 tp->sighand = NULL;
2011 }
2012
2013 if (tp->task) {
2014 put_task_struct(tp->task);
2015 tp->task = NULL;
2016 }
2017}
2018
2019static int show_timer(struct seq_file *m, void *v)
2020{
2021 struct k_itimer *timer;
2022 struct timers_private *tp = m->private;
2023 int notify;
2024 static const char * const nstr[] = {
2025 [SIGEV_SIGNAL] = "signal",
2026 [SIGEV_NONE] = "none",
2027 [SIGEV_THREAD] = "thread",
2028 };
2029
2030 timer = list_entry((struct list_head *)v, struct k_itimer, list);
2031 notify = timer->it_sigev_notify;
2032
2033 seq_printf(m, "ID: %d\n", timer->it_id);
2034 seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2035 timer->sigq->info.si_value.sival_ptr);
2036 seq_printf(m, "notify: %s/%s.%d\n",
2037 nstr[notify & ~SIGEV_THREAD_ID],
2038 (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2039 pid_nr_ns(timer->it_pid, tp->ns));
2040 seq_printf(m, "ClockID: %d\n", timer->it_clock);
2041
2042 return 0;
2043}
2044
2045static const struct seq_operations proc_timers_seq_ops = {
2046 .start = timers_start,
2047 .next = timers_next,
2048 .stop = timers_stop,
2049 .show = show_timer,
2050};
2051
2052static int proc_timers_open(struct inode *inode, struct file *file)
2053{
2054 struct timers_private *tp;
2055
2056 tp = __seq_open_private(file, &proc_timers_seq_ops,
2057 sizeof(struct timers_private));
2058 if (!tp)
2059 return -ENOMEM;
2060
2061 tp->pid = proc_pid(inode);
2062 tp->ns = inode->i_sb->s_fs_info;
2063 return 0;
2064}
2065
2066static const struct file_operations proc_timers_operations = {
2067 .open = proc_timers_open,
2068 .read = seq_read,
2069 .llseek = seq_lseek,
2070 .release = seq_release_private,
2071};
2072#endif /* CONFIG_CHECKPOINT_RESTORE */
2073
2074static int proc_pident_instantiate(struct inode *dir,
2075 struct dentry *dentry, struct task_struct *task, const void *ptr)
2076{
2077 const struct pid_entry *p = ptr;
2078 struct inode *inode;
2079 struct proc_inode *ei;
2080
2081 inode = proc_pid_make_inode(dir->i_sb, task);
2082 if (!inode)
2083 goto out;
2084
2085 ei = PROC_I(inode);
2086 inode->i_mode = p->mode;
2087 if (S_ISDIR(inode->i_mode))
2088 set_nlink(inode, 2); /* Use getattr to fix if necessary */
2089 if (p->iop)
2090 inode->i_op = p->iop;
2091 if (p->fop)
2092 inode->i_fop = p->fop;
2093 ei->op = p->op;
2094 d_set_d_op(dentry, &pid_dentry_operations);
2095 d_add(dentry, inode);
2096 /* Close the race of the process dying before we return the dentry */
2097 if (pid_revalidate(dentry, 0))
2098 return 0;
2099out:
2100 return -ENOENT;
2101}
2102
2103static struct dentry *proc_pident_lookup(struct inode *dir,
2104 struct dentry *dentry,
2105 const struct pid_entry *ents,
2106 unsigned int nents)
2107{
2108 int error;
2109 struct task_struct *task = get_proc_task(dir);
2110 const struct pid_entry *p, *last;
2111
2112 error = -ENOENT;
2113
2114 if (!task)
2115 goto out_no_task;
2116
2117 /*
2118 * Yes, it does not scale. And it should not. Don't add
2119 * new entries into /proc/<tgid>/ without very good reasons.
2120 */
2121 last = &ents[nents - 1];
2122 for (p = ents; p <= last; p++) {
2123 if (p->len != dentry->d_name.len)
2124 continue;
2125 if (!memcmp(dentry->d_name.name, p->name, p->len))
2126 break;
2127 }
2128 if (p > last)
2129 goto out;
2130
2131 error = proc_pident_instantiate(dir, dentry, task, p);
2132out:
2133 put_task_struct(task);
2134out_no_task:
2135 return ERR_PTR(error);
2136}
2137
2138static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2139 const struct pid_entry *ents, unsigned int nents)
2140{
2141 struct task_struct *task = get_proc_task(file_inode(file));
2142 const struct pid_entry *p;
2143
2144 if (!task)
2145 return -ENOENT;
2146
2147 if (!dir_emit_dots(file, ctx))
2148 goto out;
2149
2150 if (ctx->pos >= nents + 2)
2151 goto out;
2152
2153 for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2154 if (!proc_fill_cache(file, ctx, p->name, p->len,
2155 proc_pident_instantiate, task, p))
2156 break;
2157 ctx->pos++;
2158 }
2159out:
2160 put_task_struct(task);
2161 return 0;
2162}
2163
2164#ifdef CONFIG_SECURITY
2165static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2166 size_t count, loff_t *ppos)
2167{
2168 struct inode * inode = file_inode(file);
2169 char *p = NULL;
2170 ssize_t length;
2171 struct task_struct *task = get_proc_task(inode);
2172
2173 if (!task)
2174 return -ESRCH;
2175
2176 length = security_getprocattr(task,
2177 (char*)file->f_path.dentry->d_name.name,
2178 &p);
2179 put_task_struct(task);
2180 if (length > 0)
2181 length = simple_read_from_buffer(buf, count, ppos, p, length);
2182 kfree(p);
2183 return length;
2184}
2185
2186static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2187 size_t count, loff_t *ppos)
2188{
2189 struct inode * inode = file_inode(file);
2190 char *page;
2191 ssize_t length;
2192 struct task_struct *task = get_proc_task(inode);
2193
2194 length = -ESRCH;
2195 if (!task)
2196 goto out_no_task;
2197 if (count > PAGE_SIZE)
2198 count = PAGE_SIZE;
2199
2200 /* No partial writes. */
2201 length = -EINVAL;
2202 if (*ppos != 0)
2203 goto out;
2204
2205 length = -ENOMEM;
2206 page = (char*)__get_free_page(GFP_TEMPORARY);
2207 if (!page)
2208 goto out;
2209
2210 length = -EFAULT;
2211 if (copy_from_user(page, buf, count))
2212 goto out_free;
2213
2214 /* Guard against adverse ptrace interaction */
2215 length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2216 if (length < 0)
2217 goto out_free;
2218
2219 length = security_setprocattr(task,
2220 (char*)file->f_path.dentry->d_name.name,
2221 (void*)page, count);
2222 mutex_unlock(&task->signal->cred_guard_mutex);
2223out_free:
2224 free_page((unsigned long) page);
2225out:
2226 put_task_struct(task);
2227out_no_task:
2228 return length;
2229}
2230
2231static const struct file_operations proc_pid_attr_operations = {
2232 .read = proc_pid_attr_read,
2233 .write = proc_pid_attr_write,
2234 .llseek = generic_file_llseek,
2235};
2236
2237static const struct pid_entry attr_dir_stuff[] = {
2238 REG("current", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2239 REG("prev", S_IRUGO, proc_pid_attr_operations),
2240 REG("exec", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2241 REG("fscreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2242 REG("keycreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2243 REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2244};
2245
2246static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2247{
2248 return proc_pident_readdir(file, ctx,
2249 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2250}
2251
2252static const struct file_operations proc_attr_dir_operations = {
2253 .read = generic_read_dir,
2254 .iterate = proc_attr_dir_readdir,
2255 .llseek = default_llseek,
2256};
2257
2258static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2259 struct dentry *dentry, unsigned int flags)
2260{
2261 return proc_pident_lookup(dir, dentry,
2262 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2263}
2264
2265static const struct inode_operations proc_attr_dir_inode_operations = {
2266 .lookup = proc_attr_dir_lookup,
2267 .getattr = pid_getattr,
2268 .setattr = proc_setattr,
2269};
2270
2271#endif
2272
2273#ifdef CONFIG_ELF_CORE
2274static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2275 size_t count, loff_t *ppos)
2276{
2277 struct task_struct *task = get_proc_task(file_inode(file));
2278 struct mm_struct *mm;
2279 char buffer[PROC_NUMBUF];
2280 size_t len;
2281 int ret;
2282
2283 if (!task)
2284 return -ESRCH;
2285
2286 ret = 0;
2287 mm = get_task_mm(task);
2288 if (mm) {
2289 len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2290 ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2291 MMF_DUMP_FILTER_SHIFT));
2292 mmput(mm);
2293 ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2294 }
2295
2296 put_task_struct(task);
2297
2298 return ret;
2299}
2300
2301static ssize_t proc_coredump_filter_write(struct file *file,
2302 const char __user *buf,
2303 size_t count,
2304 loff_t *ppos)
2305{
2306 struct task_struct *task;
2307 struct mm_struct *mm;
2308 char buffer[PROC_NUMBUF], *end;
2309 unsigned int val;
2310 int ret;
2311 int i;
2312 unsigned long mask;
2313
2314 ret = -EFAULT;
2315 memset(buffer, 0, sizeof(buffer));
2316 if (count > sizeof(buffer) - 1)
2317 count = sizeof(buffer) - 1;
2318 if (copy_from_user(buffer, buf, count))
2319 goto out_no_task;
2320
2321 ret = -EINVAL;
2322 val = (unsigned int)simple_strtoul(buffer, &end, 0);
2323 if (*end == '\n')
2324 end++;
2325 if (end - buffer == 0)
2326 goto out_no_task;
2327
2328 ret = -ESRCH;
2329 task = get_proc_task(file_inode(file));
2330 if (!task)
2331 goto out_no_task;
2332
2333 ret = end - buffer;
2334 mm = get_task_mm(task);
2335 if (!mm)
2336 goto out_no_mm;
2337
2338 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2339 if (val & mask)
2340 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2341 else
2342 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2343 }
2344
2345 mmput(mm);
2346 out_no_mm:
2347 put_task_struct(task);
2348 out_no_task:
2349 return ret;
2350}
2351
2352static const struct file_operations proc_coredump_filter_operations = {
2353 .read = proc_coredump_filter_read,
2354 .write = proc_coredump_filter_write,
2355 .llseek = generic_file_llseek,
2356};
2357#endif
2358
2359#ifdef CONFIG_TASK_IO_ACCOUNTING
2360static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2361{
2362 struct task_io_accounting acct = task->ioac;
2363 unsigned long flags;
2364 int result;
2365
2366 result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2367 if (result)
2368 return result;
2369
2370 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2371 result = -EACCES;
2372 goto out_unlock;
2373 }
2374
2375 if (whole && lock_task_sighand(task, &flags)) {
2376 struct task_struct *t = task;
2377
2378 task_io_accounting_add(&acct, &task->signal->ioac);
2379 while_each_thread(task, t)
2380 task_io_accounting_add(&acct, &t->ioac);
2381
2382 unlock_task_sighand(task, &flags);
2383 }
2384 result = seq_printf(m,
2385 "rchar: %llu\n"
2386 "wchar: %llu\n"
2387 "syscr: %llu\n"
2388 "syscw: %llu\n"
2389 "read_bytes: %llu\n"
2390 "write_bytes: %llu\n"
2391 "cancelled_write_bytes: %llu\n",
2392 (unsigned long long)acct.rchar,
2393 (unsigned long long)acct.wchar,
2394 (unsigned long long)acct.syscr,
2395 (unsigned long long)acct.syscw,
2396 (unsigned long long)acct.read_bytes,
2397 (unsigned long long)acct.write_bytes,
2398 (unsigned long long)acct.cancelled_write_bytes);
2399out_unlock:
2400 mutex_unlock(&task->signal->cred_guard_mutex);
2401 return result;
2402}
2403
2404static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2405 struct pid *pid, struct task_struct *task)
2406{
2407 return do_io_accounting(task, m, 0);
2408}
2409
2410static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2411 struct pid *pid, struct task_struct *task)
2412{
2413 return do_io_accounting(task, m, 1);
2414}
2415#endif /* CONFIG_TASK_IO_ACCOUNTING */
2416
2417#ifdef CONFIG_USER_NS
2418static int proc_id_map_open(struct inode *inode, struct file *file,
2419 const struct seq_operations *seq_ops)
2420{
2421 struct user_namespace *ns = NULL;
2422 struct task_struct *task;
2423 struct seq_file *seq;
2424 int ret = -EINVAL;
2425
2426 task = get_proc_task(inode);
2427 if (task) {
2428 rcu_read_lock();
2429 ns = get_user_ns(task_cred_xxx(task, user_ns));
2430 rcu_read_unlock();
2431 put_task_struct(task);
2432 }
2433 if (!ns)
2434 goto err;
2435
2436 ret = seq_open(file, seq_ops);
2437 if (ret)
2438 goto err_put_ns;
2439
2440 seq = file->private_data;
2441 seq->private = ns;
2442
2443 return 0;
2444err_put_ns:
2445 put_user_ns(ns);
2446err:
2447 return ret;
2448}
2449
2450static int proc_id_map_release(struct inode *inode, struct file *file)
2451{
2452 struct seq_file *seq = file->private_data;
2453 struct user_namespace *ns = seq->private;
2454 put_user_ns(ns);
2455 return seq_release(inode, file);
2456}
2457
2458static int proc_uid_map_open(struct inode *inode, struct file *file)
2459{
2460 return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2461}
2462
2463static int proc_gid_map_open(struct inode *inode, struct file *file)
2464{
2465 return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2466}
2467
2468static int proc_projid_map_open(struct inode *inode, struct file *file)
2469{
2470 return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2471}
2472
2473static const struct file_operations proc_uid_map_operations = {
2474 .open = proc_uid_map_open,
2475 .write = proc_uid_map_write,
2476 .read = seq_read,
2477 .llseek = seq_lseek,
2478 .release = proc_id_map_release,
2479};
2480
2481static const struct file_operations proc_gid_map_operations = {
2482 .open = proc_gid_map_open,
2483 .write = proc_gid_map_write,
2484 .read = seq_read,
2485 .llseek = seq_lseek,
2486 .release = proc_id_map_release,
2487};
2488
2489static const struct file_operations proc_projid_map_operations = {
2490 .open = proc_projid_map_open,
2491 .write = proc_projid_map_write,
2492 .read = seq_read,
2493 .llseek = seq_lseek,
2494 .release = proc_id_map_release,
2495};
2496#endif /* CONFIG_USER_NS */
2497
2498static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2499 struct pid *pid, struct task_struct *task)
2500{
2501 int err = lock_trace(task);
2502 if (!err) {
2503 seq_printf(m, "%08x\n", task->personality);
2504 unlock_trace(task);
2505 }
2506 return err;
2507}
2508
2509/*
2510 * Thread groups
2511 */
2512static const struct file_operations proc_task_operations;
2513static const struct inode_operations proc_task_inode_operations;
2514
2515static const struct pid_entry tgid_base_stuff[] = {
2516 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2517 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2518#ifdef CONFIG_CHECKPOINT_RESTORE
2519 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2520#endif
2521 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2522 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2523#ifdef CONFIG_NET
2524 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2525#endif
2526 REG("environ", S_IRUSR, proc_environ_operations),
2527 ONE("auxv", S_IRUSR, proc_pid_auxv),
2528 ONE("status", S_IRUGO, proc_pid_status),
2529 ONE("personality", S_IRUSR, proc_pid_personality),
2530 ONE("limits", S_IRUGO, proc_pid_limits),
2531#ifdef CONFIG_SCHED_DEBUG
2532 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2533#endif
2534#ifdef CONFIG_SCHED_AUTOGROUP
2535 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2536#endif
2537 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2538#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2539 ONE("syscall", S_IRUSR, proc_pid_syscall),
2540#endif
2541 ONE("cmdline", S_IRUGO, proc_pid_cmdline),
2542 ONE("stat", S_IRUGO, proc_tgid_stat),
2543 ONE("statm", S_IRUGO, proc_pid_statm),
2544 REG("maps", S_IRUGO, proc_pid_maps_operations),
2545#ifdef CONFIG_NUMA
2546 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
2547#endif
2548 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2549 LNK("cwd", proc_cwd_link),
2550 LNK("root", proc_root_link),
2551 LNK("exe", proc_exe_link),
2552 REG("mounts", S_IRUGO, proc_mounts_operations),
2553 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2554 REG("mountstats", S_IRUSR, proc_mountstats_operations),
2555#ifdef CONFIG_PROC_PAGE_MONITOR
2556 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2557 REG("smaps", S_IRUGO, proc_pid_smaps_operations),
2558 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2559#endif
2560#ifdef CONFIG_SECURITY
2561 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2562#endif
2563#ifdef CONFIG_KALLSYMS
2564 ONE("wchan", S_IRUGO, proc_pid_wchan),
2565#endif
2566#ifdef CONFIG_STACKTRACE
2567 ONE("stack", S_IRUSR, proc_pid_stack),
2568#endif
2569#ifdef CONFIG_SCHEDSTATS
2570 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2571#endif
2572#ifdef CONFIG_LATENCYTOP
2573 REG("latency", S_IRUGO, proc_lstats_operations),
2574#endif
2575#ifdef CONFIG_PROC_PID_CPUSET
2576 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2577#endif
2578#ifdef CONFIG_CGROUPS
2579 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2580#endif
2581 ONE("oom_score", S_IRUGO, proc_oom_score),
2582 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2583 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2584#ifdef CONFIG_AUDITSYSCALL
2585 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2586 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2587#endif
2588#ifdef CONFIG_FAULT_INJECTION
2589 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2590#endif
2591#ifdef CONFIG_ELF_CORE
2592 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2593#endif
2594#ifdef CONFIG_TASK_IO_ACCOUNTING
2595 ONE("io", S_IRUSR, proc_tgid_io_accounting),
2596#endif
2597#ifdef CONFIG_HARDWALL
2598 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2599#endif
2600#ifdef CONFIG_USER_NS
2601 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2602 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2603 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2604#endif
2605#ifdef CONFIG_CHECKPOINT_RESTORE
2606 REG("timers", S_IRUGO, proc_timers_operations),
2607#endif
2608};
2609
2610static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2611{
2612 return proc_pident_readdir(file, ctx,
2613 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2614}
2615
2616static const struct file_operations proc_tgid_base_operations = {
2617 .read = generic_read_dir,
2618 .iterate = proc_tgid_base_readdir,
2619 .llseek = default_llseek,
2620};
2621
2622static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2623{
2624 return proc_pident_lookup(dir, dentry,
2625 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2626}
2627
2628static const struct inode_operations proc_tgid_base_inode_operations = {
2629 .lookup = proc_tgid_base_lookup,
2630 .getattr = pid_getattr,
2631 .setattr = proc_setattr,
2632 .permission = proc_pid_permission,
2633};
2634
2635static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2636{
2637 struct dentry *dentry, *leader, *dir;
2638 char buf[PROC_NUMBUF];
2639 struct qstr name;
2640
2641 name.name = buf;
2642 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2643 /* no ->d_hash() rejects on procfs */
2644 dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2645 if (dentry) {
2646 shrink_dcache_parent(dentry);
2647 d_drop(dentry);
2648 dput(dentry);
2649 }
2650
2651 name.name = buf;
2652 name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2653 leader = d_hash_and_lookup(mnt->mnt_root, &name);
2654 if (!leader)
2655 goto out;
2656
2657 name.name = "task";
2658 name.len = strlen(name.name);
2659 dir = d_hash_and_lookup(leader, &name);
2660 if (!dir)
2661 goto out_put_leader;
2662
2663 name.name = buf;
2664 name.len = snprintf(buf, sizeof(buf), "%d", pid);
2665 dentry = d_hash_and_lookup(dir, &name);
2666 if (dentry) {
2667 shrink_dcache_parent(dentry);
2668 d_drop(dentry);
2669 dput(dentry);
2670 }
2671
2672 dput(dir);
2673out_put_leader:
2674 dput(leader);
2675out:
2676 return;
2677}
2678
2679/**
2680 * proc_flush_task - Remove dcache entries for @task from the /proc dcache.
2681 * @task: task that should be flushed.
2682 *
2683 * When flushing dentries from proc, one needs to flush them from global
2684 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2685 * in. This call is supposed to do all of this job.
2686 *
2687 * Looks in the dcache for
2688 * /proc/@pid
2689 * /proc/@tgid/task/@pid
2690 * if either directory is present flushes it and all of it'ts children
2691 * from the dcache.
2692 *
2693 * It is safe and reasonable to cache /proc entries for a task until
2694 * that task exits. After that they just clog up the dcache with
2695 * useless entries, possibly causing useful dcache entries to be
2696 * flushed instead. This routine is proved to flush those useless
2697 * dcache entries at process exit time.
2698 *
2699 * NOTE: This routine is just an optimization so it does not guarantee
2700 * that no dcache entries will exist at process exit time it
2701 * just makes it very unlikely that any will persist.
2702 */
2703
2704void proc_flush_task(struct task_struct *task)
2705{
2706 int i;
2707 struct pid *pid, *tgid;
2708 struct upid *upid;
2709
2710 pid = task_pid(task);
2711 tgid = task_tgid(task);
2712
2713 for (i = 0; i <= pid->level; i++) {
2714 upid = &pid->numbers[i];
2715 proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2716 tgid->numbers[i].nr);
2717 }
2718}
2719
2720static int proc_pid_instantiate(struct inode *dir,
2721 struct dentry * dentry,
2722 struct task_struct *task, const void *ptr)
2723{
2724 struct inode *inode;
2725
2726 inode = proc_pid_make_inode(dir->i_sb, task);
2727 if (!inode)
2728 goto out;
2729
2730 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2731 inode->i_op = &proc_tgid_base_inode_operations;
2732 inode->i_fop = &proc_tgid_base_operations;
2733 inode->i_flags|=S_IMMUTABLE;
2734
2735 set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2736 ARRAY_SIZE(tgid_base_stuff)));
2737
2738 d_set_d_op(dentry, &pid_dentry_operations);
2739
2740 d_add(dentry, inode);
2741 /* Close the race of the process dying before we return the dentry */
2742 if (pid_revalidate(dentry, 0))
2743 return 0;
2744out:
2745 return -ENOENT;
2746}
2747
2748struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2749{
2750 int result = -ENOENT;
2751 struct task_struct *task;
2752 unsigned tgid;
2753 struct pid_namespace *ns;
2754
2755 tgid = name_to_int(&dentry->d_name);
2756 if (tgid == ~0U)
2757 goto out;
2758
2759 ns = dentry->d_sb->s_fs_info;
2760 rcu_read_lock();
2761 task = find_task_by_pid_ns(tgid, ns);
2762 if (task)
2763 get_task_struct(task);
2764 rcu_read_unlock();
2765 if (!task)
2766 goto out;
2767
2768 result = proc_pid_instantiate(dir, dentry, task, NULL);
2769 put_task_struct(task);
2770out:
2771 return ERR_PTR(result);
2772}
2773
2774/*
2775 * Find the first task with tgid >= tgid
2776 *
2777 */
2778struct tgid_iter {
2779 unsigned int tgid;
2780 struct task_struct *task;
2781};
2782static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2783{
2784 struct pid *pid;
2785
2786 if (iter.task)
2787 put_task_struct(iter.task);
2788 rcu_read_lock();
2789retry:
2790 iter.task = NULL;
2791 pid = find_ge_pid(iter.tgid, ns);
2792 if (pid) {
2793 iter.tgid = pid_nr_ns(pid, ns);
2794 iter.task = pid_task(pid, PIDTYPE_PID);
2795 /* What we to know is if the pid we have find is the
2796 * pid of a thread_group_leader. Testing for task
2797 * being a thread_group_leader is the obvious thing
2798 * todo but there is a window when it fails, due to
2799 * the pid transfer logic in de_thread.
2800 *
2801 * So we perform the straight forward test of seeing
2802 * if the pid we have found is the pid of a thread
2803 * group leader, and don't worry if the task we have
2804 * found doesn't happen to be a thread group leader.
2805 * As we don't care in the case of readdir.
2806 */
2807 if (!iter.task || !has_group_leader_pid(iter.task)) {
2808 iter.tgid += 1;
2809 goto retry;
2810 }
2811 get_task_struct(iter.task);
2812 }
2813 rcu_read_unlock();
2814 return iter;
2815}
2816
2817#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
2818
2819/* for the /proc/ directory itself, after non-process stuff has been done */
2820int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2821{
2822 struct tgid_iter iter;
2823 struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2824 loff_t pos = ctx->pos;
2825
2826 if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2827 return 0;
2828
2829 if (pos == TGID_OFFSET - 2) {
2830 struct inode *inode = ns->proc_self->d_inode;
2831 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2832 return 0;
2833 ctx->pos = pos = pos + 1;
2834 }
2835 if (pos == TGID_OFFSET - 1) {
2836 struct inode *inode = ns->proc_thread_self->d_inode;
2837 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
2838 return 0;
2839 ctx->pos = pos = pos + 1;
2840 }
2841 iter.tgid = pos - TGID_OFFSET;
2842 iter.task = NULL;
2843 for (iter = next_tgid(ns, iter);
2844 iter.task;
2845 iter.tgid += 1, iter = next_tgid(ns, iter)) {
2846 char name[PROC_NUMBUF];
2847 int len;
2848 if (!has_pid_permissions(ns, iter.task, 2))
2849 continue;
2850
2851 len = snprintf(name, sizeof(name), "%d", iter.tgid);
2852 ctx->pos = iter.tgid + TGID_OFFSET;
2853 if (!proc_fill_cache(file, ctx, name, len,
2854 proc_pid_instantiate, iter.task, NULL)) {
2855 put_task_struct(iter.task);
2856 return 0;
2857 }
2858 }
2859 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2860 return 0;
2861}
2862
2863/*
2864 * Tasks
2865 */
2866static const struct pid_entry tid_base_stuff[] = {
2867 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2868 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2869 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2870#ifdef CONFIG_NET
2871 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2872#endif
2873 REG("environ", S_IRUSR, proc_environ_operations),
2874 ONE("auxv", S_IRUSR, proc_pid_auxv),
2875 ONE("status", S_IRUGO, proc_pid_status),
2876 ONE("personality", S_IRUSR, proc_pid_personality),
2877 ONE("limits", S_IRUGO, proc_pid_limits),
2878#ifdef CONFIG_SCHED_DEBUG
2879 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2880#endif
2881 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2882#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2883 ONE("syscall", S_IRUSR, proc_pid_syscall),
2884#endif
2885 ONE("cmdline", S_IRUGO, proc_pid_cmdline),
2886 ONE("stat", S_IRUGO, proc_tid_stat),
2887 ONE("statm", S_IRUGO, proc_pid_statm),
2888 REG("maps", S_IRUGO, proc_tid_maps_operations),
2889#ifdef CONFIG_CHECKPOINT_RESTORE
2890 REG("children", S_IRUGO, proc_tid_children_operations),
2891#endif
2892#ifdef CONFIG_NUMA
2893 REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2894#endif
2895 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations),
2896 LNK("cwd", proc_cwd_link),
2897 LNK("root", proc_root_link),
2898 LNK("exe", proc_exe_link),
2899 REG("mounts", S_IRUGO, proc_mounts_operations),
2900 REG("mountinfo", S_IRUGO, proc_mountinfo_operations),
2901#ifdef CONFIG_PROC_PAGE_MONITOR
2902 REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2903 REG("smaps", S_IRUGO, proc_tid_smaps_operations),
2904 REG("pagemap", S_IRUSR, proc_pagemap_operations),
2905#endif
2906#ifdef CONFIG_SECURITY
2907 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2908#endif
2909#ifdef CONFIG_KALLSYMS
2910 ONE("wchan", S_IRUGO, proc_pid_wchan),
2911#endif
2912#ifdef CONFIG_STACKTRACE
2913 ONE("stack", S_IRUSR, proc_pid_stack),
2914#endif
2915#ifdef CONFIG_SCHEDSTATS
2916 ONE("schedstat", S_IRUGO, proc_pid_schedstat),
2917#endif
2918#ifdef CONFIG_LATENCYTOP
2919 REG("latency", S_IRUGO, proc_lstats_operations),
2920#endif
2921#ifdef CONFIG_PROC_PID_CPUSET
2922 REG("cpuset", S_IRUGO, proc_cpuset_operations),
2923#endif
2924#ifdef CONFIG_CGROUPS
2925 REG("cgroup", S_IRUGO, proc_cgroup_operations),
2926#endif
2927 ONE("oom_score", S_IRUGO, proc_oom_score),
2928 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2929 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2930#ifdef CONFIG_AUDITSYSCALL
2931 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations),
2932 REG("sessionid", S_IRUGO, proc_sessionid_operations),
2933#endif
2934#ifdef CONFIG_FAULT_INJECTION
2935 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2936#endif
2937#ifdef CONFIG_TASK_IO_ACCOUNTING
2938 ONE("io", S_IRUSR, proc_tid_io_accounting),
2939#endif
2940#ifdef CONFIG_HARDWALL
2941 ONE("hardwall", S_IRUGO, proc_pid_hardwall),
2942#endif
2943#ifdef CONFIG_USER_NS
2944 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations),
2945 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations),
2946 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2947#endif
2948};
2949
2950static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2951{
2952 return proc_pident_readdir(file, ctx,
2953 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2954}
2955
2956static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2957{
2958 return proc_pident_lookup(dir, dentry,
2959 tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2960}
2961
2962static const struct file_operations proc_tid_base_operations = {
2963 .read = generic_read_dir,
2964 .iterate = proc_tid_base_readdir,
2965 .llseek = default_llseek,
2966};
2967
2968static const struct inode_operations proc_tid_base_inode_operations = {
2969 .lookup = proc_tid_base_lookup,
2970 .getattr = pid_getattr,
2971 .setattr = proc_setattr,
2972};
2973
2974static int proc_task_instantiate(struct inode *dir,
2975 struct dentry *dentry, struct task_struct *task, const void *ptr)
2976{
2977 struct inode *inode;
2978 inode = proc_pid_make_inode(dir->i_sb, task);
2979
2980 if (!inode)
2981 goto out;
2982 inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2983 inode->i_op = &proc_tid_base_inode_operations;
2984 inode->i_fop = &proc_tid_base_operations;
2985 inode->i_flags|=S_IMMUTABLE;
2986
2987 set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
2988 ARRAY_SIZE(tid_base_stuff)));
2989
2990 d_set_d_op(dentry, &pid_dentry_operations);
2991
2992 d_add(dentry, inode);
2993 /* Close the race of the process dying before we return the dentry */
2994 if (pid_revalidate(dentry, 0))
2995 return 0;
2996out:
2997 return -ENOENT;
2998}
2999
3000static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3001{
3002 int result = -ENOENT;
3003 struct task_struct *task;
3004 struct task_struct *leader = get_proc_task(dir);
3005 unsigned tid;
3006 struct pid_namespace *ns;
3007
3008 if (!leader)
3009 goto out_no_task;
3010
3011 tid = name_to_int(&dentry->d_name);
3012 if (tid == ~0U)
3013 goto out;
3014
3015 ns = dentry->d_sb->s_fs_info;
3016 rcu_read_lock();
3017 task = find_task_by_pid_ns(tid, ns);
3018 if (task)
3019 get_task_struct(task);
3020 rcu_read_unlock();
3021 if (!task)
3022 goto out;
3023 if (!same_thread_group(leader, task))
3024 goto out_drop_task;
3025
3026 result = proc_task_instantiate(dir, dentry, task, NULL);
3027out_drop_task:
3028 put_task_struct(task);
3029out:
3030 put_task_struct(leader);
3031out_no_task:
3032 return ERR_PTR(result);
3033}
3034
3035/*
3036 * Find the first tid of a thread group to return to user space.
3037 *
3038 * Usually this is just the thread group leader, but if the users
3039 * buffer was too small or there was a seek into the middle of the
3040 * directory we have more work todo.
3041 *
3042 * In the case of a short read we start with find_task_by_pid.
3043 *
3044 * In the case of a seek we start with the leader and walk nr
3045 * threads past it.
3046 */
3047static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3048 struct pid_namespace *ns)
3049{
3050 struct task_struct *pos, *task;
3051 unsigned long nr = f_pos;
3052
3053 if (nr != f_pos) /* 32bit overflow? */
3054 return NULL;
3055
3056 rcu_read_lock();
3057 task = pid_task(pid, PIDTYPE_PID);
3058 if (!task)
3059 goto fail;
3060
3061 /* Attempt to start with the tid of a thread */
3062 if (tid && nr) {
3063 pos = find_task_by_pid_ns(tid, ns);
3064 if (pos && same_thread_group(pos, task))
3065 goto found;
3066 }
3067
3068 /* If nr exceeds the number of threads there is nothing todo */
3069 if (nr >= get_nr_threads(task))
3070 goto fail;
3071
3072 /* If we haven't found our starting place yet start
3073 * with the leader and walk nr threads forward.
3074 */
3075 pos = task = task->group_leader;
3076 do {
3077 if (!nr--)
3078 goto found;
3079 } while_each_thread(task, pos);
3080fail:
3081 pos = NULL;
3082 goto out;
3083found:
3084 get_task_struct(pos);
3085out:
3086 rcu_read_unlock();
3087 return pos;
3088}
3089
3090/*
3091 * Find the next thread in the thread list.
3092 * Return NULL if there is an error or no next thread.
3093 *
3094 * The reference to the input task_struct is released.
3095 */
3096static struct task_struct *next_tid(struct task_struct *start)
3097{
3098 struct task_struct *pos = NULL;
3099 rcu_read_lock();
3100 if (pid_alive(start)) {
3101 pos = next_thread(start);
3102 if (thread_group_leader(pos))
3103 pos = NULL;
3104 else
3105 get_task_struct(pos);
3106 }
3107 rcu_read_unlock();
3108 put_task_struct(start);
3109 return pos;
3110}
3111
3112/* for the /proc/TGID/task/ directories */
3113static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3114{
3115 struct inode *inode = file_inode(file);
3116 struct task_struct *task;
3117 struct pid_namespace *ns;
3118 int tid;
3119
3120 if (proc_inode_is_dead(inode))
3121 return -ENOENT;
3122
3123 if (!dir_emit_dots(file, ctx))
3124 return 0;
3125
3126 /* f_version caches the tgid value that the last readdir call couldn't
3127 * return. lseek aka telldir automagically resets f_version to 0.
3128 */
3129 ns = file->f_dentry->d_sb->s_fs_info;
3130 tid = (int)file->f_version;
3131 file->f_version = 0;
3132 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3133 task;
3134 task = next_tid(task), ctx->pos++) {
3135 char name[PROC_NUMBUF];
3136 int len;
3137 tid = task_pid_nr_ns(task, ns);
3138 len = snprintf(name, sizeof(name), "%d", tid);
3139 if (!proc_fill_cache(file, ctx, name, len,
3140 proc_task_instantiate, task, NULL)) {
3141 /* returning this tgid failed, save it as the first
3142 * pid for the next readir call */
3143 file->f_version = (u64)tid;
3144 put_task_struct(task);
3145 break;
3146 }
3147 }
3148
3149 return 0;
3150}
3151
3152static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3153{
3154 struct inode *inode = dentry->d_inode;
3155 struct task_struct *p = get_proc_task(inode);
3156 generic_fillattr(inode, stat);
3157
3158 if (p) {
3159 stat->nlink += get_nr_threads(p);
3160 put_task_struct(p);
3161 }
3162
3163 return 0;
3164}
3165
3166static const struct inode_operations proc_task_inode_operations = {
3167 .lookup = proc_task_lookup,
3168 .getattr = proc_task_getattr,
3169 .setattr = proc_setattr,
3170 .permission = proc_pid_permission,
3171};
3172
3173static const struct file_operations proc_task_operations = {
3174 .read = generic_read_dir,
3175 .iterate = proc_task_readdir,
3176 .llseek = default_llseek,
3177};