at v3.16 37 kB view raw
1/* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14#include <linux/capability.h> 15#include <linux/dcache.h> 16#include <linux/module.h> 17#include <linux/init.h> 18#include <linux/kernel.h> 19#include <linux/security.h> 20#include <linux/integrity.h> 21#include <linux/ima.h> 22#include <linux/evm.h> 23#include <linux/fsnotify.h> 24#include <linux/mman.h> 25#include <linux/mount.h> 26#include <linux/personality.h> 27#include <linux/backing-dev.h> 28#include <net/flow.h> 29 30#define MAX_LSM_EVM_XATTR 2 31 32/* Boot-time LSM user choice */ 33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 34 CONFIG_DEFAULT_SECURITY; 35 36static struct security_operations *security_ops; 37static struct security_operations default_security_ops = { 38 .name = "default", 39}; 40 41static inline int __init verify(struct security_operations *ops) 42{ 43 /* verify the security_operations structure exists */ 44 if (!ops) 45 return -EINVAL; 46 security_fixup_ops(ops); 47 return 0; 48} 49 50static void __init do_security_initcalls(void) 51{ 52 initcall_t *call; 53 call = __security_initcall_start; 54 while (call < __security_initcall_end) { 55 (*call) (); 56 call++; 57 } 58} 59 60/** 61 * security_init - initializes the security framework 62 * 63 * This should be called early in the kernel initialization sequence. 64 */ 65int __init security_init(void) 66{ 67 printk(KERN_INFO "Security Framework initialized\n"); 68 69 security_fixup_ops(&default_security_ops); 70 security_ops = &default_security_ops; 71 do_security_initcalls(); 72 73 return 0; 74} 75 76void reset_security_ops(void) 77{ 78 security_ops = &default_security_ops; 79} 80 81/* Save user chosen LSM */ 82static int __init choose_lsm(char *str) 83{ 84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 85 return 1; 86} 87__setup("security=", choose_lsm); 88 89/** 90 * security_module_enable - Load given security module on boot ? 91 * @ops: a pointer to the struct security_operations that is to be checked. 92 * 93 * Each LSM must pass this method before registering its own operations 94 * to avoid security registration races. This method may also be used 95 * to check if your LSM is currently loaded during kernel initialization. 96 * 97 * Return true if: 98 * -The passed LSM is the one chosen by user at boot time, 99 * -or the passed LSM is configured as the default and the user did not 100 * choose an alternate LSM at boot time. 101 * Otherwise, return false. 102 */ 103int __init security_module_enable(struct security_operations *ops) 104{ 105 return !strcmp(ops->name, chosen_lsm); 106} 107 108/** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120int __init register_security(struct security_operations *ops) 121{ 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134} 135 136/* Security operations */ 137 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139{ 140#ifdef CONFIG_SECURITY_YAMA_STACKED 141 int rc; 142 rc = yama_ptrace_access_check(child, mode); 143 if (rc) 144 return rc; 145#endif 146 return security_ops->ptrace_access_check(child, mode); 147} 148 149int security_ptrace_traceme(struct task_struct *parent) 150{ 151#ifdef CONFIG_SECURITY_YAMA_STACKED 152 int rc; 153 rc = yama_ptrace_traceme(parent); 154 if (rc) 155 return rc; 156#endif 157 return security_ops->ptrace_traceme(parent); 158} 159 160int security_capget(struct task_struct *target, 161 kernel_cap_t *effective, 162 kernel_cap_t *inheritable, 163 kernel_cap_t *permitted) 164{ 165 return security_ops->capget(target, effective, inheritable, permitted); 166} 167 168int security_capset(struct cred *new, const struct cred *old, 169 const kernel_cap_t *effective, 170 const kernel_cap_t *inheritable, 171 const kernel_cap_t *permitted) 172{ 173 return security_ops->capset(new, old, 174 effective, inheritable, permitted); 175} 176 177int security_capable(const struct cred *cred, struct user_namespace *ns, 178 int cap) 179{ 180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT); 181} 182 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 184 int cap) 185{ 186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT); 187} 188 189int security_quotactl(int cmds, int type, int id, struct super_block *sb) 190{ 191 return security_ops->quotactl(cmds, type, id, sb); 192} 193 194int security_quota_on(struct dentry *dentry) 195{ 196 return security_ops->quota_on(dentry); 197} 198 199int security_syslog(int type) 200{ 201 return security_ops->syslog(type); 202} 203 204int security_settime(const struct timespec *ts, const struct timezone *tz) 205{ 206 return security_ops->settime(ts, tz); 207} 208 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 210{ 211 return security_ops->vm_enough_memory(mm, pages); 212} 213 214int security_bprm_set_creds(struct linux_binprm *bprm) 215{ 216 return security_ops->bprm_set_creds(bprm); 217} 218 219int security_bprm_check(struct linux_binprm *bprm) 220{ 221 int ret; 222 223 ret = security_ops->bprm_check_security(bprm); 224 if (ret) 225 return ret; 226 return ima_bprm_check(bprm); 227} 228 229void security_bprm_committing_creds(struct linux_binprm *bprm) 230{ 231 security_ops->bprm_committing_creds(bprm); 232} 233 234void security_bprm_committed_creds(struct linux_binprm *bprm) 235{ 236 security_ops->bprm_committed_creds(bprm); 237} 238 239int security_bprm_secureexec(struct linux_binprm *bprm) 240{ 241 return security_ops->bprm_secureexec(bprm); 242} 243 244int security_sb_alloc(struct super_block *sb) 245{ 246 return security_ops->sb_alloc_security(sb); 247} 248 249void security_sb_free(struct super_block *sb) 250{ 251 security_ops->sb_free_security(sb); 252} 253 254int security_sb_copy_data(char *orig, char *copy) 255{ 256 return security_ops->sb_copy_data(orig, copy); 257} 258EXPORT_SYMBOL(security_sb_copy_data); 259 260int security_sb_remount(struct super_block *sb, void *data) 261{ 262 return security_ops->sb_remount(sb, data); 263} 264 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 266{ 267 return security_ops->sb_kern_mount(sb, flags, data); 268} 269 270int security_sb_show_options(struct seq_file *m, struct super_block *sb) 271{ 272 return security_ops->sb_show_options(m, sb); 273} 274 275int security_sb_statfs(struct dentry *dentry) 276{ 277 return security_ops->sb_statfs(dentry); 278} 279 280int security_sb_mount(const char *dev_name, struct path *path, 281 const char *type, unsigned long flags, void *data) 282{ 283 return security_ops->sb_mount(dev_name, path, type, flags, data); 284} 285 286int security_sb_umount(struct vfsmount *mnt, int flags) 287{ 288 return security_ops->sb_umount(mnt, flags); 289} 290 291int security_sb_pivotroot(struct path *old_path, struct path *new_path) 292{ 293 return security_ops->sb_pivotroot(old_path, new_path); 294} 295 296int security_sb_set_mnt_opts(struct super_block *sb, 297 struct security_mnt_opts *opts, 298 unsigned long kern_flags, 299 unsigned long *set_kern_flags) 300{ 301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags, 302 set_kern_flags); 303} 304EXPORT_SYMBOL(security_sb_set_mnt_opts); 305 306int security_sb_clone_mnt_opts(const struct super_block *oldsb, 307 struct super_block *newsb) 308{ 309 return security_ops->sb_clone_mnt_opts(oldsb, newsb); 310} 311EXPORT_SYMBOL(security_sb_clone_mnt_opts); 312 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 314{ 315 return security_ops->sb_parse_opts_str(options, opts); 316} 317EXPORT_SYMBOL(security_sb_parse_opts_str); 318 319int security_inode_alloc(struct inode *inode) 320{ 321 inode->i_security = NULL; 322 return security_ops->inode_alloc_security(inode); 323} 324 325void security_inode_free(struct inode *inode) 326{ 327 integrity_inode_free(inode); 328 security_ops->inode_free_security(inode); 329} 330 331int security_dentry_init_security(struct dentry *dentry, int mode, 332 struct qstr *name, void **ctx, 333 u32 *ctxlen) 334{ 335 return security_ops->dentry_init_security(dentry, mode, name, 336 ctx, ctxlen); 337} 338EXPORT_SYMBOL(security_dentry_init_security); 339 340int security_inode_init_security(struct inode *inode, struct inode *dir, 341 const struct qstr *qstr, 342 const initxattrs initxattrs, void *fs_data) 343{ 344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 345 struct xattr *lsm_xattr, *evm_xattr, *xattr; 346 int ret; 347 348 if (unlikely(IS_PRIVATE(inode))) 349 return 0; 350 351 if (!initxattrs) 352 return security_ops->inode_init_security(inode, dir, qstr, 353 NULL, NULL, NULL); 354 memset(new_xattrs, 0, sizeof(new_xattrs)); 355 lsm_xattr = new_xattrs; 356 ret = security_ops->inode_init_security(inode, dir, qstr, 357 &lsm_xattr->name, 358 &lsm_xattr->value, 359 &lsm_xattr->value_len); 360 if (ret) 361 goto out; 362 363 evm_xattr = lsm_xattr + 1; 364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 365 if (ret) 366 goto out; 367 ret = initxattrs(inode, new_xattrs, fs_data); 368out: 369 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 370 kfree(xattr->value); 371 return (ret == -EOPNOTSUPP) ? 0 : ret; 372} 373EXPORT_SYMBOL(security_inode_init_security); 374 375int security_old_inode_init_security(struct inode *inode, struct inode *dir, 376 const struct qstr *qstr, const char **name, 377 void **value, size_t *len) 378{ 379 if (unlikely(IS_PRIVATE(inode))) 380 return -EOPNOTSUPP; 381 return security_ops->inode_init_security(inode, dir, qstr, name, value, 382 len); 383} 384EXPORT_SYMBOL(security_old_inode_init_security); 385 386#ifdef CONFIG_SECURITY_PATH 387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode, 388 unsigned int dev) 389{ 390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 391 return 0; 392 return security_ops->path_mknod(dir, dentry, mode, dev); 393} 394EXPORT_SYMBOL(security_path_mknod); 395 396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode) 397{ 398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 399 return 0; 400 return security_ops->path_mkdir(dir, dentry, mode); 401} 402EXPORT_SYMBOL(security_path_mkdir); 403 404int security_path_rmdir(struct path *dir, struct dentry *dentry) 405{ 406 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 407 return 0; 408 return security_ops->path_rmdir(dir, dentry); 409} 410 411int security_path_unlink(struct path *dir, struct dentry *dentry) 412{ 413 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 414 return 0; 415 return security_ops->path_unlink(dir, dentry); 416} 417EXPORT_SYMBOL(security_path_unlink); 418 419int security_path_symlink(struct path *dir, struct dentry *dentry, 420 const char *old_name) 421{ 422 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 423 return 0; 424 return security_ops->path_symlink(dir, dentry, old_name); 425} 426 427int security_path_link(struct dentry *old_dentry, struct path *new_dir, 428 struct dentry *new_dentry) 429{ 430 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 431 return 0; 432 return security_ops->path_link(old_dentry, new_dir, new_dentry); 433} 434 435int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 436 struct path *new_dir, struct dentry *new_dentry, 437 unsigned int flags) 438{ 439 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 440 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 441 return 0; 442 443 if (flags & RENAME_EXCHANGE) { 444 int err = security_ops->path_rename(new_dir, new_dentry, 445 old_dir, old_dentry); 446 if (err) 447 return err; 448 } 449 450 return security_ops->path_rename(old_dir, old_dentry, new_dir, 451 new_dentry); 452} 453EXPORT_SYMBOL(security_path_rename); 454 455int security_path_truncate(struct path *path) 456{ 457 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 458 return 0; 459 return security_ops->path_truncate(path); 460} 461 462int security_path_chmod(struct path *path, umode_t mode) 463{ 464 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 465 return 0; 466 return security_ops->path_chmod(path, mode); 467} 468 469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid) 470{ 471 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 472 return 0; 473 return security_ops->path_chown(path, uid, gid); 474} 475 476int security_path_chroot(struct path *path) 477{ 478 return security_ops->path_chroot(path); 479} 480#endif 481 482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 483{ 484 if (unlikely(IS_PRIVATE(dir))) 485 return 0; 486 return security_ops->inode_create(dir, dentry, mode); 487} 488EXPORT_SYMBOL_GPL(security_inode_create); 489 490int security_inode_link(struct dentry *old_dentry, struct inode *dir, 491 struct dentry *new_dentry) 492{ 493 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 494 return 0; 495 return security_ops->inode_link(old_dentry, dir, new_dentry); 496} 497 498int security_inode_unlink(struct inode *dir, struct dentry *dentry) 499{ 500 if (unlikely(IS_PRIVATE(dentry->d_inode))) 501 return 0; 502 return security_ops->inode_unlink(dir, dentry); 503} 504 505int security_inode_symlink(struct inode *dir, struct dentry *dentry, 506 const char *old_name) 507{ 508 if (unlikely(IS_PRIVATE(dir))) 509 return 0; 510 return security_ops->inode_symlink(dir, dentry, old_name); 511} 512 513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 514{ 515 if (unlikely(IS_PRIVATE(dir))) 516 return 0; 517 return security_ops->inode_mkdir(dir, dentry, mode); 518} 519EXPORT_SYMBOL_GPL(security_inode_mkdir); 520 521int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 522{ 523 if (unlikely(IS_PRIVATE(dentry->d_inode))) 524 return 0; 525 return security_ops->inode_rmdir(dir, dentry); 526} 527 528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 529{ 530 if (unlikely(IS_PRIVATE(dir))) 531 return 0; 532 return security_ops->inode_mknod(dir, dentry, mode, dev); 533} 534 535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 536 struct inode *new_dir, struct dentry *new_dentry, 537 unsigned int flags) 538{ 539 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 540 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 541 return 0; 542 543 if (flags & RENAME_EXCHANGE) { 544 int err = security_ops->inode_rename(new_dir, new_dentry, 545 old_dir, old_dentry); 546 if (err) 547 return err; 548 } 549 550 return security_ops->inode_rename(old_dir, old_dentry, 551 new_dir, new_dentry); 552} 553 554int security_inode_readlink(struct dentry *dentry) 555{ 556 if (unlikely(IS_PRIVATE(dentry->d_inode))) 557 return 0; 558 return security_ops->inode_readlink(dentry); 559} 560 561int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 562{ 563 if (unlikely(IS_PRIVATE(dentry->d_inode))) 564 return 0; 565 return security_ops->inode_follow_link(dentry, nd); 566} 567 568int security_inode_permission(struct inode *inode, int mask) 569{ 570 if (unlikely(IS_PRIVATE(inode))) 571 return 0; 572 return security_ops->inode_permission(inode, mask); 573} 574 575int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 576{ 577 int ret; 578 579 if (unlikely(IS_PRIVATE(dentry->d_inode))) 580 return 0; 581 ret = security_ops->inode_setattr(dentry, attr); 582 if (ret) 583 return ret; 584 return evm_inode_setattr(dentry, attr); 585} 586EXPORT_SYMBOL_GPL(security_inode_setattr); 587 588int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 589{ 590 if (unlikely(IS_PRIVATE(dentry->d_inode))) 591 return 0; 592 return security_ops->inode_getattr(mnt, dentry); 593} 594 595int security_inode_setxattr(struct dentry *dentry, const char *name, 596 const void *value, size_t size, int flags) 597{ 598 int ret; 599 600 if (unlikely(IS_PRIVATE(dentry->d_inode))) 601 return 0; 602 ret = security_ops->inode_setxattr(dentry, name, value, size, flags); 603 if (ret) 604 return ret; 605 ret = ima_inode_setxattr(dentry, name, value, size); 606 if (ret) 607 return ret; 608 return evm_inode_setxattr(dentry, name, value, size); 609} 610 611void security_inode_post_setxattr(struct dentry *dentry, const char *name, 612 const void *value, size_t size, int flags) 613{ 614 if (unlikely(IS_PRIVATE(dentry->d_inode))) 615 return; 616 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 617 evm_inode_post_setxattr(dentry, name, value, size); 618} 619 620int security_inode_getxattr(struct dentry *dentry, const char *name) 621{ 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 return security_ops->inode_getxattr(dentry, name); 625} 626 627int security_inode_listxattr(struct dentry *dentry) 628{ 629 if (unlikely(IS_PRIVATE(dentry->d_inode))) 630 return 0; 631 return security_ops->inode_listxattr(dentry); 632} 633 634int security_inode_removexattr(struct dentry *dentry, const char *name) 635{ 636 int ret; 637 638 if (unlikely(IS_PRIVATE(dentry->d_inode))) 639 return 0; 640 ret = security_ops->inode_removexattr(dentry, name); 641 if (ret) 642 return ret; 643 ret = ima_inode_removexattr(dentry, name); 644 if (ret) 645 return ret; 646 return evm_inode_removexattr(dentry, name); 647} 648 649int security_inode_need_killpriv(struct dentry *dentry) 650{ 651 return security_ops->inode_need_killpriv(dentry); 652} 653 654int security_inode_killpriv(struct dentry *dentry) 655{ 656 return security_ops->inode_killpriv(dentry); 657} 658 659int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 660{ 661 if (unlikely(IS_PRIVATE(inode))) 662 return -EOPNOTSUPP; 663 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 664} 665 666int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 667{ 668 if (unlikely(IS_PRIVATE(inode))) 669 return -EOPNOTSUPP; 670 return security_ops->inode_setsecurity(inode, name, value, size, flags); 671} 672 673int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 674{ 675 if (unlikely(IS_PRIVATE(inode))) 676 return 0; 677 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 678} 679EXPORT_SYMBOL(security_inode_listsecurity); 680 681void security_inode_getsecid(const struct inode *inode, u32 *secid) 682{ 683 security_ops->inode_getsecid(inode, secid); 684} 685 686int security_file_permission(struct file *file, int mask) 687{ 688 int ret; 689 690 ret = security_ops->file_permission(file, mask); 691 if (ret) 692 return ret; 693 694 return fsnotify_perm(file, mask); 695} 696 697int security_file_alloc(struct file *file) 698{ 699 return security_ops->file_alloc_security(file); 700} 701 702void security_file_free(struct file *file) 703{ 704 security_ops->file_free_security(file); 705} 706 707int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 708{ 709 return security_ops->file_ioctl(file, cmd, arg); 710} 711 712static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 713{ 714 /* 715 * Does we have PROT_READ and does the application expect 716 * it to imply PROT_EXEC? If not, nothing to talk about... 717 */ 718 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 719 return prot; 720 if (!(current->personality & READ_IMPLIES_EXEC)) 721 return prot; 722 /* 723 * if that's an anonymous mapping, let it. 724 */ 725 if (!file) 726 return prot | PROT_EXEC; 727 /* 728 * ditto if it's not on noexec mount, except that on !MMU we need 729 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case 730 */ 731 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) { 732#ifndef CONFIG_MMU 733 unsigned long caps = 0; 734 struct address_space *mapping = file->f_mapping; 735 if (mapping && mapping->backing_dev_info) 736 caps = mapping->backing_dev_info->capabilities; 737 if (!(caps & BDI_CAP_EXEC_MAP)) 738 return prot; 739#endif 740 return prot | PROT_EXEC; 741 } 742 /* anything on noexec mount won't get PROT_EXEC */ 743 return prot; 744} 745 746int security_mmap_file(struct file *file, unsigned long prot, 747 unsigned long flags) 748{ 749 int ret; 750 ret = security_ops->mmap_file(file, prot, 751 mmap_prot(file, prot), flags); 752 if (ret) 753 return ret; 754 return ima_file_mmap(file, prot); 755} 756 757int security_mmap_addr(unsigned long addr) 758{ 759 return security_ops->mmap_addr(addr); 760} 761 762int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 763 unsigned long prot) 764{ 765 return security_ops->file_mprotect(vma, reqprot, prot); 766} 767 768int security_file_lock(struct file *file, unsigned int cmd) 769{ 770 return security_ops->file_lock(file, cmd); 771} 772 773int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 774{ 775 return security_ops->file_fcntl(file, cmd, arg); 776} 777 778int security_file_set_fowner(struct file *file) 779{ 780 return security_ops->file_set_fowner(file); 781} 782 783int security_file_send_sigiotask(struct task_struct *tsk, 784 struct fown_struct *fown, int sig) 785{ 786 return security_ops->file_send_sigiotask(tsk, fown, sig); 787} 788 789int security_file_receive(struct file *file) 790{ 791 return security_ops->file_receive(file); 792} 793 794int security_file_open(struct file *file, const struct cred *cred) 795{ 796 int ret; 797 798 ret = security_ops->file_open(file, cred); 799 if (ret) 800 return ret; 801 802 return fsnotify_perm(file, MAY_OPEN); 803} 804 805int security_task_create(unsigned long clone_flags) 806{ 807 return security_ops->task_create(clone_flags); 808} 809 810void security_task_free(struct task_struct *task) 811{ 812#ifdef CONFIG_SECURITY_YAMA_STACKED 813 yama_task_free(task); 814#endif 815 security_ops->task_free(task); 816} 817 818int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 819{ 820 return security_ops->cred_alloc_blank(cred, gfp); 821} 822 823void security_cred_free(struct cred *cred) 824{ 825 security_ops->cred_free(cred); 826} 827 828int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 829{ 830 return security_ops->cred_prepare(new, old, gfp); 831} 832 833void security_transfer_creds(struct cred *new, const struct cred *old) 834{ 835 security_ops->cred_transfer(new, old); 836} 837 838int security_kernel_act_as(struct cred *new, u32 secid) 839{ 840 return security_ops->kernel_act_as(new, secid); 841} 842 843int security_kernel_create_files_as(struct cred *new, struct inode *inode) 844{ 845 return security_ops->kernel_create_files_as(new, inode); 846} 847 848int security_kernel_module_request(char *kmod_name) 849{ 850 return security_ops->kernel_module_request(kmod_name); 851} 852 853int security_kernel_module_from_file(struct file *file) 854{ 855 int ret; 856 857 ret = security_ops->kernel_module_from_file(file); 858 if (ret) 859 return ret; 860 return ima_module_check(file); 861} 862 863int security_task_fix_setuid(struct cred *new, const struct cred *old, 864 int flags) 865{ 866 return security_ops->task_fix_setuid(new, old, flags); 867} 868 869int security_task_setpgid(struct task_struct *p, pid_t pgid) 870{ 871 return security_ops->task_setpgid(p, pgid); 872} 873 874int security_task_getpgid(struct task_struct *p) 875{ 876 return security_ops->task_getpgid(p); 877} 878 879int security_task_getsid(struct task_struct *p) 880{ 881 return security_ops->task_getsid(p); 882} 883 884void security_task_getsecid(struct task_struct *p, u32 *secid) 885{ 886 security_ops->task_getsecid(p, secid); 887} 888EXPORT_SYMBOL(security_task_getsecid); 889 890int security_task_setnice(struct task_struct *p, int nice) 891{ 892 return security_ops->task_setnice(p, nice); 893} 894 895int security_task_setioprio(struct task_struct *p, int ioprio) 896{ 897 return security_ops->task_setioprio(p, ioprio); 898} 899 900int security_task_getioprio(struct task_struct *p) 901{ 902 return security_ops->task_getioprio(p); 903} 904 905int security_task_setrlimit(struct task_struct *p, unsigned int resource, 906 struct rlimit *new_rlim) 907{ 908 return security_ops->task_setrlimit(p, resource, new_rlim); 909} 910 911int security_task_setscheduler(struct task_struct *p) 912{ 913 return security_ops->task_setscheduler(p); 914} 915 916int security_task_getscheduler(struct task_struct *p) 917{ 918 return security_ops->task_getscheduler(p); 919} 920 921int security_task_movememory(struct task_struct *p) 922{ 923 return security_ops->task_movememory(p); 924} 925 926int security_task_kill(struct task_struct *p, struct siginfo *info, 927 int sig, u32 secid) 928{ 929 return security_ops->task_kill(p, info, sig, secid); 930} 931 932int security_task_wait(struct task_struct *p) 933{ 934 return security_ops->task_wait(p); 935} 936 937int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 938 unsigned long arg4, unsigned long arg5) 939{ 940#ifdef CONFIG_SECURITY_YAMA_STACKED 941 int rc; 942 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5); 943 if (rc != -ENOSYS) 944 return rc; 945#endif 946 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 947} 948 949void security_task_to_inode(struct task_struct *p, struct inode *inode) 950{ 951 security_ops->task_to_inode(p, inode); 952} 953 954int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 955{ 956 return security_ops->ipc_permission(ipcp, flag); 957} 958 959void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 960{ 961 security_ops->ipc_getsecid(ipcp, secid); 962} 963 964int security_msg_msg_alloc(struct msg_msg *msg) 965{ 966 return security_ops->msg_msg_alloc_security(msg); 967} 968 969void security_msg_msg_free(struct msg_msg *msg) 970{ 971 security_ops->msg_msg_free_security(msg); 972} 973 974int security_msg_queue_alloc(struct msg_queue *msq) 975{ 976 return security_ops->msg_queue_alloc_security(msq); 977} 978 979void security_msg_queue_free(struct msg_queue *msq) 980{ 981 security_ops->msg_queue_free_security(msq); 982} 983 984int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 985{ 986 return security_ops->msg_queue_associate(msq, msqflg); 987} 988 989int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 990{ 991 return security_ops->msg_queue_msgctl(msq, cmd); 992} 993 994int security_msg_queue_msgsnd(struct msg_queue *msq, 995 struct msg_msg *msg, int msqflg) 996{ 997 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 998} 999 1000int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 1001 struct task_struct *target, long type, int mode) 1002{ 1003 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 1004} 1005 1006int security_shm_alloc(struct shmid_kernel *shp) 1007{ 1008 return security_ops->shm_alloc_security(shp); 1009} 1010 1011void security_shm_free(struct shmid_kernel *shp) 1012{ 1013 security_ops->shm_free_security(shp); 1014} 1015 1016int security_shm_associate(struct shmid_kernel *shp, int shmflg) 1017{ 1018 return security_ops->shm_associate(shp, shmflg); 1019} 1020 1021int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 1022{ 1023 return security_ops->shm_shmctl(shp, cmd); 1024} 1025 1026int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 1027{ 1028 return security_ops->shm_shmat(shp, shmaddr, shmflg); 1029} 1030 1031int security_sem_alloc(struct sem_array *sma) 1032{ 1033 return security_ops->sem_alloc_security(sma); 1034} 1035 1036void security_sem_free(struct sem_array *sma) 1037{ 1038 security_ops->sem_free_security(sma); 1039} 1040 1041int security_sem_associate(struct sem_array *sma, int semflg) 1042{ 1043 return security_ops->sem_associate(sma, semflg); 1044} 1045 1046int security_sem_semctl(struct sem_array *sma, int cmd) 1047{ 1048 return security_ops->sem_semctl(sma, cmd); 1049} 1050 1051int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 1052 unsigned nsops, int alter) 1053{ 1054 return security_ops->sem_semop(sma, sops, nsops, alter); 1055} 1056 1057void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1058{ 1059 if (unlikely(inode && IS_PRIVATE(inode))) 1060 return; 1061 security_ops->d_instantiate(dentry, inode); 1062} 1063EXPORT_SYMBOL(security_d_instantiate); 1064 1065int security_getprocattr(struct task_struct *p, char *name, char **value) 1066{ 1067 return security_ops->getprocattr(p, name, value); 1068} 1069 1070int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 1071{ 1072 return security_ops->setprocattr(p, name, value, size); 1073} 1074 1075int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1076{ 1077 return security_ops->netlink_send(sk, skb); 1078} 1079 1080int security_ismaclabel(const char *name) 1081{ 1082 return security_ops->ismaclabel(name); 1083} 1084EXPORT_SYMBOL(security_ismaclabel); 1085 1086int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1087{ 1088 return security_ops->secid_to_secctx(secid, secdata, seclen); 1089} 1090EXPORT_SYMBOL(security_secid_to_secctx); 1091 1092int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1093{ 1094 return security_ops->secctx_to_secid(secdata, seclen, secid); 1095} 1096EXPORT_SYMBOL(security_secctx_to_secid); 1097 1098void security_release_secctx(char *secdata, u32 seclen) 1099{ 1100 security_ops->release_secctx(secdata, seclen); 1101} 1102EXPORT_SYMBOL(security_release_secctx); 1103 1104int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1105{ 1106 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1107} 1108EXPORT_SYMBOL(security_inode_notifysecctx); 1109 1110int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1111{ 1112 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1113} 1114EXPORT_SYMBOL(security_inode_setsecctx); 1115 1116int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1117{ 1118 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1119} 1120EXPORT_SYMBOL(security_inode_getsecctx); 1121 1122#ifdef CONFIG_SECURITY_NETWORK 1123 1124int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1125{ 1126 return security_ops->unix_stream_connect(sock, other, newsk); 1127} 1128EXPORT_SYMBOL(security_unix_stream_connect); 1129 1130int security_unix_may_send(struct socket *sock, struct socket *other) 1131{ 1132 return security_ops->unix_may_send(sock, other); 1133} 1134EXPORT_SYMBOL(security_unix_may_send); 1135 1136int security_socket_create(int family, int type, int protocol, int kern) 1137{ 1138 return security_ops->socket_create(family, type, protocol, kern); 1139} 1140 1141int security_socket_post_create(struct socket *sock, int family, 1142 int type, int protocol, int kern) 1143{ 1144 return security_ops->socket_post_create(sock, family, type, 1145 protocol, kern); 1146} 1147 1148int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1149{ 1150 return security_ops->socket_bind(sock, address, addrlen); 1151} 1152 1153int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1154{ 1155 return security_ops->socket_connect(sock, address, addrlen); 1156} 1157 1158int security_socket_listen(struct socket *sock, int backlog) 1159{ 1160 return security_ops->socket_listen(sock, backlog); 1161} 1162 1163int security_socket_accept(struct socket *sock, struct socket *newsock) 1164{ 1165 return security_ops->socket_accept(sock, newsock); 1166} 1167 1168int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1169{ 1170 return security_ops->socket_sendmsg(sock, msg, size); 1171} 1172 1173int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1174 int size, int flags) 1175{ 1176 return security_ops->socket_recvmsg(sock, msg, size, flags); 1177} 1178 1179int security_socket_getsockname(struct socket *sock) 1180{ 1181 return security_ops->socket_getsockname(sock); 1182} 1183 1184int security_socket_getpeername(struct socket *sock) 1185{ 1186 return security_ops->socket_getpeername(sock); 1187} 1188 1189int security_socket_getsockopt(struct socket *sock, int level, int optname) 1190{ 1191 return security_ops->socket_getsockopt(sock, level, optname); 1192} 1193 1194int security_socket_setsockopt(struct socket *sock, int level, int optname) 1195{ 1196 return security_ops->socket_setsockopt(sock, level, optname); 1197} 1198 1199int security_socket_shutdown(struct socket *sock, int how) 1200{ 1201 return security_ops->socket_shutdown(sock, how); 1202} 1203 1204int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1205{ 1206 return security_ops->socket_sock_rcv_skb(sk, skb); 1207} 1208EXPORT_SYMBOL(security_sock_rcv_skb); 1209 1210int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1211 int __user *optlen, unsigned len) 1212{ 1213 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1214} 1215 1216int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1217{ 1218 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1219} 1220EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1221 1222int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1223{ 1224 return security_ops->sk_alloc_security(sk, family, priority); 1225} 1226 1227void security_sk_free(struct sock *sk) 1228{ 1229 security_ops->sk_free_security(sk); 1230} 1231 1232void security_sk_clone(const struct sock *sk, struct sock *newsk) 1233{ 1234 security_ops->sk_clone_security(sk, newsk); 1235} 1236EXPORT_SYMBOL(security_sk_clone); 1237 1238void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1239{ 1240 security_ops->sk_getsecid(sk, &fl->flowi_secid); 1241} 1242EXPORT_SYMBOL(security_sk_classify_flow); 1243 1244void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1245{ 1246 security_ops->req_classify_flow(req, fl); 1247} 1248EXPORT_SYMBOL(security_req_classify_flow); 1249 1250void security_sock_graft(struct sock *sk, struct socket *parent) 1251{ 1252 security_ops->sock_graft(sk, parent); 1253} 1254EXPORT_SYMBOL(security_sock_graft); 1255 1256int security_inet_conn_request(struct sock *sk, 1257 struct sk_buff *skb, struct request_sock *req) 1258{ 1259 return security_ops->inet_conn_request(sk, skb, req); 1260} 1261EXPORT_SYMBOL(security_inet_conn_request); 1262 1263void security_inet_csk_clone(struct sock *newsk, 1264 const struct request_sock *req) 1265{ 1266 security_ops->inet_csk_clone(newsk, req); 1267} 1268 1269void security_inet_conn_established(struct sock *sk, 1270 struct sk_buff *skb) 1271{ 1272 security_ops->inet_conn_established(sk, skb); 1273} 1274 1275int security_secmark_relabel_packet(u32 secid) 1276{ 1277 return security_ops->secmark_relabel_packet(secid); 1278} 1279EXPORT_SYMBOL(security_secmark_relabel_packet); 1280 1281void security_secmark_refcount_inc(void) 1282{ 1283 security_ops->secmark_refcount_inc(); 1284} 1285EXPORT_SYMBOL(security_secmark_refcount_inc); 1286 1287void security_secmark_refcount_dec(void) 1288{ 1289 security_ops->secmark_refcount_dec(); 1290} 1291EXPORT_SYMBOL(security_secmark_refcount_dec); 1292 1293int security_tun_dev_alloc_security(void **security) 1294{ 1295 return security_ops->tun_dev_alloc_security(security); 1296} 1297EXPORT_SYMBOL(security_tun_dev_alloc_security); 1298 1299void security_tun_dev_free_security(void *security) 1300{ 1301 security_ops->tun_dev_free_security(security); 1302} 1303EXPORT_SYMBOL(security_tun_dev_free_security); 1304 1305int security_tun_dev_create(void) 1306{ 1307 return security_ops->tun_dev_create(); 1308} 1309EXPORT_SYMBOL(security_tun_dev_create); 1310 1311int security_tun_dev_attach_queue(void *security) 1312{ 1313 return security_ops->tun_dev_attach_queue(security); 1314} 1315EXPORT_SYMBOL(security_tun_dev_attach_queue); 1316 1317int security_tun_dev_attach(struct sock *sk, void *security) 1318{ 1319 return security_ops->tun_dev_attach(sk, security); 1320} 1321EXPORT_SYMBOL(security_tun_dev_attach); 1322 1323int security_tun_dev_open(void *security) 1324{ 1325 return security_ops->tun_dev_open(security); 1326} 1327EXPORT_SYMBOL(security_tun_dev_open); 1328 1329void security_skb_owned_by(struct sk_buff *skb, struct sock *sk) 1330{ 1331 security_ops->skb_owned_by(skb, sk); 1332} 1333 1334#endif /* CONFIG_SECURITY_NETWORK */ 1335 1336#ifdef CONFIG_SECURITY_NETWORK_XFRM 1337 1338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1339 struct xfrm_user_sec_ctx *sec_ctx, 1340 gfp_t gfp) 1341{ 1342 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp); 1343} 1344EXPORT_SYMBOL(security_xfrm_policy_alloc); 1345 1346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1347 struct xfrm_sec_ctx **new_ctxp) 1348{ 1349 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1350} 1351 1352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1353{ 1354 security_ops->xfrm_policy_free_security(ctx); 1355} 1356EXPORT_SYMBOL(security_xfrm_policy_free); 1357 1358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1359{ 1360 return security_ops->xfrm_policy_delete_security(ctx); 1361} 1362 1363int security_xfrm_state_alloc(struct xfrm_state *x, 1364 struct xfrm_user_sec_ctx *sec_ctx) 1365{ 1366 return security_ops->xfrm_state_alloc(x, sec_ctx); 1367} 1368EXPORT_SYMBOL(security_xfrm_state_alloc); 1369 1370int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1371 struct xfrm_sec_ctx *polsec, u32 secid) 1372{ 1373 return security_ops->xfrm_state_alloc_acquire(x, polsec, secid); 1374} 1375 1376int security_xfrm_state_delete(struct xfrm_state *x) 1377{ 1378 return security_ops->xfrm_state_delete_security(x); 1379} 1380EXPORT_SYMBOL(security_xfrm_state_delete); 1381 1382void security_xfrm_state_free(struct xfrm_state *x) 1383{ 1384 security_ops->xfrm_state_free_security(x); 1385} 1386 1387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1388{ 1389 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1390} 1391 1392int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1393 struct xfrm_policy *xp, 1394 const struct flowi *fl) 1395{ 1396 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1397} 1398 1399int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1400{ 1401 return security_ops->xfrm_decode_session(skb, secid, 1); 1402} 1403 1404void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1405{ 1406 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0); 1407 1408 BUG_ON(rc); 1409} 1410EXPORT_SYMBOL(security_skb_classify_flow); 1411 1412#endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1413 1414#ifdef CONFIG_KEYS 1415 1416int security_key_alloc(struct key *key, const struct cred *cred, 1417 unsigned long flags) 1418{ 1419 return security_ops->key_alloc(key, cred, flags); 1420} 1421 1422void security_key_free(struct key *key) 1423{ 1424 security_ops->key_free(key); 1425} 1426 1427int security_key_permission(key_ref_t key_ref, 1428 const struct cred *cred, unsigned perm) 1429{ 1430 return security_ops->key_permission(key_ref, cred, perm); 1431} 1432 1433int security_key_getsecurity(struct key *key, char **_buffer) 1434{ 1435 return security_ops->key_getsecurity(key, _buffer); 1436} 1437 1438#endif /* CONFIG_KEYS */ 1439 1440#ifdef CONFIG_AUDIT 1441 1442int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1443{ 1444 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1445} 1446 1447int security_audit_rule_known(struct audit_krule *krule) 1448{ 1449 return security_ops->audit_rule_known(krule); 1450} 1451 1452void security_audit_rule_free(void *lsmrule) 1453{ 1454 security_ops->audit_rule_free(lsmrule); 1455} 1456 1457int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1458 struct audit_context *actx) 1459{ 1460 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1461} 1462 1463#endif /* CONFIG_AUDIT */