at v3.16 183 kB view raw
1/* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> 12 * Mark Evans, <evansmp@uhura.aston.ac.uk> 13 * 14 * Additional Authors: 15 * Florian la Roche <rzsfl@rz.uni-sb.de> 16 * Alan Cox <gw4pts@gw4pts.ampr.org> 17 * David Hinds <dahinds@users.sourceforge.net> 18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru> 19 * Adam Sulmicki <adam@cfar.umd.edu> 20 * Pekka Riikonen <priikone@poesidon.pspt.fi> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75#include <asm/uaccess.h> 76#include <linux/bitops.h> 77#include <linux/capability.h> 78#include <linux/cpu.h> 79#include <linux/types.h> 80#include <linux/kernel.h> 81#include <linux/hash.h> 82#include <linux/slab.h> 83#include <linux/sched.h> 84#include <linux/mutex.h> 85#include <linux/string.h> 86#include <linux/mm.h> 87#include <linux/socket.h> 88#include <linux/sockios.h> 89#include <linux/errno.h> 90#include <linux/interrupt.h> 91#include <linux/if_ether.h> 92#include <linux/netdevice.h> 93#include <linux/etherdevice.h> 94#include <linux/ethtool.h> 95#include <linux/notifier.h> 96#include <linux/skbuff.h> 97#include <net/net_namespace.h> 98#include <net/sock.h> 99#include <linux/rtnetlink.h> 100#include <linux/stat.h> 101#include <net/dst.h> 102#include <net/pkt_sched.h> 103#include <net/checksum.h> 104#include <net/xfrm.h> 105#include <linux/highmem.h> 106#include <linux/init.h> 107#include <linux/module.h> 108#include <linux/netpoll.h> 109#include <linux/rcupdate.h> 110#include <linux/delay.h> 111#include <net/iw_handler.h> 112#include <asm/current.h> 113#include <linux/audit.h> 114#include <linux/dmaengine.h> 115#include <linux/err.h> 116#include <linux/ctype.h> 117#include <linux/if_arp.h> 118#include <linux/if_vlan.h> 119#include <linux/ip.h> 120#include <net/ip.h> 121#include <linux/ipv6.h> 122#include <linux/in.h> 123#include <linux/jhash.h> 124#include <linux/random.h> 125#include <trace/events/napi.h> 126#include <trace/events/net.h> 127#include <trace/events/skb.h> 128#include <linux/pci.h> 129#include <linux/inetdevice.h> 130#include <linux/cpu_rmap.h> 131#include <linux/static_key.h> 132#include <linux/hashtable.h> 133#include <linux/vmalloc.h> 134#include <linux/if_macvlan.h> 135 136#include "net-sysfs.h" 137 138/* Instead of increasing this, you should create a hash table. */ 139#define MAX_GRO_SKBS 8 140 141/* This should be increased if a protocol with a bigger head is added. */ 142#define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144static DEFINE_SPINLOCK(ptype_lock); 145static DEFINE_SPINLOCK(offload_lock); 146struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 147struct list_head ptype_all __read_mostly; /* Taps */ 148static struct list_head offload_base __read_mostly; 149 150static int netif_rx_internal(struct sk_buff *skb); 151static int call_netdevice_notifiers_info(unsigned long val, 152 struct net_device *dev, 153 struct netdev_notifier_info *info); 154 155/* 156 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 157 * semaphore. 158 * 159 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 160 * 161 * Writers must hold the rtnl semaphore while they loop through the 162 * dev_base_head list, and hold dev_base_lock for writing when they do the 163 * actual updates. This allows pure readers to access the list even 164 * while a writer is preparing to update it. 165 * 166 * To put it another way, dev_base_lock is held for writing only to 167 * protect against pure readers; the rtnl semaphore provides the 168 * protection against other writers. 169 * 170 * See, for example usages, register_netdevice() and 171 * unregister_netdevice(), which must be called with the rtnl 172 * semaphore held. 173 */ 174DEFINE_RWLOCK(dev_base_lock); 175EXPORT_SYMBOL(dev_base_lock); 176 177/* protects napi_hash addition/deletion and napi_gen_id */ 178static DEFINE_SPINLOCK(napi_hash_lock); 179 180static unsigned int napi_gen_id; 181static DEFINE_HASHTABLE(napi_hash, 8); 182 183static seqcount_t devnet_rename_seq; 184 185static inline void dev_base_seq_inc(struct net *net) 186{ 187 while (++net->dev_base_seq == 0); 188} 189 190static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 191{ 192 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 193 194 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 195} 196 197static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 198{ 199 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 200} 201 202static inline void rps_lock(struct softnet_data *sd) 203{ 204#ifdef CONFIG_RPS 205 spin_lock(&sd->input_pkt_queue.lock); 206#endif 207} 208 209static inline void rps_unlock(struct softnet_data *sd) 210{ 211#ifdef CONFIG_RPS 212 spin_unlock(&sd->input_pkt_queue.lock); 213#endif 214} 215 216/* Device list insertion */ 217static void list_netdevice(struct net_device *dev) 218{ 219 struct net *net = dev_net(dev); 220 221 ASSERT_RTNL(); 222 223 write_lock_bh(&dev_base_lock); 224 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 225 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 226 hlist_add_head_rcu(&dev->index_hlist, 227 dev_index_hash(net, dev->ifindex)); 228 write_unlock_bh(&dev_base_lock); 229 230 dev_base_seq_inc(net); 231} 232 233/* Device list removal 234 * caller must respect a RCU grace period before freeing/reusing dev 235 */ 236static void unlist_netdevice(struct net_device *dev) 237{ 238 ASSERT_RTNL(); 239 240 /* Unlink dev from the device chain */ 241 write_lock_bh(&dev_base_lock); 242 list_del_rcu(&dev->dev_list); 243 hlist_del_rcu(&dev->name_hlist); 244 hlist_del_rcu(&dev->index_hlist); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(dev_net(dev)); 248} 249 250/* 251 * Our notifier list 252 */ 253 254static RAW_NOTIFIER_HEAD(netdev_chain); 255 256/* 257 * Device drivers call our routines to queue packets here. We empty the 258 * queue in the local softnet handler. 259 */ 260 261DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 262EXPORT_PER_CPU_SYMBOL(softnet_data); 263 264#ifdef CONFIG_LOCKDEP 265/* 266 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 267 * according to dev->type 268 */ 269static const unsigned short netdev_lock_type[] = 270 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 271 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 272 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 273 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 274 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 275 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 276 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 277 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 278 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 279 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 280 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 281 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 282 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 283 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 284 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 285 286static const char *const netdev_lock_name[] = 287 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 288 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 289 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 290 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 291 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 292 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 293 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 294 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 295 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 296 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 297 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 298 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 299 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 300 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 301 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 302 303static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 304static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 305 306static inline unsigned short netdev_lock_pos(unsigned short dev_type) 307{ 308 int i; 309 310 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 311 if (netdev_lock_type[i] == dev_type) 312 return i; 313 /* the last key is used by default */ 314 return ARRAY_SIZE(netdev_lock_type) - 1; 315} 316 317static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 318 unsigned short dev_type) 319{ 320 int i; 321 322 i = netdev_lock_pos(dev_type); 323 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 324 netdev_lock_name[i]); 325} 326 327static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 328{ 329 int i; 330 331 i = netdev_lock_pos(dev->type); 332 lockdep_set_class_and_name(&dev->addr_list_lock, 333 &netdev_addr_lock_key[i], 334 netdev_lock_name[i]); 335} 336#else 337static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 338 unsigned short dev_type) 339{ 340} 341static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 342{ 343} 344#endif 345 346/******************************************************************************* 347 348 Protocol management and registration routines 349 350*******************************************************************************/ 351 352/* 353 * Add a protocol ID to the list. Now that the input handler is 354 * smarter we can dispense with all the messy stuff that used to be 355 * here. 356 * 357 * BEWARE!!! Protocol handlers, mangling input packets, 358 * MUST BE last in hash buckets and checking protocol handlers 359 * MUST start from promiscuous ptype_all chain in net_bh. 360 * It is true now, do not change it. 361 * Explanation follows: if protocol handler, mangling packet, will 362 * be the first on list, it is not able to sense, that packet 363 * is cloned and should be copied-on-write, so that it will 364 * change it and subsequent readers will get broken packet. 365 * --ANK (980803) 366 */ 367 368static inline struct list_head *ptype_head(const struct packet_type *pt) 369{ 370 if (pt->type == htons(ETH_P_ALL)) 371 return &ptype_all; 372 else 373 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 374} 375 376/** 377 * dev_add_pack - add packet handler 378 * @pt: packet type declaration 379 * 380 * Add a protocol handler to the networking stack. The passed &packet_type 381 * is linked into kernel lists and may not be freed until it has been 382 * removed from the kernel lists. 383 * 384 * This call does not sleep therefore it can not 385 * guarantee all CPU's that are in middle of receiving packets 386 * will see the new packet type (until the next received packet). 387 */ 388 389void dev_add_pack(struct packet_type *pt) 390{ 391 struct list_head *head = ptype_head(pt); 392 393 spin_lock(&ptype_lock); 394 list_add_rcu(&pt->list, head); 395 spin_unlock(&ptype_lock); 396} 397EXPORT_SYMBOL(dev_add_pack); 398 399/** 400 * __dev_remove_pack - remove packet handler 401 * @pt: packet type declaration 402 * 403 * Remove a protocol handler that was previously added to the kernel 404 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 405 * from the kernel lists and can be freed or reused once this function 406 * returns. 407 * 408 * The packet type might still be in use by receivers 409 * and must not be freed until after all the CPU's have gone 410 * through a quiescent state. 411 */ 412void __dev_remove_pack(struct packet_type *pt) 413{ 414 struct list_head *head = ptype_head(pt); 415 struct packet_type *pt1; 416 417 spin_lock(&ptype_lock); 418 419 list_for_each_entry(pt1, head, list) { 420 if (pt == pt1) { 421 list_del_rcu(&pt->list); 422 goto out; 423 } 424 } 425 426 pr_warn("dev_remove_pack: %p not found\n", pt); 427out: 428 spin_unlock(&ptype_lock); 429} 430EXPORT_SYMBOL(__dev_remove_pack); 431 432/** 433 * dev_remove_pack - remove packet handler 434 * @pt: packet type declaration 435 * 436 * Remove a protocol handler that was previously added to the kernel 437 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 438 * from the kernel lists and can be freed or reused once this function 439 * returns. 440 * 441 * This call sleeps to guarantee that no CPU is looking at the packet 442 * type after return. 443 */ 444void dev_remove_pack(struct packet_type *pt) 445{ 446 __dev_remove_pack(pt); 447 448 synchronize_net(); 449} 450EXPORT_SYMBOL(dev_remove_pack); 451 452 453/** 454 * dev_add_offload - register offload handlers 455 * @po: protocol offload declaration 456 * 457 * Add protocol offload handlers to the networking stack. The passed 458 * &proto_offload is linked into kernel lists and may not be freed until 459 * it has been removed from the kernel lists. 460 * 461 * This call does not sleep therefore it can not 462 * guarantee all CPU's that are in middle of receiving packets 463 * will see the new offload handlers (until the next received packet). 464 */ 465void dev_add_offload(struct packet_offload *po) 466{ 467 struct list_head *head = &offload_base; 468 469 spin_lock(&offload_lock); 470 list_add_rcu(&po->list, head); 471 spin_unlock(&offload_lock); 472} 473EXPORT_SYMBOL(dev_add_offload); 474 475/** 476 * __dev_remove_offload - remove offload handler 477 * @po: packet offload declaration 478 * 479 * Remove a protocol offload handler that was previously added to the 480 * kernel offload handlers by dev_add_offload(). The passed &offload_type 481 * is removed from the kernel lists and can be freed or reused once this 482 * function returns. 483 * 484 * The packet type might still be in use by receivers 485 * and must not be freed until after all the CPU's have gone 486 * through a quiescent state. 487 */ 488static void __dev_remove_offload(struct packet_offload *po) 489{ 490 struct list_head *head = &offload_base; 491 struct packet_offload *po1; 492 493 spin_lock(&offload_lock); 494 495 list_for_each_entry(po1, head, list) { 496 if (po == po1) { 497 list_del_rcu(&po->list); 498 goto out; 499 } 500 } 501 502 pr_warn("dev_remove_offload: %p not found\n", po); 503out: 504 spin_unlock(&offload_lock); 505} 506 507/** 508 * dev_remove_offload - remove packet offload handler 509 * @po: packet offload declaration 510 * 511 * Remove a packet offload handler that was previously added to the kernel 512 * offload handlers by dev_add_offload(). The passed &offload_type is 513 * removed from the kernel lists and can be freed or reused once this 514 * function returns. 515 * 516 * This call sleeps to guarantee that no CPU is looking at the packet 517 * type after return. 518 */ 519void dev_remove_offload(struct packet_offload *po) 520{ 521 __dev_remove_offload(po); 522 523 synchronize_net(); 524} 525EXPORT_SYMBOL(dev_remove_offload); 526 527/****************************************************************************** 528 529 Device Boot-time Settings Routines 530 531*******************************************************************************/ 532 533/* Boot time configuration table */ 534static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 535 536/** 537 * netdev_boot_setup_add - add new setup entry 538 * @name: name of the device 539 * @map: configured settings for the device 540 * 541 * Adds new setup entry to the dev_boot_setup list. The function 542 * returns 0 on error and 1 on success. This is a generic routine to 543 * all netdevices. 544 */ 545static int netdev_boot_setup_add(char *name, struct ifmap *map) 546{ 547 struct netdev_boot_setup *s; 548 int i; 549 550 s = dev_boot_setup; 551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 552 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 553 memset(s[i].name, 0, sizeof(s[i].name)); 554 strlcpy(s[i].name, name, IFNAMSIZ); 555 memcpy(&s[i].map, map, sizeof(s[i].map)); 556 break; 557 } 558 } 559 560 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 561} 562 563/** 564 * netdev_boot_setup_check - check boot time settings 565 * @dev: the netdevice 566 * 567 * Check boot time settings for the device. 568 * The found settings are set for the device to be used 569 * later in the device probing. 570 * Returns 0 if no settings found, 1 if they are. 571 */ 572int netdev_boot_setup_check(struct net_device *dev) 573{ 574 struct netdev_boot_setup *s = dev_boot_setup; 575 int i; 576 577 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 578 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 579 !strcmp(dev->name, s[i].name)) { 580 dev->irq = s[i].map.irq; 581 dev->base_addr = s[i].map.base_addr; 582 dev->mem_start = s[i].map.mem_start; 583 dev->mem_end = s[i].map.mem_end; 584 return 1; 585 } 586 } 587 return 0; 588} 589EXPORT_SYMBOL(netdev_boot_setup_check); 590 591 592/** 593 * netdev_boot_base - get address from boot time settings 594 * @prefix: prefix for network device 595 * @unit: id for network device 596 * 597 * Check boot time settings for the base address of device. 598 * The found settings are set for the device to be used 599 * later in the device probing. 600 * Returns 0 if no settings found. 601 */ 602unsigned long netdev_boot_base(const char *prefix, int unit) 603{ 604 const struct netdev_boot_setup *s = dev_boot_setup; 605 char name[IFNAMSIZ]; 606 int i; 607 608 sprintf(name, "%s%d", prefix, unit); 609 610 /* 611 * If device already registered then return base of 1 612 * to indicate not to probe for this interface 613 */ 614 if (__dev_get_by_name(&init_net, name)) 615 return 1; 616 617 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 618 if (!strcmp(name, s[i].name)) 619 return s[i].map.base_addr; 620 return 0; 621} 622 623/* 624 * Saves at boot time configured settings for any netdevice. 625 */ 626int __init netdev_boot_setup(char *str) 627{ 628 int ints[5]; 629 struct ifmap map; 630 631 str = get_options(str, ARRAY_SIZE(ints), ints); 632 if (!str || !*str) 633 return 0; 634 635 /* Save settings */ 636 memset(&map, 0, sizeof(map)); 637 if (ints[0] > 0) 638 map.irq = ints[1]; 639 if (ints[0] > 1) 640 map.base_addr = ints[2]; 641 if (ints[0] > 2) 642 map.mem_start = ints[3]; 643 if (ints[0] > 3) 644 map.mem_end = ints[4]; 645 646 /* Add new entry to the list */ 647 return netdev_boot_setup_add(str, &map); 648} 649 650__setup("netdev=", netdev_boot_setup); 651 652/******************************************************************************* 653 654 Device Interface Subroutines 655 656*******************************************************************************/ 657 658/** 659 * __dev_get_by_name - find a device by its name 660 * @net: the applicable net namespace 661 * @name: name to find 662 * 663 * Find an interface by name. Must be called under RTNL semaphore 664 * or @dev_base_lock. If the name is found a pointer to the device 665 * is returned. If the name is not found then %NULL is returned. The 666 * reference counters are not incremented so the caller must be 667 * careful with locks. 668 */ 669 670struct net_device *__dev_get_by_name(struct net *net, const char *name) 671{ 672 struct net_device *dev; 673 struct hlist_head *head = dev_name_hash(net, name); 674 675 hlist_for_each_entry(dev, head, name_hlist) 676 if (!strncmp(dev->name, name, IFNAMSIZ)) 677 return dev; 678 679 return NULL; 680} 681EXPORT_SYMBOL(__dev_get_by_name); 682 683/** 684 * dev_get_by_name_rcu - find a device by its name 685 * @net: the applicable net namespace 686 * @name: name to find 687 * 688 * Find an interface by name. 689 * If the name is found a pointer to the device is returned. 690 * If the name is not found then %NULL is returned. 691 * The reference counters are not incremented so the caller must be 692 * careful with locks. The caller must hold RCU lock. 693 */ 694 695struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 696{ 697 struct net_device *dev; 698 struct hlist_head *head = dev_name_hash(net, name); 699 700 hlist_for_each_entry_rcu(dev, head, name_hlist) 701 if (!strncmp(dev->name, name, IFNAMSIZ)) 702 return dev; 703 704 return NULL; 705} 706EXPORT_SYMBOL(dev_get_by_name_rcu); 707 708/** 709 * dev_get_by_name - find a device by its name 710 * @net: the applicable net namespace 711 * @name: name to find 712 * 713 * Find an interface by name. This can be called from any 714 * context and does its own locking. The returned handle has 715 * the usage count incremented and the caller must use dev_put() to 716 * release it when it is no longer needed. %NULL is returned if no 717 * matching device is found. 718 */ 719 720struct net_device *dev_get_by_name(struct net *net, const char *name) 721{ 722 struct net_device *dev; 723 724 rcu_read_lock(); 725 dev = dev_get_by_name_rcu(net, name); 726 if (dev) 727 dev_hold(dev); 728 rcu_read_unlock(); 729 return dev; 730} 731EXPORT_SYMBOL(dev_get_by_name); 732 733/** 734 * __dev_get_by_index - find a device by its ifindex 735 * @net: the applicable net namespace 736 * @ifindex: index of device 737 * 738 * Search for an interface by index. Returns %NULL if the device 739 * is not found or a pointer to the device. The device has not 740 * had its reference counter increased so the caller must be careful 741 * about locking. The caller must hold either the RTNL semaphore 742 * or @dev_base_lock. 743 */ 744 745struct net_device *__dev_get_by_index(struct net *net, int ifindex) 746{ 747 struct net_device *dev; 748 struct hlist_head *head = dev_index_hash(net, ifindex); 749 750 hlist_for_each_entry(dev, head, index_hlist) 751 if (dev->ifindex == ifindex) 752 return dev; 753 754 return NULL; 755} 756EXPORT_SYMBOL(__dev_get_by_index); 757 758/** 759 * dev_get_by_index_rcu - find a device by its ifindex 760 * @net: the applicable net namespace 761 * @ifindex: index of device 762 * 763 * Search for an interface by index. Returns %NULL if the device 764 * is not found or a pointer to the device. The device has not 765 * had its reference counter increased so the caller must be careful 766 * about locking. The caller must hold RCU lock. 767 */ 768 769struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 770{ 771 struct net_device *dev; 772 struct hlist_head *head = dev_index_hash(net, ifindex); 773 774 hlist_for_each_entry_rcu(dev, head, index_hlist) 775 if (dev->ifindex == ifindex) 776 return dev; 777 778 return NULL; 779} 780EXPORT_SYMBOL(dev_get_by_index_rcu); 781 782 783/** 784 * dev_get_by_index - find a device by its ifindex 785 * @net: the applicable net namespace 786 * @ifindex: index of device 787 * 788 * Search for an interface by index. Returns NULL if the device 789 * is not found or a pointer to the device. The device returned has 790 * had a reference added and the pointer is safe until the user calls 791 * dev_put to indicate they have finished with it. 792 */ 793 794struct net_device *dev_get_by_index(struct net *net, int ifindex) 795{ 796 struct net_device *dev; 797 798 rcu_read_lock(); 799 dev = dev_get_by_index_rcu(net, ifindex); 800 if (dev) 801 dev_hold(dev); 802 rcu_read_unlock(); 803 return dev; 804} 805EXPORT_SYMBOL(dev_get_by_index); 806 807/** 808 * netdev_get_name - get a netdevice name, knowing its ifindex. 809 * @net: network namespace 810 * @name: a pointer to the buffer where the name will be stored. 811 * @ifindex: the ifindex of the interface to get the name from. 812 * 813 * The use of raw_seqcount_begin() and cond_resched() before 814 * retrying is required as we want to give the writers a chance 815 * to complete when CONFIG_PREEMPT is not set. 816 */ 817int netdev_get_name(struct net *net, char *name, int ifindex) 818{ 819 struct net_device *dev; 820 unsigned int seq; 821 822retry: 823 seq = raw_seqcount_begin(&devnet_rename_seq); 824 rcu_read_lock(); 825 dev = dev_get_by_index_rcu(net, ifindex); 826 if (!dev) { 827 rcu_read_unlock(); 828 return -ENODEV; 829 } 830 831 strcpy(name, dev->name); 832 rcu_read_unlock(); 833 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 834 cond_resched(); 835 goto retry; 836 } 837 838 return 0; 839} 840 841/** 842 * dev_getbyhwaddr_rcu - find a device by its hardware address 843 * @net: the applicable net namespace 844 * @type: media type of device 845 * @ha: hardware address 846 * 847 * Search for an interface by MAC address. Returns NULL if the device 848 * is not found or a pointer to the device. 849 * The caller must hold RCU or RTNL. 850 * The returned device has not had its ref count increased 851 * and the caller must therefore be careful about locking 852 * 853 */ 854 855struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 856 const char *ha) 857{ 858 struct net_device *dev; 859 860 for_each_netdev_rcu(net, dev) 861 if (dev->type == type && 862 !memcmp(dev->dev_addr, ha, dev->addr_len)) 863 return dev; 864 865 return NULL; 866} 867EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 868 869struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 870{ 871 struct net_device *dev; 872 873 ASSERT_RTNL(); 874 for_each_netdev(net, dev) 875 if (dev->type == type) 876 return dev; 877 878 return NULL; 879} 880EXPORT_SYMBOL(__dev_getfirstbyhwtype); 881 882struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 883{ 884 struct net_device *dev, *ret = NULL; 885 886 rcu_read_lock(); 887 for_each_netdev_rcu(net, dev) 888 if (dev->type == type) { 889 dev_hold(dev); 890 ret = dev; 891 break; 892 } 893 rcu_read_unlock(); 894 return ret; 895} 896EXPORT_SYMBOL(dev_getfirstbyhwtype); 897 898/** 899 * dev_get_by_flags_rcu - find any device with given flags 900 * @net: the applicable net namespace 901 * @if_flags: IFF_* values 902 * @mask: bitmask of bits in if_flags to check 903 * 904 * Search for any interface with the given flags. Returns NULL if a device 905 * is not found or a pointer to the device. Must be called inside 906 * rcu_read_lock(), and result refcount is unchanged. 907 */ 908 909struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 910 unsigned short mask) 911{ 912 struct net_device *dev, *ret; 913 914 ret = NULL; 915 for_each_netdev_rcu(net, dev) { 916 if (((dev->flags ^ if_flags) & mask) == 0) { 917 ret = dev; 918 break; 919 } 920 } 921 return ret; 922} 923EXPORT_SYMBOL(dev_get_by_flags_rcu); 924 925/** 926 * dev_valid_name - check if name is okay for network device 927 * @name: name string 928 * 929 * Network device names need to be valid file names to 930 * to allow sysfs to work. We also disallow any kind of 931 * whitespace. 932 */ 933bool dev_valid_name(const char *name) 934{ 935 if (*name == '\0') 936 return false; 937 if (strlen(name) >= IFNAMSIZ) 938 return false; 939 if (!strcmp(name, ".") || !strcmp(name, "..")) 940 return false; 941 942 while (*name) { 943 if (*name == '/' || isspace(*name)) 944 return false; 945 name++; 946 } 947 return true; 948} 949EXPORT_SYMBOL(dev_valid_name); 950 951/** 952 * __dev_alloc_name - allocate a name for a device 953 * @net: network namespace to allocate the device name in 954 * @name: name format string 955 * @buf: scratch buffer and result name string 956 * 957 * Passed a format string - eg "lt%d" it will try and find a suitable 958 * id. It scans list of devices to build up a free map, then chooses 959 * the first empty slot. The caller must hold the dev_base or rtnl lock 960 * while allocating the name and adding the device in order to avoid 961 * duplicates. 962 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 963 * Returns the number of the unit assigned or a negative errno code. 964 */ 965 966static int __dev_alloc_name(struct net *net, const char *name, char *buf) 967{ 968 int i = 0; 969 const char *p; 970 const int max_netdevices = 8*PAGE_SIZE; 971 unsigned long *inuse; 972 struct net_device *d; 973 974 p = strnchr(name, IFNAMSIZ-1, '%'); 975 if (p) { 976 /* 977 * Verify the string as this thing may have come from 978 * the user. There must be either one "%d" and no other "%" 979 * characters. 980 */ 981 if (p[1] != 'd' || strchr(p + 2, '%')) 982 return -EINVAL; 983 984 /* Use one page as a bit array of possible slots */ 985 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 986 if (!inuse) 987 return -ENOMEM; 988 989 for_each_netdev(net, d) { 990 if (!sscanf(d->name, name, &i)) 991 continue; 992 if (i < 0 || i >= max_netdevices) 993 continue; 994 995 /* avoid cases where sscanf is not exact inverse of printf */ 996 snprintf(buf, IFNAMSIZ, name, i); 997 if (!strncmp(buf, d->name, IFNAMSIZ)) 998 set_bit(i, inuse); 999 } 1000 1001 i = find_first_zero_bit(inuse, max_netdevices); 1002 free_page((unsigned long) inuse); 1003 } 1004 1005 if (buf != name) 1006 snprintf(buf, IFNAMSIZ, name, i); 1007 if (!__dev_get_by_name(net, buf)) 1008 return i; 1009 1010 /* It is possible to run out of possible slots 1011 * when the name is long and there isn't enough space left 1012 * for the digits, or if all bits are used. 1013 */ 1014 return -ENFILE; 1015} 1016 1017/** 1018 * dev_alloc_name - allocate a name for a device 1019 * @dev: device 1020 * @name: name format string 1021 * 1022 * Passed a format string - eg "lt%d" it will try and find a suitable 1023 * id. It scans list of devices to build up a free map, then chooses 1024 * the first empty slot. The caller must hold the dev_base or rtnl lock 1025 * while allocating the name and adding the device in order to avoid 1026 * duplicates. 1027 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1028 * Returns the number of the unit assigned or a negative errno code. 1029 */ 1030 1031int dev_alloc_name(struct net_device *dev, const char *name) 1032{ 1033 char buf[IFNAMSIZ]; 1034 struct net *net; 1035 int ret; 1036 1037 BUG_ON(!dev_net(dev)); 1038 net = dev_net(dev); 1039 ret = __dev_alloc_name(net, name, buf); 1040 if (ret >= 0) 1041 strlcpy(dev->name, buf, IFNAMSIZ); 1042 return ret; 1043} 1044EXPORT_SYMBOL(dev_alloc_name); 1045 1046static int dev_alloc_name_ns(struct net *net, 1047 struct net_device *dev, 1048 const char *name) 1049{ 1050 char buf[IFNAMSIZ]; 1051 int ret; 1052 1053 ret = __dev_alloc_name(net, name, buf); 1054 if (ret >= 0) 1055 strlcpy(dev->name, buf, IFNAMSIZ); 1056 return ret; 1057} 1058 1059static int dev_get_valid_name(struct net *net, 1060 struct net_device *dev, 1061 const char *name) 1062{ 1063 BUG_ON(!net); 1064 1065 if (!dev_valid_name(name)) 1066 return -EINVAL; 1067 1068 if (strchr(name, '%')) 1069 return dev_alloc_name_ns(net, dev, name); 1070 else if (__dev_get_by_name(net, name)) 1071 return -EEXIST; 1072 else if (dev->name != name) 1073 strlcpy(dev->name, name, IFNAMSIZ); 1074 1075 return 0; 1076} 1077 1078/** 1079 * dev_change_name - change name of a device 1080 * @dev: device 1081 * @newname: name (or format string) must be at least IFNAMSIZ 1082 * 1083 * Change name of a device, can pass format strings "eth%d". 1084 * for wildcarding. 1085 */ 1086int dev_change_name(struct net_device *dev, const char *newname) 1087{ 1088 char oldname[IFNAMSIZ]; 1089 int err = 0; 1090 int ret; 1091 struct net *net; 1092 1093 ASSERT_RTNL(); 1094 BUG_ON(!dev_net(dev)); 1095 1096 net = dev_net(dev); 1097 if (dev->flags & IFF_UP) 1098 return -EBUSY; 1099 1100 write_seqcount_begin(&devnet_rename_seq); 1101 1102 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1103 write_seqcount_end(&devnet_rename_seq); 1104 return 0; 1105 } 1106 1107 memcpy(oldname, dev->name, IFNAMSIZ); 1108 1109 err = dev_get_valid_name(net, dev, newname); 1110 if (err < 0) { 1111 write_seqcount_end(&devnet_rename_seq); 1112 return err; 1113 } 1114 1115rollback: 1116 ret = device_rename(&dev->dev, dev->name); 1117 if (ret) { 1118 memcpy(dev->name, oldname, IFNAMSIZ); 1119 write_seqcount_end(&devnet_rename_seq); 1120 return ret; 1121 } 1122 1123 write_seqcount_end(&devnet_rename_seq); 1124 1125 netdev_adjacent_rename_links(dev, oldname); 1126 1127 write_lock_bh(&dev_base_lock); 1128 hlist_del_rcu(&dev->name_hlist); 1129 write_unlock_bh(&dev_base_lock); 1130 1131 synchronize_rcu(); 1132 1133 write_lock_bh(&dev_base_lock); 1134 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1135 write_unlock_bh(&dev_base_lock); 1136 1137 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1138 ret = notifier_to_errno(ret); 1139 1140 if (ret) { 1141 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1142 if (err >= 0) { 1143 err = ret; 1144 write_seqcount_begin(&devnet_rename_seq); 1145 memcpy(dev->name, oldname, IFNAMSIZ); 1146 memcpy(oldname, newname, IFNAMSIZ); 1147 goto rollback; 1148 } else { 1149 pr_err("%s: name change rollback failed: %d\n", 1150 dev->name, ret); 1151 } 1152 } 1153 1154 return err; 1155} 1156 1157/** 1158 * dev_set_alias - change ifalias of a device 1159 * @dev: device 1160 * @alias: name up to IFALIASZ 1161 * @len: limit of bytes to copy from info 1162 * 1163 * Set ifalias for a device, 1164 */ 1165int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1166{ 1167 char *new_ifalias; 1168 1169 ASSERT_RTNL(); 1170 1171 if (len >= IFALIASZ) 1172 return -EINVAL; 1173 1174 if (!len) { 1175 kfree(dev->ifalias); 1176 dev->ifalias = NULL; 1177 return 0; 1178 } 1179 1180 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1181 if (!new_ifalias) 1182 return -ENOMEM; 1183 dev->ifalias = new_ifalias; 1184 1185 strlcpy(dev->ifalias, alias, len+1); 1186 return len; 1187} 1188 1189 1190/** 1191 * netdev_features_change - device changes features 1192 * @dev: device to cause notification 1193 * 1194 * Called to indicate a device has changed features. 1195 */ 1196void netdev_features_change(struct net_device *dev) 1197{ 1198 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1199} 1200EXPORT_SYMBOL(netdev_features_change); 1201 1202/** 1203 * netdev_state_change - device changes state 1204 * @dev: device to cause notification 1205 * 1206 * Called to indicate a device has changed state. This function calls 1207 * the notifier chains for netdev_chain and sends a NEWLINK message 1208 * to the routing socket. 1209 */ 1210void netdev_state_change(struct net_device *dev) 1211{ 1212 if (dev->flags & IFF_UP) { 1213 struct netdev_notifier_change_info change_info; 1214 1215 change_info.flags_changed = 0; 1216 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1217 &change_info.info); 1218 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1219 } 1220} 1221EXPORT_SYMBOL(netdev_state_change); 1222 1223/** 1224 * netdev_notify_peers - notify network peers about existence of @dev 1225 * @dev: network device 1226 * 1227 * Generate traffic such that interested network peers are aware of 1228 * @dev, such as by generating a gratuitous ARP. This may be used when 1229 * a device wants to inform the rest of the network about some sort of 1230 * reconfiguration such as a failover event or virtual machine 1231 * migration. 1232 */ 1233void netdev_notify_peers(struct net_device *dev) 1234{ 1235 rtnl_lock(); 1236 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1237 rtnl_unlock(); 1238} 1239EXPORT_SYMBOL(netdev_notify_peers); 1240 1241static int __dev_open(struct net_device *dev) 1242{ 1243 const struct net_device_ops *ops = dev->netdev_ops; 1244 int ret; 1245 1246 ASSERT_RTNL(); 1247 1248 if (!netif_device_present(dev)) 1249 return -ENODEV; 1250 1251 /* Block netpoll from trying to do any rx path servicing. 1252 * If we don't do this there is a chance ndo_poll_controller 1253 * or ndo_poll may be running while we open the device 1254 */ 1255 netpoll_poll_disable(dev); 1256 1257 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1258 ret = notifier_to_errno(ret); 1259 if (ret) 1260 return ret; 1261 1262 set_bit(__LINK_STATE_START, &dev->state); 1263 1264 if (ops->ndo_validate_addr) 1265 ret = ops->ndo_validate_addr(dev); 1266 1267 if (!ret && ops->ndo_open) 1268 ret = ops->ndo_open(dev); 1269 1270 netpoll_poll_enable(dev); 1271 1272 if (ret) 1273 clear_bit(__LINK_STATE_START, &dev->state); 1274 else { 1275 dev->flags |= IFF_UP; 1276 net_dmaengine_get(); 1277 dev_set_rx_mode(dev); 1278 dev_activate(dev); 1279 add_device_randomness(dev->dev_addr, dev->addr_len); 1280 } 1281 1282 return ret; 1283} 1284 1285/** 1286 * dev_open - prepare an interface for use. 1287 * @dev: device to open 1288 * 1289 * Takes a device from down to up state. The device's private open 1290 * function is invoked and then the multicast lists are loaded. Finally 1291 * the device is moved into the up state and a %NETDEV_UP message is 1292 * sent to the netdev notifier chain. 1293 * 1294 * Calling this function on an active interface is a nop. On a failure 1295 * a negative errno code is returned. 1296 */ 1297int dev_open(struct net_device *dev) 1298{ 1299 int ret; 1300 1301 if (dev->flags & IFF_UP) 1302 return 0; 1303 1304 ret = __dev_open(dev); 1305 if (ret < 0) 1306 return ret; 1307 1308 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1309 call_netdevice_notifiers(NETDEV_UP, dev); 1310 1311 return ret; 1312} 1313EXPORT_SYMBOL(dev_open); 1314 1315static int __dev_close_many(struct list_head *head) 1316{ 1317 struct net_device *dev; 1318 1319 ASSERT_RTNL(); 1320 might_sleep(); 1321 1322 list_for_each_entry(dev, head, close_list) { 1323 /* Temporarily disable netpoll until the interface is down */ 1324 netpoll_poll_disable(dev); 1325 1326 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1327 1328 clear_bit(__LINK_STATE_START, &dev->state); 1329 1330 /* Synchronize to scheduled poll. We cannot touch poll list, it 1331 * can be even on different cpu. So just clear netif_running(). 1332 * 1333 * dev->stop() will invoke napi_disable() on all of it's 1334 * napi_struct instances on this device. 1335 */ 1336 smp_mb__after_atomic(); /* Commit netif_running(). */ 1337 } 1338 1339 dev_deactivate_many(head); 1340 1341 list_for_each_entry(dev, head, close_list) { 1342 const struct net_device_ops *ops = dev->netdev_ops; 1343 1344 /* 1345 * Call the device specific close. This cannot fail. 1346 * Only if device is UP 1347 * 1348 * We allow it to be called even after a DETACH hot-plug 1349 * event. 1350 */ 1351 if (ops->ndo_stop) 1352 ops->ndo_stop(dev); 1353 1354 dev->flags &= ~IFF_UP; 1355 net_dmaengine_put(); 1356 netpoll_poll_enable(dev); 1357 } 1358 1359 return 0; 1360} 1361 1362static int __dev_close(struct net_device *dev) 1363{ 1364 int retval; 1365 LIST_HEAD(single); 1366 1367 list_add(&dev->close_list, &single); 1368 retval = __dev_close_many(&single); 1369 list_del(&single); 1370 1371 return retval; 1372} 1373 1374static int dev_close_many(struct list_head *head) 1375{ 1376 struct net_device *dev, *tmp; 1377 1378 /* Remove the devices that don't need to be closed */ 1379 list_for_each_entry_safe(dev, tmp, head, close_list) 1380 if (!(dev->flags & IFF_UP)) 1381 list_del_init(&dev->close_list); 1382 1383 __dev_close_many(head); 1384 1385 list_for_each_entry_safe(dev, tmp, head, close_list) { 1386 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1387 call_netdevice_notifiers(NETDEV_DOWN, dev); 1388 list_del_init(&dev->close_list); 1389 } 1390 1391 return 0; 1392} 1393 1394/** 1395 * dev_close - shutdown an interface. 1396 * @dev: device to shutdown 1397 * 1398 * This function moves an active device into down state. A 1399 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1400 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1401 * chain. 1402 */ 1403int dev_close(struct net_device *dev) 1404{ 1405 if (dev->flags & IFF_UP) { 1406 LIST_HEAD(single); 1407 1408 list_add(&dev->close_list, &single); 1409 dev_close_many(&single); 1410 list_del(&single); 1411 } 1412 return 0; 1413} 1414EXPORT_SYMBOL(dev_close); 1415 1416 1417/** 1418 * dev_disable_lro - disable Large Receive Offload on a device 1419 * @dev: device 1420 * 1421 * Disable Large Receive Offload (LRO) on a net device. Must be 1422 * called under RTNL. This is needed if received packets may be 1423 * forwarded to another interface. 1424 */ 1425void dev_disable_lro(struct net_device *dev) 1426{ 1427 /* 1428 * If we're trying to disable lro on a vlan device 1429 * use the underlying physical device instead 1430 */ 1431 if (is_vlan_dev(dev)) 1432 dev = vlan_dev_real_dev(dev); 1433 1434 /* the same for macvlan devices */ 1435 if (netif_is_macvlan(dev)) 1436 dev = macvlan_dev_real_dev(dev); 1437 1438 dev->wanted_features &= ~NETIF_F_LRO; 1439 netdev_update_features(dev); 1440 1441 if (unlikely(dev->features & NETIF_F_LRO)) 1442 netdev_WARN(dev, "failed to disable LRO!\n"); 1443} 1444EXPORT_SYMBOL(dev_disable_lro); 1445 1446static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1447 struct net_device *dev) 1448{ 1449 struct netdev_notifier_info info; 1450 1451 netdev_notifier_info_init(&info, dev); 1452 return nb->notifier_call(nb, val, &info); 1453} 1454 1455static int dev_boot_phase = 1; 1456 1457/** 1458 * register_netdevice_notifier - register a network notifier block 1459 * @nb: notifier 1460 * 1461 * Register a notifier to be called when network device events occur. 1462 * The notifier passed is linked into the kernel structures and must 1463 * not be reused until it has been unregistered. A negative errno code 1464 * is returned on a failure. 1465 * 1466 * When registered all registration and up events are replayed 1467 * to the new notifier to allow device to have a race free 1468 * view of the network device list. 1469 */ 1470 1471int register_netdevice_notifier(struct notifier_block *nb) 1472{ 1473 struct net_device *dev; 1474 struct net_device *last; 1475 struct net *net; 1476 int err; 1477 1478 rtnl_lock(); 1479 err = raw_notifier_chain_register(&netdev_chain, nb); 1480 if (err) 1481 goto unlock; 1482 if (dev_boot_phase) 1483 goto unlock; 1484 for_each_net(net) { 1485 for_each_netdev(net, dev) { 1486 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1487 err = notifier_to_errno(err); 1488 if (err) 1489 goto rollback; 1490 1491 if (!(dev->flags & IFF_UP)) 1492 continue; 1493 1494 call_netdevice_notifier(nb, NETDEV_UP, dev); 1495 } 1496 } 1497 1498unlock: 1499 rtnl_unlock(); 1500 return err; 1501 1502rollback: 1503 last = dev; 1504 for_each_net(net) { 1505 for_each_netdev(net, dev) { 1506 if (dev == last) 1507 goto outroll; 1508 1509 if (dev->flags & IFF_UP) { 1510 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1511 dev); 1512 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1513 } 1514 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1515 } 1516 } 1517 1518outroll: 1519 raw_notifier_chain_unregister(&netdev_chain, nb); 1520 goto unlock; 1521} 1522EXPORT_SYMBOL(register_netdevice_notifier); 1523 1524/** 1525 * unregister_netdevice_notifier - unregister a network notifier block 1526 * @nb: notifier 1527 * 1528 * Unregister a notifier previously registered by 1529 * register_netdevice_notifier(). The notifier is unlinked into the 1530 * kernel structures and may then be reused. A negative errno code 1531 * is returned on a failure. 1532 * 1533 * After unregistering unregister and down device events are synthesized 1534 * for all devices on the device list to the removed notifier to remove 1535 * the need for special case cleanup code. 1536 */ 1537 1538int unregister_netdevice_notifier(struct notifier_block *nb) 1539{ 1540 struct net_device *dev; 1541 struct net *net; 1542 int err; 1543 1544 rtnl_lock(); 1545 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1546 if (err) 1547 goto unlock; 1548 1549 for_each_net(net) { 1550 for_each_netdev(net, dev) { 1551 if (dev->flags & IFF_UP) { 1552 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1553 dev); 1554 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1555 } 1556 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1557 } 1558 } 1559unlock: 1560 rtnl_unlock(); 1561 return err; 1562} 1563EXPORT_SYMBOL(unregister_netdevice_notifier); 1564 1565/** 1566 * call_netdevice_notifiers_info - call all network notifier blocks 1567 * @val: value passed unmodified to notifier function 1568 * @dev: net_device pointer passed unmodified to notifier function 1569 * @info: notifier information data 1570 * 1571 * Call all network notifier blocks. Parameters and return value 1572 * are as for raw_notifier_call_chain(). 1573 */ 1574 1575static int call_netdevice_notifiers_info(unsigned long val, 1576 struct net_device *dev, 1577 struct netdev_notifier_info *info) 1578{ 1579 ASSERT_RTNL(); 1580 netdev_notifier_info_init(info, dev); 1581 return raw_notifier_call_chain(&netdev_chain, val, info); 1582} 1583 1584/** 1585 * call_netdevice_notifiers - call all network notifier blocks 1586 * @val: value passed unmodified to notifier function 1587 * @dev: net_device pointer passed unmodified to notifier function 1588 * 1589 * Call all network notifier blocks. Parameters and return value 1590 * are as for raw_notifier_call_chain(). 1591 */ 1592 1593int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1594{ 1595 struct netdev_notifier_info info; 1596 1597 return call_netdevice_notifiers_info(val, dev, &info); 1598} 1599EXPORT_SYMBOL(call_netdevice_notifiers); 1600 1601static struct static_key netstamp_needed __read_mostly; 1602#ifdef HAVE_JUMP_LABEL 1603/* We are not allowed to call static_key_slow_dec() from irq context 1604 * If net_disable_timestamp() is called from irq context, defer the 1605 * static_key_slow_dec() calls. 1606 */ 1607static atomic_t netstamp_needed_deferred; 1608#endif 1609 1610void net_enable_timestamp(void) 1611{ 1612#ifdef HAVE_JUMP_LABEL 1613 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1614 1615 if (deferred) { 1616 while (--deferred) 1617 static_key_slow_dec(&netstamp_needed); 1618 return; 1619 } 1620#endif 1621 static_key_slow_inc(&netstamp_needed); 1622} 1623EXPORT_SYMBOL(net_enable_timestamp); 1624 1625void net_disable_timestamp(void) 1626{ 1627#ifdef HAVE_JUMP_LABEL 1628 if (in_interrupt()) { 1629 atomic_inc(&netstamp_needed_deferred); 1630 return; 1631 } 1632#endif 1633 static_key_slow_dec(&netstamp_needed); 1634} 1635EXPORT_SYMBOL(net_disable_timestamp); 1636 1637static inline void net_timestamp_set(struct sk_buff *skb) 1638{ 1639 skb->tstamp.tv64 = 0; 1640 if (static_key_false(&netstamp_needed)) 1641 __net_timestamp(skb); 1642} 1643 1644#define net_timestamp_check(COND, SKB) \ 1645 if (static_key_false(&netstamp_needed)) { \ 1646 if ((COND) && !(SKB)->tstamp.tv64) \ 1647 __net_timestamp(SKB); \ 1648 } \ 1649 1650bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1651{ 1652 unsigned int len; 1653 1654 if (!(dev->flags & IFF_UP)) 1655 return false; 1656 1657 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1658 if (skb->len <= len) 1659 return true; 1660 1661 /* if TSO is enabled, we don't care about the length as the packet 1662 * could be forwarded without being segmented before 1663 */ 1664 if (skb_is_gso(skb)) 1665 return true; 1666 1667 return false; 1668} 1669EXPORT_SYMBOL_GPL(is_skb_forwardable); 1670 1671int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1672{ 1673 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) { 1674 if (skb_copy_ubufs(skb, GFP_ATOMIC)) { 1675 atomic_long_inc(&dev->rx_dropped); 1676 kfree_skb(skb); 1677 return NET_RX_DROP; 1678 } 1679 } 1680 1681 if (unlikely(!is_skb_forwardable(dev, skb))) { 1682 atomic_long_inc(&dev->rx_dropped); 1683 kfree_skb(skb); 1684 return NET_RX_DROP; 1685 } 1686 1687 skb_scrub_packet(skb, true); 1688 skb->protocol = eth_type_trans(skb, dev); 1689 1690 return 0; 1691} 1692EXPORT_SYMBOL_GPL(__dev_forward_skb); 1693 1694/** 1695 * dev_forward_skb - loopback an skb to another netif 1696 * 1697 * @dev: destination network device 1698 * @skb: buffer to forward 1699 * 1700 * return values: 1701 * NET_RX_SUCCESS (no congestion) 1702 * NET_RX_DROP (packet was dropped, but freed) 1703 * 1704 * dev_forward_skb can be used for injecting an skb from the 1705 * start_xmit function of one device into the receive queue 1706 * of another device. 1707 * 1708 * The receiving device may be in another namespace, so 1709 * we have to clear all information in the skb that could 1710 * impact namespace isolation. 1711 */ 1712int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1713{ 1714 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1715} 1716EXPORT_SYMBOL_GPL(dev_forward_skb); 1717 1718static inline int deliver_skb(struct sk_buff *skb, 1719 struct packet_type *pt_prev, 1720 struct net_device *orig_dev) 1721{ 1722 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1723 return -ENOMEM; 1724 atomic_inc(&skb->users); 1725 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1726} 1727 1728static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1729{ 1730 if (!ptype->af_packet_priv || !skb->sk) 1731 return false; 1732 1733 if (ptype->id_match) 1734 return ptype->id_match(ptype, skb->sk); 1735 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1736 return true; 1737 1738 return false; 1739} 1740 1741/* 1742 * Support routine. Sends outgoing frames to any network 1743 * taps currently in use. 1744 */ 1745 1746static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1747{ 1748 struct packet_type *ptype; 1749 struct sk_buff *skb2 = NULL; 1750 struct packet_type *pt_prev = NULL; 1751 1752 rcu_read_lock(); 1753 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1754 /* Never send packets back to the socket 1755 * they originated from - MvS (miquels@drinkel.ow.org) 1756 */ 1757 if ((ptype->dev == dev || !ptype->dev) && 1758 (!skb_loop_sk(ptype, skb))) { 1759 if (pt_prev) { 1760 deliver_skb(skb2, pt_prev, skb->dev); 1761 pt_prev = ptype; 1762 continue; 1763 } 1764 1765 skb2 = skb_clone(skb, GFP_ATOMIC); 1766 if (!skb2) 1767 break; 1768 1769 net_timestamp_set(skb2); 1770 1771 /* skb->nh should be correctly 1772 set by sender, so that the second statement is 1773 just protection against buggy protocols. 1774 */ 1775 skb_reset_mac_header(skb2); 1776 1777 if (skb_network_header(skb2) < skb2->data || 1778 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1779 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1780 ntohs(skb2->protocol), 1781 dev->name); 1782 skb_reset_network_header(skb2); 1783 } 1784 1785 skb2->transport_header = skb2->network_header; 1786 skb2->pkt_type = PACKET_OUTGOING; 1787 pt_prev = ptype; 1788 } 1789 } 1790 if (pt_prev) 1791 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1792 rcu_read_unlock(); 1793} 1794 1795/** 1796 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1797 * @dev: Network device 1798 * @txq: number of queues available 1799 * 1800 * If real_num_tx_queues is changed the tc mappings may no longer be 1801 * valid. To resolve this verify the tc mapping remains valid and if 1802 * not NULL the mapping. With no priorities mapping to this 1803 * offset/count pair it will no longer be used. In the worst case TC0 1804 * is invalid nothing can be done so disable priority mappings. If is 1805 * expected that drivers will fix this mapping if they can before 1806 * calling netif_set_real_num_tx_queues. 1807 */ 1808static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1809{ 1810 int i; 1811 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1812 1813 /* If TC0 is invalidated disable TC mapping */ 1814 if (tc->offset + tc->count > txq) { 1815 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1816 dev->num_tc = 0; 1817 return; 1818 } 1819 1820 /* Invalidated prio to tc mappings set to TC0 */ 1821 for (i = 1; i < TC_BITMASK + 1; i++) { 1822 int q = netdev_get_prio_tc_map(dev, i); 1823 1824 tc = &dev->tc_to_txq[q]; 1825 if (tc->offset + tc->count > txq) { 1826 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1827 i, q); 1828 netdev_set_prio_tc_map(dev, i, 0); 1829 } 1830 } 1831} 1832 1833#ifdef CONFIG_XPS 1834static DEFINE_MUTEX(xps_map_mutex); 1835#define xmap_dereference(P) \ 1836 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1837 1838static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1839 int cpu, u16 index) 1840{ 1841 struct xps_map *map = NULL; 1842 int pos; 1843 1844 if (dev_maps) 1845 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1846 1847 for (pos = 0; map && pos < map->len; pos++) { 1848 if (map->queues[pos] == index) { 1849 if (map->len > 1) { 1850 map->queues[pos] = map->queues[--map->len]; 1851 } else { 1852 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1853 kfree_rcu(map, rcu); 1854 map = NULL; 1855 } 1856 break; 1857 } 1858 } 1859 1860 return map; 1861} 1862 1863static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1864{ 1865 struct xps_dev_maps *dev_maps; 1866 int cpu, i; 1867 bool active = false; 1868 1869 mutex_lock(&xps_map_mutex); 1870 dev_maps = xmap_dereference(dev->xps_maps); 1871 1872 if (!dev_maps) 1873 goto out_no_maps; 1874 1875 for_each_possible_cpu(cpu) { 1876 for (i = index; i < dev->num_tx_queues; i++) { 1877 if (!remove_xps_queue(dev_maps, cpu, i)) 1878 break; 1879 } 1880 if (i == dev->num_tx_queues) 1881 active = true; 1882 } 1883 1884 if (!active) { 1885 RCU_INIT_POINTER(dev->xps_maps, NULL); 1886 kfree_rcu(dev_maps, rcu); 1887 } 1888 1889 for (i = index; i < dev->num_tx_queues; i++) 1890 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1891 NUMA_NO_NODE); 1892 1893out_no_maps: 1894 mutex_unlock(&xps_map_mutex); 1895} 1896 1897static struct xps_map *expand_xps_map(struct xps_map *map, 1898 int cpu, u16 index) 1899{ 1900 struct xps_map *new_map; 1901 int alloc_len = XPS_MIN_MAP_ALLOC; 1902 int i, pos; 1903 1904 for (pos = 0; map && pos < map->len; pos++) { 1905 if (map->queues[pos] != index) 1906 continue; 1907 return map; 1908 } 1909 1910 /* Need to add queue to this CPU's existing map */ 1911 if (map) { 1912 if (pos < map->alloc_len) 1913 return map; 1914 1915 alloc_len = map->alloc_len * 2; 1916 } 1917 1918 /* Need to allocate new map to store queue on this CPU's map */ 1919 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1920 cpu_to_node(cpu)); 1921 if (!new_map) 1922 return NULL; 1923 1924 for (i = 0; i < pos; i++) 1925 new_map->queues[i] = map->queues[i]; 1926 new_map->alloc_len = alloc_len; 1927 new_map->len = pos; 1928 1929 return new_map; 1930} 1931 1932int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 1933 u16 index) 1934{ 1935 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 1936 struct xps_map *map, *new_map; 1937 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 1938 int cpu, numa_node_id = -2; 1939 bool active = false; 1940 1941 mutex_lock(&xps_map_mutex); 1942 1943 dev_maps = xmap_dereference(dev->xps_maps); 1944 1945 /* allocate memory for queue storage */ 1946 for_each_online_cpu(cpu) { 1947 if (!cpumask_test_cpu(cpu, mask)) 1948 continue; 1949 1950 if (!new_dev_maps) 1951 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 1952 if (!new_dev_maps) { 1953 mutex_unlock(&xps_map_mutex); 1954 return -ENOMEM; 1955 } 1956 1957 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 1958 NULL; 1959 1960 map = expand_xps_map(map, cpu, index); 1961 if (!map) 1962 goto error; 1963 1964 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1965 } 1966 1967 if (!new_dev_maps) 1968 goto out_no_new_maps; 1969 1970 for_each_possible_cpu(cpu) { 1971 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 1972 /* add queue to CPU maps */ 1973 int pos = 0; 1974 1975 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 1976 while ((pos < map->len) && (map->queues[pos] != index)) 1977 pos++; 1978 1979 if (pos == map->len) 1980 map->queues[map->len++] = index; 1981#ifdef CONFIG_NUMA 1982 if (numa_node_id == -2) 1983 numa_node_id = cpu_to_node(cpu); 1984 else if (numa_node_id != cpu_to_node(cpu)) 1985 numa_node_id = -1; 1986#endif 1987 } else if (dev_maps) { 1988 /* fill in the new device map from the old device map */ 1989 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1990 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 1991 } 1992 1993 } 1994 1995 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 1996 1997 /* Cleanup old maps */ 1998 if (dev_maps) { 1999 for_each_possible_cpu(cpu) { 2000 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2001 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2002 if (map && map != new_map) 2003 kfree_rcu(map, rcu); 2004 } 2005 2006 kfree_rcu(dev_maps, rcu); 2007 } 2008 2009 dev_maps = new_dev_maps; 2010 active = true; 2011 2012out_no_new_maps: 2013 /* update Tx queue numa node */ 2014 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2015 (numa_node_id >= 0) ? numa_node_id : 2016 NUMA_NO_NODE); 2017 2018 if (!dev_maps) 2019 goto out_no_maps; 2020 2021 /* removes queue from unused CPUs */ 2022 for_each_possible_cpu(cpu) { 2023 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2024 continue; 2025 2026 if (remove_xps_queue(dev_maps, cpu, index)) 2027 active = true; 2028 } 2029 2030 /* free map if not active */ 2031 if (!active) { 2032 RCU_INIT_POINTER(dev->xps_maps, NULL); 2033 kfree_rcu(dev_maps, rcu); 2034 } 2035 2036out_no_maps: 2037 mutex_unlock(&xps_map_mutex); 2038 2039 return 0; 2040error: 2041 /* remove any maps that we added */ 2042 for_each_possible_cpu(cpu) { 2043 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2044 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2045 NULL; 2046 if (new_map && new_map != map) 2047 kfree(new_map); 2048 } 2049 2050 mutex_unlock(&xps_map_mutex); 2051 2052 kfree(new_dev_maps); 2053 return -ENOMEM; 2054} 2055EXPORT_SYMBOL(netif_set_xps_queue); 2056 2057#endif 2058/* 2059 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2060 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2061 */ 2062int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2063{ 2064 int rc; 2065 2066 if (txq < 1 || txq > dev->num_tx_queues) 2067 return -EINVAL; 2068 2069 if (dev->reg_state == NETREG_REGISTERED || 2070 dev->reg_state == NETREG_UNREGISTERING) { 2071 ASSERT_RTNL(); 2072 2073 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2074 txq); 2075 if (rc) 2076 return rc; 2077 2078 if (dev->num_tc) 2079 netif_setup_tc(dev, txq); 2080 2081 if (txq < dev->real_num_tx_queues) { 2082 qdisc_reset_all_tx_gt(dev, txq); 2083#ifdef CONFIG_XPS 2084 netif_reset_xps_queues_gt(dev, txq); 2085#endif 2086 } 2087 } 2088 2089 dev->real_num_tx_queues = txq; 2090 return 0; 2091} 2092EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2093 2094#ifdef CONFIG_SYSFS 2095/** 2096 * netif_set_real_num_rx_queues - set actual number of RX queues used 2097 * @dev: Network device 2098 * @rxq: Actual number of RX queues 2099 * 2100 * This must be called either with the rtnl_lock held or before 2101 * registration of the net device. Returns 0 on success, or a 2102 * negative error code. If called before registration, it always 2103 * succeeds. 2104 */ 2105int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2106{ 2107 int rc; 2108 2109 if (rxq < 1 || rxq > dev->num_rx_queues) 2110 return -EINVAL; 2111 2112 if (dev->reg_state == NETREG_REGISTERED) { 2113 ASSERT_RTNL(); 2114 2115 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2116 rxq); 2117 if (rc) 2118 return rc; 2119 } 2120 2121 dev->real_num_rx_queues = rxq; 2122 return 0; 2123} 2124EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2125#endif 2126 2127/** 2128 * netif_get_num_default_rss_queues - default number of RSS queues 2129 * 2130 * This routine should set an upper limit on the number of RSS queues 2131 * used by default by multiqueue devices. 2132 */ 2133int netif_get_num_default_rss_queues(void) 2134{ 2135 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2136} 2137EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2138 2139static inline void __netif_reschedule(struct Qdisc *q) 2140{ 2141 struct softnet_data *sd; 2142 unsigned long flags; 2143 2144 local_irq_save(flags); 2145 sd = &__get_cpu_var(softnet_data); 2146 q->next_sched = NULL; 2147 *sd->output_queue_tailp = q; 2148 sd->output_queue_tailp = &q->next_sched; 2149 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2150 local_irq_restore(flags); 2151} 2152 2153void __netif_schedule(struct Qdisc *q) 2154{ 2155 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2156 __netif_reschedule(q); 2157} 2158EXPORT_SYMBOL(__netif_schedule); 2159 2160struct dev_kfree_skb_cb { 2161 enum skb_free_reason reason; 2162}; 2163 2164static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2165{ 2166 return (struct dev_kfree_skb_cb *)skb->cb; 2167} 2168 2169void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2170{ 2171 unsigned long flags; 2172 2173 if (likely(atomic_read(&skb->users) == 1)) { 2174 smp_rmb(); 2175 atomic_set(&skb->users, 0); 2176 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2177 return; 2178 } 2179 get_kfree_skb_cb(skb)->reason = reason; 2180 local_irq_save(flags); 2181 skb->next = __this_cpu_read(softnet_data.completion_queue); 2182 __this_cpu_write(softnet_data.completion_queue, skb); 2183 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2184 local_irq_restore(flags); 2185} 2186EXPORT_SYMBOL(__dev_kfree_skb_irq); 2187 2188void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2189{ 2190 if (in_irq() || irqs_disabled()) 2191 __dev_kfree_skb_irq(skb, reason); 2192 else 2193 dev_kfree_skb(skb); 2194} 2195EXPORT_SYMBOL(__dev_kfree_skb_any); 2196 2197 2198/** 2199 * netif_device_detach - mark device as removed 2200 * @dev: network device 2201 * 2202 * Mark device as removed from system and therefore no longer available. 2203 */ 2204void netif_device_detach(struct net_device *dev) 2205{ 2206 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2207 netif_running(dev)) { 2208 netif_tx_stop_all_queues(dev); 2209 } 2210} 2211EXPORT_SYMBOL(netif_device_detach); 2212 2213/** 2214 * netif_device_attach - mark device as attached 2215 * @dev: network device 2216 * 2217 * Mark device as attached from system and restart if needed. 2218 */ 2219void netif_device_attach(struct net_device *dev) 2220{ 2221 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2222 netif_running(dev)) { 2223 netif_tx_wake_all_queues(dev); 2224 __netdev_watchdog_up(dev); 2225 } 2226} 2227EXPORT_SYMBOL(netif_device_attach); 2228 2229static void skb_warn_bad_offload(const struct sk_buff *skb) 2230{ 2231 static const netdev_features_t null_features = 0; 2232 struct net_device *dev = skb->dev; 2233 const char *driver = ""; 2234 2235 if (!net_ratelimit()) 2236 return; 2237 2238 if (dev && dev->dev.parent) 2239 driver = dev_driver_string(dev->dev.parent); 2240 2241 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2242 "gso_type=%d ip_summed=%d\n", 2243 driver, dev ? &dev->features : &null_features, 2244 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2245 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2246 skb_shinfo(skb)->gso_type, skb->ip_summed); 2247} 2248 2249/* 2250 * Invalidate hardware checksum when packet is to be mangled, and 2251 * complete checksum manually on outgoing path. 2252 */ 2253int skb_checksum_help(struct sk_buff *skb) 2254{ 2255 __wsum csum; 2256 int ret = 0, offset; 2257 2258 if (skb->ip_summed == CHECKSUM_COMPLETE) 2259 goto out_set_summed; 2260 2261 if (unlikely(skb_shinfo(skb)->gso_size)) { 2262 skb_warn_bad_offload(skb); 2263 return -EINVAL; 2264 } 2265 2266 /* Before computing a checksum, we should make sure no frag could 2267 * be modified by an external entity : checksum could be wrong. 2268 */ 2269 if (skb_has_shared_frag(skb)) { 2270 ret = __skb_linearize(skb); 2271 if (ret) 2272 goto out; 2273 } 2274 2275 offset = skb_checksum_start_offset(skb); 2276 BUG_ON(offset >= skb_headlen(skb)); 2277 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2278 2279 offset += skb->csum_offset; 2280 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2281 2282 if (skb_cloned(skb) && 2283 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2284 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2285 if (ret) 2286 goto out; 2287 } 2288 2289 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2290out_set_summed: 2291 skb->ip_summed = CHECKSUM_NONE; 2292out: 2293 return ret; 2294} 2295EXPORT_SYMBOL(skb_checksum_help); 2296 2297__be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2298{ 2299 unsigned int vlan_depth = skb->mac_len; 2300 __be16 type = skb->protocol; 2301 2302 /* Tunnel gso handlers can set protocol to ethernet. */ 2303 if (type == htons(ETH_P_TEB)) { 2304 struct ethhdr *eth; 2305 2306 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2307 return 0; 2308 2309 eth = (struct ethhdr *)skb_mac_header(skb); 2310 type = eth->h_proto; 2311 } 2312 2313 /* if skb->protocol is 802.1Q/AD then the header should already be 2314 * present at mac_len - VLAN_HLEN (if mac_len > 0), or at 2315 * ETH_HLEN otherwise 2316 */ 2317 if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { 2318 if (vlan_depth) { 2319 if (unlikely(WARN_ON(vlan_depth < VLAN_HLEN))) 2320 return 0; 2321 vlan_depth -= VLAN_HLEN; 2322 } else { 2323 vlan_depth = ETH_HLEN; 2324 } 2325 do { 2326 struct vlan_hdr *vh; 2327 2328 if (unlikely(!pskb_may_pull(skb, 2329 vlan_depth + VLAN_HLEN))) 2330 return 0; 2331 2332 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 2333 type = vh->h_vlan_encapsulated_proto; 2334 vlan_depth += VLAN_HLEN; 2335 } while (type == htons(ETH_P_8021Q) || 2336 type == htons(ETH_P_8021AD)); 2337 } 2338 2339 *depth = vlan_depth; 2340 2341 return type; 2342} 2343 2344/** 2345 * skb_mac_gso_segment - mac layer segmentation handler. 2346 * @skb: buffer to segment 2347 * @features: features for the output path (see dev->features) 2348 */ 2349struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2350 netdev_features_t features) 2351{ 2352 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2353 struct packet_offload *ptype; 2354 int vlan_depth = skb->mac_len; 2355 __be16 type = skb_network_protocol(skb, &vlan_depth); 2356 2357 if (unlikely(!type)) 2358 return ERR_PTR(-EINVAL); 2359 2360 __skb_pull(skb, vlan_depth); 2361 2362 rcu_read_lock(); 2363 list_for_each_entry_rcu(ptype, &offload_base, list) { 2364 if (ptype->type == type && ptype->callbacks.gso_segment) { 2365 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 2366 int err; 2367 2368 err = ptype->callbacks.gso_send_check(skb); 2369 segs = ERR_PTR(err); 2370 if (err || skb_gso_ok(skb, features)) 2371 break; 2372 __skb_push(skb, (skb->data - 2373 skb_network_header(skb))); 2374 } 2375 segs = ptype->callbacks.gso_segment(skb, features); 2376 break; 2377 } 2378 } 2379 rcu_read_unlock(); 2380 2381 __skb_push(skb, skb->data - skb_mac_header(skb)); 2382 2383 return segs; 2384} 2385EXPORT_SYMBOL(skb_mac_gso_segment); 2386 2387 2388/* openvswitch calls this on rx path, so we need a different check. 2389 */ 2390static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2391{ 2392 if (tx_path) 2393 return skb->ip_summed != CHECKSUM_PARTIAL; 2394 else 2395 return skb->ip_summed == CHECKSUM_NONE; 2396} 2397 2398/** 2399 * __skb_gso_segment - Perform segmentation on skb. 2400 * @skb: buffer to segment 2401 * @features: features for the output path (see dev->features) 2402 * @tx_path: whether it is called in TX path 2403 * 2404 * This function segments the given skb and returns a list of segments. 2405 * 2406 * It may return NULL if the skb requires no segmentation. This is 2407 * only possible when GSO is used for verifying header integrity. 2408 */ 2409struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2410 netdev_features_t features, bool tx_path) 2411{ 2412 if (unlikely(skb_needs_check(skb, tx_path))) { 2413 int err; 2414 2415 skb_warn_bad_offload(skb); 2416 2417 if (skb_header_cloned(skb) && 2418 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 2419 return ERR_PTR(err); 2420 } 2421 2422 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2423 SKB_GSO_CB(skb)->encap_level = 0; 2424 2425 skb_reset_mac_header(skb); 2426 skb_reset_mac_len(skb); 2427 2428 return skb_mac_gso_segment(skb, features); 2429} 2430EXPORT_SYMBOL(__skb_gso_segment); 2431 2432/* Take action when hardware reception checksum errors are detected. */ 2433#ifdef CONFIG_BUG 2434void netdev_rx_csum_fault(struct net_device *dev) 2435{ 2436 if (net_ratelimit()) { 2437 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2438 dump_stack(); 2439 } 2440} 2441EXPORT_SYMBOL(netdev_rx_csum_fault); 2442#endif 2443 2444/* Actually, we should eliminate this check as soon as we know, that: 2445 * 1. IOMMU is present and allows to map all the memory. 2446 * 2. No high memory really exists on this machine. 2447 */ 2448 2449static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2450{ 2451#ifdef CONFIG_HIGHMEM 2452 int i; 2453 if (!(dev->features & NETIF_F_HIGHDMA)) { 2454 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2455 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2456 if (PageHighMem(skb_frag_page(frag))) 2457 return 1; 2458 } 2459 } 2460 2461 if (PCI_DMA_BUS_IS_PHYS) { 2462 struct device *pdev = dev->dev.parent; 2463 2464 if (!pdev) 2465 return 0; 2466 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2467 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2468 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2469 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2470 return 1; 2471 } 2472 } 2473#endif 2474 return 0; 2475} 2476 2477struct dev_gso_cb { 2478 void (*destructor)(struct sk_buff *skb); 2479}; 2480 2481#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 2482 2483static void dev_gso_skb_destructor(struct sk_buff *skb) 2484{ 2485 struct dev_gso_cb *cb; 2486 2487 kfree_skb_list(skb->next); 2488 skb->next = NULL; 2489 2490 cb = DEV_GSO_CB(skb); 2491 if (cb->destructor) 2492 cb->destructor(skb); 2493} 2494 2495/** 2496 * dev_gso_segment - Perform emulated hardware segmentation on skb. 2497 * @skb: buffer to segment 2498 * @features: device features as applicable to this skb 2499 * 2500 * This function segments the given skb and stores the list of segments 2501 * in skb->next. 2502 */ 2503static int dev_gso_segment(struct sk_buff *skb, netdev_features_t features) 2504{ 2505 struct sk_buff *segs; 2506 2507 segs = skb_gso_segment(skb, features); 2508 2509 /* Verifying header integrity only. */ 2510 if (!segs) 2511 return 0; 2512 2513 if (IS_ERR(segs)) 2514 return PTR_ERR(segs); 2515 2516 skb->next = segs; 2517 DEV_GSO_CB(skb)->destructor = skb->destructor; 2518 skb->destructor = dev_gso_skb_destructor; 2519 2520 return 0; 2521} 2522 2523/* If MPLS offload request, verify we are testing hardware MPLS features 2524 * instead of standard features for the netdev. 2525 */ 2526#ifdef CONFIG_NET_MPLS_GSO 2527static netdev_features_t net_mpls_features(struct sk_buff *skb, 2528 netdev_features_t features, 2529 __be16 type) 2530{ 2531 if (type == htons(ETH_P_MPLS_UC) || type == htons(ETH_P_MPLS_MC)) 2532 features &= skb->dev->mpls_features; 2533 2534 return features; 2535} 2536#else 2537static netdev_features_t net_mpls_features(struct sk_buff *skb, 2538 netdev_features_t features, 2539 __be16 type) 2540{ 2541 return features; 2542} 2543#endif 2544 2545static netdev_features_t harmonize_features(struct sk_buff *skb, 2546 netdev_features_t features) 2547{ 2548 int tmp; 2549 __be16 type; 2550 2551 type = skb_network_protocol(skb, &tmp); 2552 features = net_mpls_features(skb, features, type); 2553 2554 if (skb->ip_summed != CHECKSUM_NONE && 2555 !can_checksum_protocol(features, type)) { 2556 features &= ~NETIF_F_ALL_CSUM; 2557 } else if (illegal_highdma(skb->dev, skb)) { 2558 features &= ~NETIF_F_SG; 2559 } 2560 2561 return features; 2562} 2563 2564netdev_features_t netif_skb_features(struct sk_buff *skb) 2565{ 2566 __be16 protocol = skb->protocol; 2567 netdev_features_t features = skb->dev->features; 2568 2569 if (skb_shinfo(skb)->gso_segs > skb->dev->gso_max_segs) 2570 features &= ~NETIF_F_GSO_MASK; 2571 2572 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) { 2573 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2574 protocol = veh->h_vlan_encapsulated_proto; 2575 } else if (!vlan_tx_tag_present(skb)) { 2576 return harmonize_features(skb, features); 2577 } 2578 2579 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_CTAG_TX | 2580 NETIF_F_HW_VLAN_STAG_TX); 2581 2582 if (protocol == htons(ETH_P_8021Q) || protocol == htons(ETH_P_8021AD)) 2583 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2584 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_CTAG_TX | 2585 NETIF_F_HW_VLAN_STAG_TX; 2586 2587 return harmonize_features(skb, features); 2588} 2589EXPORT_SYMBOL(netif_skb_features); 2590 2591int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2592 struct netdev_queue *txq) 2593{ 2594 const struct net_device_ops *ops = dev->netdev_ops; 2595 int rc = NETDEV_TX_OK; 2596 unsigned int skb_len; 2597 2598 if (likely(!skb->next)) { 2599 netdev_features_t features; 2600 2601 /* 2602 * If device doesn't need skb->dst, release it right now while 2603 * its hot in this cpu cache 2604 */ 2605 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2606 skb_dst_drop(skb); 2607 2608 features = netif_skb_features(skb); 2609 2610 if (vlan_tx_tag_present(skb) && 2611 !vlan_hw_offload_capable(features, skb->vlan_proto)) { 2612 skb = __vlan_put_tag(skb, skb->vlan_proto, 2613 vlan_tx_tag_get(skb)); 2614 if (unlikely(!skb)) 2615 goto out; 2616 2617 skb->vlan_tci = 0; 2618 } 2619 2620 /* If encapsulation offload request, verify we are testing 2621 * hardware encapsulation features instead of standard 2622 * features for the netdev 2623 */ 2624 if (skb->encapsulation) 2625 features &= dev->hw_enc_features; 2626 2627 if (netif_needs_gso(skb, features)) { 2628 if (unlikely(dev_gso_segment(skb, features))) 2629 goto out_kfree_skb; 2630 if (skb->next) 2631 goto gso; 2632 } else { 2633 if (skb_needs_linearize(skb, features) && 2634 __skb_linearize(skb)) 2635 goto out_kfree_skb; 2636 2637 /* If packet is not checksummed and device does not 2638 * support checksumming for this protocol, complete 2639 * checksumming here. 2640 */ 2641 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2642 if (skb->encapsulation) 2643 skb_set_inner_transport_header(skb, 2644 skb_checksum_start_offset(skb)); 2645 else 2646 skb_set_transport_header(skb, 2647 skb_checksum_start_offset(skb)); 2648 if (!(features & NETIF_F_ALL_CSUM) && 2649 skb_checksum_help(skb)) 2650 goto out_kfree_skb; 2651 } 2652 } 2653 2654 if (!list_empty(&ptype_all)) 2655 dev_queue_xmit_nit(skb, dev); 2656 2657 skb_len = skb->len; 2658 trace_net_dev_start_xmit(skb, dev); 2659 rc = ops->ndo_start_xmit(skb, dev); 2660 trace_net_dev_xmit(skb, rc, dev, skb_len); 2661 if (rc == NETDEV_TX_OK) 2662 txq_trans_update(txq); 2663 return rc; 2664 } 2665 2666gso: 2667 do { 2668 struct sk_buff *nskb = skb->next; 2669 2670 skb->next = nskb->next; 2671 nskb->next = NULL; 2672 2673 if (!list_empty(&ptype_all)) 2674 dev_queue_xmit_nit(nskb, dev); 2675 2676 skb_len = nskb->len; 2677 trace_net_dev_start_xmit(nskb, dev); 2678 rc = ops->ndo_start_xmit(nskb, dev); 2679 trace_net_dev_xmit(nskb, rc, dev, skb_len); 2680 if (unlikely(rc != NETDEV_TX_OK)) { 2681 if (rc & ~NETDEV_TX_MASK) 2682 goto out_kfree_gso_skb; 2683 nskb->next = skb->next; 2684 skb->next = nskb; 2685 return rc; 2686 } 2687 txq_trans_update(txq); 2688 if (unlikely(netif_xmit_stopped(txq) && skb->next)) 2689 return NETDEV_TX_BUSY; 2690 } while (skb->next); 2691 2692out_kfree_gso_skb: 2693 if (likely(skb->next == NULL)) { 2694 skb->destructor = DEV_GSO_CB(skb)->destructor; 2695 consume_skb(skb); 2696 return rc; 2697 } 2698out_kfree_skb: 2699 kfree_skb(skb); 2700out: 2701 return rc; 2702} 2703EXPORT_SYMBOL_GPL(dev_hard_start_xmit); 2704 2705static void qdisc_pkt_len_init(struct sk_buff *skb) 2706{ 2707 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2708 2709 qdisc_skb_cb(skb)->pkt_len = skb->len; 2710 2711 /* To get more precise estimation of bytes sent on wire, 2712 * we add to pkt_len the headers size of all segments 2713 */ 2714 if (shinfo->gso_size) { 2715 unsigned int hdr_len; 2716 u16 gso_segs = shinfo->gso_segs; 2717 2718 /* mac layer + network layer */ 2719 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2720 2721 /* + transport layer */ 2722 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2723 hdr_len += tcp_hdrlen(skb); 2724 else 2725 hdr_len += sizeof(struct udphdr); 2726 2727 if (shinfo->gso_type & SKB_GSO_DODGY) 2728 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2729 shinfo->gso_size); 2730 2731 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2732 } 2733} 2734 2735static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2736 struct net_device *dev, 2737 struct netdev_queue *txq) 2738{ 2739 spinlock_t *root_lock = qdisc_lock(q); 2740 bool contended; 2741 int rc; 2742 2743 qdisc_pkt_len_init(skb); 2744 qdisc_calculate_pkt_len(skb, q); 2745 /* 2746 * Heuristic to force contended enqueues to serialize on a 2747 * separate lock before trying to get qdisc main lock. 2748 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2749 * and dequeue packets faster. 2750 */ 2751 contended = qdisc_is_running(q); 2752 if (unlikely(contended)) 2753 spin_lock(&q->busylock); 2754 2755 spin_lock(root_lock); 2756 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2757 kfree_skb(skb); 2758 rc = NET_XMIT_DROP; 2759 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2760 qdisc_run_begin(q)) { 2761 /* 2762 * This is a work-conserving queue; there are no old skbs 2763 * waiting to be sent out; and the qdisc is not running - 2764 * xmit the skb directly. 2765 */ 2766 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2767 skb_dst_force(skb); 2768 2769 qdisc_bstats_update(q, skb); 2770 2771 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2772 if (unlikely(contended)) { 2773 spin_unlock(&q->busylock); 2774 contended = false; 2775 } 2776 __qdisc_run(q); 2777 } else 2778 qdisc_run_end(q); 2779 2780 rc = NET_XMIT_SUCCESS; 2781 } else { 2782 skb_dst_force(skb); 2783 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2784 if (qdisc_run_begin(q)) { 2785 if (unlikely(contended)) { 2786 spin_unlock(&q->busylock); 2787 contended = false; 2788 } 2789 __qdisc_run(q); 2790 } 2791 } 2792 spin_unlock(root_lock); 2793 if (unlikely(contended)) 2794 spin_unlock(&q->busylock); 2795 return rc; 2796} 2797 2798#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2799static void skb_update_prio(struct sk_buff *skb) 2800{ 2801 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2802 2803 if (!skb->priority && skb->sk && map) { 2804 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2805 2806 if (prioidx < map->priomap_len) 2807 skb->priority = map->priomap[prioidx]; 2808 } 2809} 2810#else 2811#define skb_update_prio(skb) 2812#endif 2813 2814static DEFINE_PER_CPU(int, xmit_recursion); 2815#define RECURSION_LIMIT 10 2816 2817/** 2818 * dev_loopback_xmit - loop back @skb 2819 * @skb: buffer to transmit 2820 */ 2821int dev_loopback_xmit(struct sk_buff *skb) 2822{ 2823 skb_reset_mac_header(skb); 2824 __skb_pull(skb, skb_network_offset(skb)); 2825 skb->pkt_type = PACKET_LOOPBACK; 2826 skb->ip_summed = CHECKSUM_UNNECESSARY; 2827 WARN_ON(!skb_dst(skb)); 2828 skb_dst_force(skb); 2829 netif_rx_ni(skb); 2830 return 0; 2831} 2832EXPORT_SYMBOL(dev_loopback_xmit); 2833 2834/** 2835 * __dev_queue_xmit - transmit a buffer 2836 * @skb: buffer to transmit 2837 * @accel_priv: private data used for L2 forwarding offload 2838 * 2839 * Queue a buffer for transmission to a network device. The caller must 2840 * have set the device and priority and built the buffer before calling 2841 * this function. The function can be called from an interrupt. 2842 * 2843 * A negative errno code is returned on a failure. A success does not 2844 * guarantee the frame will be transmitted as it may be dropped due 2845 * to congestion or traffic shaping. 2846 * 2847 * ----------------------------------------------------------------------------------- 2848 * I notice this method can also return errors from the queue disciplines, 2849 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2850 * be positive. 2851 * 2852 * Regardless of the return value, the skb is consumed, so it is currently 2853 * difficult to retry a send to this method. (You can bump the ref count 2854 * before sending to hold a reference for retry if you are careful.) 2855 * 2856 * When calling this method, interrupts MUST be enabled. This is because 2857 * the BH enable code must have IRQs enabled so that it will not deadlock. 2858 * --BLG 2859 */ 2860static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 2861{ 2862 struct net_device *dev = skb->dev; 2863 struct netdev_queue *txq; 2864 struct Qdisc *q; 2865 int rc = -ENOMEM; 2866 2867 skb_reset_mac_header(skb); 2868 2869 /* Disable soft irqs for various locks below. Also 2870 * stops preemption for RCU. 2871 */ 2872 rcu_read_lock_bh(); 2873 2874 skb_update_prio(skb); 2875 2876 txq = netdev_pick_tx(dev, skb, accel_priv); 2877 q = rcu_dereference_bh(txq->qdisc); 2878 2879#ifdef CONFIG_NET_CLS_ACT 2880 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2881#endif 2882 trace_net_dev_queue(skb); 2883 if (q->enqueue) { 2884 rc = __dev_xmit_skb(skb, q, dev, txq); 2885 goto out; 2886 } 2887 2888 /* The device has no queue. Common case for software devices: 2889 loopback, all the sorts of tunnels... 2890 2891 Really, it is unlikely that netif_tx_lock protection is necessary 2892 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2893 counters.) 2894 However, it is possible, that they rely on protection 2895 made by us here. 2896 2897 Check this and shot the lock. It is not prone from deadlocks. 2898 Either shot noqueue qdisc, it is even simpler 8) 2899 */ 2900 if (dev->flags & IFF_UP) { 2901 int cpu = smp_processor_id(); /* ok because BHs are off */ 2902 2903 if (txq->xmit_lock_owner != cpu) { 2904 2905 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2906 goto recursion_alert; 2907 2908 HARD_TX_LOCK(dev, txq, cpu); 2909 2910 if (!netif_xmit_stopped(txq)) { 2911 __this_cpu_inc(xmit_recursion); 2912 rc = dev_hard_start_xmit(skb, dev, txq); 2913 __this_cpu_dec(xmit_recursion); 2914 if (dev_xmit_complete(rc)) { 2915 HARD_TX_UNLOCK(dev, txq); 2916 goto out; 2917 } 2918 } 2919 HARD_TX_UNLOCK(dev, txq); 2920 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 2921 dev->name); 2922 } else { 2923 /* Recursion is detected! It is possible, 2924 * unfortunately 2925 */ 2926recursion_alert: 2927 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 2928 dev->name); 2929 } 2930 } 2931 2932 rc = -ENETDOWN; 2933 rcu_read_unlock_bh(); 2934 2935 atomic_long_inc(&dev->tx_dropped); 2936 kfree_skb(skb); 2937 return rc; 2938out: 2939 rcu_read_unlock_bh(); 2940 return rc; 2941} 2942 2943int dev_queue_xmit(struct sk_buff *skb) 2944{ 2945 return __dev_queue_xmit(skb, NULL); 2946} 2947EXPORT_SYMBOL(dev_queue_xmit); 2948 2949int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 2950{ 2951 return __dev_queue_xmit(skb, accel_priv); 2952} 2953EXPORT_SYMBOL(dev_queue_xmit_accel); 2954 2955 2956/*======================================================================= 2957 Receiver routines 2958 =======================================================================*/ 2959 2960int netdev_max_backlog __read_mostly = 1000; 2961EXPORT_SYMBOL(netdev_max_backlog); 2962 2963int netdev_tstamp_prequeue __read_mostly = 1; 2964int netdev_budget __read_mostly = 300; 2965int weight_p __read_mostly = 64; /* old backlog weight */ 2966 2967/* Called with irq disabled */ 2968static inline void ____napi_schedule(struct softnet_data *sd, 2969 struct napi_struct *napi) 2970{ 2971 list_add_tail(&napi->poll_list, &sd->poll_list); 2972 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2973} 2974 2975#ifdef CONFIG_RPS 2976 2977/* One global table that all flow-based protocols share. */ 2978struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2979EXPORT_SYMBOL(rps_sock_flow_table); 2980 2981struct static_key rps_needed __read_mostly; 2982 2983static struct rps_dev_flow * 2984set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2985 struct rps_dev_flow *rflow, u16 next_cpu) 2986{ 2987 if (next_cpu != RPS_NO_CPU) { 2988#ifdef CONFIG_RFS_ACCEL 2989 struct netdev_rx_queue *rxqueue; 2990 struct rps_dev_flow_table *flow_table; 2991 struct rps_dev_flow *old_rflow; 2992 u32 flow_id; 2993 u16 rxq_index; 2994 int rc; 2995 2996 /* Should we steer this flow to a different hardware queue? */ 2997 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2998 !(dev->features & NETIF_F_NTUPLE)) 2999 goto out; 3000 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3001 if (rxq_index == skb_get_rx_queue(skb)) 3002 goto out; 3003 3004 rxqueue = dev->_rx + rxq_index; 3005 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3006 if (!flow_table) 3007 goto out; 3008 flow_id = skb_get_hash(skb) & flow_table->mask; 3009 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3010 rxq_index, flow_id); 3011 if (rc < 0) 3012 goto out; 3013 old_rflow = rflow; 3014 rflow = &flow_table->flows[flow_id]; 3015 rflow->filter = rc; 3016 if (old_rflow->filter == rflow->filter) 3017 old_rflow->filter = RPS_NO_FILTER; 3018 out: 3019#endif 3020 rflow->last_qtail = 3021 per_cpu(softnet_data, next_cpu).input_queue_head; 3022 } 3023 3024 rflow->cpu = next_cpu; 3025 return rflow; 3026} 3027 3028/* 3029 * get_rps_cpu is called from netif_receive_skb and returns the target 3030 * CPU from the RPS map of the receiving queue for a given skb. 3031 * rcu_read_lock must be held on entry. 3032 */ 3033static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3034 struct rps_dev_flow **rflowp) 3035{ 3036 struct netdev_rx_queue *rxqueue; 3037 struct rps_map *map; 3038 struct rps_dev_flow_table *flow_table; 3039 struct rps_sock_flow_table *sock_flow_table; 3040 int cpu = -1; 3041 u16 tcpu; 3042 u32 hash; 3043 3044 if (skb_rx_queue_recorded(skb)) { 3045 u16 index = skb_get_rx_queue(skb); 3046 if (unlikely(index >= dev->real_num_rx_queues)) { 3047 WARN_ONCE(dev->real_num_rx_queues > 1, 3048 "%s received packet on queue %u, but number " 3049 "of RX queues is %u\n", 3050 dev->name, index, dev->real_num_rx_queues); 3051 goto done; 3052 } 3053 rxqueue = dev->_rx + index; 3054 } else 3055 rxqueue = dev->_rx; 3056 3057 map = rcu_dereference(rxqueue->rps_map); 3058 if (map) { 3059 if (map->len == 1 && 3060 !rcu_access_pointer(rxqueue->rps_flow_table)) { 3061 tcpu = map->cpus[0]; 3062 if (cpu_online(tcpu)) 3063 cpu = tcpu; 3064 goto done; 3065 } 3066 } else if (!rcu_access_pointer(rxqueue->rps_flow_table)) { 3067 goto done; 3068 } 3069 3070 skb_reset_network_header(skb); 3071 hash = skb_get_hash(skb); 3072 if (!hash) 3073 goto done; 3074 3075 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3076 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3077 if (flow_table && sock_flow_table) { 3078 u16 next_cpu; 3079 struct rps_dev_flow *rflow; 3080 3081 rflow = &flow_table->flows[hash & flow_table->mask]; 3082 tcpu = rflow->cpu; 3083 3084 next_cpu = sock_flow_table->ents[hash & sock_flow_table->mask]; 3085 3086 /* 3087 * If the desired CPU (where last recvmsg was done) is 3088 * different from current CPU (one in the rx-queue flow 3089 * table entry), switch if one of the following holds: 3090 * - Current CPU is unset (equal to RPS_NO_CPU). 3091 * - Current CPU is offline. 3092 * - The current CPU's queue tail has advanced beyond the 3093 * last packet that was enqueued using this table entry. 3094 * This guarantees that all previous packets for the flow 3095 * have been dequeued, thus preserving in order delivery. 3096 */ 3097 if (unlikely(tcpu != next_cpu) && 3098 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 3099 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3100 rflow->last_qtail)) >= 0)) { 3101 tcpu = next_cpu; 3102 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3103 } 3104 3105 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 3106 *rflowp = rflow; 3107 cpu = tcpu; 3108 goto done; 3109 } 3110 } 3111 3112 if (map) { 3113 tcpu = map->cpus[((u64) hash * map->len) >> 32]; 3114 3115 if (cpu_online(tcpu)) { 3116 cpu = tcpu; 3117 goto done; 3118 } 3119 } 3120 3121done: 3122 return cpu; 3123} 3124 3125#ifdef CONFIG_RFS_ACCEL 3126 3127/** 3128 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3129 * @dev: Device on which the filter was set 3130 * @rxq_index: RX queue index 3131 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3132 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3133 * 3134 * Drivers that implement ndo_rx_flow_steer() should periodically call 3135 * this function for each installed filter and remove the filters for 3136 * which it returns %true. 3137 */ 3138bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3139 u32 flow_id, u16 filter_id) 3140{ 3141 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3142 struct rps_dev_flow_table *flow_table; 3143 struct rps_dev_flow *rflow; 3144 bool expire = true; 3145 int cpu; 3146 3147 rcu_read_lock(); 3148 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3149 if (flow_table && flow_id <= flow_table->mask) { 3150 rflow = &flow_table->flows[flow_id]; 3151 cpu = ACCESS_ONCE(rflow->cpu); 3152 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 3153 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3154 rflow->last_qtail) < 3155 (int)(10 * flow_table->mask))) 3156 expire = false; 3157 } 3158 rcu_read_unlock(); 3159 return expire; 3160} 3161EXPORT_SYMBOL(rps_may_expire_flow); 3162 3163#endif /* CONFIG_RFS_ACCEL */ 3164 3165/* Called from hardirq (IPI) context */ 3166static void rps_trigger_softirq(void *data) 3167{ 3168 struct softnet_data *sd = data; 3169 3170 ____napi_schedule(sd, &sd->backlog); 3171 sd->received_rps++; 3172} 3173 3174#endif /* CONFIG_RPS */ 3175 3176/* 3177 * Check if this softnet_data structure is another cpu one 3178 * If yes, queue it to our IPI list and return 1 3179 * If no, return 0 3180 */ 3181static int rps_ipi_queued(struct softnet_data *sd) 3182{ 3183#ifdef CONFIG_RPS 3184 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 3185 3186 if (sd != mysd) { 3187 sd->rps_ipi_next = mysd->rps_ipi_list; 3188 mysd->rps_ipi_list = sd; 3189 3190 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3191 return 1; 3192 } 3193#endif /* CONFIG_RPS */ 3194 return 0; 3195} 3196 3197#ifdef CONFIG_NET_FLOW_LIMIT 3198int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3199#endif 3200 3201static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3202{ 3203#ifdef CONFIG_NET_FLOW_LIMIT 3204 struct sd_flow_limit *fl; 3205 struct softnet_data *sd; 3206 unsigned int old_flow, new_flow; 3207 3208 if (qlen < (netdev_max_backlog >> 1)) 3209 return false; 3210 3211 sd = &__get_cpu_var(softnet_data); 3212 3213 rcu_read_lock(); 3214 fl = rcu_dereference(sd->flow_limit); 3215 if (fl) { 3216 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3217 old_flow = fl->history[fl->history_head]; 3218 fl->history[fl->history_head] = new_flow; 3219 3220 fl->history_head++; 3221 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3222 3223 if (likely(fl->buckets[old_flow])) 3224 fl->buckets[old_flow]--; 3225 3226 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3227 fl->count++; 3228 rcu_read_unlock(); 3229 return true; 3230 } 3231 } 3232 rcu_read_unlock(); 3233#endif 3234 return false; 3235} 3236 3237/* 3238 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3239 * queue (may be a remote CPU queue). 3240 */ 3241static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3242 unsigned int *qtail) 3243{ 3244 struct softnet_data *sd; 3245 unsigned long flags; 3246 unsigned int qlen; 3247 3248 sd = &per_cpu(softnet_data, cpu); 3249 3250 local_irq_save(flags); 3251 3252 rps_lock(sd); 3253 qlen = skb_queue_len(&sd->input_pkt_queue); 3254 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3255 if (skb_queue_len(&sd->input_pkt_queue)) { 3256enqueue: 3257 __skb_queue_tail(&sd->input_pkt_queue, skb); 3258 input_queue_tail_incr_save(sd, qtail); 3259 rps_unlock(sd); 3260 local_irq_restore(flags); 3261 return NET_RX_SUCCESS; 3262 } 3263 3264 /* Schedule NAPI for backlog device 3265 * We can use non atomic operation since we own the queue lock 3266 */ 3267 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3268 if (!rps_ipi_queued(sd)) 3269 ____napi_schedule(sd, &sd->backlog); 3270 } 3271 goto enqueue; 3272 } 3273 3274 sd->dropped++; 3275 rps_unlock(sd); 3276 3277 local_irq_restore(flags); 3278 3279 atomic_long_inc(&skb->dev->rx_dropped); 3280 kfree_skb(skb); 3281 return NET_RX_DROP; 3282} 3283 3284static int netif_rx_internal(struct sk_buff *skb) 3285{ 3286 int ret; 3287 3288 net_timestamp_check(netdev_tstamp_prequeue, skb); 3289 3290 trace_netif_rx(skb); 3291#ifdef CONFIG_RPS 3292 if (static_key_false(&rps_needed)) { 3293 struct rps_dev_flow voidflow, *rflow = &voidflow; 3294 int cpu; 3295 3296 preempt_disable(); 3297 rcu_read_lock(); 3298 3299 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3300 if (cpu < 0) 3301 cpu = smp_processor_id(); 3302 3303 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3304 3305 rcu_read_unlock(); 3306 preempt_enable(); 3307 } else 3308#endif 3309 { 3310 unsigned int qtail; 3311 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3312 put_cpu(); 3313 } 3314 return ret; 3315} 3316 3317/** 3318 * netif_rx - post buffer to the network code 3319 * @skb: buffer to post 3320 * 3321 * This function receives a packet from a device driver and queues it for 3322 * the upper (protocol) levels to process. It always succeeds. The buffer 3323 * may be dropped during processing for congestion control or by the 3324 * protocol layers. 3325 * 3326 * return values: 3327 * NET_RX_SUCCESS (no congestion) 3328 * NET_RX_DROP (packet was dropped) 3329 * 3330 */ 3331 3332int netif_rx(struct sk_buff *skb) 3333{ 3334 trace_netif_rx_entry(skb); 3335 3336 return netif_rx_internal(skb); 3337} 3338EXPORT_SYMBOL(netif_rx); 3339 3340int netif_rx_ni(struct sk_buff *skb) 3341{ 3342 int err; 3343 3344 trace_netif_rx_ni_entry(skb); 3345 3346 preempt_disable(); 3347 err = netif_rx_internal(skb); 3348 if (local_softirq_pending()) 3349 do_softirq(); 3350 preempt_enable(); 3351 3352 return err; 3353} 3354EXPORT_SYMBOL(netif_rx_ni); 3355 3356static void net_tx_action(struct softirq_action *h) 3357{ 3358 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3359 3360 if (sd->completion_queue) { 3361 struct sk_buff *clist; 3362 3363 local_irq_disable(); 3364 clist = sd->completion_queue; 3365 sd->completion_queue = NULL; 3366 local_irq_enable(); 3367 3368 while (clist) { 3369 struct sk_buff *skb = clist; 3370 clist = clist->next; 3371 3372 WARN_ON(atomic_read(&skb->users)); 3373 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3374 trace_consume_skb(skb); 3375 else 3376 trace_kfree_skb(skb, net_tx_action); 3377 __kfree_skb(skb); 3378 } 3379 } 3380 3381 if (sd->output_queue) { 3382 struct Qdisc *head; 3383 3384 local_irq_disable(); 3385 head = sd->output_queue; 3386 sd->output_queue = NULL; 3387 sd->output_queue_tailp = &sd->output_queue; 3388 local_irq_enable(); 3389 3390 while (head) { 3391 struct Qdisc *q = head; 3392 spinlock_t *root_lock; 3393 3394 head = head->next_sched; 3395 3396 root_lock = qdisc_lock(q); 3397 if (spin_trylock(root_lock)) { 3398 smp_mb__before_atomic(); 3399 clear_bit(__QDISC_STATE_SCHED, 3400 &q->state); 3401 qdisc_run(q); 3402 spin_unlock(root_lock); 3403 } else { 3404 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3405 &q->state)) { 3406 __netif_reschedule(q); 3407 } else { 3408 smp_mb__before_atomic(); 3409 clear_bit(__QDISC_STATE_SCHED, 3410 &q->state); 3411 } 3412 } 3413 } 3414 } 3415} 3416 3417#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3418 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3419/* This hook is defined here for ATM LANE */ 3420int (*br_fdb_test_addr_hook)(struct net_device *dev, 3421 unsigned char *addr) __read_mostly; 3422EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3423#endif 3424 3425#ifdef CONFIG_NET_CLS_ACT 3426/* TODO: Maybe we should just force sch_ingress to be compiled in 3427 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 3428 * a compare and 2 stores extra right now if we dont have it on 3429 * but have CONFIG_NET_CLS_ACT 3430 * NOTE: This doesn't stop any functionality; if you dont have 3431 * the ingress scheduler, you just can't add policies on ingress. 3432 * 3433 */ 3434static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3435{ 3436 struct net_device *dev = skb->dev; 3437 u32 ttl = G_TC_RTTL(skb->tc_verd); 3438 int result = TC_ACT_OK; 3439 struct Qdisc *q; 3440 3441 if (unlikely(MAX_RED_LOOP < ttl++)) { 3442 net_warn_ratelimited("Redir loop detected Dropping packet (%d->%d)\n", 3443 skb->skb_iif, dev->ifindex); 3444 return TC_ACT_SHOT; 3445 } 3446 3447 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3448 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3449 3450 q = rxq->qdisc; 3451 if (q != &noop_qdisc) { 3452 spin_lock(qdisc_lock(q)); 3453 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3454 result = qdisc_enqueue_root(skb, q); 3455 spin_unlock(qdisc_lock(q)); 3456 } 3457 3458 return result; 3459} 3460 3461static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3462 struct packet_type **pt_prev, 3463 int *ret, struct net_device *orig_dev) 3464{ 3465 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3466 3467 if (!rxq || rxq->qdisc == &noop_qdisc) 3468 goto out; 3469 3470 if (*pt_prev) { 3471 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3472 *pt_prev = NULL; 3473 } 3474 3475 switch (ing_filter(skb, rxq)) { 3476 case TC_ACT_SHOT: 3477 case TC_ACT_STOLEN: 3478 kfree_skb(skb); 3479 return NULL; 3480 } 3481 3482out: 3483 skb->tc_verd = 0; 3484 return skb; 3485} 3486#endif 3487 3488/** 3489 * netdev_rx_handler_register - register receive handler 3490 * @dev: device to register a handler for 3491 * @rx_handler: receive handler to register 3492 * @rx_handler_data: data pointer that is used by rx handler 3493 * 3494 * Register a receive handler for a device. This handler will then be 3495 * called from __netif_receive_skb. A negative errno code is returned 3496 * on a failure. 3497 * 3498 * The caller must hold the rtnl_mutex. 3499 * 3500 * For a general description of rx_handler, see enum rx_handler_result. 3501 */ 3502int netdev_rx_handler_register(struct net_device *dev, 3503 rx_handler_func_t *rx_handler, 3504 void *rx_handler_data) 3505{ 3506 ASSERT_RTNL(); 3507 3508 if (dev->rx_handler) 3509 return -EBUSY; 3510 3511 /* Note: rx_handler_data must be set before rx_handler */ 3512 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3513 rcu_assign_pointer(dev->rx_handler, rx_handler); 3514 3515 return 0; 3516} 3517EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3518 3519/** 3520 * netdev_rx_handler_unregister - unregister receive handler 3521 * @dev: device to unregister a handler from 3522 * 3523 * Unregister a receive handler from a device. 3524 * 3525 * The caller must hold the rtnl_mutex. 3526 */ 3527void netdev_rx_handler_unregister(struct net_device *dev) 3528{ 3529 3530 ASSERT_RTNL(); 3531 RCU_INIT_POINTER(dev->rx_handler, NULL); 3532 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3533 * section has a guarantee to see a non NULL rx_handler_data 3534 * as well. 3535 */ 3536 synchronize_net(); 3537 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3538} 3539EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3540 3541/* 3542 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3543 * the special handling of PFMEMALLOC skbs. 3544 */ 3545static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3546{ 3547 switch (skb->protocol) { 3548 case htons(ETH_P_ARP): 3549 case htons(ETH_P_IP): 3550 case htons(ETH_P_IPV6): 3551 case htons(ETH_P_8021Q): 3552 case htons(ETH_P_8021AD): 3553 return true; 3554 default: 3555 return false; 3556 } 3557} 3558 3559static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3560{ 3561 struct packet_type *ptype, *pt_prev; 3562 rx_handler_func_t *rx_handler; 3563 struct net_device *orig_dev; 3564 struct net_device *null_or_dev; 3565 bool deliver_exact = false; 3566 int ret = NET_RX_DROP; 3567 __be16 type; 3568 3569 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3570 3571 trace_netif_receive_skb(skb); 3572 3573 orig_dev = skb->dev; 3574 3575 skb_reset_network_header(skb); 3576 if (!skb_transport_header_was_set(skb)) 3577 skb_reset_transport_header(skb); 3578 skb_reset_mac_len(skb); 3579 3580 pt_prev = NULL; 3581 3582 rcu_read_lock(); 3583 3584another_round: 3585 skb->skb_iif = skb->dev->ifindex; 3586 3587 __this_cpu_inc(softnet_data.processed); 3588 3589 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3590 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3591 skb = vlan_untag(skb); 3592 if (unlikely(!skb)) 3593 goto unlock; 3594 } 3595 3596#ifdef CONFIG_NET_CLS_ACT 3597 if (skb->tc_verd & TC_NCLS) { 3598 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3599 goto ncls; 3600 } 3601#endif 3602 3603 if (pfmemalloc) 3604 goto skip_taps; 3605 3606 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3607 if (!ptype->dev || ptype->dev == skb->dev) { 3608 if (pt_prev) 3609 ret = deliver_skb(skb, pt_prev, orig_dev); 3610 pt_prev = ptype; 3611 } 3612 } 3613 3614skip_taps: 3615#ifdef CONFIG_NET_CLS_ACT 3616 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3617 if (!skb) 3618 goto unlock; 3619ncls: 3620#endif 3621 3622 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3623 goto drop; 3624 3625 if (vlan_tx_tag_present(skb)) { 3626 if (pt_prev) { 3627 ret = deliver_skb(skb, pt_prev, orig_dev); 3628 pt_prev = NULL; 3629 } 3630 if (vlan_do_receive(&skb)) 3631 goto another_round; 3632 else if (unlikely(!skb)) 3633 goto unlock; 3634 } 3635 3636 rx_handler = rcu_dereference(skb->dev->rx_handler); 3637 if (rx_handler) { 3638 if (pt_prev) { 3639 ret = deliver_skb(skb, pt_prev, orig_dev); 3640 pt_prev = NULL; 3641 } 3642 switch (rx_handler(&skb)) { 3643 case RX_HANDLER_CONSUMED: 3644 ret = NET_RX_SUCCESS; 3645 goto unlock; 3646 case RX_HANDLER_ANOTHER: 3647 goto another_round; 3648 case RX_HANDLER_EXACT: 3649 deliver_exact = true; 3650 case RX_HANDLER_PASS: 3651 break; 3652 default: 3653 BUG(); 3654 } 3655 } 3656 3657 if (unlikely(vlan_tx_tag_present(skb))) { 3658 if (vlan_tx_tag_get_id(skb)) 3659 skb->pkt_type = PACKET_OTHERHOST; 3660 /* Note: we might in the future use prio bits 3661 * and set skb->priority like in vlan_do_receive() 3662 * For the time being, just ignore Priority Code Point 3663 */ 3664 skb->vlan_tci = 0; 3665 } 3666 3667 /* deliver only exact match when indicated */ 3668 null_or_dev = deliver_exact ? skb->dev : NULL; 3669 3670 type = skb->protocol; 3671 list_for_each_entry_rcu(ptype, 3672 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3673 if (ptype->type == type && 3674 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3675 ptype->dev == orig_dev)) { 3676 if (pt_prev) 3677 ret = deliver_skb(skb, pt_prev, orig_dev); 3678 pt_prev = ptype; 3679 } 3680 } 3681 3682 if (pt_prev) { 3683 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3684 goto drop; 3685 else 3686 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3687 } else { 3688drop: 3689 atomic_long_inc(&skb->dev->rx_dropped); 3690 kfree_skb(skb); 3691 /* Jamal, now you will not able to escape explaining 3692 * me how you were going to use this. :-) 3693 */ 3694 ret = NET_RX_DROP; 3695 } 3696 3697unlock: 3698 rcu_read_unlock(); 3699 return ret; 3700} 3701 3702static int __netif_receive_skb(struct sk_buff *skb) 3703{ 3704 int ret; 3705 3706 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3707 unsigned long pflags = current->flags; 3708 3709 /* 3710 * PFMEMALLOC skbs are special, they should 3711 * - be delivered to SOCK_MEMALLOC sockets only 3712 * - stay away from userspace 3713 * - have bounded memory usage 3714 * 3715 * Use PF_MEMALLOC as this saves us from propagating the allocation 3716 * context down to all allocation sites. 3717 */ 3718 current->flags |= PF_MEMALLOC; 3719 ret = __netif_receive_skb_core(skb, true); 3720 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3721 } else 3722 ret = __netif_receive_skb_core(skb, false); 3723 3724 return ret; 3725} 3726 3727static int netif_receive_skb_internal(struct sk_buff *skb) 3728{ 3729 net_timestamp_check(netdev_tstamp_prequeue, skb); 3730 3731 if (skb_defer_rx_timestamp(skb)) 3732 return NET_RX_SUCCESS; 3733 3734#ifdef CONFIG_RPS 3735 if (static_key_false(&rps_needed)) { 3736 struct rps_dev_flow voidflow, *rflow = &voidflow; 3737 int cpu, ret; 3738 3739 rcu_read_lock(); 3740 3741 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3742 3743 if (cpu >= 0) { 3744 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3745 rcu_read_unlock(); 3746 return ret; 3747 } 3748 rcu_read_unlock(); 3749 } 3750#endif 3751 return __netif_receive_skb(skb); 3752} 3753 3754/** 3755 * netif_receive_skb - process receive buffer from network 3756 * @skb: buffer to process 3757 * 3758 * netif_receive_skb() is the main receive data processing function. 3759 * It always succeeds. The buffer may be dropped during processing 3760 * for congestion control or by the protocol layers. 3761 * 3762 * This function may only be called from softirq context and interrupts 3763 * should be enabled. 3764 * 3765 * Return values (usually ignored): 3766 * NET_RX_SUCCESS: no congestion 3767 * NET_RX_DROP: packet was dropped 3768 */ 3769int netif_receive_skb(struct sk_buff *skb) 3770{ 3771 trace_netif_receive_skb_entry(skb); 3772 3773 return netif_receive_skb_internal(skb); 3774} 3775EXPORT_SYMBOL(netif_receive_skb); 3776 3777/* Network device is going away, flush any packets still pending 3778 * Called with irqs disabled. 3779 */ 3780static void flush_backlog(void *arg) 3781{ 3782 struct net_device *dev = arg; 3783 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3784 struct sk_buff *skb, *tmp; 3785 3786 rps_lock(sd); 3787 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3788 if (skb->dev == dev) { 3789 __skb_unlink(skb, &sd->input_pkt_queue); 3790 kfree_skb(skb); 3791 input_queue_head_incr(sd); 3792 } 3793 } 3794 rps_unlock(sd); 3795 3796 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3797 if (skb->dev == dev) { 3798 __skb_unlink(skb, &sd->process_queue); 3799 kfree_skb(skb); 3800 input_queue_head_incr(sd); 3801 } 3802 } 3803} 3804 3805static int napi_gro_complete(struct sk_buff *skb) 3806{ 3807 struct packet_offload *ptype; 3808 __be16 type = skb->protocol; 3809 struct list_head *head = &offload_base; 3810 int err = -ENOENT; 3811 3812 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 3813 3814 if (NAPI_GRO_CB(skb)->count == 1) { 3815 skb_shinfo(skb)->gso_size = 0; 3816 goto out; 3817 } 3818 3819 rcu_read_lock(); 3820 list_for_each_entry_rcu(ptype, head, list) { 3821 if (ptype->type != type || !ptype->callbacks.gro_complete) 3822 continue; 3823 3824 err = ptype->callbacks.gro_complete(skb, 0); 3825 break; 3826 } 3827 rcu_read_unlock(); 3828 3829 if (err) { 3830 WARN_ON(&ptype->list == head); 3831 kfree_skb(skb); 3832 return NET_RX_SUCCESS; 3833 } 3834 3835out: 3836 return netif_receive_skb_internal(skb); 3837} 3838 3839/* napi->gro_list contains packets ordered by age. 3840 * youngest packets at the head of it. 3841 * Complete skbs in reverse order to reduce latencies. 3842 */ 3843void napi_gro_flush(struct napi_struct *napi, bool flush_old) 3844{ 3845 struct sk_buff *skb, *prev = NULL; 3846 3847 /* scan list and build reverse chain */ 3848 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 3849 skb->prev = prev; 3850 prev = skb; 3851 } 3852 3853 for (skb = prev; skb; skb = prev) { 3854 skb->next = NULL; 3855 3856 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 3857 return; 3858 3859 prev = skb->prev; 3860 napi_gro_complete(skb); 3861 napi->gro_count--; 3862 } 3863 3864 napi->gro_list = NULL; 3865} 3866EXPORT_SYMBOL(napi_gro_flush); 3867 3868static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 3869{ 3870 struct sk_buff *p; 3871 unsigned int maclen = skb->dev->hard_header_len; 3872 u32 hash = skb_get_hash_raw(skb); 3873 3874 for (p = napi->gro_list; p; p = p->next) { 3875 unsigned long diffs; 3876 3877 NAPI_GRO_CB(p)->flush = 0; 3878 3879 if (hash != skb_get_hash_raw(p)) { 3880 NAPI_GRO_CB(p)->same_flow = 0; 3881 continue; 3882 } 3883 3884 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3885 diffs |= p->vlan_tci ^ skb->vlan_tci; 3886 if (maclen == ETH_HLEN) 3887 diffs |= compare_ether_header(skb_mac_header(p), 3888 skb_mac_header(skb)); 3889 else if (!diffs) 3890 diffs = memcmp(skb_mac_header(p), 3891 skb_mac_header(skb), 3892 maclen); 3893 NAPI_GRO_CB(p)->same_flow = !diffs; 3894 } 3895} 3896 3897static void skb_gro_reset_offset(struct sk_buff *skb) 3898{ 3899 const struct skb_shared_info *pinfo = skb_shinfo(skb); 3900 const skb_frag_t *frag0 = &pinfo->frags[0]; 3901 3902 NAPI_GRO_CB(skb)->data_offset = 0; 3903 NAPI_GRO_CB(skb)->frag0 = NULL; 3904 NAPI_GRO_CB(skb)->frag0_len = 0; 3905 3906 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 3907 pinfo->nr_frags && 3908 !PageHighMem(skb_frag_page(frag0))) { 3909 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 3910 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 3911 } 3912} 3913 3914static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 3915{ 3916 struct skb_shared_info *pinfo = skb_shinfo(skb); 3917 3918 BUG_ON(skb->end - skb->tail < grow); 3919 3920 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3921 3922 skb->data_len -= grow; 3923 skb->tail += grow; 3924 3925 pinfo->frags[0].page_offset += grow; 3926 skb_frag_size_sub(&pinfo->frags[0], grow); 3927 3928 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 3929 skb_frag_unref(skb, 0); 3930 memmove(pinfo->frags, pinfo->frags + 1, 3931 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 3932 } 3933} 3934 3935static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3936{ 3937 struct sk_buff **pp = NULL; 3938 struct packet_offload *ptype; 3939 __be16 type = skb->protocol; 3940 struct list_head *head = &offload_base; 3941 int same_flow; 3942 enum gro_result ret; 3943 int grow; 3944 3945 if (!(skb->dev->features & NETIF_F_GRO)) 3946 goto normal; 3947 3948 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3949 goto normal; 3950 3951 gro_list_prepare(napi, skb); 3952 NAPI_GRO_CB(skb)->csum = skb->csum; /* Needed for CHECKSUM_COMPLETE */ 3953 3954 rcu_read_lock(); 3955 list_for_each_entry_rcu(ptype, head, list) { 3956 if (ptype->type != type || !ptype->callbacks.gro_receive) 3957 continue; 3958 3959 skb_set_network_header(skb, skb_gro_offset(skb)); 3960 skb_reset_mac_len(skb); 3961 NAPI_GRO_CB(skb)->same_flow = 0; 3962 NAPI_GRO_CB(skb)->flush = 0; 3963 NAPI_GRO_CB(skb)->free = 0; 3964 NAPI_GRO_CB(skb)->udp_mark = 0; 3965 3966 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 3967 break; 3968 } 3969 rcu_read_unlock(); 3970 3971 if (&ptype->list == head) 3972 goto normal; 3973 3974 same_flow = NAPI_GRO_CB(skb)->same_flow; 3975 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3976 3977 if (pp) { 3978 struct sk_buff *nskb = *pp; 3979 3980 *pp = nskb->next; 3981 nskb->next = NULL; 3982 napi_gro_complete(nskb); 3983 napi->gro_count--; 3984 } 3985 3986 if (same_flow) 3987 goto ok; 3988 3989 if (NAPI_GRO_CB(skb)->flush) 3990 goto normal; 3991 3992 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 3993 struct sk_buff *nskb = napi->gro_list; 3994 3995 /* locate the end of the list to select the 'oldest' flow */ 3996 while (nskb->next) { 3997 pp = &nskb->next; 3998 nskb = *pp; 3999 } 4000 *pp = NULL; 4001 nskb->next = NULL; 4002 napi_gro_complete(nskb); 4003 } else { 4004 napi->gro_count++; 4005 } 4006 NAPI_GRO_CB(skb)->count = 1; 4007 NAPI_GRO_CB(skb)->age = jiffies; 4008 NAPI_GRO_CB(skb)->last = skb; 4009 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4010 skb->next = napi->gro_list; 4011 napi->gro_list = skb; 4012 ret = GRO_HELD; 4013 4014pull: 4015 grow = skb_gro_offset(skb) - skb_headlen(skb); 4016 if (grow > 0) 4017 gro_pull_from_frag0(skb, grow); 4018ok: 4019 return ret; 4020 4021normal: 4022 ret = GRO_NORMAL; 4023 goto pull; 4024} 4025 4026struct packet_offload *gro_find_receive_by_type(__be16 type) 4027{ 4028 struct list_head *offload_head = &offload_base; 4029 struct packet_offload *ptype; 4030 4031 list_for_each_entry_rcu(ptype, offload_head, list) { 4032 if (ptype->type != type || !ptype->callbacks.gro_receive) 4033 continue; 4034 return ptype; 4035 } 4036 return NULL; 4037} 4038EXPORT_SYMBOL(gro_find_receive_by_type); 4039 4040struct packet_offload *gro_find_complete_by_type(__be16 type) 4041{ 4042 struct list_head *offload_head = &offload_base; 4043 struct packet_offload *ptype; 4044 4045 list_for_each_entry_rcu(ptype, offload_head, list) { 4046 if (ptype->type != type || !ptype->callbacks.gro_complete) 4047 continue; 4048 return ptype; 4049 } 4050 return NULL; 4051} 4052EXPORT_SYMBOL(gro_find_complete_by_type); 4053 4054static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4055{ 4056 switch (ret) { 4057 case GRO_NORMAL: 4058 if (netif_receive_skb_internal(skb)) 4059 ret = GRO_DROP; 4060 break; 4061 4062 case GRO_DROP: 4063 kfree_skb(skb); 4064 break; 4065 4066 case GRO_MERGED_FREE: 4067 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4068 kmem_cache_free(skbuff_head_cache, skb); 4069 else 4070 __kfree_skb(skb); 4071 break; 4072 4073 case GRO_HELD: 4074 case GRO_MERGED: 4075 break; 4076 } 4077 4078 return ret; 4079} 4080 4081gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4082{ 4083 trace_napi_gro_receive_entry(skb); 4084 4085 skb_gro_reset_offset(skb); 4086 4087 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4088} 4089EXPORT_SYMBOL(napi_gro_receive); 4090 4091static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4092{ 4093 __skb_pull(skb, skb_headlen(skb)); 4094 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4095 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4096 skb->vlan_tci = 0; 4097 skb->dev = napi->dev; 4098 skb->skb_iif = 0; 4099 skb->encapsulation = 0; 4100 skb_shinfo(skb)->gso_type = 0; 4101 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4102 4103 napi->skb = skb; 4104} 4105 4106struct sk_buff *napi_get_frags(struct napi_struct *napi) 4107{ 4108 struct sk_buff *skb = napi->skb; 4109 4110 if (!skb) { 4111 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 4112 napi->skb = skb; 4113 } 4114 return skb; 4115} 4116EXPORT_SYMBOL(napi_get_frags); 4117 4118static gro_result_t napi_frags_finish(struct napi_struct *napi, 4119 struct sk_buff *skb, 4120 gro_result_t ret) 4121{ 4122 switch (ret) { 4123 case GRO_NORMAL: 4124 case GRO_HELD: 4125 __skb_push(skb, ETH_HLEN); 4126 skb->protocol = eth_type_trans(skb, skb->dev); 4127 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4128 ret = GRO_DROP; 4129 break; 4130 4131 case GRO_DROP: 4132 case GRO_MERGED_FREE: 4133 napi_reuse_skb(napi, skb); 4134 break; 4135 4136 case GRO_MERGED: 4137 break; 4138 } 4139 4140 return ret; 4141} 4142 4143/* Upper GRO stack assumes network header starts at gro_offset=0 4144 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4145 * We copy ethernet header into skb->data to have a common layout. 4146 */ 4147static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4148{ 4149 struct sk_buff *skb = napi->skb; 4150 const struct ethhdr *eth; 4151 unsigned int hlen = sizeof(*eth); 4152 4153 napi->skb = NULL; 4154 4155 skb_reset_mac_header(skb); 4156 skb_gro_reset_offset(skb); 4157 4158 eth = skb_gro_header_fast(skb, 0); 4159 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4160 eth = skb_gro_header_slow(skb, hlen, 0); 4161 if (unlikely(!eth)) { 4162 napi_reuse_skb(napi, skb); 4163 return NULL; 4164 } 4165 } else { 4166 gro_pull_from_frag0(skb, hlen); 4167 NAPI_GRO_CB(skb)->frag0 += hlen; 4168 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4169 } 4170 __skb_pull(skb, hlen); 4171 4172 /* 4173 * This works because the only protocols we care about don't require 4174 * special handling. 4175 * We'll fix it up properly in napi_frags_finish() 4176 */ 4177 skb->protocol = eth->h_proto; 4178 4179 return skb; 4180} 4181 4182gro_result_t napi_gro_frags(struct napi_struct *napi) 4183{ 4184 struct sk_buff *skb = napi_frags_skb(napi); 4185 4186 if (!skb) 4187 return GRO_DROP; 4188 4189 trace_napi_gro_frags_entry(skb); 4190 4191 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4192} 4193EXPORT_SYMBOL(napi_gro_frags); 4194 4195/* 4196 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4197 * Note: called with local irq disabled, but exits with local irq enabled. 4198 */ 4199static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4200{ 4201#ifdef CONFIG_RPS 4202 struct softnet_data *remsd = sd->rps_ipi_list; 4203 4204 if (remsd) { 4205 sd->rps_ipi_list = NULL; 4206 4207 local_irq_enable(); 4208 4209 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4210 while (remsd) { 4211 struct softnet_data *next = remsd->rps_ipi_next; 4212 4213 if (cpu_online(remsd->cpu)) 4214 smp_call_function_single_async(remsd->cpu, 4215 &remsd->csd); 4216 remsd = next; 4217 } 4218 } else 4219#endif 4220 local_irq_enable(); 4221} 4222 4223static int process_backlog(struct napi_struct *napi, int quota) 4224{ 4225 int work = 0; 4226 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4227 4228#ifdef CONFIG_RPS 4229 /* Check if we have pending ipi, its better to send them now, 4230 * not waiting net_rx_action() end. 4231 */ 4232 if (sd->rps_ipi_list) { 4233 local_irq_disable(); 4234 net_rps_action_and_irq_enable(sd); 4235 } 4236#endif 4237 napi->weight = weight_p; 4238 local_irq_disable(); 4239 while (1) { 4240 struct sk_buff *skb; 4241 4242 while ((skb = __skb_dequeue(&sd->process_queue))) { 4243 local_irq_enable(); 4244 __netif_receive_skb(skb); 4245 local_irq_disable(); 4246 input_queue_head_incr(sd); 4247 if (++work >= quota) { 4248 local_irq_enable(); 4249 return work; 4250 } 4251 } 4252 4253 rps_lock(sd); 4254 if (skb_queue_empty(&sd->input_pkt_queue)) { 4255 /* 4256 * Inline a custom version of __napi_complete(). 4257 * only current cpu owns and manipulates this napi, 4258 * and NAPI_STATE_SCHED is the only possible flag set 4259 * on backlog. 4260 * We can use a plain write instead of clear_bit(), 4261 * and we dont need an smp_mb() memory barrier. 4262 */ 4263 list_del(&napi->poll_list); 4264 napi->state = 0; 4265 rps_unlock(sd); 4266 4267 break; 4268 } 4269 4270 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4271 &sd->process_queue); 4272 rps_unlock(sd); 4273 } 4274 local_irq_enable(); 4275 4276 return work; 4277} 4278 4279/** 4280 * __napi_schedule - schedule for receive 4281 * @n: entry to schedule 4282 * 4283 * The entry's receive function will be scheduled to run 4284 */ 4285void __napi_schedule(struct napi_struct *n) 4286{ 4287 unsigned long flags; 4288 4289 local_irq_save(flags); 4290 ____napi_schedule(&__get_cpu_var(softnet_data), n); 4291 local_irq_restore(flags); 4292} 4293EXPORT_SYMBOL(__napi_schedule); 4294 4295void __napi_complete(struct napi_struct *n) 4296{ 4297 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4298 BUG_ON(n->gro_list); 4299 4300 list_del(&n->poll_list); 4301 smp_mb__before_atomic(); 4302 clear_bit(NAPI_STATE_SCHED, &n->state); 4303} 4304EXPORT_SYMBOL(__napi_complete); 4305 4306void napi_complete(struct napi_struct *n) 4307{ 4308 unsigned long flags; 4309 4310 /* 4311 * don't let napi dequeue from the cpu poll list 4312 * just in case its running on a different cpu 4313 */ 4314 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4315 return; 4316 4317 napi_gro_flush(n, false); 4318 local_irq_save(flags); 4319 __napi_complete(n); 4320 local_irq_restore(flags); 4321} 4322EXPORT_SYMBOL(napi_complete); 4323 4324/* must be called under rcu_read_lock(), as we dont take a reference */ 4325struct napi_struct *napi_by_id(unsigned int napi_id) 4326{ 4327 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4328 struct napi_struct *napi; 4329 4330 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4331 if (napi->napi_id == napi_id) 4332 return napi; 4333 4334 return NULL; 4335} 4336EXPORT_SYMBOL_GPL(napi_by_id); 4337 4338void napi_hash_add(struct napi_struct *napi) 4339{ 4340 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4341 4342 spin_lock(&napi_hash_lock); 4343 4344 /* 0 is not a valid id, we also skip an id that is taken 4345 * we expect both events to be extremely rare 4346 */ 4347 napi->napi_id = 0; 4348 while (!napi->napi_id) { 4349 napi->napi_id = ++napi_gen_id; 4350 if (napi_by_id(napi->napi_id)) 4351 napi->napi_id = 0; 4352 } 4353 4354 hlist_add_head_rcu(&napi->napi_hash_node, 4355 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4356 4357 spin_unlock(&napi_hash_lock); 4358 } 4359} 4360EXPORT_SYMBOL_GPL(napi_hash_add); 4361 4362/* Warning : caller is responsible to make sure rcu grace period 4363 * is respected before freeing memory containing @napi 4364 */ 4365void napi_hash_del(struct napi_struct *napi) 4366{ 4367 spin_lock(&napi_hash_lock); 4368 4369 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4370 hlist_del_rcu(&napi->napi_hash_node); 4371 4372 spin_unlock(&napi_hash_lock); 4373} 4374EXPORT_SYMBOL_GPL(napi_hash_del); 4375 4376void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4377 int (*poll)(struct napi_struct *, int), int weight) 4378{ 4379 INIT_LIST_HEAD(&napi->poll_list); 4380 napi->gro_count = 0; 4381 napi->gro_list = NULL; 4382 napi->skb = NULL; 4383 napi->poll = poll; 4384 if (weight > NAPI_POLL_WEIGHT) 4385 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4386 weight, dev->name); 4387 napi->weight = weight; 4388 list_add(&napi->dev_list, &dev->napi_list); 4389 napi->dev = dev; 4390#ifdef CONFIG_NETPOLL 4391 spin_lock_init(&napi->poll_lock); 4392 napi->poll_owner = -1; 4393#endif 4394 set_bit(NAPI_STATE_SCHED, &napi->state); 4395} 4396EXPORT_SYMBOL(netif_napi_add); 4397 4398void netif_napi_del(struct napi_struct *napi) 4399{ 4400 list_del_init(&napi->dev_list); 4401 napi_free_frags(napi); 4402 4403 kfree_skb_list(napi->gro_list); 4404 napi->gro_list = NULL; 4405 napi->gro_count = 0; 4406} 4407EXPORT_SYMBOL(netif_napi_del); 4408 4409static void net_rx_action(struct softirq_action *h) 4410{ 4411 struct softnet_data *sd = &__get_cpu_var(softnet_data); 4412 unsigned long time_limit = jiffies + 2; 4413 int budget = netdev_budget; 4414 void *have; 4415 4416 local_irq_disable(); 4417 4418 while (!list_empty(&sd->poll_list)) { 4419 struct napi_struct *n; 4420 int work, weight; 4421 4422 /* If softirq window is exhuasted then punt. 4423 * Allow this to run for 2 jiffies since which will allow 4424 * an average latency of 1.5/HZ. 4425 */ 4426 if (unlikely(budget <= 0 || time_after_eq(jiffies, time_limit))) 4427 goto softnet_break; 4428 4429 local_irq_enable(); 4430 4431 /* Even though interrupts have been re-enabled, this 4432 * access is safe because interrupts can only add new 4433 * entries to the tail of this list, and only ->poll() 4434 * calls can remove this head entry from the list. 4435 */ 4436 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 4437 4438 have = netpoll_poll_lock(n); 4439 4440 weight = n->weight; 4441 4442 /* This NAPI_STATE_SCHED test is for avoiding a race 4443 * with netpoll's poll_napi(). Only the entity which 4444 * obtains the lock and sees NAPI_STATE_SCHED set will 4445 * actually make the ->poll() call. Therefore we avoid 4446 * accidentally calling ->poll() when NAPI is not scheduled. 4447 */ 4448 work = 0; 4449 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4450 work = n->poll(n, weight); 4451 trace_napi_poll(n); 4452 } 4453 4454 WARN_ON_ONCE(work > weight); 4455 4456 budget -= work; 4457 4458 local_irq_disable(); 4459 4460 /* Drivers must not modify the NAPI state if they 4461 * consume the entire weight. In such cases this code 4462 * still "owns" the NAPI instance and therefore can 4463 * move the instance around on the list at-will. 4464 */ 4465 if (unlikely(work == weight)) { 4466 if (unlikely(napi_disable_pending(n))) { 4467 local_irq_enable(); 4468 napi_complete(n); 4469 local_irq_disable(); 4470 } else { 4471 if (n->gro_list) { 4472 /* flush too old packets 4473 * If HZ < 1000, flush all packets. 4474 */ 4475 local_irq_enable(); 4476 napi_gro_flush(n, HZ >= 1000); 4477 local_irq_disable(); 4478 } 4479 list_move_tail(&n->poll_list, &sd->poll_list); 4480 } 4481 } 4482 4483 netpoll_poll_unlock(have); 4484 } 4485out: 4486 net_rps_action_and_irq_enable(sd); 4487 4488#ifdef CONFIG_NET_DMA 4489 /* 4490 * There may not be any more sk_buffs coming right now, so push 4491 * any pending DMA copies to hardware 4492 */ 4493 dma_issue_pending_all(); 4494#endif 4495 4496 return; 4497 4498softnet_break: 4499 sd->time_squeeze++; 4500 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4501 goto out; 4502} 4503 4504struct netdev_adjacent { 4505 struct net_device *dev; 4506 4507 /* upper master flag, there can only be one master device per list */ 4508 bool master; 4509 4510 /* counter for the number of times this device was added to us */ 4511 u16 ref_nr; 4512 4513 /* private field for the users */ 4514 void *private; 4515 4516 struct list_head list; 4517 struct rcu_head rcu; 4518}; 4519 4520static struct netdev_adjacent *__netdev_find_adj(struct net_device *dev, 4521 struct net_device *adj_dev, 4522 struct list_head *adj_list) 4523{ 4524 struct netdev_adjacent *adj; 4525 4526 list_for_each_entry(adj, adj_list, list) { 4527 if (adj->dev == adj_dev) 4528 return adj; 4529 } 4530 return NULL; 4531} 4532 4533/** 4534 * netdev_has_upper_dev - Check if device is linked to an upper device 4535 * @dev: device 4536 * @upper_dev: upper device to check 4537 * 4538 * Find out if a device is linked to specified upper device and return true 4539 * in case it is. Note that this checks only immediate upper device, 4540 * not through a complete stack of devices. The caller must hold the RTNL lock. 4541 */ 4542bool netdev_has_upper_dev(struct net_device *dev, 4543 struct net_device *upper_dev) 4544{ 4545 ASSERT_RTNL(); 4546 4547 return __netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper); 4548} 4549EXPORT_SYMBOL(netdev_has_upper_dev); 4550 4551/** 4552 * netdev_has_any_upper_dev - Check if device is linked to some device 4553 * @dev: device 4554 * 4555 * Find out if a device is linked to an upper device and return true in case 4556 * it is. The caller must hold the RTNL lock. 4557 */ 4558static bool netdev_has_any_upper_dev(struct net_device *dev) 4559{ 4560 ASSERT_RTNL(); 4561 4562 return !list_empty(&dev->all_adj_list.upper); 4563} 4564 4565/** 4566 * netdev_master_upper_dev_get - Get master upper device 4567 * @dev: device 4568 * 4569 * Find a master upper device and return pointer to it or NULL in case 4570 * it's not there. The caller must hold the RTNL lock. 4571 */ 4572struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4573{ 4574 struct netdev_adjacent *upper; 4575 4576 ASSERT_RTNL(); 4577 4578 if (list_empty(&dev->adj_list.upper)) 4579 return NULL; 4580 4581 upper = list_first_entry(&dev->adj_list.upper, 4582 struct netdev_adjacent, list); 4583 if (likely(upper->master)) 4584 return upper->dev; 4585 return NULL; 4586} 4587EXPORT_SYMBOL(netdev_master_upper_dev_get); 4588 4589void *netdev_adjacent_get_private(struct list_head *adj_list) 4590{ 4591 struct netdev_adjacent *adj; 4592 4593 adj = list_entry(adj_list, struct netdev_adjacent, list); 4594 4595 return adj->private; 4596} 4597EXPORT_SYMBOL(netdev_adjacent_get_private); 4598 4599/** 4600 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4601 * @dev: device 4602 * @iter: list_head ** of the current position 4603 * 4604 * Gets the next device from the dev's upper list, starting from iter 4605 * position. The caller must hold RCU read lock. 4606 */ 4607struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4608 struct list_head **iter) 4609{ 4610 struct netdev_adjacent *upper; 4611 4612 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4613 4614 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4615 4616 if (&upper->list == &dev->adj_list.upper) 4617 return NULL; 4618 4619 *iter = &upper->list; 4620 4621 return upper->dev; 4622} 4623EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4624 4625/** 4626 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4627 * @dev: device 4628 * @iter: list_head ** of the current position 4629 * 4630 * Gets the next device from the dev's upper list, starting from iter 4631 * position. The caller must hold RCU read lock. 4632 */ 4633struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4634 struct list_head **iter) 4635{ 4636 struct netdev_adjacent *upper; 4637 4638 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4639 4640 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4641 4642 if (&upper->list == &dev->all_adj_list.upper) 4643 return NULL; 4644 4645 *iter = &upper->list; 4646 4647 return upper->dev; 4648} 4649EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 4650 4651/** 4652 * netdev_lower_get_next_private - Get the next ->private from the 4653 * lower neighbour list 4654 * @dev: device 4655 * @iter: list_head ** of the current position 4656 * 4657 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4658 * list, starting from iter position. The caller must hold either hold the 4659 * RTNL lock or its own locking that guarantees that the neighbour lower 4660 * list will remain unchainged. 4661 */ 4662void *netdev_lower_get_next_private(struct net_device *dev, 4663 struct list_head **iter) 4664{ 4665 struct netdev_adjacent *lower; 4666 4667 lower = list_entry(*iter, struct netdev_adjacent, list); 4668 4669 if (&lower->list == &dev->adj_list.lower) 4670 return NULL; 4671 4672 *iter = lower->list.next; 4673 4674 return lower->private; 4675} 4676EXPORT_SYMBOL(netdev_lower_get_next_private); 4677 4678/** 4679 * netdev_lower_get_next_private_rcu - Get the next ->private from the 4680 * lower neighbour list, RCU 4681 * variant 4682 * @dev: device 4683 * @iter: list_head ** of the current position 4684 * 4685 * Gets the next netdev_adjacent->private from the dev's lower neighbour 4686 * list, starting from iter position. The caller must hold RCU read lock. 4687 */ 4688void *netdev_lower_get_next_private_rcu(struct net_device *dev, 4689 struct list_head **iter) 4690{ 4691 struct netdev_adjacent *lower; 4692 4693 WARN_ON_ONCE(!rcu_read_lock_held()); 4694 4695 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4696 4697 if (&lower->list == &dev->adj_list.lower) 4698 return NULL; 4699 4700 *iter = &lower->list; 4701 4702 return lower->private; 4703} 4704EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 4705 4706/** 4707 * netdev_lower_get_next - Get the next device from the lower neighbour 4708 * list 4709 * @dev: device 4710 * @iter: list_head ** of the current position 4711 * 4712 * Gets the next netdev_adjacent from the dev's lower neighbour 4713 * list, starting from iter position. The caller must hold RTNL lock or 4714 * its own locking that guarantees that the neighbour lower 4715 * list will remain unchainged. 4716 */ 4717void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 4718{ 4719 struct netdev_adjacent *lower; 4720 4721 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 4722 4723 if (&lower->list == &dev->adj_list.lower) 4724 return NULL; 4725 4726 *iter = &lower->list; 4727 4728 return lower->dev; 4729} 4730EXPORT_SYMBOL(netdev_lower_get_next); 4731 4732/** 4733 * netdev_lower_get_first_private_rcu - Get the first ->private from the 4734 * lower neighbour list, RCU 4735 * variant 4736 * @dev: device 4737 * 4738 * Gets the first netdev_adjacent->private from the dev's lower neighbour 4739 * list. The caller must hold RCU read lock. 4740 */ 4741void *netdev_lower_get_first_private_rcu(struct net_device *dev) 4742{ 4743 struct netdev_adjacent *lower; 4744 4745 lower = list_first_or_null_rcu(&dev->adj_list.lower, 4746 struct netdev_adjacent, list); 4747 if (lower) 4748 return lower->private; 4749 return NULL; 4750} 4751EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 4752 4753/** 4754 * netdev_master_upper_dev_get_rcu - Get master upper device 4755 * @dev: device 4756 * 4757 * Find a master upper device and return pointer to it or NULL in case 4758 * it's not there. The caller must hold the RCU read lock. 4759 */ 4760struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 4761{ 4762 struct netdev_adjacent *upper; 4763 4764 upper = list_first_or_null_rcu(&dev->adj_list.upper, 4765 struct netdev_adjacent, list); 4766 if (upper && likely(upper->master)) 4767 return upper->dev; 4768 return NULL; 4769} 4770EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 4771 4772static int netdev_adjacent_sysfs_add(struct net_device *dev, 4773 struct net_device *adj_dev, 4774 struct list_head *dev_list) 4775{ 4776 char linkname[IFNAMSIZ+7]; 4777 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4778 "upper_%s" : "lower_%s", adj_dev->name); 4779 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 4780 linkname); 4781} 4782static void netdev_adjacent_sysfs_del(struct net_device *dev, 4783 char *name, 4784 struct list_head *dev_list) 4785{ 4786 char linkname[IFNAMSIZ+7]; 4787 sprintf(linkname, dev_list == &dev->adj_list.upper ? 4788 "upper_%s" : "lower_%s", name); 4789 sysfs_remove_link(&(dev->dev.kobj), linkname); 4790} 4791 4792#define netdev_adjacent_is_neigh_list(dev, dev_list) \ 4793 (dev_list == &dev->adj_list.upper || \ 4794 dev_list == &dev->adj_list.lower) 4795 4796static int __netdev_adjacent_dev_insert(struct net_device *dev, 4797 struct net_device *adj_dev, 4798 struct list_head *dev_list, 4799 void *private, bool master) 4800{ 4801 struct netdev_adjacent *adj; 4802 int ret; 4803 4804 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4805 4806 if (adj) { 4807 adj->ref_nr++; 4808 return 0; 4809 } 4810 4811 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 4812 if (!adj) 4813 return -ENOMEM; 4814 4815 adj->dev = adj_dev; 4816 adj->master = master; 4817 adj->ref_nr = 1; 4818 adj->private = private; 4819 dev_hold(adj_dev); 4820 4821 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 4822 adj_dev->name, dev->name, adj_dev->name); 4823 4824 if (netdev_adjacent_is_neigh_list(dev, dev_list)) { 4825 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 4826 if (ret) 4827 goto free_adj; 4828 } 4829 4830 /* Ensure that master link is always the first item in list. */ 4831 if (master) { 4832 ret = sysfs_create_link(&(dev->dev.kobj), 4833 &(adj_dev->dev.kobj), "master"); 4834 if (ret) 4835 goto remove_symlinks; 4836 4837 list_add_rcu(&adj->list, dev_list); 4838 } else { 4839 list_add_tail_rcu(&adj->list, dev_list); 4840 } 4841 4842 return 0; 4843 4844remove_symlinks: 4845 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4846 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4847free_adj: 4848 kfree(adj); 4849 dev_put(adj_dev); 4850 4851 return ret; 4852} 4853 4854static void __netdev_adjacent_dev_remove(struct net_device *dev, 4855 struct net_device *adj_dev, 4856 struct list_head *dev_list) 4857{ 4858 struct netdev_adjacent *adj; 4859 4860 adj = __netdev_find_adj(dev, adj_dev, dev_list); 4861 4862 if (!adj) { 4863 pr_err("tried to remove device %s from %s\n", 4864 dev->name, adj_dev->name); 4865 BUG(); 4866 } 4867 4868 if (adj->ref_nr > 1) { 4869 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 4870 adj->ref_nr-1); 4871 adj->ref_nr--; 4872 return; 4873 } 4874 4875 if (adj->master) 4876 sysfs_remove_link(&(dev->dev.kobj), "master"); 4877 4878 if (netdev_adjacent_is_neigh_list(dev, dev_list)) 4879 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 4880 4881 list_del_rcu(&adj->list); 4882 pr_debug("dev_put for %s, because link removed from %s to %s\n", 4883 adj_dev->name, dev->name, adj_dev->name); 4884 dev_put(adj_dev); 4885 kfree_rcu(adj, rcu); 4886} 4887 4888static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 4889 struct net_device *upper_dev, 4890 struct list_head *up_list, 4891 struct list_head *down_list, 4892 void *private, bool master) 4893{ 4894 int ret; 4895 4896 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 4897 master); 4898 if (ret) 4899 return ret; 4900 4901 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 4902 false); 4903 if (ret) { 4904 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4905 return ret; 4906 } 4907 4908 return 0; 4909} 4910 4911static int __netdev_adjacent_dev_link(struct net_device *dev, 4912 struct net_device *upper_dev) 4913{ 4914 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 4915 &dev->all_adj_list.upper, 4916 &upper_dev->all_adj_list.lower, 4917 NULL, false); 4918} 4919 4920static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 4921 struct net_device *upper_dev, 4922 struct list_head *up_list, 4923 struct list_head *down_list) 4924{ 4925 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 4926 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 4927} 4928 4929static void __netdev_adjacent_dev_unlink(struct net_device *dev, 4930 struct net_device *upper_dev) 4931{ 4932 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4933 &dev->all_adj_list.upper, 4934 &upper_dev->all_adj_list.lower); 4935} 4936 4937static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 4938 struct net_device *upper_dev, 4939 void *private, bool master) 4940{ 4941 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 4942 4943 if (ret) 4944 return ret; 4945 4946 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 4947 &dev->adj_list.upper, 4948 &upper_dev->adj_list.lower, 4949 private, master); 4950 if (ret) { 4951 __netdev_adjacent_dev_unlink(dev, upper_dev); 4952 return ret; 4953 } 4954 4955 return 0; 4956} 4957 4958static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 4959 struct net_device *upper_dev) 4960{ 4961 __netdev_adjacent_dev_unlink(dev, upper_dev); 4962 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 4963 &dev->adj_list.upper, 4964 &upper_dev->adj_list.lower); 4965} 4966 4967static int __netdev_upper_dev_link(struct net_device *dev, 4968 struct net_device *upper_dev, bool master, 4969 void *private) 4970{ 4971 struct netdev_adjacent *i, *j, *to_i, *to_j; 4972 int ret = 0; 4973 4974 ASSERT_RTNL(); 4975 4976 if (dev == upper_dev) 4977 return -EBUSY; 4978 4979 /* To prevent loops, check if dev is not upper device to upper_dev. */ 4980 if (__netdev_find_adj(upper_dev, dev, &upper_dev->all_adj_list.upper)) 4981 return -EBUSY; 4982 4983 if (__netdev_find_adj(dev, upper_dev, &dev->all_adj_list.upper)) 4984 return -EEXIST; 4985 4986 if (master && netdev_master_upper_dev_get(dev)) 4987 return -EBUSY; 4988 4989 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 4990 master); 4991 if (ret) 4992 return ret; 4993 4994 /* Now that we linked these devs, make all the upper_dev's 4995 * all_adj_list.upper visible to every dev's all_adj_list.lower an 4996 * versa, and don't forget the devices itself. All of these 4997 * links are non-neighbours. 4998 */ 4999 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5000 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5001 pr_debug("Interlinking %s with %s, non-neighbour\n", 5002 i->dev->name, j->dev->name); 5003 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5004 if (ret) 5005 goto rollback_mesh; 5006 } 5007 } 5008 5009 /* add dev to every upper_dev's upper device */ 5010 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5011 pr_debug("linking %s's upper device %s with %s\n", 5012 upper_dev->name, i->dev->name, dev->name); 5013 ret = __netdev_adjacent_dev_link(dev, i->dev); 5014 if (ret) 5015 goto rollback_upper_mesh; 5016 } 5017 5018 /* add upper_dev to every dev's lower device */ 5019 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5020 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5021 i->dev->name, upper_dev->name); 5022 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5023 if (ret) 5024 goto rollback_lower_mesh; 5025 } 5026 5027 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5028 return 0; 5029 5030rollback_lower_mesh: 5031 to_i = i; 5032 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5033 if (i == to_i) 5034 break; 5035 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5036 } 5037 5038 i = NULL; 5039 5040rollback_upper_mesh: 5041 to_i = i; 5042 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5043 if (i == to_i) 5044 break; 5045 __netdev_adjacent_dev_unlink(dev, i->dev); 5046 } 5047 5048 i = j = NULL; 5049 5050rollback_mesh: 5051 to_i = i; 5052 to_j = j; 5053 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5054 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5055 if (i == to_i && j == to_j) 5056 break; 5057 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5058 } 5059 if (i == to_i) 5060 break; 5061 } 5062 5063 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5064 5065 return ret; 5066} 5067 5068/** 5069 * netdev_upper_dev_link - Add a link to the upper device 5070 * @dev: device 5071 * @upper_dev: new upper device 5072 * 5073 * Adds a link to device which is upper to this one. The caller must hold 5074 * the RTNL lock. On a failure a negative errno code is returned. 5075 * On success the reference counts are adjusted and the function 5076 * returns zero. 5077 */ 5078int netdev_upper_dev_link(struct net_device *dev, 5079 struct net_device *upper_dev) 5080{ 5081 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5082} 5083EXPORT_SYMBOL(netdev_upper_dev_link); 5084 5085/** 5086 * netdev_master_upper_dev_link - Add a master link to the upper device 5087 * @dev: device 5088 * @upper_dev: new upper device 5089 * 5090 * Adds a link to device which is upper to this one. In this case, only 5091 * one master upper device can be linked, although other non-master devices 5092 * might be linked as well. The caller must hold the RTNL lock. 5093 * On a failure a negative errno code is returned. On success the reference 5094 * counts are adjusted and the function returns zero. 5095 */ 5096int netdev_master_upper_dev_link(struct net_device *dev, 5097 struct net_device *upper_dev) 5098{ 5099 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5100} 5101EXPORT_SYMBOL(netdev_master_upper_dev_link); 5102 5103int netdev_master_upper_dev_link_private(struct net_device *dev, 5104 struct net_device *upper_dev, 5105 void *private) 5106{ 5107 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5108} 5109EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5110 5111/** 5112 * netdev_upper_dev_unlink - Removes a link to upper device 5113 * @dev: device 5114 * @upper_dev: new upper device 5115 * 5116 * Removes a link to device which is upper to this one. The caller must hold 5117 * the RTNL lock. 5118 */ 5119void netdev_upper_dev_unlink(struct net_device *dev, 5120 struct net_device *upper_dev) 5121{ 5122 struct netdev_adjacent *i, *j; 5123 ASSERT_RTNL(); 5124 5125 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5126 5127 /* Here is the tricky part. We must remove all dev's lower 5128 * devices from all upper_dev's upper devices and vice 5129 * versa, to maintain the graph relationship. 5130 */ 5131 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5132 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5133 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5134 5135 /* remove also the devices itself from lower/upper device 5136 * list 5137 */ 5138 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5139 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5140 5141 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5142 __netdev_adjacent_dev_unlink(dev, i->dev); 5143 5144 call_netdevice_notifiers(NETDEV_CHANGEUPPER, dev); 5145} 5146EXPORT_SYMBOL(netdev_upper_dev_unlink); 5147 5148void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5149{ 5150 struct netdev_adjacent *iter; 5151 5152 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5153 netdev_adjacent_sysfs_del(iter->dev, oldname, 5154 &iter->dev->adj_list.lower); 5155 netdev_adjacent_sysfs_add(iter->dev, dev, 5156 &iter->dev->adj_list.lower); 5157 } 5158 5159 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5160 netdev_adjacent_sysfs_del(iter->dev, oldname, 5161 &iter->dev->adj_list.upper); 5162 netdev_adjacent_sysfs_add(iter->dev, dev, 5163 &iter->dev->adj_list.upper); 5164 } 5165} 5166 5167void *netdev_lower_dev_get_private(struct net_device *dev, 5168 struct net_device *lower_dev) 5169{ 5170 struct netdev_adjacent *lower; 5171 5172 if (!lower_dev) 5173 return NULL; 5174 lower = __netdev_find_adj(dev, lower_dev, &dev->adj_list.lower); 5175 if (!lower) 5176 return NULL; 5177 5178 return lower->private; 5179} 5180EXPORT_SYMBOL(netdev_lower_dev_get_private); 5181 5182 5183int dev_get_nest_level(struct net_device *dev, 5184 bool (*type_check)(struct net_device *dev)) 5185{ 5186 struct net_device *lower = NULL; 5187 struct list_head *iter; 5188 int max_nest = -1; 5189 int nest; 5190 5191 ASSERT_RTNL(); 5192 5193 netdev_for_each_lower_dev(dev, lower, iter) { 5194 nest = dev_get_nest_level(lower, type_check); 5195 if (max_nest < nest) 5196 max_nest = nest; 5197 } 5198 5199 if (type_check(dev)) 5200 max_nest++; 5201 5202 return max_nest; 5203} 5204EXPORT_SYMBOL(dev_get_nest_level); 5205 5206static void dev_change_rx_flags(struct net_device *dev, int flags) 5207{ 5208 const struct net_device_ops *ops = dev->netdev_ops; 5209 5210 if (ops->ndo_change_rx_flags) 5211 ops->ndo_change_rx_flags(dev, flags); 5212} 5213 5214static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5215{ 5216 unsigned int old_flags = dev->flags; 5217 kuid_t uid; 5218 kgid_t gid; 5219 5220 ASSERT_RTNL(); 5221 5222 dev->flags |= IFF_PROMISC; 5223 dev->promiscuity += inc; 5224 if (dev->promiscuity == 0) { 5225 /* 5226 * Avoid overflow. 5227 * If inc causes overflow, untouch promisc and return error. 5228 */ 5229 if (inc < 0) 5230 dev->flags &= ~IFF_PROMISC; 5231 else { 5232 dev->promiscuity -= inc; 5233 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5234 dev->name); 5235 return -EOVERFLOW; 5236 } 5237 } 5238 if (dev->flags != old_flags) { 5239 pr_info("device %s %s promiscuous mode\n", 5240 dev->name, 5241 dev->flags & IFF_PROMISC ? "entered" : "left"); 5242 if (audit_enabled) { 5243 current_uid_gid(&uid, &gid); 5244 audit_log(current->audit_context, GFP_ATOMIC, 5245 AUDIT_ANOM_PROMISCUOUS, 5246 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5247 dev->name, (dev->flags & IFF_PROMISC), 5248 (old_flags & IFF_PROMISC), 5249 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5250 from_kuid(&init_user_ns, uid), 5251 from_kgid(&init_user_ns, gid), 5252 audit_get_sessionid(current)); 5253 } 5254 5255 dev_change_rx_flags(dev, IFF_PROMISC); 5256 } 5257 if (notify) 5258 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5259 return 0; 5260} 5261 5262/** 5263 * dev_set_promiscuity - update promiscuity count on a device 5264 * @dev: device 5265 * @inc: modifier 5266 * 5267 * Add or remove promiscuity from a device. While the count in the device 5268 * remains above zero the interface remains promiscuous. Once it hits zero 5269 * the device reverts back to normal filtering operation. A negative inc 5270 * value is used to drop promiscuity on the device. 5271 * Return 0 if successful or a negative errno code on error. 5272 */ 5273int dev_set_promiscuity(struct net_device *dev, int inc) 5274{ 5275 unsigned int old_flags = dev->flags; 5276 int err; 5277 5278 err = __dev_set_promiscuity(dev, inc, true); 5279 if (err < 0) 5280 return err; 5281 if (dev->flags != old_flags) 5282 dev_set_rx_mode(dev); 5283 return err; 5284} 5285EXPORT_SYMBOL(dev_set_promiscuity); 5286 5287static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5288{ 5289 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5290 5291 ASSERT_RTNL(); 5292 5293 dev->flags |= IFF_ALLMULTI; 5294 dev->allmulti += inc; 5295 if (dev->allmulti == 0) { 5296 /* 5297 * Avoid overflow. 5298 * If inc causes overflow, untouch allmulti and return error. 5299 */ 5300 if (inc < 0) 5301 dev->flags &= ~IFF_ALLMULTI; 5302 else { 5303 dev->allmulti -= inc; 5304 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5305 dev->name); 5306 return -EOVERFLOW; 5307 } 5308 } 5309 if (dev->flags ^ old_flags) { 5310 dev_change_rx_flags(dev, IFF_ALLMULTI); 5311 dev_set_rx_mode(dev); 5312 if (notify) 5313 __dev_notify_flags(dev, old_flags, 5314 dev->gflags ^ old_gflags); 5315 } 5316 return 0; 5317} 5318 5319/** 5320 * dev_set_allmulti - update allmulti count on a device 5321 * @dev: device 5322 * @inc: modifier 5323 * 5324 * Add or remove reception of all multicast frames to a device. While the 5325 * count in the device remains above zero the interface remains listening 5326 * to all interfaces. Once it hits zero the device reverts back to normal 5327 * filtering operation. A negative @inc value is used to drop the counter 5328 * when releasing a resource needing all multicasts. 5329 * Return 0 if successful or a negative errno code on error. 5330 */ 5331 5332int dev_set_allmulti(struct net_device *dev, int inc) 5333{ 5334 return __dev_set_allmulti(dev, inc, true); 5335} 5336EXPORT_SYMBOL(dev_set_allmulti); 5337 5338/* 5339 * Upload unicast and multicast address lists to device and 5340 * configure RX filtering. When the device doesn't support unicast 5341 * filtering it is put in promiscuous mode while unicast addresses 5342 * are present. 5343 */ 5344void __dev_set_rx_mode(struct net_device *dev) 5345{ 5346 const struct net_device_ops *ops = dev->netdev_ops; 5347 5348 /* dev_open will call this function so the list will stay sane. */ 5349 if (!(dev->flags&IFF_UP)) 5350 return; 5351 5352 if (!netif_device_present(dev)) 5353 return; 5354 5355 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5356 /* Unicast addresses changes may only happen under the rtnl, 5357 * therefore calling __dev_set_promiscuity here is safe. 5358 */ 5359 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5360 __dev_set_promiscuity(dev, 1, false); 5361 dev->uc_promisc = true; 5362 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5363 __dev_set_promiscuity(dev, -1, false); 5364 dev->uc_promisc = false; 5365 } 5366 } 5367 5368 if (ops->ndo_set_rx_mode) 5369 ops->ndo_set_rx_mode(dev); 5370} 5371 5372void dev_set_rx_mode(struct net_device *dev) 5373{ 5374 netif_addr_lock_bh(dev); 5375 __dev_set_rx_mode(dev); 5376 netif_addr_unlock_bh(dev); 5377} 5378 5379/** 5380 * dev_get_flags - get flags reported to userspace 5381 * @dev: device 5382 * 5383 * Get the combination of flag bits exported through APIs to userspace. 5384 */ 5385unsigned int dev_get_flags(const struct net_device *dev) 5386{ 5387 unsigned int flags; 5388 5389 flags = (dev->flags & ~(IFF_PROMISC | 5390 IFF_ALLMULTI | 5391 IFF_RUNNING | 5392 IFF_LOWER_UP | 5393 IFF_DORMANT)) | 5394 (dev->gflags & (IFF_PROMISC | 5395 IFF_ALLMULTI)); 5396 5397 if (netif_running(dev)) { 5398 if (netif_oper_up(dev)) 5399 flags |= IFF_RUNNING; 5400 if (netif_carrier_ok(dev)) 5401 flags |= IFF_LOWER_UP; 5402 if (netif_dormant(dev)) 5403 flags |= IFF_DORMANT; 5404 } 5405 5406 return flags; 5407} 5408EXPORT_SYMBOL(dev_get_flags); 5409 5410int __dev_change_flags(struct net_device *dev, unsigned int flags) 5411{ 5412 unsigned int old_flags = dev->flags; 5413 int ret; 5414 5415 ASSERT_RTNL(); 5416 5417 /* 5418 * Set the flags on our device. 5419 */ 5420 5421 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5422 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5423 IFF_AUTOMEDIA)) | 5424 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5425 IFF_ALLMULTI)); 5426 5427 /* 5428 * Load in the correct multicast list now the flags have changed. 5429 */ 5430 5431 if ((old_flags ^ flags) & IFF_MULTICAST) 5432 dev_change_rx_flags(dev, IFF_MULTICAST); 5433 5434 dev_set_rx_mode(dev); 5435 5436 /* 5437 * Have we downed the interface. We handle IFF_UP ourselves 5438 * according to user attempts to set it, rather than blindly 5439 * setting it. 5440 */ 5441 5442 ret = 0; 5443 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 5444 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5445 5446 if (!ret) 5447 dev_set_rx_mode(dev); 5448 } 5449 5450 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5451 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5452 unsigned int old_flags = dev->flags; 5453 5454 dev->gflags ^= IFF_PROMISC; 5455 5456 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5457 if (dev->flags != old_flags) 5458 dev_set_rx_mode(dev); 5459 } 5460 5461 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5462 is important. Some (broken) drivers set IFF_PROMISC, when 5463 IFF_ALLMULTI is requested not asking us and not reporting. 5464 */ 5465 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5466 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5467 5468 dev->gflags ^= IFF_ALLMULTI; 5469 __dev_set_allmulti(dev, inc, false); 5470 } 5471 5472 return ret; 5473} 5474 5475void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5476 unsigned int gchanges) 5477{ 5478 unsigned int changes = dev->flags ^ old_flags; 5479 5480 if (gchanges) 5481 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5482 5483 if (changes & IFF_UP) { 5484 if (dev->flags & IFF_UP) 5485 call_netdevice_notifiers(NETDEV_UP, dev); 5486 else 5487 call_netdevice_notifiers(NETDEV_DOWN, dev); 5488 } 5489 5490 if (dev->flags & IFF_UP && 5491 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5492 struct netdev_notifier_change_info change_info; 5493 5494 change_info.flags_changed = changes; 5495 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5496 &change_info.info); 5497 } 5498} 5499 5500/** 5501 * dev_change_flags - change device settings 5502 * @dev: device 5503 * @flags: device state flags 5504 * 5505 * Change settings on device based state flags. The flags are 5506 * in the userspace exported format. 5507 */ 5508int dev_change_flags(struct net_device *dev, unsigned int flags) 5509{ 5510 int ret; 5511 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5512 5513 ret = __dev_change_flags(dev, flags); 5514 if (ret < 0) 5515 return ret; 5516 5517 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5518 __dev_notify_flags(dev, old_flags, changes); 5519 return ret; 5520} 5521EXPORT_SYMBOL(dev_change_flags); 5522 5523static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5524{ 5525 const struct net_device_ops *ops = dev->netdev_ops; 5526 5527 if (ops->ndo_change_mtu) 5528 return ops->ndo_change_mtu(dev, new_mtu); 5529 5530 dev->mtu = new_mtu; 5531 return 0; 5532} 5533 5534/** 5535 * dev_set_mtu - Change maximum transfer unit 5536 * @dev: device 5537 * @new_mtu: new transfer unit 5538 * 5539 * Change the maximum transfer size of the network device. 5540 */ 5541int dev_set_mtu(struct net_device *dev, int new_mtu) 5542{ 5543 int err, orig_mtu; 5544 5545 if (new_mtu == dev->mtu) 5546 return 0; 5547 5548 /* MTU must be positive. */ 5549 if (new_mtu < 0) 5550 return -EINVAL; 5551 5552 if (!netif_device_present(dev)) 5553 return -ENODEV; 5554 5555 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5556 err = notifier_to_errno(err); 5557 if (err) 5558 return err; 5559 5560 orig_mtu = dev->mtu; 5561 err = __dev_set_mtu(dev, new_mtu); 5562 5563 if (!err) { 5564 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5565 err = notifier_to_errno(err); 5566 if (err) { 5567 /* setting mtu back and notifying everyone again, 5568 * so that they have a chance to revert changes. 5569 */ 5570 __dev_set_mtu(dev, orig_mtu); 5571 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 5572 } 5573 } 5574 return err; 5575} 5576EXPORT_SYMBOL(dev_set_mtu); 5577 5578/** 5579 * dev_set_group - Change group this device belongs to 5580 * @dev: device 5581 * @new_group: group this device should belong to 5582 */ 5583void dev_set_group(struct net_device *dev, int new_group) 5584{ 5585 dev->group = new_group; 5586} 5587EXPORT_SYMBOL(dev_set_group); 5588 5589/** 5590 * dev_set_mac_address - Change Media Access Control Address 5591 * @dev: device 5592 * @sa: new address 5593 * 5594 * Change the hardware (MAC) address of the device 5595 */ 5596int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 5597{ 5598 const struct net_device_ops *ops = dev->netdev_ops; 5599 int err; 5600 5601 if (!ops->ndo_set_mac_address) 5602 return -EOPNOTSUPP; 5603 if (sa->sa_family != dev->type) 5604 return -EINVAL; 5605 if (!netif_device_present(dev)) 5606 return -ENODEV; 5607 err = ops->ndo_set_mac_address(dev, sa); 5608 if (err) 5609 return err; 5610 dev->addr_assign_type = NET_ADDR_SET; 5611 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 5612 add_device_randomness(dev->dev_addr, dev->addr_len); 5613 return 0; 5614} 5615EXPORT_SYMBOL(dev_set_mac_address); 5616 5617/** 5618 * dev_change_carrier - Change device carrier 5619 * @dev: device 5620 * @new_carrier: new value 5621 * 5622 * Change device carrier 5623 */ 5624int dev_change_carrier(struct net_device *dev, bool new_carrier) 5625{ 5626 const struct net_device_ops *ops = dev->netdev_ops; 5627 5628 if (!ops->ndo_change_carrier) 5629 return -EOPNOTSUPP; 5630 if (!netif_device_present(dev)) 5631 return -ENODEV; 5632 return ops->ndo_change_carrier(dev, new_carrier); 5633} 5634EXPORT_SYMBOL(dev_change_carrier); 5635 5636/** 5637 * dev_get_phys_port_id - Get device physical port ID 5638 * @dev: device 5639 * @ppid: port ID 5640 * 5641 * Get device physical port ID 5642 */ 5643int dev_get_phys_port_id(struct net_device *dev, 5644 struct netdev_phys_port_id *ppid) 5645{ 5646 const struct net_device_ops *ops = dev->netdev_ops; 5647 5648 if (!ops->ndo_get_phys_port_id) 5649 return -EOPNOTSUPP; 5650 return ops->ndo_get_phys_port_id(dev, ppid); 5651} 5652EXPORT_SYMBOL(dev_get_phys_port_id); 5653 5654/** 5655 * dev_new_index - allocate an ifindex 5656 * @net: the applicable net namespace 5657 * 5658 * Returns a suitable unique value for a new device interface 5659 * number. The caller must hold the rtnl semaphore or the 5660 * dev_base_lock to be sure it remains unique. 5661 */ 5662static int dev_new_index(struct net *net) 5663{ 5664 int ifindex = net->ifindex; 5665 for (;;) { 5666 if (++ifindex <= 0) 5667 ifindex = 1; 5668 if (!__dev_get_by_index(net, ifindex)) 5669 return net->ifindex = ifindex; 5670 } 5671} 5672 5673/* Delayed registration/unregisteration */ 5674static LIST_HEAD(net_todo_list); 5675DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 5676 5677static void net_set_todo(struct net_device *dev) 5678{ 5679 list_add_tail(&dev->todo_list, &net_todo_list); 5680 dev_net(dev)->dev_unreg_count++; 5681} 5682 5683static void rollback_registered_many(struct list_head *head) 5684{ 5685 struct net_device *dev, *tmp; 5686 LIST_HEAD(close_head); 5687 5688 BUG_ON(dev_boot_phase); 5689 ASSERT_RTNL(); 5690 5691 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5692 /* Some devices call without registering 5693 * for initialization unwind. Remove those 5694 * devices and proceed with the remaining. 5695 */ 5696 if (dev->reg_state == NETREG_UNINITIALIZED) { 5697 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 5698 dev->name, dev); 5699 5700 WARN_ON(1); 5701 list_del(&dev->unreg_list); 5702 continue; 5703 } 5704 dev->dismantle = true; 5705 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5706 } 5707 5708 /* If device is running, close it first. */ 5709 list_for_each_entry(dev, head, unreg_list) 5710 list_add_tail(&dev->close_list, &close_head); 5711 dev_close_many(&close_head); 5712 5713 list_for_each_entry(dev, head, unreg_list) { 5714 /* And unlink it from device chain. */ 5715 unlist_netdevice(dev); 5716 5717 dev->reg_state = NETREG_UNREGISTERING; 5718 } 5719 5720 synchronize_net(); 5721 5722 list_for_each_entry(dev, head, unreg_list) { 5723 /* Shutdown queueing discipline. */ 5724 dev_shutdown(dev); 5725 5726 5727 /* Notify protocols, that we are about to destroy 5728 this device. They should clean all the things. 5729 */ 5730 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5731 5732 /* 5733 * Flush the unicast and multicast chains 5734 */ 5735 dev_uc_flush(dev); 5736 dev_mc_flush(dev); 5737 5738 if (dev->netdev_ops->ndo_uninit) 5739 dev->netdev_ops->ndo_uninit(dev); 5740 5741 if (!dev->rtnl_link_ops || 5742 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5743 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 5744 5745 /* Notifier chain MUST detach us all upper devices. */ 5746 WARN_ON(netdev_has_any_upper_dev(dev)); 5747 5748 /* Remove entries from kobject tree */ 5749 netdev_unregister_kobject(dev); 5750#ifdef CONFIG_XPS 5751 /* Remove XPS queueing entries */ 5752 netif_reset_xps_queues_gt(dev, 0); 5753#endif 5754 } 5755 5756 synchronize_net(); 5757 5758 list_for_each_entry(dev, head, unreg_list) 5759 dev_put(dev); 5760} 5761 5762static void rollback_registered(struct net_device *dev) 5763{ 5764 LIST_HEAD(single); 5765 5766 list_add(&dev->unreg_list, &single); 5767 rollback_registered_many(&single); 5768 list_del(&single); 5769} 5770 5771static netdev_features_t netdev_fix_features(struct net_device *dev, 5772 netdev_features_t features) 5773{ 5774 /* Fix illegal checksum combinations */ 5775 if ((features & NETIF_F_HW_CSUM) && 5776 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5777 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5778 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5779 } 5780 5781 /* TSO requires that SG is present as well. */ 5782 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5783 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5784 features &= ~NETIF_F_ALL_TSO; 5785 } 5786 5787 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 5788 !(features & NETIF_F_IP_CSUM)) { 5789 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 5790 features &= ~NETIF_F_TSO; 5791 features &= ~NETIF_F_TSO_ECN; 5792 } 5793 5794 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 5795 !(features & NETIF_F_IPV6_CSUM)) { 5796 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 5797 features &= ~NETIF_F_TSO6; 5798 } 5799 5800 /* TSO ECN requires that TSO is present as well. */ 5801 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5802 features &= ~NETIF_F_TSO_ECN; 5803 5804 /* Software GSO depends on SG. */ 5805 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5806 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5807 features &= ~NETIF_F_GSO; 5808 } 5809 5810 /* UFO needs SG and checksumming */ 5811 if (features & NETIF_F_UFO) { 5812 /* maybe split UFO into V4 and V6? */ 5813 if (!((features & NETIF_F_GEN_CSUM) || 5814 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5815 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5816 netdev_dbg(dev, 5817 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5818 features &= ~NETIF_F_UFO; 5819 } 5820 5821 if (!(features & NETIF_F_SG)) { 5822 netdev_dbg(dev, 5823 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5824 features &= ~NETIF_F_UFO; 5825 } 5826 } 5827 5828#ifdef CONFIG_NET_RX_BUSY_POLL 5829 if (dev->netdev_ops->ndo_busy_poll) 5830 features |= NETIF_F_BUSY_POLL; 5831 else 5832#endif 5833 features &= ~NETIF_F_BUSY_POLL; 5834 5835 return features; 5836} 5837 5838int __netdev_update_features(struct net_device *dev) 5839{ 5840 netdev_features_t features; 5841 int err = 0; 5842 5843 ASSERT_RTNL(); 5844 5845 features = netdev_get_wanted_features(dev); 5846 5847 if (dev->netdev_ops->ndo_fix_features) 5848 features = dev->netdev_ops->ndo_fix_features(dev, features); 5849 5850 /* driver might be less strict about feature dependencies */ 5851 features = netdev_fix_features(dev, features); 5852 5853 if (dev->features == features) 5854 return 0; 5855 5856 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 5857 &dev->features, &features); 5858 5859 if (dev->netdev_ops->ndo_set_features) 5860 err = dev->netdev_ops->ndo_set_features(dev, features); 5861 5862 if (unlikely(err < 0)) { 5863 netdev_err(dev, 5864 "set_features() failed (%d); wanted %pNF, left %pNF\n", 5865 err, &features, &dev->features); 5866 return -1; 5867 } 5868 5869 if (!err) 5870 dev->features = features; 5871 5872 return 1; 5873} 5874 5875/** 5876 * netdev_update_features - recalculate device features 5877 * @dev: the device to check 5878 * 5879 * Recalculate dev->features set and send notifications if it 5880 * has changed. Should be called after driver or hardware dependent 5881 * conditions might have changed that influence the features. 5882 */ 5883void netdev_update_features(struct net_device *dev) 5884{ 5885 if (__netdev_update_features(dev)) 5886 netdev_features_change(dev); 5887} 5888EXPORT_SYMBOL(netdev_update_features); 5889 5890/** 5891 * netdev_change_features - recalculate device features 5892 * @dev: the device to check 5893 * 5894 * Recalculate dev->features set and send notifications even 5895 * if they have not changed. Should be called instead of 5896 * netdev_update_features() if also dev->vlan_features might 5897 * have changed to allow the changes to be propagated to stacked 5898 * VLAN devices. 5899 */ 5900void netdev_change_features(struct net_device *dev) 5901{ 5902 __netdev_update_features(dev); 5903 netdev_features_change(dev); 5904} 5905EXPORT_SYMBOL(netdev_change_features); 5906 5907/** 5908 * netif_stacked_transfer_operstate - transfer operstate 5909 * @rootdev: the root or lower level device to transfer state from 5910 * @dev: the device to transfer operstate to 5911 * 5912 * Transfer operational state from root to device. This is normally 5913 * called when a stacking relationship exists between the root 5914 * device and the device(a leaf device). 5915 */ 5916void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5917 struct net_device *dev) 5918{ 5919 if (rootdev->operstate == IF_OPER_DORMANT) 5920 netif_dormant_on(dev); 5921 else 5922 netif_dormant_off(dev); 5923 5924 if (netif_carrier_ok(rootdev)) { 5925 if (!netif_carrier_ok(dev)) 5926 netif_carrier_on(dev); 5927 } else { 5928 if (netif_carrier_ok(dev)) 5929 netif_carrier_off(dev); 5930 } 5931} 5932EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5933 5934#ifdef CONFIG_SYSFS 5935static int netif_alloc_rx_queues(struct net_device *dev) 5936{ 5937 unsigned int i, count = dev->num_rx_queues; 5938 struct netdev_rx_queue *rx; 5939 5940 BUG_ON(count < 1); 5941 5942 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5943 if (!rx) 5944 return -ENOMEM; 5945 5946 dev->_rx = rx; 5947 5948 for (i = 0; i < count; i++) 5949 rx[i].dev = dev; 5950 return 0; 5951} 5952#endif 5953 5954static void netdev_init_one_queue(struct net_device *dev, 5955 struct netdev_queue *queue, void *_unused) 5956{ 5957 /* Initialize queue lock */ 5958 spin_lock_init(&queue->_xmit_lock); 5959 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5960 queue->xmit_lock_owner = -1; 5961 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5962 queue->dev = dev; 5963#ifdef CONFIG_BQL 5964 dql_init(&queue->dql, HZ); 5965#endif 5966} 5967 5968static void netif_free_tx_queues(struct net_device *dev) 5969{ 5970 kvfree(dev->_tx); 5971} 5972 5973static int netif_alloc_netdev_queues(struct net_device *dev) 5974{ 5975 unsigned int count = dev->num_tx_queues; 5976 struct netdev_queue *tx; 5977 size_t sz = count * sizeof(*tx); 5978 5979 BUG_ON(count < 1 || count > 0xffff); 5980 5981 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 5982 if (!tx) { 5983 tx = vzalloc(sz); 5984 if (!tx) 5985 return -ENOMEM; 5986 } 5987 dev->_tx = tx; 5988 5989 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5990 spin_lock_init(&dev->tx_global_lock); 5991 5992 return 0; 5993} 5994 5995/** 5996 * register_netdevice - register a network device 5997 * @dev: device to register 5998 * 5999 * Take a completed network device structure and add it to the kernel 6000 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6001 * chain. 0 is returned on success. A negative errno code is returned 6002 * on a failure to set up the device, or if the name is a duplicate. 6003 * 6004 * Callers must hold the rtnl semaphore. You may want 6005 * register_netdev() instead of this. 6006 * 6007 * BUGS: 6008 * The locking appears insufficient to guarantee two parallel registers 6009 * will not get the same name. 6010 */ 6011 6012int register_netdevice(struct net_device *dev) 6013{ 6014 int ret; 6015 struct net *net = dev_net(dev); 6016 6017 BUG_ON(dev_boot_phase); 6018 ASSERT_RTNL(); 6019 6020 might_sleep(); 6021 6022 /* When net_device's are persistent, this will be fatal. */ 6023 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6024 BUG_ON(!net); 6025 6026 spin_lock_init(&dev->addr_list_lock); 6027 netdev_set_addr_lockdep_class(dev); 6028 6029 dev->iflink = -1; 6030 6031 ret = dev_get_valid_name(net, dev, dev->name); 6032 if (ret < 0) 6033 goto out; 6034 6035 /* Init, if this function is available */ 6036 if (dev->netdev_ops->ndo_init) { 6037 ret = dev->netdev_ops->ndo_init(dev); 6038 if (ret) { 6039 if (ret > 0) 6040 ret = -EIO; 6041 goto out; 6042 } 6043 } 6044 6045 if (((dev->hw_features | dev->features) & 6046 NETIF_F_HW_VLAN_CTAG_FILTER) && 6047 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6048 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6049 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6050 ret = -EINVAL; 6051 goto err_uninit; 6052 } 6053 6054 ret = -EBUSY; 6055 if (!dev->ifindex) 6056 dev->ifindex = dev_new_index(net); 6057 else if (__dev_get_by_index(net, dev->ifindex)) 6058 goto err_uninit; 6059 6060 if (dev->iflink == -1) 6061 dev->iflink = dev->ifindex; 6062 6063 /* Transfer changeable features to wanted_features and enable 6064 * software offloads (GSO and GRO). 6065 */ 6066 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6067 dev->features |= NETIF_F_SOFT_FEATURES; 6068 dev->wanted_features = dev->features & dev->hw_features; 6069 6070 if (!(dev->flags & IFF_LOOPBACK)) { 6071 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6072 } 6073 6074 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6075 */ 6076 dev->vlan_features |= NETIF_F_HIGHDMA; 6077 6078 /* Make NETIF_F_SG inheritable to tunnel devices. 6079 */ 6080 dev->hw_enc_features |= NETIF_F_SG; 6081 6082 /* Make NETIF_F_SG inheritable to MPLS. 6083 */ 6084 dev->mpls_features |= NETIF_F_SG; 6085 6086 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6087 ret = notifier_to_errno(ret); 6088 if (ret) 6089 goto err_uninit; 6090 6091 ret = netdev_register_kobject(dev); 6092 if (ret) 6093 goto err_uninit; 6094 dev->reg_state = NETREG_REGISTERED; 6095 6096 __netdev_update_features(dev); 6097 6098 /* 6099 * Default initial state at registry is that the 6100 * device is present. 6101 */ 6102 6103 set_bit(__LINK_STATE_PRESENT, &dev->state); 6104 6105 linkwatch_init_dev(dev); 6106 6107 dev_init_scheduler(dev); 6108 dev_hold(dev); 6109 list_netdevice(dev); 6110 add_device_randomness(dev->dev_addr, dev->addr_len); 6111 6112 /* If the device has permanent device address, driver should 6113 * set dev_addr and also addr_assign_type should be set to 6114 * NET_ADDR_PERM (default value). 6115 */ 6116 if (dev->addr_assign_type == NET_ADDR_PERM) 6117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6118 6119 /* Notify protocols, that a new device appeared. */ 6120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6121 ret = notifier_to_errno(ret); 6122 if (ret) { 6123 rollback_registered(dev); 6124 dev->reg_state = NETREG_UNREGISTERED; 6125 } 6126 /* 6127 * Prevent userspace races by waiting until the network 6128 * device is fully setup before sending notifications. 6129 */ 6130 if (!dev->rtnl_link_ops || 6131 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6132 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6133 6134out: 6135 return ret; 6136 6137err_uninit: 6138 if (dev->netdev_ops->ndo_uninit) 6139 dev->netdev_ops->ndo_uninit(dev); 6140 goto out; 6141} 6142EXPORT_SYMBOL(register_netdevice); 6143 6144/** 6145 * init_dummy_netdev - init a dummy network device for NAPI 6146 * @dev: device to init 6147 * 6148 * This takes a network device structure and initialize the minimum 6149 * amount of fields so it can be used to schedule NAPI polls without 6150 * registering a full blown interface. This is to be used by drivers 6151 * that need to tie several hardware interfaces to a single NAPI 6152 * poll scheduler due to HW limitations. 6153 */ 6154int init_dummy_netdev(struct net_device *dev) 6155{ 6156 /* Clear everything. Note we don't initialize spinlocks 6157 * are they aren't supposed to be taken by any of the 6158 * NAPI code and this dummy netdev is supposed to be 6159 * only ever used for NAPI polls 6160 */ 6161 memset(dev, 0, sizeof(struct net_device)); 6162 6163 /* make sure we BUG if trying to hit standard 6164 * register/unregister code path 6165 */ 6166 dev->reg_state = NETREG_DUMMY; 6167 6168 /* NAPI wants this */ 6169 INIT_LIST_HEAD(&dev->napi_list); 6170 6171 /* a dummy interface is started by default */ 6172 set_bit(__LINK_STATE_PRESENT, &dev->state); 6173 set_bit(__LINK_STATE_START, &dev->state); 6174 6175 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6176 * because users of this 'device' dont need to change 6177 * its refcount. 6178 */ 6179 6180 return 0; 6181} 6182EXPORT_SYMBOL_GPL(init_dummy_netdev); 6183 6184 6185/** 6186 * register_netdev - register a network device 6187 * @dev: device to register 6188 * 6189 * Take a completed network device structure and add it to the kernel 6190 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6191 * chain. 0 is returned on success. A negative errno code is returned 6192 * on a failure to set up the device, or if the name is a duplicate. 6193 * 6194 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6195 * and expands the device name if you passed a format string to 6196 * alloc_netdev. 6197 */ 6198int register_netdev(struct net_device *dev) 6199{ 6200 int err; 6201 6202 rtnl_lock(); 6203 err = register_netdevice(dev); 6204 rtnl_unlock(); 6205 return err; 6206} 6207EXPORT_SYMBOL(register_netdev); 6208 6209int netdev_refcnt_read(const struct net_device *dev) 6210{ 6211 int i, refcnt = 0; 6212 6213 for_each_possible_cpu(i) 6214 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6215 return refcnt; 6216} 6217EXPORT_SYMBOL(netdev_refcnt_read); 6218 6219/** 6220 * netdev_wait_allrefs - wait until all references are gone. 6221 * @dev: target net_device 6222 * 6223 * This is called when unregistering network devices. 6224 * 6225 * Any protocol or device that holds a reference should register 6226 * for netdevice notification, and cleanup and put back the 6227 * reference if they receive an UNREGISTER event. 6228 * We can get stuck here if buggy protocols don't correctly 6229 * call dev_put. 6230 */ 6231static void netdev_wait_allrefs(struct net_device *dev) 6232{ 6233 unsigned long rebroadcast_time, warning_time; 6234 int refcnt; 6235 6236 linkwatch_forget_dev(dev); 6237 6238 rebroadcast_time = warning_time = jiffies; 6239 refcnt = netdev_refcnt_read(dev); 6240 6241 while (refcnt != 0) { 6242 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6243 rtnl_lock(); 6244 6245 /* Rebroadcast unregister notification */ 6246 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6247 6248 __rtnl_unlock(); 6249 rcu_barrier(); 6250 rtnl_lock(); 6251 6252 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6253 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6254 &dev->state)) { 6255 /* We must not have linkwatch events 6256 * pending on unregister. If this 6257 * happens, we simply run the queue 6258 * unscheduled, resulting in a noop 6259 * for this device. 6260 */ 6261 linkwatch_run_queue(); 6262 } 6263 6264 __rtnl_unlock(); 6265 6266 rebroadcast_time = jiffies; 6267 } 6268 6269 msleep(250); 6270 6271 refcnt = netdev_refcnt_read(dev); 6272 6273 if (time_after(jiffies, warning_time + 10 * HZ)) { 6274 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6275 dev->name, refcnt); 6276 warning_time = jiffies; 6277 } 6278 } 6279} 6280 6281/* The sequence is: 6282 * 6283 * rtnl_lock(); 6284 * ... 6285 * register_netdevice(x1); 6286 * register_netdevice(x2); 6287 * ... 6288 * unregister_netdevice(y1); 6289 * unregister_netdevice(y2); 6290 * ... 6291 * rtnl_unlock(); 6292 * free_netdev(y1); 6293 * free_netdev(y2); 6294 * 6295 * We are invoked by rtnl_unlock(). 6296 * This allows us to deal with problems: 6297 * 1) We can delete sysfs objects which invoke hotplug 6298 * without deadlocking with linkwatch via keventd. 6299 * 2) Since we run with the RTNL semaphore not held, we can sleep 6300 * safely in order to wait for the netdev refcnt to drop to zero. 6301 * 6302 * We must not return until all unregister events added during 6303 * the interval the lock was held have been completed. 6304 */ 6305void netdev_run_todo(void) 6306{ 6307 struct list_head list; 6308 6309 /* Snapshot list, allow later requests */ 6310 list_replace_init(&net_todo_list, &list); 6311 6312 __rtnl_unlock(); 6313 6314 6315 /* Wait for rcu callbacks to finish before next phase */ 6316 if (!list_empty(&list)) 6317 rcu_barrier(); 6318 6319 while (!list_empty(&list)) { 6320 struct net_device *dev 6321 = list_first_entry(&list, struct net_device, todo_list); 6322 list_del(&dev->todo_list); 6323 6324 rtnl_lock(); 6325 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6326 __rtnl_unlock(); 6327 6328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6329 pr_err("network todo '%s' but state %d\n", 6330 dev->name, dev->reg_state); 6331 dump_stack(); 6332 continue; 6333 } 6334 6335 dev->reg_state = NETREG_UNREGISTERED; 6336 6337 on_each_cpu(flush_backlog, dev, 1); 6338 6339 netdev_wait_allrefs(dev); 6340 6341 /* paranoia */ 6342 BUG_ON(netdev_refcnt_read(dev)); 6343 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6344 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6345 WARN_ON(dev->dn_ptr); 6346 6347 if (dev->destructor) 6348 dev->destructor(dev); 6349 6350 /* Report a network device has been unregistered */ 6351 rtnl_lock(); 6352 dev_net(dev)->dev_unreg_count--; 6353 __rtnl_unlock(); 6354 wake_up(&netdev_unregistering_wq); 6355 6356 /* Free network device */ 6357 kobject_put(&dev->dev.kobj); 6358 } 6359} 6360 6361/* Convert net_device_stats to rtnl_link_stats64. They have the same 6362 * fields in the same order, with only the type differing. 6363 */ 6364void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6365 const struct net_device_stats *netdev_stats) 6366{ 6367#if BITS_PER_LONG == 64 6368 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6369 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6370#else 6371 size_t i, n = sizeof(*stats64) / sizeof(u64); 6372 const unsigned long *src = (const unsigned long *)netdev_stats; 6373 u64 *dst = (u64 *)stats64; 6374 6375 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6376 sizeof(*stats64) / sizeof(u64)); 6377 for (i = 0; i < n; i++) 6378 dst[i] = src[i]; 6379#endif 6380} 6381EXPORT_SYMBOL(netdev_stats_to_stats64); 6382 6383/** 6384 * dev_get_stats - get network device statistics 6385 * @dev: device to get statistics from 6386 * @storage: place to store stats 6387 * 6388 * Get network statistics from device. Return @storage. 6389 * The device driver may provide its own method by setting 6390 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6391 * otherwise the internal statistics structure is used. 6392 */ 6393struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6394 struct rtnl_link_stats64 *storage) 6395{ 6396 const struct net_device_ops *ops = dev->netdev_ops; 6397 6398 if (ops->ndo_get_stats64) { 6399 memset(storage, 0, sizeof(*storage)); 6400 ops->ndo_get_stats64(dev, storage); 6401 } else if (ops->ndo_get_stats) { 6402 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6403 } else { 6404 netdev_stats_to_stats64(storage, &dev->stats); 6405 } 6406 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6407 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6408 return storage; 6409} 6410EXPORT_SYMBOL(dev_get_stats); 6411 6412struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6413{ 6414 struct netdev_queue *queue = dev_ingress_queue(dev); 6415 6416#ifdef CONFIG_NET_CLS_ACT 6417 if (queue) 6418 return queue; 6419 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6420 if (!queue) 6421 return NULL; 6422 netdev_init_one_queue(dev, queue, NULL); 6423 queue->qdisc = &noop_qdisc; 6424 queue->qdisc_sleeping = &noop_qdisc; 6425 rcu_assign_pointer(dev->ingress_queue, queue); 6426#endif 6427 return queue; 6428} 6429 6430static const struct ethtool_ops default_ethtool_ops; 6431 6432void netdev_set_default_ethtool_ops(struct net_device *dev, 6433 const struct ethtool_ops *ops) 6434{ 6435 if (dev->ethtool_ops == &default_ethtool_ops) 6436 dev->ethtool_ops = ops; 6437} 6438EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6439 6440void netdev_freemem(struct net_device *dev) 6441{ 6442 char *addr = (char *)dev - dev->padded; 6443 6444 kvfree(addr); 6445} 6446 6447/** 6448 * alloc_netdev_mqs - allocate network device 6449 * @sizeof_priv: size of private data to allocate space for 6450 * @name: device name format string 6451 * @setup: callback to initialize device 6452 * @txqs: the number of TX subqueues to allocate 6453 * @rxqs: the number of RX subqueues to allocate 6454 * 6455 * Allocates a struct net_device with private data area for driver use 6456 * and performs basic initialization. Also allocates subqueue structs 6457 * for each queue on the device. 6458 */ 6459struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6460 void (*setup)(struct net_device *), 6461 unsigned int txqs, unsigned int rxqs) 6462{ 6463 struct net_device *dev; 6464 size_t alloc_size; 6465 struct net_device *p; 6466 6467 BUG_ON(strlen(name) >= sizeof(dev->name)); 6468 6469 if (txqs < 1) { 6470 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6471 return NULL; 6472 } 6473 6474#ifdef CONFIG_SYSFS 6475 if (rxqs < 1) { 6476 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6477 return NULL; 6478 } 6479#endif 6480 6481 alloc_size = sizeof(struct net_device); 6482 if (sizeof_priv) { 6483 /* ensure 32-byte alignment of private area */ 6484 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6485 alloc_size += sizeof_priv; 6486 } 6487 /* ensure 32-byte alignment of whole construct */ 6488 alloc_size += NETDEV_ALIGN - 1; 6489 6490 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6491 if (!p) 6492 p = vzalloc(alloc_size); 6493 if (!p) 6494 return NULL; 6495 6496 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6497 dev->padded = (char *)dev - (char *)p; 6498 6499 dev->pcpu_refcnt = alloc_percpu(int); 6500 if (!dev->pcpu_refcnt) 6501 goto free_dev; 6502 6503 if (dev_addr_init(dev)) 6504 goto free_pcpu; 6505 6506 dev_mc_init(dev); 6507 dev_uc_init(dev); 6508 6509 dev_net_set(dev, &init_net); 6510 6511 dev->gso_max_size = GSO_MAX_SIZE; 6512 dev->gso_max_segs = GSO_MAX_SEGS; 6513 6514 INIT_LIST_HEAD(&dev->napi_list); 6515 INIT_LIST_HEAD(&dev->unreg_list); 6516 INIT_LIST_HEAD(&dev->close_list); 6517 INIT_LIST_HEAD(&dev->link_watch_list); 6518 INIT_LIST_HEAD(&dev->adj_list.upper); 6519 INIT_LIST_HEAD(&dev->adj_list.lower); 6520 INIT_LIST_HEAD(&dev->all_adj_list.upper); 6521 INIT_LIST_HEAD(&dev->all_adj_list.lower); 6522 dev->priv_flags = IFF_XMIT_DST_RELEASE; 6523 setup(dev); 6524 6525 dev->num_tx_queues = txqs; 6526 dev->real_num_tx_queues = txqs; 6527 if (netif_alloc_netdev_queues(dev)) 6528 goto free_all; 6529 6530#ifdef CONFIG_SYSFS 6531 dev->num_rx_queues = rxqs; 6532 dev->real_num_rx_queues = rxqs; 6533 if (netif_alloc_rx_queues(dev)) 6534 goto free_all; 6535#endif 6536 6537 strcpy(dev->name, name); 6538 dev->group = INIT_NETDEV_GROUP; 6539 if (!dev->ethtool_ops) 6540 dev->ethtool_ops = &default_ethtool_ops; 6541 return dev; 6542 6543free_all: 6544 free_netdev(dev); 6545 return NULL; 6546 6547free_pcpu: 6548 free_percpu(dev->pcpu_refcnt); 6549free_dev: 6550 netdev_freemem(dev); 6551 return NULL; 6552} 6553EXPORT_SYMBOL(alloc_netdev_mqs); 6554 6555/** 6556 * free_netdev - free network device 6557 * @dev: device 6558 * 6559 * This function does the last stage of destroying an allocated device 6560 * interface. The reference to the device object is released. 6561 * If this is the last reference then it will be freed. 6562 */ 6563void free_netdev(struct net_device *dev) 6564{ 6565 struct napi_struct *p, *n; 6566 6567 release_net(dev_net(dev)); 6568 6569 netif_free_tx_queues(dev); 6570#ifdef CONFIG_SYSFS 6571 kfree(dev->_rx); 6572#endif 6573 6574 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 6575 6576 /* Flush device addresses */ 6577 dev_addr_flush(dev); 6578 6579 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 6580 netif_napi_del(p); 6581 6582 free_percpu(dev->pcpu_refcnt); 6583 dev->pcpu_refcnt = NULL; 6584 6585 /* Compatibility with error handling in drivers */ 6586 if (dev->reg_state == NETREG_UNINITIALIZED) { 6587 netdev_freemem(dev); 6588 return; 6589 } 6590 6591 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 6592 dev->reg_state = NETREG_RELEASED; 6593 6594 /* will free via device release */ 6595 put_device(&dev->dev); 6596} 6597EXPORT_SYMBOL(free_netdev); 6598 6599/** 6600 * synchronize_net - Synchronize with packet receive processing 6601 * 6602 * Wait for packets currently being received to be done. 6603 * Does not block later packets from starting. 6604 */ 6605void synchronize_net(void) 6606{ 6607 might_sleep(); 6608 if (rtnl_is_locked()) 6609 synchronize_rcu_expedited(); 6610 else 6611 synchronize_rcu(); 6612} 6613EXPORT_SYMBOL(synchronize_net); 6614 6615/** 6616 * unregister_netdevice_queue - remove device from the kernel 6617 * @dev: device 6618 * @head: list 6619 * 6620 * This function shuts down a device interface and removes it 6621 * from the kernel tables. 6622 * If head not NULL, device is queued to be unregistered later. 6623 * 6624 * Callers must hold the rtnl semaphore. You may want 6625 * unregister_netdev() instead of this. 6626 */ 6627 6628void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 6629{ 6630 ASSERT_RTNL(); 6631 6632 if (head) { 6633 list_move_tail(&dev->unreg_list, head); 6634 } else { 6635 rollback_registered(dev); 6636 /* Finish processing unregister after unlock */ 6637 net_set_todo(dev); 6638 } 6639} 6640EXPORT_SYMBOL(unregister_netdevice_queue); 6641 6642/** 6643 * unregister_netdevice_many - unregister many devices 6644 * @head: list of devices 6645 * 6646 * Note: As most callers use a stack allocated list_head, 6647 * we force a list_del() to make sure stack wont be corrupted later. 6648 */ 6649void unregister_netdevice_many(struct list_head *head) 6650{ 6651 struct net_device *dev; 6652 6653 if (!list_empty(head)) { 6654 rollback_registered_many(head); 6655 list_for_each_entry(dev, head, unreg_list) 6656 net_set_todo(dev); 6657 list_del(head); 6658 } 6659} 6660EXPORT_SYMBOL(unregister_netdevice_many); 6661 6662/** 6663 * unregister_netdev - remove device from the kernel 6664 * @dev: device 6665 * 6666 * This function shuts down a device interface and removes it 6667 * from the kernel tables. 6668 * 6669 * This is just a wrapper for unregister_netdevice that takes 6670 * the rtnl semaphore. In general you want to use this and not 6671 * unregister_netdevice. 6672 */ 6673void unregister_netdev(struct net_device *dev) 6674{ 6675 rtnl_lock(); 6676 unregister_netdevice(dev); 6677 rtnl_unlock(); 6678} 6679EXPORT_SYMBOL(unregister_netdev); 6680 6681/** 6682 * dev_change_net_namespace - move device to different nethost namespace 6683 * @dev: device 6684 * @net: network namespace 6685 * @pat: If not NULL name pattern to try if the current device name 6686 * is already taken in the destination network namespace. 6687 * 6688 * This function shuts down a device interface and moves it 6689 * to a new network namespace. On success 0 is returned, on 6690 * a failure a netagive errno code is returned. 6691 * 6692 * Callers must hold the rtnl semaphore. 6693 */ 6694 6695int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6696{ 6697 int err; 6698 6699 ASSERT_RTNL(); 6700 6701 /* Don't allow namespace local devices to be moved. */ 6702 err = -EINVAL; 6703 if (dev->features & NETIF_F_NETNS_LOCAL) 6704 goto out; 6705 6706 /* Ensure the device has been registrered */ 6707 if (dev->reg_state != NETREG_REGISTERED) 6708 goto out; 6709 6710 /* Get out if there is nothing todo */ 6711 err = 0; 6712 if (net_eq(dev_net(dev), net)) 6713 goto out; 6714 6715 /* Pick the destination device name, and ensure 6716 * we can use it in the destination network namespace. 6717 */ 6718 err = -EEXIST; 6719 if (__dev_get_by_name(net, dev->name)) { 6720 /* We get here if we can't use the current device name */ 6721 if (!pat) 6722 goto out; 6723 if (dev_get_valid_name(net, dev, pat) < 0) 6724 goto out; 6725 } 6726 6727 /* 6728 * And now a mini version of register_netdevice unregister_netdevice. 6729 */ 6730 6731 /* If device is running close it first. */ 6732 dev_close(dev); 6733 6734 /* And unlink it from device chain */ 6735 err = -ENODEV; 6736 unlist_netdevice(dev); 6737 6738 synchronize_net(); 6739 6740 /* Shutdown queueing discipline. */ 6741 dev_shutdown(dev); 6742 6743 /* Notify protocols, that we are about to destroy 6744 this device. They should clean all the things. 6745 6746 Note that dev->reg_state stays at NETREG_REGISTERED. 6747 This is wanted because this way 8021q and macvlan know 6748 the device is just moving and can keep their slaves up. 6749 */ 6750 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6751 rcu_barrier(); 6752 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6753 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 6754 6755 /* 6756 * Flush the unicast and multicast chains 6757 */ 6758 dev_uc_flush(dev); 6759 dev_mc_flush(dev); 6760 6761 /* Send a netdev-removed uevent to the old namespace */ 6762 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 6763 6764 /* Actually switch the network namespace */ 6765 dev_net_set(dev, net); 6766 6767 /* If there is an ifindex conflict assign a new one */ 6768 if (__dev_get_by_index(net, dev->ifindex)) { 6769 int iflink = (dev->iflink == dev->ifindex); 6770 dev->ifindex = dev_new_index(net); 6771 if (iflink) 6772 dev->iflink = dev->ifindex; 6773 } 6774 6775 /* Send a netdev-add uevent to the new namespace */ 6776 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 6777 6778 /* Fixup kobjects */ 6779 err = device_rename(&dev->dev, dev->name); 6780 WARN_ON(err); 6781 6782 /* Add the device back in the hashes */ 6783 list_netdevice(dev); 6784 6785 /* Notify protocols, that a new device appeared. */ 6786 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6787 6788 /* 6789 * Prevent userspace races by waiting until the network 6790 * device is fully setup before sending notifications. 6791 */ 6792 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6793 6794 synchronize_net(); 6795 err = 0; 6796out: 6797 return err; 6798} 6799EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6800 6801static int dev_cpu_callback(struct notifier_block *nfb, 6802 unsigned long action, 6803 void *ocpu) 6804{ 6805 struct sk_buff **list_skb; 6806 struct sk_buff *skb; 6807 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6808 struct softnet_data *sd, *oldsd; 6809 6810 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6811 return NOTIFY_OK; 6812 6813 local_irq_disable(); 6814 cpu = smp_processor_id(); 6815 sd = &per_cpu(softnet_data, cpu); 6816 oldsd = &per_cpu(softnet_data, oldcpu); 6817 6818 /* Find end of our completion_queue. */ 6819 list_skb = &sd->completion_queue; 6820 while (*list_skb) 6821 list_skb = &(*list_skb)->next; 6822 /* Append completion queue from offline CPU. */ 6823 *list_skb = oldsd->completion_queue; 6824 oldsd->completion_queue = NULL; 6825 6826 /* Append output queue from offline CPU. */ 6827 if (oldsd->output_queue) { 6828 *sd->output_queue_tailp = oldsd->output_queue; 6829 sd->output_queue_tailp = oldsd->output_queue_tailp; 6830 oldsd->output_queue = NULL; 6831 oldsd->output_queue_tailp = &oldsd->output_queue; 6832 } 6833 /* Append NAPI poll list from offline CPU. */ 6834 if (!list_empty(&oldsd->poll_list)) { 6835 list_splice_init(&oldsd->poll_list, &sd->poll_list); 6836 raise_softirq_irqoff(NET_RX_SOFTIRQ); 6837 } 6838 6839 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6840 local_irq_enable(); 6841 6842 /* Process offline CPU's input_pkt_queue */ 6843 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6844 netif_rx_internal(skb); 6845 input_queue_head_incr(oldsd); 6846 } 6847 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6848 netif_rx_internal(skb); 6849 input_queue_head_incr(oldsd); 6850 } 6851 6852 return NOTIFY_OK; 6853} 6854 6855 6856/** 6857 * netdev_increment_features - increment feature set by one 6858 * @all: current feature set 6859 * @one: new feature set 6860 * @mask: mask feature set 6861 * 6862 * Computes a new feature set after adding a device with feature set 6863 * @one to the master device with current feature set @all. Will not 6864 * enable anything that is off in @mask. Returns the new feature set. 6865 */ 6866netdev_features_t netdev_increment_features(netdev_features_t all, 6867 netdev_features_t one, netdev_features_t mask) 6868{ 6869 if (mask & NETIF_F_GEN_CSUM) 6870 mask |= NETIF_F_ALL_CSUM; 6871 mask |= NETIF_F_VLAN_CHALLENGED; 6872 6873 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6874 all &= one | ~NETIF_F_ALL_FOR_ALL; 6875 6876 /* If one device supports hw checksumming, set for all. */ 6877 if (all & NETIF_F_GEN_CSUM) 6878 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6879 6880 return all; 6881} 6882EXPORT_SYMBOL(netdev_increment_features); 6883 6884static struct hlist_head * __net_init netdev_create_hash(void) 6885{ 6886 int i; 6887 struct hlist_head *hash; 6888 6889 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6890 if (hash != NULL) 6891 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6892 INIT_HLIST_HEAD(&hash[i]); 6893 6894 return hash; 6895} 6896 6897/* Initialize per network namespace state */ 6898static int __net_init netdev_init(struct net *net) 6899{ 6900 if (net != &init_net) 6901 INIT_LIST_HEAD(&net->dev_base_head); 6902 6903 net->dev_name_head = netdev_create_hash(); 6904 if (net->dev_name_head == NULL) 6905 goto err_name; 6906 6907 net->dev_index_head = netdev_create_hash(); 6908 if (net->dev_index_head == NULL) 6909 goto err_idx; 6910 6911 return 0; 6912 6913err_idx: 6914 kfree(net->dev_name_head); 6915err_name: 6916 return -ENOMEM; 6917} 6918 6919/** 6920 * netdev_drivername - network driver for the device 6921 * @dev: network device 6922 * 6923 * Determine network driver for device. 6924 */ 6925const char *netdev_drivername(const struct net_device *dev) 6926{ 6927 const struct device_driver *driver; 6928 const struct device *parent; 6929 const char *empty = ""; 6930 6931 parent = dev->dev.parent; 6932 if (!parent) 6933 return empty; 6934 6935 driver = parent->driver; 6936 if (driver && driver->name) 6937 return driver->name; 6938 return empty; 6939} 6940 6941static int __netdev_printk(const char *level, const struct net_device *dev, 6942 struct va_format *vaf) 6943{ 6944 int r; 6945 6946 if (dev && dev->dev.parent) { 6947 r = dev_printk_emit(level[1] - '0', 6948 dev->dev.parent, 6949 "%s %s %s: %pV", 6950 dev_driver_string(dev->dev.parent), 6951 dev_name(dev->dev.parent), 6952 netdev_name(dev), vaf); 6953 } else if (dev) { 6954 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6955 } else { 6956 r = printk("%s(NULL net_device): %pV", level, vaf); 6957 } 6958 6959 return r; 6960} 6961 6962int netdev_printk(const char *level, const struct net_device *dev, 6963 const char *format, ...) 6964{ 6965 struct va_format vaf; 6966 va_list args; 6967 int r; 6968 6969 va_start(args, format); 6970 6971 vaf.fmt = format; 6972 vaf.va = &args; 6973 6974 r = __netdev_printk(level, dev, &vaf); 6975 6976 va_end(args); 6977 6978 return r; 6979} 6980EXPORT_SYMBOL(netdev_printk); 6981 6982#define define_netdev_printk_level(func, level) \ 6983int func(const struct net_device *dev, const char *fmt, ...) \ 6984{ \ 6985 int r; \ 6986 struct va_format vaf; \ 6987 va_list args; \ 6988 \ 6989 va_start(args, fmt); \ 6990 \ 6991 vaf.fmt = fmt; \ 6992 vaf.va = &args; \ 6993 \ 6994 r = __netdev_printk(level, dev, &vaf); \ 6995 \ 6996 va_end(args); \ 6997 \ 6998 return r; \ 6999} \ 7000EXPORT_SYMBOL(func); 7001 7002define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7003define_netdev_printk_level(netdev_alert, KERN_ALERT); 7004define_netdev_printk_level(netdev_crit, KERN_CRIT); 7005define_netdev_printk_level(netdev_err, KERN_ERR); 7006define_netdev_printk_level(netdev_warn, KERN_WARNING); 7007define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7008define_netdev_printk_level(netdev_info, KERN_INFO); 7009 7010static void __net_exit netdev_exit(struct net *net) 7011{ 7012 kfree(net->dev_name_head); 7013 kfree(net->dev_index_head); 7014} 7015 7016static struct pernet_operations __net_initdata netdev_net_ops = { 7017 .init = netdev_init, 7018 .exit = netdev_exit, 7019}; 7020 7021static void __net_exit default_device_exit(struct net *net) 7022{ 7023 struct net_device *dev, *aux; 7024 /* 7025 * Push all migratable network devices back to the 7026 * initial network namespace 7027 */ 7028 rtnl_lock(); 7029 for_each_netdev_safe(net, dev, aux) { 7030 int err; 7031 char fb_name[IFNAMSIZ]; 7032 7033 /* Ignore unmoveable devices (i.e. loopback) */ 7034 if (dev->features & NETIF_F_NETNS_LOCAL) 7035 continue; 7036 7037 /* Leave virtual devices for the generic cleanup */ 7038 if (dev->rtnl_link_ops) 7039 continue; 7040 7041 /* Push remaining network devices to init_net */ 7042 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7043 err = dev_change_net_namespace(dev, &init_net, fb_name); 7044 if (err) { 7045 pr_emerg("%s: failed to move %s to init_net: %d\n", 7046 __func__, dev->name, err); 7047 BUG(); 7048 } 7049 } 7050 rtnl_unlock(); 7051} 7052 7053static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7054{ 7055 /* Return with the rtnl_lock held when there are no network 7056 * devices unregistering in any network namespace in net_list. 7057 */ 7058 struct net *net; 7059 bool unregistering; 7060 DEFINE_WAIT(wait); 7061 7062 for (;;) { 7063 prepare_to_wait(&netdev_unregistering_wq, &wait, 7064 TASK_UNINTERRUPTIBLE); 7065 unregistering = false; 7066 rtnl_lock(); 7067 list_for_each_entry(net, net_list, exit_list) { 7068 if (net->dev_unreg_count > 0) { 7069 unregistering = true; 7070 break; 7071 } 7072 } 7073 if (!unregistering) 7074 break; 7075 __rtnl_unlock(); 7076 schedule(); 7077 } 7078 finish_wait(&netdev_unregistering_wq, &wait); 7079} 7080 7081static void __net_exit default_device_exit_batch(struct list_head *net_list) 7082{ 7083 /* At exit all network devices most be removed from a network 7084 * namespace. Do this in the reverse order of registration. 7085 * Do this across as many network namespaces as possible to 7086 * improve batching efficiency. 7087 */ 7088 struct net_device *dev; 7089 struct net *net; 7090 LIST_HEAD(dev_kill_list); 7091 7092 /* To prevent network device cleanup code from dereferencing 7093 * loopback devices or network devices that have been freed 7094 * wait here for all pending unregistrations to complete, 7095 * before unregistring the loopback device and allowing the 7096 * network namespace be freed. 7097 * 7098 * The netdev todo list containing all network devices 7099 * unregistrations that happen in default_device_exit_batch 7100 * will run in the rtnl_unlock() at the end of 7101 * default_device_exit_batch. 7102 */ 7103 rtnl_lock_unregistering(net_list); 7104 list_for_each_entry(net, net_list, exit_list) { 7105 for_each_netdev_reverse(net, dev) { 7106 if (dev->rtnl_link_ops) 7107 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7108 else 7109 unregister_netdevice_queue(dev, &dev_kill_list); 7110 } 7111 } 7112 unregister_netdevice_many(&dev_kill_list); 7113 rtnl_unlock(); 7114} 7115 7116static struct pernet_operations __net_initdata default_device_ops = { 7117 .exit = default_device_exit, 7118 .exit_batch = default_device_exit_batch, 7119}; 7120 7121/* 7122 * Initialize the DEV module. At boot time this walks the device list and 7123 * unhooks any devices that fail to initialise (normally hardware not 7124 * present) and leaves us with a valid list of present and active devices. 7125 * 7126 */ 7127 7128/* 7129 * This is called single threaded during boot, so no need 7130 * to take the rtnl semaphore. 7131 */ 7132static int __init net_dev_init(void) 7133{ 7134 int i, rc = -ENOMEM; 7135 7136 BUG_ON(!dev_boot_phase); 7137 7138 if (dev_proc_init()) 7139 goto out; 7140 7141 if (netdev_kobject_init()) 7142 goto out; 7143 7144 INIT_LIST_HEAD(&ptype_all); 7145 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7146 INIT_LIST_HEAD(&ptype_base[i]); 7147 7148 INIT_LIST_HEAD(&offload_base); 7149 7150 if (register_pernet_subsys(&netdev_net_ops)) 7151 goto out; 7152 7153 /* 7154 * Initialise the packet receive queues. 7155 */ 7156 7157 for_each_possible_cpu(i) { 7158 struct softnet_data *sd = &per_cpu(softnet_data, i); 7159 7160 skb_queue_head_init(&sd->input_pkt_queue); 7161 skb_queue_head_init(&sd->process_queue); 7162 INIT_LIST_HEAD(&sd->poll_list); 7163 sd->output_queue_tailp = &sd->output_queue; 7164#ifdef CONFIG_RPS 7165 sd->csd.func = rps_trigger_softirq; 7166 sd->csd.info = sd; 7167 sd->cpu = i; 7168#endif 7169 7170 sd->backlog.poll = process_backlog; 7171 sd->backlog.weight = weight_p; 7172 } 7173 7174 dev_boot_phase = 0; 7175 7176 /* The loopback device is special if any other network devices 7177 * is present in a network namespace the loopback device must 7178 * be present. Since we now dynamically allocate and free the 7179 * loopback device ensure this invariant is maintained by 7180 * keeping the loopback device as the first device on the 7181 * list of network devices. Ensuring the loopback devices 7182 * is the first device that appears and the last network device 7183 * that disappears. 7184 */ 7185 if (register_pernet_device(&loopback_net_ops)) 7186 goto out; 7187 7188 if (register_pernet_device(&default_device_ops)) 7189 goto out; 7190 7191 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7192 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7193 7194 hotcpu_notifier(dev_cpu_callback, 0); 7195 dst_init(); 7196 rc = 0; 7197out: 7198 return rc; 7199} 7200 7201subsys_initcall(net_dev_init);