at v3.16 12 kB view raw
1#include <linux/mm.h> 2#include <linux/slab.h> 3#include <linux/string.h> 4#include <linux/compiler.h> 5#include <linux/export.h> 6#include <linux/err.h> 7#include <linux/sched.h> 8#include <linux/security.h> 9#include <linux/swap.h> 10#include <linux/swapops.h> 11#include <linux/mman.h> 12#include <linux/hugetlb.h> 13#include <linux/vmalloc.h> 14 15#include <asm/uaccess.h> 16 17#include "internal.h" 18 19#define CREATE_TRACE_POINTS 20#include <trace/events/kmem.h> 21 22/** 23 * kstrdup - allocate space for and copy an existing string 24 * @s: the string to duplicate 25 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 26 */ 27char *kstrdup(const char *s, gfp_t gfp) 28{ 29 size_t len; 30 char *buf; 31 32 if (!s) 33 return NULL; 34 35 len = strlen(s) + 1; 36 buf = kmalloc_track_caller(len, gfp); 37 if (buf) 38 memcpy(buf, s, len); 39 return buf; 40} 41EXPORT_SYMBOL(kstrdup); 42 43/** 44 * kstrndup - allocate space for and copy an existing string 45 * @s: the string to duplicate 46 * @max: read at most @max chars from @s 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory 48 */ 49char *kstrndup(const char *s, size_t max, gfp_t gfp) 50{ 51 size_t len; 52 char *buf; 53 54 if (!s) 55 return NULL; 56 57 len = strnlen(s, max); 58 buf = kmalloc_track_caller(len+1, gfp); 59 if (buf) { 60 memcpy(buf, s, len); 61 buf[len] = '\0'; 62 } 63 return buf; 64} 65EXPORT_SYMBOL(kstrndup); 66 67/** 68 * kmemdup - duplicate region of memory 69 * 70 * @src: memory region to duplicate 71 * @len: memory region length 72 * @gfp: GFP mask to use 73 */ 74void *kmemdup(const void *src, size_t len, gfp_t gfp) 75{ 76 void *p; 77 78 p = kmalloc_track_caller(len, gfp); 79 if (p) 80 memcpy(p, src, len); 81 return p; 82} 83EXPORT_SYMBOL(kmemdup); 84 85/** 86 * memdup_user - duplicate memory region from user space 87 * 88 * @src: source address in user space 89 * @len: number of bytes to copy 90 * 91 * Returns an ERR_PTR() on failure. 92 */ 93void *memdup_user(const void __user *src, size_t len) 94{ 95 void *p; 96 97 /* 98 * Always use GFP_KERNEL, since copy_from_user() can sleep and 99 * cause pagefault, which makes it pointless to use GFP_NOFS 100 * or GFP_ATOMIC. 101 */ 102 p = kmalloc_track_caller(len, GFP_KERNEL); 103 if (!p) 104 return ERR_PTR(-ENOMEM); 105 106 if (copy_from_user(p, src, len)) { 107 kfree(p); 108 return ERR_PTR(-EFAULT); 109 } 110 111 return p; 112} 113EXPORT_SYMBOL(memdup_user); 114 115static __always_inline void *__do_krealloc(const void *p, size_t new_size, 116 gfp_t flags) 117{ 118 void *ret; 119 size_t ks = 0; 120 121 if (p) 122 ks = ksize(p); 123 124 if (ks >= new_size) 125 return (void *)p; 126 127 ret = kmalloc_track_caller(new_size, flags); 128 if (ret && p) 129 memcpy(ret, p, ks); 130 131 return ret; 132} 133 134/** 135 * __krealloc - like krealloc() but don't free @p. 136 * @p: object to reallocate memory for. 137 * @new_size: how many bytes of memory are required. 138 * @flags: the type of memory to allocate. 139 * 140 * This function is like krealloc() except it never frees the originally 141 * allocated buffer. Use this if you don't want to free the buffer immediately 142 * like, for example, with RCU. 143 */ 144void *__krealloc(const void *p, size_t new_size, gfp_t flags) 145{ 146 if (unlikely(!new_size)) 147 return ZERO_SIZE_PTR; 148 149 return __do_krealloc(p, new_size, flags); 150 151} 152EXPORT_SYMBOL(__krealloc); 153 154/** 155 * krealloc - reallocate memory. The contents will remain unchanged. 156 * @p: object to reallocate memory for. 157 * @new_size: how many bytes of memory are required. 158 * @flags: the type of memory to allocate. 159 * 160 * The contents of the object pointed to are preserved up to the 161 * lesser of the new and old sizes. If @p is %NULL, krealloc() 162 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a 163 * %NULL pointer, the object pointed to is freed. 164 */ 165void *krealloc(const void *p, size_t new_size, gfp_t flags) 166{ 167 void *ret; 168 169 if (unlikely(!new_size)) { 170 kfree(p); 171 return ZERO_SIZE_PTR; 172 } 173 174 ret = __do_krealloc(p, new_size, flags); 175 if (ret && p != ret) 176 kfree(p); 177 178 return ret; 179} 180EXPORT_SYMBOL(krealloc); 181 182/** 183 * kzfree - like kfree but zero memory 184 * @p: object to free memory of 185 * 186 * The memory of the object @p points to is zeroed before freed. 187 * If @p is %NULL, kzfree() does nothing. 188 * 189 * Note: this function zeroes the whole allocated buffer which can be a good 190 * deal bigger than the requested buffer size passed to kmalloc(). So be 191 * careful when using this function in performance sensitive code. 192 */ 193void kzfree(const void *p) 194{ 195 size_t ks; 196 void *mem = (void *)p; 197 198 if (unlikely(ZERO_OR_NULL_PTR(mem))) 199 return; 200 ks = ksize(mem); 201 memset(mem, 0, ks); 202 kfree(mem); 203} 204EXPORT_SYMBOL(kzfree); 205 206/* 207 * strndup_user - duplicate an existing string from user space 208 * @s: The string to duplicate 209 * @n: Maximum number of bytes to copy, including the trailing NUL. 210 */ 211char *strndup_user(const char __user *s, long n) 212{ 213 char *p; 214 long length; 215 216 length = strnlen_user(s, n); 217 218 if (!length) 219 return ERR_PTR(-EFAULT); 220 221 if (length > n) 222 return ERR_PTR(-EINVAL); 223 224 p = memdup_user(s, length); 225 226 if (IS_ERR(p)) 227 return p; 228 229 p[length - 1] = '\0'; 230 231 return p; 232} 233EXPORT_SYMBOL(strndup_user); 234 235void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 236 struct vm_area_struct *prev, struct rb_node *rb_parent) 237{ 238 struct vm_area_struct *next; 239 240 vma->vm_prev = prev; 241 if (prev) { 242 next = prev->vm_next; 243 prev->vm_next = vma; 244 } else { 245 mm->mmap = vma; 246 if (rb_parent) 247 next = rb_entry(rb_parent, 248 struct vm_area_struct, vm_rb); 249 else 250 next = NULL; 251 } 252 vma->vm_next = next; 253 if (next) 254 next->vm_prev = vma; 255} 256 257/* Check if the vma is being used as a stack by this task */ 258static int vm_is_stack_for_task(struct task_struct *t, 259 struct vm_area_struct *vma) 260{ 261 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t)); 262} 263 264/* 265 * Check if the vma is being used as a stack. 266 * If is_group is non-zero, check in the entire thread group or else 267 * just check in the current task. Returns the pid of the task that 268 * the vma is stack for. 269 */ 270pid_t vm_is_stack(struct task_struct *task, 271 struct vm_area_struct *vma, int in_group) 272{ 273 pid_t ret = 0; 274 275 if (vm_is_stack_for_task(task, vma)) 276 return task->pid; 277 278 if (in_group) { 279 struct task_struct *t; 280 rcu_read_lock(); 281 if (!pid_alive(task)) 282 goto done; 283 284 t = task; 285 do { 286 if (vm_is_stack_for_task(t, vma)) { 287 ret = t->pid; 288 goto done; 289 } 290 } while_each_thread(task, t); 291done: 292 rcu_read_unlock(); 293 } 294 295 return ret; 296} 297 298#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT) 299void arch_pick_mmap_layout(struct mm_struct *mm) 300{ 301 mm->mmap_base = TASK_UNMAPPED_BASE; 302 mm->get_unmapped_area = arch_get_unmapped_area; 303} 304#endif 305 306/* 307 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall 308 * back to the regular GUP. 309 * If the architecture not support this function, simply return with no 310 * page pinned 311 */ 312int __weak __get_user_pages_fast(unsigned long start, 313 int nr_pages, int write, struct page **pages) 314{ 315 return 0; 316} 317EXPORT_SYMBOL_GPL(__get_user_pages_fast); 318 319/** 320 * get_user_pages_fast() - pin user pages in memory 321 * @start: starting user address 322 * @nr_pages: number of pages from start to pin 323 * @write: whether pages will be written to 324 * @pages: array that receives pointers to the pages pinned. 325 * Should be at least nr_pages long. 326 * 327 * Returns number of pages pinned. This may be fewer than the number 328 * requested. If nr_pages is 0 or negative, returns 0. If no pages 329 * were pinned, returns -errno. 330 * 331 * get_user_pages_fast provides equivalent functionality to get_user_pages, 332 * operating on current and current->mm, with force=0 and vma=NULL. However 333 * unlike get_user_pages, it must be called without mmap_sem held. 334 * 335 * get_user_pages_fast may take mmap_sem and page table locks, so no 336 * assumptions can be made about lack of locking. get_user_pages_fast is to be 337 * implemented in a way that is advantageous (vs get_user_pages()) when the 338 * user memory area is already faulted in and present in ptes. However if the 339 * pages have to be faulted in, it may turn out to be slightly slower so 340 * callers need to carefully consider what to use. On many architectures, 341 * get_user_pages_fast simply falls back to get_user_pages. 342 */ 343int __weak get_user_pages_fast(unsigned long start, 344 int nr_pages, int write, struct page **pages) 345{ 346 struct mm_struct *mm = current->mm; 347 int ret; 348 349 down_read(&mm->mmap_sem); 350 ret = get_user_pages(current, mm, start, nr_pages, 351 write, 0, pages, NULL); 352 up_read(&mm->mmap_sem); 353 354 return ret; 355} 356EXPORT_SYMBOL_GPL(get_user_pages_fast); 357 358unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr, 359 unsigned long len, unsigned long prot, 360 unsigned long flag, unsigned long pgoff) 361{ 362 unsigned long ret; 363 struct mm_struct *mm = current->mm; 364 unsigned long populate; 365 366 ret = security_mmap_file(file, prot, flag); 367 if (!ret) { 368 down_write(&mm->mmap_sem); 369 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff, 370 &populate); 371 up_write(&mm->mmap_sem); 372 if (populate) 373 mm_populate(ret, populate); 374 } 375 return ret; 376} 377 378unsigned long vm_mmap(struct file *file, unsigned long addr, 379 unsigned long len, unsigned long prot, 380 unsigned long flag, unsigned long offset) 381{ 382 if (unlikely(offset + PAGE_ALIGN(len) < offset)) 383 return -EINVAL; 384 if (unlikely(offset & ~PAGE_MASK)) 385 return -EINVAL; 386 387 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 388} 389EXPORT_SYMBOL(vm_mmap); 390 391void kvfree(const void *addr) 392{ 393 if (is_vmalloc_addr(addr)) 394 vfree(addr); 395 else 396 kfree(addr); 397} 398EXPORT_SYMBOL(kvfree); 399 400struct address_space *page_mapping(struct page *page) 401{ 402 struct address_space *mapping = page->mapping; 403 404 /* This happens if someone calls flush_dcache_page on slab page */ 405 if (unlikely(PageSlab(page))) 406 return NULL; 407 408 if (unlikely(PageSwapCache(page))) { 409 swp_entry_t entry; 410 411 entry.val = page_private(page); 412 mapping = swap_address_space(entry); 413 } else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 414 mapping = NULL; 415 return mapping; 416} 417 418int overcommit_ratio_handler(struct ctl_table *table, int write, 419 void __user *buffer, size_t *lenp, 420 loff_t *ppos) 421{ 422 int ret; 423 424 ret = proc_dointvec(table, write, buffer, lenp, ppos); 425 if (ret == 0 && write) 426 sysctl_overcommit_kbytes = 0; 427 return ret; 428} 429 430int overcommit_kbytes_handler(struct ctl_table *table, int write, 431 void __user *buffer, size_t *lenp, 432 loff_t *ppos) 433{ 434 int ret; 435 436 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 437 if (ret == 0 && write) 438 sysctl_overcommit_ratio = 0; 439 return ret; 440} 441 442/* 443 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used 444 */ 445unsigned long vm_commit_limit(void) 446{ 447 unsigned long allowed; 448 449 if (sysctl_overcommit_kbytes) 450 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10); 451 else 452 allowed = ((totalram_pages - hugetlb_total_pages()) 453 * sysctl_overcommit_ratio / 100); 454 allowed += total_swap_pages; 455 456 return allowed; 457} 458 459/** 460 * get_cmdline() - copy the cmdline value to a buffer. 461 * @task: the task whose cmdline value to copy. 462 * @buffer: the buffer to copy to. 463 * @buflen: the length of the buffer. Larger cmdline values are truncated 464 * to this length. 465 * Returns the size of the cmdline field copied. Note that the copy does 466 * not guarantee an ending NULL byte. 467 */ 468int get_cmdline(struct task_struct *task, char *buffer, int buflen) 469{ 470 int res = 0; 471 unsigned int len; 472 struct mm_struct *mm = get_task_mm(task); 473 if (!mm) 474 goto out; 475 if (!mm->arg_end) 476 goto out_mm; /* Shh! No looking before we're done */ 477 478 len = mm->arg_end - mm->arg_start; 479 480 if (len > buflen) 481 len = buflen; 482 483 res = access_process_vm(task, mm->arg_start, buffer, len, 0); 484 485 /* 486 * If the nul at the end of args has been overwritten, then 487 * assume application is using setproctitle(3). 488 */ 489 if (res > 0 && buffer[res-1] != '\0' && len < buflen) { 490 len = strnlen(buffer, res); 491 if (len < res) { 492 res = len; 493 } else { 494 len = mm->env_end - mm->env_start; 495 if (len > buflen - res) 496 len = buflen - res; 497 res += access_process_vm(task, mm->env_start, 498 buffer+res, len, 0); 499 res = strnlen(buffer, res); 500 } 501 } 502out_mm: 503 mmput(mm); 504out: 505 return res; 506} 507 508/* Tracepoints definitions. */ 509EXPORT_TRACEPOINT_SYMBOL(kmalloc); 510EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 511EXPORT_TRACEPOINT_SYMBOL(kmalloc_node); 512EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node); 513EXPORT_TRACEPOINT_SYMBOL(kfree); 514EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);