at v3.16 23 kB view raw
1/* 2 * mm/truncate.c - code for taking down pages from address_spaces 3 * 4 * Copyright (C) 2002, Linus Torvalds 5 * 6 * 10Sep2002 Andrew Morton 7 * Initial version. 8 */ 9 10#include <linux/kernel.h> 11#include <linux/backing-dev.h> 12#include <linux/gfp.h> 13#include <linux/mm.h> 14#include <linux/swap.h> 15#include <linux/export.h> 16#include <linux/pagemap.h> 17#include <linux/highmem.h> 18#include <linux/pagevec.h> 19#include <linux/task_io_accounting_ops.h> 20#include <linux/buffer_head.h> /* grr. try_to_release_page, 21 do_invalidatepage */ 22#include <linux/cleancache.h> 23#include "internal.h" 24 25static void clear_exceptional_entry(struct address_space *mapping, 26 pgoff_t index, void *entry) 27{ 28 struct radix_tree_node *node; 29 void **slot; 30 31 /* Handled by shmem itself */ 32 if (shmem_mapping(mapping)) 33 return; 34 35 spin_lock_irq(&mapping->tree_lock); 36 /* 37 * Regular page slots are stabilized by the page lock even 38 * without the tree itself locked. These unlocked entries 39 * need verification under the tree lock. 40 */ 41 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot)) 42 goto unlock; 43 if (*slot != entry) 44 goto unlock; 45 radix_tree_replace_slot(slot, NULL); 46 mapping->nrshadows--; 47 if (!node) 48 goto unlock; 49 workingset_node_shadows_dec(node); 50 /* 51 * Don't track node without shadow entries. 52 * 53 * Avoid acquiring the list_lru lock if already untracked. 54 * The list_empty() test is safe as node->private_list is 55 * protected by mapping->tree_lock. 56 */ 57 if (!workingset_node_shadows(node) && 58 !list_empty(&node->private_list)) 59 list_lru_del(&workingset_shadow_nodes, &node->private_list); 60 __radix_tree_delete_node(&mapping->page_tree, node); 61unlock: 62 spin_unlock_irq(&mapping->tree_lock); 63} 64 65/** 66 * do_invalidatepage - invalidate part or all of a page 67 * @page: the page which is affected 68 * @offset: start of the range to invalidate 69 * @length: length of the range to invalidate 70 * 71 * do_invalidatepage() is called when all or part of the page has become 72 * invalidated by a truncate operation. 73 * 74 * do_invalidatepage() does not have to release all buffers, but it must 75 * ensure that no dirty buffer is left outside @offset and that no I/O 76 * is underway against any of the blocks which are outside the truncation 77 * point. Because the caller is about to free (and possibly reuse) those 78 * blocks on-disk. 79 */ 80void do_invalidatepage(struct page *page, unsigned int offset, 81 unsigned int length) 82{ 83 void (*invalidatepage)(struct page *, unsigned int, unsigned int); 84 85 invalidatepage = page->mapping->a_ops->invalidatepage; 86#ifdef CONFIG_BLOCK 87 if (!invalidatepage) 88 invalidatepage = block_invalidatepage; 89#endif 90 if (invalidatepage) 91 (*invalidatepage)(page, offset, length); 92} 93 94/* 95 * This cancels just the dirty bit on the kernel page itself, it 96 * does NOT actually remove dirty bits on any mmap's that may be 97 * around. It also leaves the page tagged dirty, so any sync 98 * activity will still find it on the dirty lists, and in particular, 99 * clear_page_dirty_for_io() will still look at the dirty bits in 100 * the VM. 101 * 102 * Doing this should *normally* only ever be done when a page 103 * is truncated, and is not actually mapped anywhere at all. However, 104 * fs/buffer.c does this when it notices that somebody has cleaned 105 * out all the buffers on a page without actually doing it through 106 * the VM. Can you say "ext3 is horribly ugly"? Tought you could. 107 */ 108void cancel_dirty_page(struct page *page, unsigned int account_size) 109{ 110 if (TestClearPageDirty(page)) { 111 struct address_space *mapping = page->mapping; 112 if (mapping && mapping_cap_account_dirty(mapping)) { 113 dec_zone_page_state(page, NR_FILE_DIRTY); 114 dec_bdi_stat(mapping->backing_dev_info, 115 BDI_RECLAIMABLE); 116 if (account_size) 117 task_io_account_cancelled_write(account_size); 118 } 119 } 120} 121EXPORT_SYMBOL(cancel_dirty_page); 122 123/* 124 * If truncate cannot remove the fs-private metadata from the page, the page 125 * becomes orphaned. It will be left on the LRU and may even be mapped into 126 * user pagetables if we're racing with filemap_fault(). 127 * 128 * We need to bale out if page->mapping is no longer equal to the original 129 * mapping. This happens a) when the VM reclaimed the page while we waited on 130 * its lock, b) when a concurrent invalidate_mapping_pages got there first and 131 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. 132 */ 133static int 134truncate_complete_page(struct address_space *mapping, struct page *page) 135{ 136 if (page->mapping != mapping) 137 return -EIO; 138 139 if (page_has_private(page)) 140 do_invalidatepage(page, 0, PAGE_CACHE_SIZE); 141 142 cancel_dirty_page(page, PAGE_CACHE_SIZE); 143 144 ClearPageMappedToDisk(page); 145 delete_from_page_cache(page); 146 return 0; 147} 148 149/* 150 * This is for invalidate_mapping_pages(). That function can be called at 151 * any time, and is not supposed to throw away dirty pages. But pages can 152 * be marked dirty at any time too, so use remove_mapping which safely 153 * discards clean, unused pages. 154 * 155 * Returns non-zero if the page was successfully invalidated. 156 */ 157static int 158invalidate_complete_page(struct address_space *mapping, struct page *page) 159{ 160 int ret; 161 162 if (page->mapping != mapping) 163 return 0; 164 165 if (page_has_private(page) && !try_to_release_page(page, 0)) 166 return 0; 167 168 ret = remove_mapping(mapping, page); 169 170 return ret; 171} 172 173int truncate_inode_page(struct address_space *mapping, struct page *page) 174{ 175 if (page_mapped(page)) { 176 unmap_mapping_range(mapping, 177 (loff_t)page->index << PAGE_CACHE_SHIFT, 178 PAGE_CACHE_SIZE, 0); 179 } 180 return truncate_complete_page(mapping, page); 181} 182 183/* 184 * Used to get rid of pages on hardware memory corruption. 185 */ 186int generic_error_remove_page(struct address_space *mapping, struct page *page) 187{ 188 if (!mapping) 189 return -EINVAL; 190 /* 191 * Only punch for normal data pages for now. 192 * Handling other types like directories would need more auditing. 193 */ 194 if (!S_ISREG(mapping->host->i_mode)) 195 return -EIO; 196 return truncate_inode_page(mapping, page); 197} 198EXPORT_SYMBOL(generic_error_remove_page); 199 200/* 201 * Safely invalidate one page from its pagecache mapping. 202 * It only drops clean, unused pages. The page must be locked. 203 * 204 * Returns 1 if the page is successfully invalidated, otherwise 0. 205 */ 206int invalidate_inode_page(struct page *page) 207{ 208 struct address_space *mapping = page_mapping(page); 209 if (!mapping) 210 return 0; 211 if (PageDirty(page) || PageWriteback(page)) 212 return 0; 213 if (page_mapped(page)) 214 return 0; 215 return invalidate_complete_page(mapping, page); 216} 217 218/** 219 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets 220 * @mapping: mapping to truncate 221 * @lstart: offset from which to truncate 222 * @lend: offset to which to truncate (inclusive) 223 * 224 * Truncate the page cache, removing the pages that are between 225 * specified offsets (and zeroing out partial pages 226 * if lstart or lend + 1 is not page aligned). 227 * 228 * Truncate takes two passes - the first pass is nonblocking. It will not 229 * block on page locks and it will not block on writeback. The second pass 230 * will wait. This is to prevent as much IO as possible in the affected region. 231 * The first pass will remove most pages, so the search cost of the second pass 232 * is low. 233 * 234 * We pass down the cache-hot hint to the page freeing code. Even if the 235 * mapping is large, it is probably the case that the final pages are the most 236 * recently touched, and freeing happens in ascending file offset order. 237 * 238 * Note that since ->invalidatepage() accepts range to invalidate 239 * truncate_inode_pages_range is able to handle cases where lend + 1 is not 240 * page aligned properly. 241 */ 242void truncate_inode_pages_range(struct address_space *mapping, 243 loff_t lstart, loff_t lend) 244{ 245 pgoff_t start; /* inclusive */ 246 pgoff_t end; /* exclusive */ 247 unsigned int partial_start; /* inclusive */ 248 unsigned int partial_end; /* exclusive */ 249 struct pagevec pvec; 250 pgoff_t indices[PAGEVEC_SIZE]; 251 pgoff_t index; 252 int i; 253 254 cleancache_invalidate_inode(mapping); 255 if (mapping->nrpages == 0 && mapping->nrshadows == 0) 256 return; 257 258 /* Offsets within partial pages */ 259 partial_start = lstart & (PAGE_CACHE_SIZE - 1); 260 partial_end = (lend + 1) & (PAGE_CACHE_SIZE - 1); 261 262 /* 263 * 'start' and 'end' always covers the range of pages to be fully 264 * truncated. Partial pages are covered with 'partial_start' at the 265 * start of the range and 'partial_end' at the end of the range. 266 * Note that 'end' is exclusive while 'lend' is inclusive. 267 */ 268 start = (lstart + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 269 if (lend == -1) 270 /* 271 * lend == -1 indicates end-of-file so we have to set 'end' 272 * to the highest possible pgoff_t and since the type is 273 * unsigned we're using -1. 274 */ 275 end = -1; 276 else 277 end = (lend + 1) >> PAGE_CACHE_SHIFT; 278 279 pagevec_init(&pvec, 0); 280 index = start; 281 while (index < end && pagevec_lookup_entries(&pvec, mapping, index, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE), 283 indices)) { 284 mem_cgroup_uncharge_start(); 285 for (i = 0; i < pagevec_count(&pvec); i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* We rely upon deletion not changing page->index */ 289 index = indices[i]; 290 if (index >= end) 291 break; 292 293 if (radix_tree_exceptional_entry(page)) { 294 clear_exceptional_entry(mapping, index, page); 295 continue; 296 } 297 298 if (!trylock_page(page)) 299 continue; 300 WARN_ON(page->index != index); 301 if (PageWriteback(page)) { 302 unlock_page(page); 303 continue; 304 } 305 truncate_inode_page(mapping, page); 306 unlock_page(page); 307 } 308 pagevec_remove_exceptionals(&pvec); 309 pagevec_release(&pvec); 310 mem_cgroup_uncharge_end(); 311 cond_resched(); 312 index++; 313 } 314 315 if (partial_start) { 316 struct page *page = find_lock_page(mapping, start - 1); 317 if (page) { 318 unsigned int top = PAGE_CACHE_SIZE; 319 if (start > end) { 320 /* Truncation within a single page */ 321 top = partial_end; 322 partial_end = 0; 323 } 324 wait_on_page_writeback(page); 325 zero_user_segment(page, partial_start, top); 326 cleancache_invalidate_page(mapping, page); 327 if (page_has_private(page)) 328 do_invalidatepage(page, partial_start, 329 top - partial_start); 330 unlock_page(page); 331 page_cache_release(page); 332 } 333 } 334 if (partial_end) { 335 struct page *page = find_lock_page(mapping, end); 336 if (page) { 337 wait_on_page_writeback(page); 338 zero_user_segment(page, 0, partial_end); 339 cleancache_invalidate_page(mapping, page); 340 if (page_has_private(page)) 341 do_invalidatepage(page, 0, 342 partial_end); 343 unlock_page(page); 344 page_cache_release(page); 345 } 346 } 347 /* 348 * If the truncation happened within a single page no pages 349 * will be released, just zeroed, so we can bail out now. 350 */ 351 if (start >= end) 352 return; 353 354 index = start; 355 for ( ; ; ) { 356 cond_resched(); 357 if (!pagevec_lookup_entries(&pvec, mapping, index, 358 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { 359 /* If all gone from start onwards, we're done */ 360 if (index == start) 361 break; 362 /* Otherwise restart to make sure all gone */ 363 index = start; 364 continue; 365 } 366 if (index == start && indices[0] >= end) { 367 /* All gone out of hole to be punched, we're done */ 368 pagevec_remove_exceptionals(&pvec); 369 pagevec_release(&pvec); 370 break; 371 } 372 mem_cgroup_uncharge_start(); 373 for (i = 0; i < pagevec_count(&pvec); i++) { 374 struct page *page = pvec.pages[i]; 375 376 /* We rely upon deletion not changing page->index */ 377 index = indices[i]; 378 if (index >= end) { 379 /* Restart punch to make sure all gone */ 380 index = start - 1; 381 break; 382 } 383 384 if (radix_tree_exceptional_entry(page)) { 385 clear_exceptional_entry(mapping, index, page); 386 continue; 387 } 388 389 lock_page(page); 390 WARN_ON(page->index != index); 391 wait_on_page_writeback(page); 392 truncate_inode_page(mapping, page); 393 unlock_page(page); 394 } 395 pagevec_remove_exceptionals(&pvec); 396 pagevec_release(&pvec); 397 mem_cgroup_uncharge_end(); 398 index++; 399 } 400 cleancache_invalidate_inode(mapping); 401} 402EXPORT_SYMBOL(truncate_inode_pages_range); 403 404/** 405 * truncate_inode_pages - truncate *all* the pages from an offset 406 * @mapping: mapping to truncate 407 * @lstart: offset from which to truncate 408 * 409 * Called under (and serialised by) inode->i_mutex. 410 * 411 * Note: When this function returns, there can be a page in the process of 412 * deletion (inside __delete_from_page_cache()) in the specified range. Thus 413 * mapping->nrpages can be non-zero when this function returns even after 414 * truncation of the whole mapping. 415 */ 416void truncate_inode_pages(struct address_space *mapping, loff_t lstart) 417{ 418 truncate_inode_pages_range(mapping, lstart, (loff_t)-1); 419} 420EXPORT_SYMBOL(truncate_inode_pages); 421 422/** 423 * truncate_inode_pages_final - truncate *all* pages before inode dies 424 * @mapping: mapping to truncate 425 * 426 * Called under (and serialized by) inode->i_mutex. 427 * 428 * Filesystems have to use this in the .evict_inode path to inform the 429 * VM that this is the final truncate and the inode is going away. 430 */ 431void truncate_inode_pages_final(struct address_space *mapping) 432{ 433 unsigned long nrshadows; 434 unsigned long nrpages; 435 436 /* 437 * Page reclaim can not participate in regular inode lifetime 438 * management (can't call iput()) and thus can race with the 439 * inode teardown. Tell it when the address space is exiting, 440 * so that it does not install eviction information after the 441 * final truncate has begun. 442 */ 443 mapping_set_exiting(mapping); 444 445 /* 446 * When reclaim installs eviction entries, it increases 447 * nrshadows first, then decreases nrpages. Make sure we see 448 * this in the right order or we might miss an entry. 449 */ 450 nrpages = mapping->nrpages; 451 smp_rmb(); 452 nrshadows = mapping->nrshadows; 453 454 if (nrpages || nrshadows) { 455 /* 456 * As truncation uses a lockless tree lookup, cycle 457 * the tree lock to make sure any ongoing tree 458 * modification that does not see AS_EXITING is 459 * completed before starting the final truncate. 460 */ 461 spin_lock_irq(&mapping->tree_lock); 462 spin_unlock_irq(&mapping->tree_lock); 463 464 truncate_inode_pages(mapping, 0); 465 } 466} 467EXPORT_SYMBOL(truncate_inode_pages_final); 468 469/** 470 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode 471 * @mapping: the address_space which holds the pages to invalidate 472 * @start: the offset 'from' which to invalidate 473 * @end: the offset 'to' which to invalidate (inclusive) 474 * 475 * This function only removes the unlocked pages, if you want to 476 * remove all the pages of one inode, you must call truncate_inode_pages. 477 * 478 * invalidate_mapping_pages() will not block on IO activity. It will not 479 * invalidate pages which are dirty, locked, under writeback or mapped into 480 * pagetables. 481 */ 482unsigned long invalidate_mapping_pages(struct address_space *mapping, 483 pgoff_t start, pgoff_t end) 484{ 485 pgoff_t indices[PAGEVEC_SIZE]; 486 struct pagevec pvec; 487 pgoff_t index = start; 488 unsigned long ret; 489 unsigned long count = 0; 490 int i; 491 492 pagevec_init(&pvec, 0); 493 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 494 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 495 indices)) { 496 mem_cgroup_uncharge_start(); 497 for (i = 0; i < pagevec_count(&pvec); i++) { 498 struct page *page = pvec.pages[i]; 499 500 /* We rely upon deletion not changing page->index */ 501 index = indices[i]; 502 if (index > end) 503 break; 504 505 if (radix_tree_exceptional_entry(page)) { 506 clear_exceptional_entry(mapping, index, page); 507 continue; 508 } 509 510 if (!trylock_page(page)) 511 continue; 512 WARN_ON(page->index != index); 513 ret = invalidate_inode_page(page); 514 unlock_page(page); 515 /* 516 * Invalidation is a hint that the page is no longer 517 * of interest and try to speed up its reclaim. 518 */ 519 if (!ret) 520 deactivate_page(page); 521 count += ret; 522 } 523 pagevec_remove_exceptionals(&pvec); 524 pagevec_release(&pvec); 525 mem_cgroup_uncharge_end(); 526 cond_resched(); 527 index++; 528 } 529 return count; 530} 531EXPORT_SYMBOL(invalidate_mapping_pages); 532 533/* 534 * This is like invalidate_complete_page(), except it ignores the page's 535 * refcount. We do this because invalidate_inode_pages2() needs stronger 536 * invalidation guarantees, and cannot afford to leave pages behind because 537 * shrink_page_list() has a temp ref on them, or because they're transiently 538 * sitting in the lru_cache_add() pagevecs. 539 */ 540static int 541invalidate_complete_page2(struct address_space *mapping, struct page *page) 542{ 543 if (page->mapping != mapping) 544 return 0; 545 546 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) 547 return 0; 548 549 spin_lock_irq(&mapping->tree_lock); 550 if (PageDirty(page)) 551 goto failed; 552 553 BUG_ON(page_has_private(page)); 554 __delete_from_page_cache(page, NULL); 555 spin_unlock_irq(&mapping->tree_lock); 556 mem_cgroup_uncharge_cache_page(page); 557 558 if (mapping->a_ops->freepage) 559 mapping->a_ops->freepage(page); 560 561 page_cache_release(page); /* pagecache ref */ 562 return 1; 563failed: 564 spin_unlock_irq(&mapping->tree_lock); 565 return 0; 566} 567 568static int do_launder_page(struct address_space *mapping, struct page *page) 569{ 570 if (!PageDirty(page)) 571 return 0; 572 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) 573 return 0; 574 return mapping->a_ops->launder_page(page); 575} 576 577/** 578 * invalidate_inode_pages2_range - remove range of pages from an address_space 579 * @mapping: the address_space 580 * @start: the page offset 'from' which to invalidate 581 * @end: the page offset 'to' which to invalidate (inclusive) 582 * 583 * Any pages which are found to be mapped into pagetables are unmapped prior to 584 * invalidation. 585 * 586 * Returns -EBUSY if any pages could not be invalidated. 587 */ 588int invalidate_inode_pages2_range(struct address_space *mapping, 589 pgoff_t start, pgoff_t end) 590{ 591 pgoff_t indices[PAGEVEC_SIZE]; 592 struct pagevec pvec; 593 pgoff_t index; 594 int i; 595 int ret = 0; 596 int ret2 = 0; 597 int did_range_unmap = 0; 598 599 cleancache_invalidate_inode(mapping); 600 pagevec_init(&pvec, 0); 601 index = start; 602 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, 603 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, 604 indices)) { 605 mem_cgroup_uncharge_start(); 606 for (i = 0; i < pagevec_count(&pvec); i++) { 607 struct page *page = pvec.pages[i]; 608 609 /* We rely upon deletion not changing page->index */ 610 index = indices[i]; 611 if (index > end) 612 break; 613 614 if (radix_tree_exceptional_entry(page)) { 615 clear_exceptional_entry(mapping, index, page); 616 continue; 617 } 618 619 lock_page(page); 620 WARN_ON(page->index != index); 621 if (page->mapping != mapping) { 622 unlock_page(page); 623 continue; 624 } 625 wait_on_page_writeback(page); 626 if (page_mapped(page)) { 627 if (!did_range_unmap) { 628 /* 629 * Zap the rest of the file in one hit. 630 */ 631 unmap_mapping_range(mapping, 632 (loff_t)index << PAGE_CACHE_SHIFT, 633 (loff_t)(1 + end - index) 634 << PAGE_CACHE_SHIFT, 635 0); 636 did_range_unmap = 1; 637 } else { 638 /* 639 * Just zap this page 640 */ 641 unmap_mapping_range(mapping, 642 (loff_t)index << PAGE_CACHE_SHIFT, 643 PAGE_CACHE_SIZE, 0); 644 } 645 } 646 BUG_ON(page_mapped(page)); 647 ret2 = do_launder_page(mapping, page); 648 if (ret2 == 0) { 649 if (!invalidate_complete_page2(mapping, page)) 650 ret2 = -EBUSY; 651 } 652 if (ret2 < 0) 653 ret = ret2; 654 unlock_page(page); 655 } 656 pagevec_remove_exceptionals(&pvec); 657 pagevec_release(&pvec); 658 mem_cgroup_uncharge_end(); 659 cond_resched(); 660 index++; 661 } 662 cleancache_invalidate_inode(mapping); 663 return ret; 664} 665EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); 666 667/** 668 * invalidate_inode_pages2 - remove all pages from an address_space 669 * @mapping: the address_space 670 * 671 * Any pages which are found to be mapped into pagetables are unmapped prior to 672 * invalidation. 673 * 674 * Returns -EBUSY if any pages could not be invalidated. 675 */ 676int invalidate_inode_pages2(struct address_space *mapping) 677{ 678 return invalidate_inode_pages2_range(mapping, 0, -1); 679} 680EXPORT_SYMBOL_GPL(invalidate_inode_pages2); 681 682/** 683 * truncate_pagecache - unmap and remove pagecache that has been truncated 684 * @inode: inode 685 * @newsize: new file size 686 * 687 * inode's new i_size must already be written before truncate_pagecache 688 * is called. 689 * 690 * This function should typically be called before the filesystem 691 * releases resources associated with the freed range (eg. deallocates 692 * blocks). This way, pagecache will always stay logically coherent 693 * with on-disk format, and the filesystem would not have to deal with 694 * situations such as writepage being called for a page that has already 695 * had its underlying blocks deallocated. 696 */ 697void truncate_pagecache(struct inode *inode, loff_t newsize) 698{ 699 struct address_space *mapping = inode->i_mapping; 700 loff_t holebegin = round_up(newsize, PAGE_SIZE); 701 702 /* 703 * unmap_mapping_range is called twice, first simply for 704 * efficiency so that truncate_inode_pages does fewer 705 * single-page unmaps. However after this first call, and 706 * before truncate_inode_pages finishes, it is possible for 707 * private pages to be COWed, which remain after 708 * truncate_inode_pages finishes, hence the second 709 * unmap_mapping_range call must be made for correctness. 710 */ 711 unmap_mapping_range(mapping, holebegin, 0, 1); 712 truncate_inode_pages(mapping, newsize); 713 unmap_mapping_range(mapping, holebegin, 0, 1); 714} 715EXPORT_SYMBOL(truncate_pagecache); 716 717/** 718 * truncate_setsize - update inode and pagecache for a new file size 719 * @inode: inode 720 * @newsize: new file size 721 * 722 * truncate_setsize updates i_size and performs pagecache truncation (if 723 * necessary) to @newsize. It will be typically be called from the filesystem's 724 * setattr function when ATTR_SIZE is passed in. 725 * 726 * Must be called with inode_mutex held and before all filesystem specific 727 * block truncation has been performed. 728 */ 729void truncate_setsize(struct inode *inode, loff_t newsize) 730{ 731 i_size_write(inode, newsize); 732 truncate_pagecache(inode, newsize); 733} 734EXPORT_SYMBOL(truncate_setsize); 735 736/** 737 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched 738 * @inode: inode 739 * @lstart: offset of beginning of hole 740 * @lend: offset of last byte of hole 741 * 742 * This function should typically be called before the filesystem 743 * releases resources associated with the freed range (eg. deallocates 744 * blocks). This way, pagecache will always stay logically coherent 745 * with on-disk format, and the filesystem would not have to deal with 746 * situations such as writepage being called for a page that has already 747 * had its underlying blocks deallocated. 748 */ 749void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) 750{ 751 struct address_space *mapping = inode->i_mapping; 752 loff_t unmap_start = round_up(lstart, PAGE_SIZE); 753 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; 754 /* 755 * This rounding is currently just for example: unmap_mapping_range 756 * expands its hole outwards, whereas we want it to contract the hole 757 * inwards. However, existing callers of truncate_pagecache_range are 758 * doing their own page rounding first. Note that unmap_mapping_range 759 * allows holelen 0 for all, and we allow lend -1 for end of file. 760 */ 761 762 /* 763 * Unlike in truncate_pagecache, unmap_mapping_range is called only 764 * once (before truncating pagecache), and without "even_cows" flag: 765 * hole-punching should not remove private COWed pages from the hole. 766 */ 767 if ((u64)unmap_end > (u64)unmap_start) 768 unmap_mapping_range(mapping, unmap_start, 769 1 + unmap_end - unmap_start, 0); 770 truncate_inode_pages_range(mapping, lstart, lend); 771} 772EXPORT_SYMBOL(truncate_pagecache_range);