at v3.16 190 kB view raw
1/* memcontrol.c - Memory Controller 2 * 3 * Copyright IBM Corporation, 2007 4 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 5 * 6 * Copyright 2007 OpenVZ SWsoft Inc 7 * Author: Pavel Emelianov <xemul@openvz.org> 8 * 9 * Memory thresholds 10 * Copyright (C) 2009 Nokia Corporation 11 * Author: Kirill A. Shutemov 12 * 13 * Kernel Memory Controller 14 * Copyright (C) 2012 Parallels Inc. and Google Inc. 15 * Authors: Glauber Costa and Suleiman Souhlal 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License as published by 19 * the Free Software Foundation; either version 2 of the License, or 20 * (at your option) any later version. 21 * 22 * This program is distributed in the hope that it will be useful, 23 * but WITHOUT ANY WARRANTY; without even the implied warranty of 24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 25 * GNU General Public License for more details. 26 */ 27 28#include <linux/res_counter.h> 29#include <linux/memcontrol.h> 30#include <linux/cgroup.h> 31#include <linux/mm.h> 32#include <linux/hugetlb.h> 33#include <linux/pagemap.h> 34#include <linux/smp.h> 35#include <linux/page-flags.h> 36#include <linux/backing-dev.h> 37#include <linux/bit_spinlock.h> 38#include <linux/rcupdate.h> 39#include <linux/limits.h> 40#include <linux/export.h> 41#include <linux/mutex.h> 42#include <linux/rbtree.h> 43#include <linux/slab.h> 44#include <linux/swap.h> 45#include <linux/swapops.h> 46#include <linux/spinlock.h> 47#include <linux/eventfd.h> 48#include <linux/poll.h> 49#include <linux/sort.h> 50#include <linux/fs.h> 51#include <linux/seq_file.h> 52#include <linux/vmpressure.h> 53#include <linux/mm_inline.h> 54#include <linux/page_cgroup.h> 55#include <linux/cpu.h> 56#include <linux/oom.h> 57#include <linux/lockdep.h> 58#include <linux/file.h> 59#include "internal.h" 60#include <net/sock.h> 61#include <net/ip.h> 62#include <net/tcp_memcontrol.h> 63#include "slab.h" 64 65#include <asm/uaccess.h> 66 67#include <trace/events/vmscan.h> 68 69struct cgroup_subsys memory_cgrp_subsys __read_mostly; 70EXPORT_SYMBOL(memory_cgrp_subsys); 71 72#define MEM_CGROUP_RECLAIM_RETRIES 5 73static struct mem_cgroup *root_mem_cgroup __read_mostly; 74 75#ifdef CONFIG_MEMCG_SWAP 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ 77int do_swap_account __read_mostly; 78 79/* for remember boot option*/ 80#ifdef CONFIG_MEMCG_SWAP_ENABLED 81static int really_do_swap_account __initdata = 1; 82#else 83static int really_do_swap_account __initdata; 84#endif 85 86#else 87#define do_swap_account 0 88#endif 89 90 91static const char * const mem_cgroup_stat_names[] = { 92 "cache", 93 "rss", 94 "rss_huge", 95 "mapped_file", 96 "writeback", 97 "swap", 98}; 99 100enum mem_cgroup_events_index { 101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ 102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ 103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ 104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ 105 MEM_CGROUP_EVENTS_NSTATS, 106}; 107 108static const char * const mem_cgroup_events_names[] = { 109 "pgpgin", 110 "pgpgout", 111 "pgfault", 112 "pgmajfault", 113}; 114 115static const char * const mem_cgroup_lru_names[] = { 116 "inactive_anon", 117 "active_anon", 118 "inactive_file", 119 "active_file", 120 "unevictable", 121}; 122 123/* 124 * Per memcg event counter is incremented at every pagein/pageout. With THP, 125 * it will be incremated by the number of pages. This counter is used for 126 * for trigger some periodic events. This is straightforward and better 127 * than using jiffies etc. to handle periodic memcg event. 128 */ 129enum mem_cgroup_events_target { 130 MEM_CGROUP_TARGET_THRESH, 131 MEM_CGROUP_TARGET_SOFTLIMIT, 132 MEM_CGROUP_TARGET_NUMAINFO, 133 MEM_CGROUP_NTARGETS, 134}; 135#define THRESHOLDS_EVENTS_TARGET 128 136#define SOFTLIMIT_EVENTS_TARGET 1024 137#define NUMAINFO_EVENTS_TARGET 1024 138 139struct mem_cgroup_stat_cpu { 140 long count[MEM_CGROUP_STAT_NSTATS]; 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; 142 unsigned long nr_page_events; 143 unsigned long targets[MEM_CGROUP_NTARGETS]; 144}; 145 146struct mem_cgroup_reclaim_iter { 147 /* 148 * last scanned hierarchy member. Valid only if last_dead_count 149 * matches memcg->dead_count of the hierarchy root group. 150 */ 151 struct mem_cgroup *last_visited; 152 int last_dead_count; 153 154 /* scan generation, increased every round-trip */ 155 unsigned int generation; 156}; 157 158/* 159 * per-zone information in memory controller. 160 */ 161struct mem_cgroup_per_zone { 162 struct lruvec lruvec; 163 unsigned long lru_size[NR_LRU_LISTS]; 164 165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1]; 166 167 struct rb_node tree_node; /* RB tree node */ 168 unsigned long long usage_in_excess;/* Set to the value by which */ 169 /* the soft limit is exceeded*/ 170 bool on_tree; 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 172 /* use container_of */ 173}; 174 175struct mem_cgroup_per_node { 176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; 177}; 178 179/* 180 * Cgroups above their limits are maintained in a RB-Tree, independent of 181 * their hierarchy representation 182 */ 183 184struct mem_cgroup_tree_per_zone { 185 struct rb_root rb_root; 186 spinlock_t lock; 187}; 188 189struct mem_cgroup_tree_per_node { 190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; 191}; 192 193struct mem_cgroup_tree { 194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; 195}; 196 197static struct mem_cgroup_tree soft_limit_tree __read_mostly; 198 199struct mem_cgroup_threshold { 200 struct eventfd_ctx *eventfd; 201 u64 threshold; 202}; 203 204/* For threshold */ 205struct mem_cgroup_threshold_ary { 206 /* An array index points to threshold just below or equal to usage. */ 207 int current_threshold; 208 /* Size of entries[] */ 209 unsigned int size; 210 /* Array of thresholds */ 211 struct mem_cgroup_threshold entries[0]; 212}; 213 214struct mem_cgroup_thresholds { 215 /* Primary thresholds array */ 216 struct mem_cgroup_threshold_ary *primary; 217 /* 218 * Spare threshold array. 219 * This is needed to make mem_cgroup_unregister_event() "never fail". 220 * It must be able to store at least primary->size - 1 entries. 221 */ 222 struct mem_cgroup_threshold_ary *spare; 223}; 224 225/* for OOM */ 226struct mem_cgroup_eventfd_list { 227 struct list_head list; 228 struct eventfd_ctx *eventfd; 229}; 230 231/* 232 * cgroup_event represents events which userspace want to receive. 233 */ 234struct mem_cgroup_event { 235 /* 236 * memcg which the event belongs to. 237 */ 238 struct mem_cgroup *memcg; 239 /* 240 * eventfd to signal userspace about the event. 241 */ 242 struct eventfd_ctx *eventfd; 243 /* 244 * Each of these stored in a list by the cgroup. 245 */ 246 struct list_head list; 247 /* 248 * register_event() callback will be used to add new userspace 249 * waiter for changes related to this event. Use eventfd_signal() 250 * on eventfd to send notification to userspace. 251 */ 252 int (*register_event)(struct mem_cgroup *memcg, 253 struct eventfd_ctx *eventfd, const char *args); 254 /* 255 * unregister_event() callback will be called when userspace closes 256 * the eventfd or on cgroup removing. This callback must be set, 257 * if you want provide notification functionality. 258 */ 259 void (*unregister_event)(struct mem_cgroup *memcg, 260 struct eventfd_ctx *eventfd); 261 /* 262 * All fields below needed to unregister event when 263 * userspace closes eventfd. 264 */ 265 poll_table pt; 266 wait_queue_head_t *wqh; 267 wait_queue_t wait; 268 struct work_struct remove; 269}; 270 271static void mem_cgroup_threshold(struct mem_cgroup *memcg); 272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); 273 274/* 275 * The memory controller data structure. The memory controller controls both 276 * page cache and RSS per cgroup. We would eventually like to provide 277 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 278 * to help the administrator determine what knobs to tune. 279 * 280 * TODO: Add a water mark for the memory controller. Reclaim will begin when 281 * we hit the water mark. May be even add a low water mark, such that 282 * no reclaim occurs from a cgroup at it's low water mark, this is 283 * a feature that will be implemented much later in the future. 284 */ 285struct mem_cgroup { 286 struct cgroup_subsys_state css; 287 /* 288 * the counter to account for memory usage 289 */ 290 struct res_counter res; 291 292 /* vmpressure notifications */ 293 struct vmpressure vmpressure; 294 295 /* 296 * the counter to account for mem+swap usage. 297 */ 298 struct res_counter memsw; 299 300 /* 301 * the counter to account for kernel memory usage. 302 */ 303 struct res_counter kmem; 304 /* 305 * Should the accounting and control be hierarchical, per subtree? 306 */ 307 bool use_hierarchy; 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */ 309 310 bool oom_lock; 311 atomic_t under_oom; 312 atomic_t oom_wakeups; 313 314 int swappiness; 315 /* OOM-Killer disable */ 316 int oom_kill_disable; 317 318 /* set when res.limit == memsw.limit */ 319 bool memsw_is_minimum; 320 321 /* protect arrays of thresholds */ 322 struct mutex thresholds_lock; 323 324 /* thresholds for memory usage. RCU-protected */ 325 struct mem_cgroup_thresholds thresholds; 326 327 /* thresholds for mem+swap usage. RCU-protected */ 328 struct mem_cgroup_thresholds memsw_thresholds; 329 330 /* For oom notifier event fd */ 331 struct list_head oom_notify; 332 333 /* 334 * Should we move charges of a task when a task is moved into this 335 * mem_cgroup ? And what type of charges should we move ? 336 */ 337 unsigned long move_charge_at_immigrate; 338 /* 339 * set > 0 if pages under this cgroup are moving to other cgroup. 340 */ 341 atomic_t moving_account; 342 /* taken only while moving_account > 0 */ 343 spinlock_t move_lock; 344 /* 345 * percpu counter. 346 */ 347 struct mem_cgroup_stat_cpu __percpu *stat; 348 /* 349 * used when a cpu is offlined or other synchronizations 350 * See mem_cgroup_read_stat(). 351 */ 352 struct mem_cgroup_stat_cpu nocpu_base; 353 spinlock_t pcp_counter_lock; 354 355 atomic_t dead_count; 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) 357 struct cg_proto tcp_mem; 358#endif 359#if defined(CONFIG_MEMCG_KMEM) 360 /* analogous to slab_common's slab_caches list, but per-memcg; 361 * protected by memcg_slab_mutex */ 362 struct list_head memcg_slab_caches; 363 /* Index in the kmem_cache->memcg_params->memcg_caches array */ 364 int kmemcg_id; 365#endif 366 367 int last_scanned_node; 368#if MAX_NUMNODES > 1 369 nodemask_t scan_nodes; 370 atomic_t numainfo_events; 371 atomic_t numainfo_updating; 372#endif 373 374 /* List of events which userspace want to receive */ 375 struct list_head event_list; 376 spinlock_t event_list_lock; 377 378 struct mem_cgroup_per_node *nodeinfo[0]; 379 /* WARNING: nodeinfo must be the last member here */ 380}; 381 382/* internal only representation about the status of kmem accounting. */ 383enum { 384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */ 385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */ 386}; 387 388#ifdef CONFIG_MEMCG_KMEM 389static inline void memcg_kmem_set_active(struct mem_cgroup *memcg) 390{ 391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 392} 393 394static bool memcg_kmem_is_active(struct mem_cgroup *memcg) 395{ 396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags); 397} 398 399static void memcg_kmem_mark_dead(struct mem_cgroup *memcg) 400{ 401 /* 402 * Our caller must use css_get() first, because memcg_uncharge_kmem() 403 * will call css_put() if it sees the memcg is dead. 404 */ 405 smp_wmb(); 406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags)) 407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags); 408} 409 410static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg) 411{ 412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD, 413 &memcg->kmem_account_flags); 414} 415#endif 416 417/* Stuffs for move charges at task migration. */ 418/* 419 * Types of charges to be moved. "move_charge_at_immitgrate" and 420 * "immigrate_flags" are treated as a left-shifted bitmap of these types. 421 */ 422enum move_type { 423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ 424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ 425 NR_MOVE_TYPE, 426}; 427 428/* "mc" and its members are protected by cgroup_mutex */ 429static struct move_charge_struct { 430 spinlock_t lock; /* for from, to */ 431 struct mem_cgroup *from; 432 struct mem_cgroup *to; 433 unsigned long immigrate_flags; 434 unsigned long precharge; 435 unsigned long moved_charge; 436 unsigned long moved_swap; 437 struct task_struct *moving_task; /* a task moving charges */ 438 wait_queue_head_t waitq; /* a waitq for other context */ 439} mc = { 440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock), 441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), 442}; 443 444static bool move_anon(void) 445{ 446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); 447} 448 449static bool move_file(void) 450{ 451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); 452} 453 454/* 455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft 456 * limit reclaim to prevent infinite loops, if they ever occur. 457 */ 458#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 459#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 460 461enum charge_type { 462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0, 463 MEM_CGROUP_CHARGE_TYPE_ANON, 464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ 465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ 466 NR_CHARGE_TYPE, 467}; 468 469/* for encoding cft->private value on file */ 470enum res_type { 471 _MEM, 472 _MEMSWAP, 473 _OOM_TYPE, 474 _KMEM, 475}; 476 477#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) 478#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) 479#define MEMFILE_ATTR(val) ((val) & 0xffff) 480/* Used for OOM nofiier */ 481#define OOM_CONTROL (0) 482 483/* 484 * Reclaim flags for mem_cgroup_hierarchical_reclaim 485 */ 486#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0 487#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT) 488#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1 489#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT) 490 491/* 492 * The memcg_create_mutex will be held whenever a new cgroup is created. 493 * As a consequence, any change that needs to protect against new child cgroups 494 * appearing has to hold it as well. 495 */ 496static DEFINE_MUTEX(memcg_create_mutex); 497 498struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) 499{ 500 return s ? container_of(s, struct mem_cgroup, css) : NULL; 501} 502 503/* Some nice accessors for the vmpressure. */ 504struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) 505{ 506 if (!memcg) 507 memcg = root_mem_cgroup; 508 return &memcg->vmpressure; 509} 510 511struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) 512{ 513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; 514} 515 516static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 517{ 518 return (memcg == root_mem_cgroup); 519} 520 521/* 522 * We restrict the id in the range of [1, 65535], so it can fit into 523 * an unsigned short. 524 */ 525#define MEM_CGROUP_ID_MAX USHRT_MAX 526 527static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 528{ 529 return memcg->css.id; 530} 531 532static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 533{ 534 struct cgroup_subsys_state *css; 535 536 css = css_from_id(id, &memory_cgrp_subsys); 537 return mem_cgroup_from_css(css); 538} 539 540/* Writing them here to avoid exposing memcg's inner layout */ 541#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) 542 543void sock_update_memcg(struct sock *sk) 544{ 545 if (mem_cgroup_sockets_enabled) { 546 struct mem_cgroup *memcg; 547 struct cg_proto *cg_proto; 548 549 BUG_ON(!sk->sk_prot->proto_cgroup); 550 551 /* Socket cloning can throw us here with sk_cgrp already 552 * filled. It won't however, necessarily happen from 553 * process context. So the test for root memcg given 554 * the current task's memcg won't help us in this case. 555 * 556 * Respecting the original socket's memcg is a better 557 * decision in this case. 558 */ 559 if (sk->sk_cgrp) { 560 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); 561 css_get(&sk->sk_cgrp->memcg->css); 562 return; 563 } 564 565 rcu_read_lock(); 566 memcg = mem_cgroup_from_task(current); 567 cg_proto = sk->sk_prot->proto_cgroup(memcg); 568 if (!mem_cgroup_is_root(memcg) && 569 memcg_proto_active(cg_proto) && 570 css_tryget_online(&memcg->css)) { 571 sk->sk_cgrp = cg_proto; 572 } 573 rcu_read_unlock(); 574 } 575} 576EXPORT_SYMBOL(sock_update_memcg); 577 578void sock_release_memcg(struct sock *sk) 579{ 580 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { 581 struct mem_cgroup *memcg; 582 WARN_ON(!sk->sk_cgrp->memcg); 583 memcg = sk->sk_cgrp->memcg; 584 css_put(&sk->sk_cgrp->memcg->css); 585 } 586} 587 588struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) 589{ 590 if (!memcg || mem_cgroup_is_root(memcg)) 591 return NULL; 592 593 return &memcg->tcp_mem; 594} 595EXPORT_SYMBOL(tcp_proto_cgroup); 596 597static void disarm_sock_keys(struct mem_cgroup *memcg) 598{ 599 if (!memcg_proto_activated(&memcg->tcp_mem)) 600 return; 601 static_key_slow_dec(&memcg_socket_limit_enabled); 602} 603#else 604static void disarm_sock_keys(struct mem_cgroup *memcg) 605{ 606} 607#endif 608 609#ifdef CONFIG_MEMCG_KMEM 610/* 611 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. 612 * The main reason for not using cgroup id for this: 613 * this works better in sparse environments, where we have a lot of memcgs, 614 * but only a few kmem-limited. Or also, if we have, for instance, 200 615 * memcgs, and none but the 200th is kmem-limited, we'd have to have a 616 * 200 entry array for that. 617 * 618 * The current size of the caches array is stored in 619 * memcg_limited_groups_array_size. It will double each time we have to 620 * increase it. 621 */ 622static DEFINE_IDA(kmem_limited_groups); 623int memcg_limited_groups_array_size; 624 625/* 626 * MIN_SIZE is different than 1, because we would like to avoid going through 627 * the alloc/free process all the time. In a small machine, 4 kmem-limited 628 * cgroups is a reasonable guess. In the future, it could be a parameter or 629 * tunable, but that is strictly not necessary. 630 * 631 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get 632 * this constant directly from cgroup, but it is understandable that this is 633 * better kept as an internal representation in cgroup.c. In any case, the 634 * cgrp_id space is not getting any smaller, and we don't have to necessarily 635 * increase ours as well if it increases. 636 */ 637#define MEMCG_CACHES_MIN_SIZE 4 638#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX 639 640/* 641 * A lot of the calls to the cache allocation functions are expected to be 642 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are 643 * conditional to this static branch, we'll have to allow modules that does 644 * kmem_cache_alloc and the such to see this symbol as well 645 */ 646struct static_key memcg_kmem_enabled_key; 647EXPORT_SYMBOL(memcg_kmem_enabled_key); 648 649static void disarm_kmem_keys(struct mem_cgroup *memcg) 650{ 651 if (memcg_kmem_is_active(memcg)) { 652 static_key_slow_dec(&memcg_kmem_enabled_key); 653 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id); 654 } 655 /* 656 * This check can't live in kmem destruction function, 657 * since the charges will outlive the cgroup 658 */ 659 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0); 660} 661#else 662static void disarm_kmem_keys(struct mem_cgroup *memcg) 663{ 664} 665#endif /* CONFIG_MEMCG_KMEM */ 666 667static void disarm_static_keys(struct mem_cgroup *memcg) 668{ 669 disarm_sock_keys(memcg); 670 disarm_kmem_keys(memcg); 671} 672 673static void drain_all_stock_async(struct mem_cgroup *memcg); 674 675static struct mem_cgroup_per_zone * 676mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) 677{ 678 int nid = zone_to_nid(zone); 679 int zid = zone_idx(zone); 680 681 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 682} 683 684struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) 685{ 686 return &memcg->css; 687} 688 689static struct mem_cgroup_per_zone * 690mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) 691{ 692 int nid = page_to_nid(page); 693 int zid = page_zonenum(page); 694 695 return &memcg->nodeinfo[nid]->zoneinfo[zid]; 696} 697 698static struct mem_cgroup_tree_per_zone * 699soft_limit_tree_node_zone(int nid, int zid) 700{ 701 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 702} 703 704static struct mem_cgroup_tree_per_zone * 705soft_limit_tree_from_page(struct page *page) 706{ 707 int nid = page_to_nid(page); 708 int zid = page_zonenum(page); 709 710 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; 711} 712 713static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, 714 struct mem_cgroup_tree_per_zone *mctz, 715 unsigned long long new_usage_in_excess) 716{ 717 struct rb_node **p = &mctz->rb_root.rb_node; 718 struct rb_node *parent = NULL; 719 struct mem_cgroup_per_zone *mz_node; 720 721 if (mz->on_tree) 722 return; 723 724 mz->usage_in_excess = new_usage_in_excess; 725 if (!mz->usage_in_excess) 726 return; 727 while (*p) { 728 parent = *p; 729 mz_node = rb_entry(parent, struct mem_cgroup_per_zone, 730 tree_node); 731 if (mz->usage_in_excess < mz_node->usage_in_excess) 732 p = &(*p)->rb_left; 733 /* 734 * We can't avoid mem cgroups that are over their soft 735 * limit by the same amount 736 */ 737 else if (mz->usage_in_excess >= mz_node->usage_in_excess) 738 p = &(*p)->rb_right; 739 } 740 rb_link_node(&mz->tree_node, parent, p); 741 rb_insert_color(&mz->tree_node, &mctz->rb_root); 742 mz->on_tree = true; 743} 744 745static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 746 struct mem_cgroup_tree_per_zone *mctz) 747{ 748 if (!mz->on_tree) 749 return; 750 rb_erase(&mz->tree_node, &mctz->rb_root); 751 mz->on_tree = false; 752} 753 754static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, 755 struct mem_cgroup_tree_per_zone *mctz) 756{ 757 spin_lock(&mctz->lock); 758 __mem_cgroup_remove_exceeded(mz, mctz); 759 spin_unlock(&mctz->lock); 760} 761 762 763static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) 764{ 765 unsigned long long excess; 766 struct mem_cgroup_per_zone *mz; 767 struct mem_cgroup_tree_per_zone *mctz; 768 769 mctz = soft_limit_tree_from_page(page); 770 /* 771 * Necessary to update all ancestors when hierarchy is used. 772 * because their event counter is not touched. 773 */ 774 for (; memcg; memcg = parent_mem_cgroup(memcg)) { 775 mz = mem_cgroup_page_zoneinfo(memcg, page); 776 excess = res_counter_soft_limit_excess(&memcg->res); 777 /* 778 * We have to update the tree if mz is on RB-tree or 779 * mem is over its softlimit. 780 */ 781 if (excess || mz->on_tree) { 782 spin_lock(&mctz->lock); 783 /* if on-tree, remove it */ 784 if (mz->on_tree) 785 __mem_cgroup_remove_exceeded(mz, mctz); 786 /* 787 * Insert again. mz->usage_in_excess will be updated. 788 * If excess is 0, no tree ops. 789 */ 790 __mem_cgroup_insert_exceeded(mz, mctz, excess); 791 spin_unlock(&mctz->lock); 792 } 793 } 794} 795 796static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) 797{ 798 struct mem_cgroup_tree_per_zone *mctz; 799 struct mem_cgroup_per_zone *mz; 800 int nid, zid; 801 802 for_each_node(nid) { 803 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 804 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 805 mctz = soft_limit_tree_node_zone(nid, zid); 806 mem_cgroup_remove_exceeded(mz, mctz); 807 } 808 } 809} 810 811static struct mem_cgroup_per_zone * 812__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 813{ 814 struct rb_node *rightmost = NULL; 815 struct mem_cgroup_per_zone *mz; 816 817retry: 818 mz = NULL; 819 rightmost = rb_last(&mctz->rb_root); 820 if (!rightmost) 821 goto done; /* Nothing to reclaim from */ 822 823 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); 824 /* 825 * Remove the node now but someone else can add it back, 826 * we will to add it back at the end of reclaim to its correct 827 * position in the tree. 828 */ 829 __mem_cgroup_remove_exceeded(mz, mctz); 830 if (!res_counter_soft_limit_excess(&mz->memcg->res) || 831 !css_tryget_online(&mz->memcg->css)) 832 goto retry; 833done: 834 return mz; 835} 836 837static struct mem_cgroup_per_zone * 838mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) 839{ 840 struct mem_cgroup_per_zone *mz; 841 842 spin_lock(&mctz->lock); 843 mz = __mem_cgroup_largest_soft_limit_node(mctz); 844 spin_unlock(&mctz->lock); 845 return mz; 846} 847 848/* 849 * Implementation Note: reading percpu statistics for memcg. 850 * 851 * Both of vmstat[] and percpu_counter has threshold and do periodic 852 * synchronization to implement "quick" read. There are trade-off between 853 * reading cost and precision of value. Then, we may have a chance to implement 854 * a periodic synchronizion of counter in memcg's counter. 855 * 856 * But this _read() function is used for user interface now. The user accounts 857 * memory usage by memory cgroup and he _always_ requires exact value because 858 * he accounts memory. Even if we provide quick-and-fuzzy read, we always 859 * have to visit all online cpus and make sum. So, for now, unnecessary 860 * synchronization is not implemented. (just implemented for cpu hotplug) 861 * 862 * If there are kernel internal actions which can make use of some not-exact 863 * value, and reading all cpu value can be performance bottleneck in some 864 * common workload, threashold and synchonization as vmstat[] should be 865 * implemented. 866 */ 867static long mem_cgroup_read_stat(struct mem_cgroup *memcg, 868 enum mem_cgroup_stat_index idx) 869{ 870 long val = 0; 871 int cpu; 872 873 get_online_cpus(); 874 for_each_online_cpu(cpu) 875 val += per_cpu(memcg->stat->count[idx], cpu); 876#ifdef CONFIG_HOTPLUG_CPU 877 spin_lock(&memcg->pcp_counter_lock); 878 val += memcg->nocpu_base.count[idx]; 879 spin_unlock(&memcg->pcp_counter_lock); 880#endif 881 put_online_cpus(); 882 return val; 883} 884 885static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, 886 bool charge) 887{ 888 int val = (charge) ? 1 : -1; 889 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); 890} 891 892static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, 893 enum mem_cgroup_events_index idx) 894{ 895 unsigned long val = 0; 896 int cpu; 897 898 get_online_cpus(); 899 for_each_online_cpu(cpu) 900 val += per_cpu(memcg->stat->events[idx], cpu); 901#ifdef CONFIG_HOTPLUG_CPU 902 spin_lock(&memcg->pcp_counter_lock); 903 val += memcg->nocpu_base.events[idx]; 904 spin_unlock(&memcg->pcp_counter_lock); 905#endif 906 put_online_cpus(); 907 return val; 908} 909 910static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, 911 struct page *page, 912 bool anon, int nr_pages) 913{ 914 /* 915 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is 916 * counted as CACHE even if it's on ANON LRU. 917 */ 918 if (anon) 919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], 920 nr_pages); 921 else 922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], 923 nr_pages); 924 925 if (PageTransHuge(page)) 926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 927 nr_pages); 928 929 /* pagein of a big page is an event. So, ignore page size */ 930 if (nr_pages > 0) 931 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); 932 else { 933 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); 934 nr_pages = -nr_pages; /* for event */ 935 } 936 937 __this_cpu_add(memcg->stat->nr_page_events, nr_pages); 938} 939 940unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) 941{ 942 struct mem_cgroup_per_zone *mz; 943 944 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 945 return mz->lru_size[lru]; 946} 947 948static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, 949 int nid, 950 unsigned int lru_mask) 951{ 952 unsigned long nr = 0; 953 int zid; 954 955 VM_BUG_ON((unsigned)nid >= nr_node_ids); 956 957 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 958 struct mem_cgroup_per_zone *mz; 959 enum lru_list lru; 960 961 for_each_lru(lru) { 962 if (!(BIT(lru) & lru_mask)) 963 continue; 964 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 965 nr += mz->lru_size[lru]; 966 } 967 } 968 return nr; 969} 970 971static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, 972 unsigned int lru_mask) 973{ 974 unsigned long nr = 0; 975 int nid; 976 977 for_each_node_state(nid, N_MEMORY) 978 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); 979 return nr; 980} 981 982static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, 983 enum mem_cgroup_events_target target) 984{ 985 unsigned long val, next; 986 987 val = __this_cpu_read(memcg->stat->nr_page_events); 988 next = __this_cpu_read(memcg->stat->targets[target]); 989 /* from time_after() in jiffies.h */ 990 if ((long)next - (long)val < 0) { 991 switch (target) { 992 case MEM_CGROUP_TARGET_THRESH: 993 next = val + THRESHOLDS_EVENTS_TARGET; 994 break; 995 case MEM_CGROUP_TARGET_SOFTLIMIT: 996 next = val + SOFTLIMIT_EVENTS_TARGET; 997 break; 998 case MEM_CGROUP_TARGET_NUMAINFO: 999 next = val + NUMAINFO_EVENTS_TARGET; 1000 break; 1001 default: 1002 break; 1003 } 1004 __this_cpu_write(memcg->stat->targets[target], next); 1005 return true; 1006 } 1007 return false; 1008} 1009 1010/* 1011 * Check events in order. 1012 * 1013 */ 1014static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) 1015{ 1016 preempt_disable(); 1017 /* threshold event is triggered in finer grain than soft limit */ 1018 if (unlikely(mem_cgroup_event_ratelimit(memcg, 1019 MEM_CGROUP_TARGET_THRESH))) { 1020 bool do_softlimit; 1021 bool do_numainfo __maybe_unused; 1022 1023 do_softlimit = mem_cgroup_event_ratelimit(memcg, 1024 MEM_CGROUP_TARGET_SOFTLIMIT); 1025#if MAX_NUMNODES > 1 1026 do_numainfo = mem_cgroup_event_ratelimit(memcg, 1027 MEM_CGROUP_TARGET_NUMAINFO); 1028#endif 1029 preempt_enable(); 1030 1031 mem_cgroup_threshold(memcg); 1032 if (unlikely(do_softlimit)) 1033 mem_cgroup_update_tree(memcg, page); 1034#if MAX_NUMNODES > 1 1035 if (unlikely(do_numainfo)) 1036 atomic_inc(&memcg->numainfo_events); 1037#endif 1038 } else 1039 preempt_enable(); 1040} 1041 1042struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) 1043{ 1044 /* 1045 * mm_update_next_owner() may clear mm->owner to NULL 1046 * if it races with swapoff, page migration, etc. 1047 * So this can be called with p == NULL. 1048 */ 1049 if (unlikely(!p)) 1050 return NULL; 1051 1052 return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); 1053} 1054 1055static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1056{ 1057 struct mem_cgroup *memcg = NULL; 1058 1059 rcu_read_lock(); 1060 do { 1061 /* 1062 * Page cache insertions can happen withou an 1063 * actual mm context, e.g. during disk probing 1064 * on boot, loopback IO, acct() writes etc. 1065 */ 1066 if (unlikely(!mm)) 1067 memcg = root_mem_cgroup; 1068 else { 1069 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1070 if (unlikely(!memcg)) 1071 memcg = root_mem_cgroup; 1072 } 1073 } while (!css_tryget_online(&memcg->css)); 1074 rcu_read_unlock(); 1075 return memcg; 1076} 1077 1078/* 1079 * Returns a next (in a pre-order walk) alive memcg (with elevated css 1080 * ref. count) or NULL if the whole root's subtree has been visited. 1081 * 1082 * helper function to be used by mem_cgroup_iter 1083 */ 1084static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root, 1085 struct mem_cgroup *last_visited) 1086{ 1087 struct cgroup_subsys_state *prev_css, *next_css; 1088 1089 prev_css = last_visited ? &last_visited->css : NULL; 1090skip_node: 1091 next_css = css_next_descendant_pre(prev_css, &root->css); 1092 1093 /* 1094 * Even if we found a group we have to make sure it is 1095 * alive. css && !memcg means that the groups should be 1096 * skipped and we should continue the tree walk. 1097 * last_visited css is safe to use because it is 1098 * protected by css_get and the tree walk is rcu safe. 1099 * 1100 * We do not take a reference on the root of the tree walk 1101 * because we might race with the root removal when it would 1102 * be the only node in the iterated hierarchy and mem_cgroup_iter 1103 * would end up in an endless loop because it expects that at 1104 * least one valid node will be returned. Root cannot disappear 1105 * because caller of the iterator should hold it already so 1106 * skipping css reference should be safe. 1107 */ 1108 if (next_css) { 1109 if ((next_css == &root->css) || 1110 ((next_css->flags & CSS_ONLINE) && 1111 css_tryget_online(next_css))) 1112 return mem_cgroup_from_css(next_css); 1113 1114 prev_css = next_css; 1115 goto skip_node; 1116 } 1117 1118 return NULL; 1119} 1120 1121static void mem_cgroup_iter_invalidate(struct mem_cgroup *root) 1122{ 1123 /* 1124 * When a group in the hierarchy below root is destroyed, the 1125 * hierarchy iterator can no longer be trusted since it might 1126 * have pointed to the destroyed group. Invalidate it. 1127 */ 1128 atomic_inc(&root->dead_count); 1129} 1130 1131static struct mem_cgroup * 1132mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter, 1133 struct mem_cgroup *root, 1134 int *sequence) 1135{ 1136 struct mem_cgroup *position = NULL; 1137 /* 1138 * A cgroup destruction happens in two stages: offlining and 1139 * release. They are separated by a RCU grace period. 1140 * 1141 * If the iterator is valid, we may still race with an 1142 * offlining. The RCU lock ensures the object won't be 1143 * released, tryget will fail if we lost the race. 1144 */ 1145 *sequence = atomic_read(&root->dead_count); 1146 if (iter->last_dead_count == *sequence) { 1147 smp_rmb(); 1148 position = iter->last_visited; 1149 1150 /* 1151 * We cannot take a reference to root because we might race 1152 * with root removal and returning NULL would end up in 1153 * an endless loop on the iterator user level when root 1154 * would be returned all the time. 1155 */ 1156 if (position && position != root && 1157 !css_tryget_online(&position->css)) 1158 position = NULL; 1159 } 1160 return position; 1161} 1162 1163static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter, 1164 struct mem_cgroup *last_visited, 1165 struct mem_cgroup *new_position, 1166 struct mem_cgroup *root, 1167 int sequence) 1168{ 1169 /* root reference counting symmetric to mem_cgroup_iter_load */ 1170 if (last_visited && last_visited != root) 1171 css_put(&last_visited->css); 1172 /* 1173 * We store the sequence count from the time @last_visited was 1174 * loaded successfully instead of rereading it here so that we 1175 * don't lose destruction events in between. We could have 1176 * raced with the destruction of @new_position after all. 1177 */ 1178 iter->last_visited = new_position; 1179 smp_wmb(); 1180 iter->last_dead_count = sequence; 1181} 1182 1183/** 1184 * mem_cgroup_iter - iterate over memory cgroup hierarchy 1185 * @root: hierarchy root 1186 * @prev: previously returned memcg, NULL on first invocation 1187 * @reclaim: cookie for shared reclaim walks, NULL for full walks 1188 * 1189 * Returns references to children of the hierarchy below @root, or 1190 * @root itself, or %NULL after a full round-trip. 1191 * 1192 * Caller must pass the return value in @prev on subsequent 1193 * invocations for reference counting, or use mem_cgroup_iter_break() 1194 * to cancel a hierarchy walk before the round-trip is complete. 1195 * 1196 * Reclaimers can specify a zone and a priority level in @reclaim to 1197 * divide up the memcgs in the hierarchy among all concurrent 1198 * reclaimers operating on the same zone and priority. 1199 */ 1200struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, 1201 struct mem_cgroup *prev, 1202 struct mem_cgroup_reclaim_cookie *reclaim) 1203{ 1204 struct mem_cgroup *memcg = NULL; 1205 struct mem_cgroup *last_visited = NULL; 1206 1207 if (mem_cgroup_disabled()) 1208 return NULL; 1209 1210 if (!root) 1211 root = root_mem_cgroup; 1212 1213 if (prev && !reclaim) 1214 last_visited = prev; 1215 1216 if (!root->use_hierarchy && root != root_mem_cgroup) { 1217 if (prev) 1218 goto out_css_put; 1219 return root; 1220 } 1221 1222 rcu_read_lock(); 1223 while (!memcg) { 1224 struct mem_cgroup_reclaim_iter *uninitialized_var(iter); 1225 int uninitialized_var(seq); 1226 1227 if (reclaim) { 1228 struct mem_cgroup_per_zone *mz; 1229 1230 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); 1231 iter = &mz->reclaim_iter[reclaim->priority]; 1232 if (prev && reclaim->generation != iter->generation) { 1233 iter->last_visited = NULL; 1234 goto out_unlock; 1235 } 1236 1237 last_visited = mem_cgroup_iter_load(iter, root, &seq); 1238 } 1239 1240 memcg = __mem_cgroup_iter_next(root, last_visited); 1241 1242 if (reclaim) { 1243 mem_cgroup_iter_update(iter, last_visited, memcg, root, 1244 seq); 1245 1246 if (!memcg) 1247 iter->generation++; 1248 else if (!prev && memcg) 1249 reclaim->generation = iter->generation; 1250 } 1251 1252 if (prev && !memcg) 1253 goto out_unlock; 1254 } 1255out_unlock: 1256 rcu_read_unlock(); 1257out_css_put: 1258 if (prev && prev != root) 1259 css_put(&prev->css); 1260 1261 return memcg; 1262} 1263 1264/** 1265 * mem_cgroup_iter_break - abort a hierarchy walk prematurely 1266 * @root: hierarchy root 1267 * @prev: last visited hierarchy member as returned by mem_cgroup_iter() 1268 */ 1269void mem_cgroup_iter_break(struct mem_cgroup *root, 1270 struct mem_cgroup *prev) 1271{ 1272 if (!root) 1273 root = root_mem_cgroup; 1274 if (prev && prev != root) 1275 css_put(&prev->css); 1276} 1277 1278/* 1279 * Iteration constructs for visiting all cgroups (under a tree). If 1280 * loops are exited prematurely (break), mem_cgroup_iter_break() must 1281 * be used for reference counting. 1282 */ 1283#define for_each_mem_cgroup_tree(iter, root) \ 1284 for (iter = mem_cgroup_iter(root, NULL, NULL); \ 1285 iter != NULL; \ 1286 iter = mem_cgroup_iter(root, iter, NULL)) 1287 1288#define for_each_mem_cgroup(iter) \ 1289 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ 1290 iter != NULL; \ 1291 iter = mem_cgroup_iter(NULL, iter, NULL)) 1292 1293void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) 1294{ 1295 struct mem_cgroup *memcg; 1296 1297 rcu_read_lock(); 1298 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1299 if (unlikely(!memcg)) 1300 goto out; 1301 1302 switch (idx) { 1303 case PGFAULT: 1304 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); 1305 break; 1306 case PGMAJFAULT: 1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); 1308 break; 1309 default: 1310 BUG(); 1311 } 1312out: 1313 rcu_read_unlock(); 1314} 1315EXPORT_SYMBOL(__mem_cgroup_count_vm_event); 1316 1317/** 1318 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg 1319 * @zone: zone of the wanted lruvec 1320 * @memcg: memcg of the wanted lruvec 1321 * 1322 * Returns the lru list vector holding pages for the given @zone and 1323 * @mem. This can be the global zone lruvec, if the memory controller 1324 * is disabled. 1325 */ 1326struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, 1327 struct mem_cgroup *memcg) 1328{ 1329 struct mem_cgroup_per_zone *mz; 1330 struct lruvec *lruvec; 1331 1332 if (mem_cgroup_disabled()) { 1333 lruvec = &zone->lruvec; 1334 goto out; 1335 } 1336 1337 mz = mem_cgroup_zone_zoneinfo(memcg, zone); 1338 lruvec = &mz->lruvec; 1339out: 1340 /* 1341 * Since a node can be onlined after the mem_cgroup was created, 1342 * we have to be prepared to initialize lruvec->zone here; 1343 * and if offlined then reonlined, we need to reinitialize it. 1344 */ 1345 if (unlikely(lruvec->zone != zone)) 1346 lruvec->zone = zone; 1347 return lruvec; 1348} 1349 1350/* 1351 * Following LRU functions are allowed to be used without PCG_LOCK. 1352 * Operations are called by routine of global LRU independently from memcg. 1353 * What we have to take care of here is validness of pc->mem_cgroup. 1354 * 1355 * Changes to pc->mem_cgroup happens when 1356 * 1. charge 1357 * 2. moving account 1358 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache. 1359 * It is added to LRU before charge. 1360 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU. 1361 * When moving account, the page is not on LRU. It's isolated. 1362 */ 1363 1364/** 1365 * mem_cgroup_page_lruvec - return lruvec for adding an lru page 1366 * @page: the page 1367 * @zone: zone of the page 1368 */ 1369struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) 1370{ 1371 struct mem_cgroup_per_zone *mz; 1372 struct mem_cgroup *memcg; 1373 struct page_cgroup *pc; 1374 struct lruvec *lruvec; 1375 1376 if (mem_cgroup_disabled()) { 1377 lruvec = &zone->lruvec; 1378 goto out; 1379 } 1380 1381 pc = lookup_page_cgroup(page); 1382 memcg = pc->mem_cgroup; 1383 1384 /* 1385 * Surreptitiously switch any uncharged offlist page to root: 1386 * an uncharged page off lru does nothing to secure 1387 * its former mem_cgroup from sudden removal. 1388 * 1389 * Our caller holds lru_lock, and PageCgroupUsed is updated 1390 * under page_cgroup lock: between them, they make all uses 1391 * of pc->mem_cgroup safe. 1392 */ 1393 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup) 1394 pc->mem_cgroup = memcg = root_mem_cgroup; 1395 1396 mz = mem_cgroup_page_zoneinfo(memcg, page); 1397 lruvec = &mz->lruvec; 1398out: 1399 /* 1400 * Since a node can be onlined after the mem_cgroup was created, 1401 * we have to be prepared to initialize lruvec->zone here; 1402 * and if offlined then reonlined, we need to reinitialize it. 1403 */ 1404 if (unlikely(lruvec->zone != zone)) 1405 lruvec->zone = zone; 1406 return lruvec; 1407} 1408 1409/** 1410 * mem_cgroup_update_lru_size - account for adding or removing an lru page 1411 * @lruvec: mem_cgroup per zone lru vector 1412 * @lru: index of lru list the page is sitting on 1413 * @nr_pages: positive when adding or negative when removing 1414 * 1415 * This function must be called when a page is added to or removed from an 1416 * lru list. 1417 */ 1418void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 1419 int nr_pages) 1420{ 1421 struct mem_cgroup_per_zone *mz; 1422 unsigned long *lru_size; 1423 1424 if (mem_cgroup_disabled()) 1425 return; 1426 1427 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); 1428 lru_size = mz->lru_size + lru; 1429 *lru_size += nr_pages; 1430 VM_BUG_ON((long)(*lru_size) < 0); 1431} 1432 1433/* 1434 * Checks whether given mem is same or in the root_mem_cgroup's 1435 * hierarchy subtree 1436 */ 1437bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1438 struct mem_cgroup *memcg) 1439{ 1440 if (root_memcg == memcg) 1441 return true; 1442 if (!root_memcg->use_hierarchy || !memcg) 1443 return false; 1444 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup); 1445} 1446 1447static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg, 1448 struct mem_cgroup *memcg) 1449{ 1450 bool ret; 1451 1452 rcu_read_lock(); 1453 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg); 1454 rcu_read_unlock(); 1455 return ret; 1456} 1457 1458bool task_in_mem_cgroup(struct task_struct *task, 1459 const struct mem_cgroup *memcg) 1460{ 1461 struct mem_cgroup *curr = NULL; 1462 struct task_struct *p; 1463 bool ret; 1464 1465 p = find_lock_task_mm(task); 1466 if (p) { 1467 curr = get_mem_cgroup_from_mm(p->mm); 1468 task_unlock(p); 1469 } else { 1470 /* 1471 * All threads may have already detached their mm's, but the oom 1472 * killer still needs to detect if they have already been oom 1473 * killed to prevent needlessly killing additional tasks. 1474 */ 1475 rcu_read_lock(); 1476 curr = mem_cgroup_from_task(task); 1477 if (curr) 1478 css_get(&curr->css); 1479 rcu_read_unlock(); 1480 } 1481 /* 1482 * We should check use_hierarchy of "memcg" not "curr". Because checking 1483 * use_hierarchy of "curr" here make this function true if hierarchy is 1484 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup* 1485 * hierarchy(even if use_hierarchy is disabled in "memcg"). 1486 */ 1487 ret = mem_cgroup_same_or_subtree(memcg, curr); 1488 css_put(&curr->css); 1489 return ret; 1490} 1491 1492int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) 1493{ 1494 unsigned long inactive_ratio; 1495 unsigned long inactive; 1496 unsigned long active; 1497 unsigned long gb; 1498 1499 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); 1500 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); 1501 1502 gb = (inactive + active) >> (30 - PAGE_SHIFT); 1503 if (gb) 1504 inactive_ratio = int_sqrt(10 * gb); 1505 else 1506 inactive_ratio = 1; 1507 1508 return inactive * inactive_ratio < active; 1509} 1510 1511#define mem_cgroup_from_res_counter(counter, member) \ 1512 container_of(counter, struct mem_cgroup, member) 1513 1514/** 1515 * mem_cgroup_margin - calculate chargeable space of a memory cgroup 1516 * @memcg: the memory cgroup 1517 * 1518 * Returns the maximum amount of memory @mem can be charged with, in 1519 * pages. 1520 */ 1521static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) 1522{ 1523 unsigned long long margin; 1524 1525 margin = res_counter_margin(&memcg->res); 1526 if (do_swap_account) 1527 margin = min(margin, res_counter_margin(&memcg->memsw)); 1528 return margin >> PAGE_SHIFT; 1529} 1530 1531int mem_cgroup_swappiness(struct mem_cgroup *memcg) 1532{ 1533 /* root ? */ 1534 if (mem_cgroup_disabled() || !memcg->css.parent) 1535 return vm_swappiness; 1536 1537 return memcg->swappiness; 1538} 1539 1540/* 1541 * memcg->moving_account is used for checking possibility that some thread is 1542 * calling move_account(). When a thread on CPU-A starts moving pages under 1543 * a memcg, other threads should check memcg->moving_account under 1544 * rcu_read_lock(), like this: 1545 * 1546 * CPU-A CPU-B 1547 * rcu_read_lock() 1548 * memcg->moving_account+1 if (memcg->mocing_account) 1549 * take heavy locks. 1550 * synchronize_rcu() update something. 1551 * rcu_read_unlock() 1552 * start move here. 1553 */ 1554 1555/* for quick checking without looking up memcg */ 1556atomic_t memcg_moving __read_mostly; 1557 1558static void mem_cgroup_start_move(struct mem_cgroup *memcg) 1559{ 1560 atomic_inc(&memcg_moving); 1561 atomic_inc(&memcg->moving_account); 1562 synchronize_rcu(); 1563} 1564 1565static void mem_cgroup_end_move(struct mem_cgroup *memcg) 1566{ 1567 /* 1568 * Now, mem_cgroup_clear_mc() may call this function with NULL. 1569 * We check NULL in callee rather than caller. 1570 */ 1571 if (memcg) { 1572 atomic_dec(&memcg_moving); 1573 atomic_dec(&memcg->moving_account); 1574 } 1575} 1576 1577/* 1578 * A routine for checking "mem" is under move_account() or not. 1579 * 1580 * Checking a cgroup is mc.from or mc.to or under hierarchy of 1581 * moving cgroups. This is for waiting at high-memory pressure 1582 * caused by "move". 1583 */ 1584static bool mem_cgroup_under_move(struct mem_cgroup *memcg) 1585{ 1586 struct mem_cgroup *from; 1587 struct mem_cgroup *to; 1588 bool ret = false; 1589 /* 1590 * Unlike task_move routines, we access mc.to, mc.from not under 1591 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. 1592 */ 1593 spin_lock(&mc.lock); 1594 from = mc.from; 1595 to = mc.to; 1596 if (!from) 1597 goto unlock; 1598 1599 ret = mem_cgroup_same_or_subtree(memcg, from) 1600 || mem_cgroup_same_or_subtree(memcg, to); 1601unlock: 1602 spin_unlock(&mc.lock); 1603 return ret; 1604} 1605 1606static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) 1607{ 1608 if (mc.moving_task && current != mc.moving_task) { 1609 if (mem_cgroup_under_move(memcg)) { 1610 DEFINE_WAIT(wait); 1611 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); 1612 /* moving charge context might have finished. */ 1613 if (mc.moving_task) 1614 schedule(); 1615 finish_wait(&mc.waitq, &wait); 1616 return true; 1617 } 1618 } 1619 return false; 1620} 1621 1622/* 1623 * Take this lock when 1624 * - a code tries to modify page's memcg while it's USED. 1625 * - a code tries to modify page state accounting in a memcg. 1626 */ 1627static void move_lock_mem_cgroup(struct mem_cgroup *memcg, 1628 unsigned long *flags) 1629{ 1630 spin_lock_irqsave(&memcg->move_lock, *flags); 1631} 1632 1633static void move_unlock_mem_cgroup(struct mem_cgroup *memcg, 1634 unsigned long *flags) 1635{ 1636 spin_unlock_irqrestore(&memcg->move_lock, *flags); 1637} 1638 1639#define K(x) ((x) << (PAGE_SHIFT-10)) 1640/** 1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. 1642 * @memcg: The memory cgroup that went over limit 1643 * @p: Task that is going to be killed 1644 * 1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is 1646 * enabled 1647 */ 1648void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) 1649{ 1650 /* oom_info_lock ensures that parallel ooms do not interleave */ 1651 static DEFINE_MUTEX(oom_info_lock); 1652 struct mem_cgroup *iter; 1653 unsigned int i; 1654 1655 if (!p) 1656 return; 1657 1658 mutex_lock(&oom_info_lock); 1659 rcu_read_lock(); 1660 1661 pr_info("Task in "); 1662 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); 1663 pr_info(" killed as a result of limit of "); 1664 pr_cont_cgroup_path(memcg->css.cgroup); 1665 pr_info("\n"); 1666 1667 rcu_read_unlock(); 1668 1669 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n", 1670 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10, 1671 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10, 1672 res_counter_read_u64(&memcg->res, RES_FAILCNT)); 1673 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n", 1674 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10, 1675 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10, 1676 res_counter_read_u64(&memcg->memsw, RES_FAILCNT)); 1677 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n", 1678 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10, 1679 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10, 1680 res_counter_read_u64(&memcg->kmem, RES_FAILCNT)); 1681 1682 for_each_mem_cgroup_tree(iter, memcg) { 1683 pr_info("Memory cgroup stats for "); 1684 pr_cont_cgroup_path(iter->css.cgroup); 1685 pr_cont(":"); 1686 1687 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 1688 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 1689 continue; 1690 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], 1691 K(mem_cgroup_read_stat(iter, i))); 1692 } 1693 1694 for (i = 0; i < NR_LRU_LISTS; i++) 1695 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], 1696 K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); 1697 1698 pr_cont("\n"); 1699 } 1700 mutex_unlock(&oom_info_lock); 1701} 1702 1703/* 1704 * This function returns the number of memcg under hierarchy tree. Returns 1705 * 1(self count) if no children. 1706 */ 1707static int mem_cgroup_count_children(struct mem_cgroup *memcg) 1708{ 1709 int num = 0; 1710 struct mem_cgroup *iter; 1711 1712 for_each_mem_cgroup_tree(iter, memcg) 1713 num++; 1714 return num; 1715} 1716 1717/* 1718 * Return the memory (and swap, if configured) limit for a memcg. 1719 */ 1720static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg) 1721{ 1722 u64 limit; 1723 1724 limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 1725 1726 /* 1727 * Do not consider swap space if we cannot swap due to swappiness 1728 */ 1729 if (mem_cgroup_swappiness(memcg)) { 1730 u64 memsw; 1731 1732 limit += total_swap_pages << PAGE_SHIFT; 1733 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 1734 1735 /* 1736 * If memsw is finite and limits the amount of swap space 1737 * available to this memcg, return that limit. 1738 */ 1739 limit = min(limit, memsw); 1740 } 1741 1742 return limit; 1743} 1744 1745static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, 1746 int order) 1747{ 1748 struct mem_cgroup *iter; 1749 unsigned long chosen_points = 0; 1750 unsigned long totalpages; 1751 unsigned int points = 0; 1752 struct task_struct *chosen = NULL; 1753 1754 /* 1755 * If current has a pending SIGKILL or is exiting, then automatically 1756 * select it. The goal is to allow it to allocate so that it may 1757 * quickly exit and free its memory. 1758 */ 1759 if (fatal_signal_pending(current) || current->flags & PF_EXITING) { 1760 set_thread_flag(TIF_MEMDIE); 1761 return; 1762 } 1763 1764 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); 1765 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1; 1766 for_each_mem_cgroup_tree(iter, memcg) { 1767 struct css_task_iter it; 1768 struct task_struct *task; 1769 1770 css_task_iter_start(&iter->css, &it); 1771 while ((task = css_task_iter_next(&it))) { 1772 switch (oom_scan_process_thread(task, totalpages, NULL, 1773 false)) { 1774 case OOM_SCAN_SELECT: 1775 if (chosen) 1776 put_task_struct(chosen); 1777 chosen = task; 1778 chosen_points = ULONG_MAX; 1779 get_task_struct(chosen); 1780 /* fall through */ 1781 case OOM_SCAN_CONTINUE: 1782 continue; 1783 case OOM_SCAN_ABORT: 1784 css_task_iter_end(&it); 1785 mem_cgroup_iter_break(memcg, iter); 1786 if (chosen) 1787 put_task_struct(chosen); 1788 return; 1789 case OOM_SCAN_OK: 1790 break; 1791 }; 1792 points = oom_badness(task, memcg, NULL, totalpages); 1793 if (!points || points < chosen_points) 1794 continue; 1795 /* Prefer thread group leaders for display purposes */ 1796 if (points == chosen_points && 1797 thread_group_leader(chosen)) 1798 continue; 1799 1800 if (chosen) 1801 put_task_struct(chosen); 1802 chosen = task; 1803 chosen_points = points; 1804 get_task_struct(chosen); 1805 } 1806 css_task_iter_end(&it); 1807 } 1808 1809 if (!chosen) 1810 return; 1811 points = chosen_points * 1000 / totalpages; 1812 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, 1813 NULL, "Memory cgroup out of memory"); 1814} 1815 1816static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg, 1817 gfp_t gfp_mask, 1818 unsigned long flags) 1819{ 1820 unsigned long total = 0; 1821 bool noswap = false; 1822 int loop; 1823 1824 if (flags & MEM_CGROUP_RECLAIM_NOSWAP) 1825 noswap = true; 1826 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum) 1827 noswap = true; 1828 1829 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) { 1830 if (loop) 1831 drain_all_stock_async(memcg); 1832 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap); 1833 /* 1834 * Allow limit shrinkers, which are triggered directly 1835 * by userspace, to catch signals and stop reclaim 1836 * after minimal progress, regardless of the margin. 1837 */ 1838 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK)) 1839 break; 1840 if (mem_cgroup_margin(memcg)) 1841 break; 1842 /* 1843 * If nothing was reclaimed after two attempts, there 1844 * may be no reclaimable pages in this hierarchy. 1845 */ 1846 if (loop && !total) 1847 break; 1848 } 1849 return total; 1850} 1851 1852/** 1853 * test_mem_cgroup_node_reclaimable 1854 * @memcg: the target memcg 1855 * @nid: the node ID to be checked. 1856 * @noswap : specify true here if the user wants flle only information. 1857 * 1858 * This function returns whether the specified memcg contains any 1859 * reclaimable pages on a node. Returns true if there are any reclaimable 1860 * pages in the node. 1861 */ 1862static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, 1863 int nid, bool noswap) 1864{ 1865 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) 1866 return true; 1867 if (noswap || !total_swap_pages) 1868 return false; 1869 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) 1870 return true; 1871 return false; 1872 1873} 1874#if MAX_NUMNODES > 1 1875 1876/* 1877 * Always updating the nodemask is not very good - even if we have an empty 1878 * list or the wrong list here, we can start from some node and traverse all 1879 * nodes based on the zonelist. So update the list loosely once per 10 secs. 1880 * 1881 */ 1882static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) 1883{ 1884 int nid; 1885 /* 1886 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET 1887 * pagein/pageout changes since the last update. 1888 */ 1889 if (!atomic_read(&memcg->numainfo_events)) 1890 return; 1891 if (atomic_inc_return(&memcg->numainfo_updating) > 1) 1892 return; 1893 1894 /* make a nodemask where this memcg uses memory from */ 1895 memcg->scan_nodes = node_states[N_MEMORY]; 1896 1897 for_each_node_mask(nid, node_states[N_MEMORY]) { 1898 1899 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) 1900 node_clear(nid, memcg->scan_nodes); 1901 } 1902 1903 atomic_set(&memcg->numainfo_events, 0); 1904 atomic_set(&memcg->numainfo_updating, 0); 1905} 1906 1907/* 1908 * Selecting a node where we start reclaim from. Because what we need is just 1909 * reducing usage counter, start from anywhere is O,K. Considering 1910 * memory reclaim from current node, there are pros. and cons. 1911 * 1912 * Freeing memory from current node means freeing memory from a node which 1913 * we'll use or we've used. So, it may make LRU bad. And if several threads 1914 * hit limits, it will see a contention on a node. But freeing from remote 1915 * node means more costs for memory reclaim because of memory latency. 1916 * 1917 * Now, we use round-robin. Better algorithm is welcomed. 1918 */ 1919int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1920{ 1921 int node; 1922 1923 mem_cgroup_may_update_nodemask(memcg); 1924 node = memcg->last_scanned_node; 1925 1926 node = next_node(node, memcg->scan_nodes); 1927 if (node == MAX_NUMNODES) 1928 node = first_node(memcg->scan_nodes); 1929 /* 1930 * We call this when we hit limit, not when pages are added to LRU. 1931 * No LRU may hold pages because all pages are UNEVICTABLE or 1932 * memcg is too small and all pages are not on LRU. In that case, 1933 * we use curret node. 1934 */ 1935 if (unlikely(node == MAX_NUMNODES)) 1936 node = numa_node_id(); 1937 1938 memcg->last_scanned_node = node; 1939 return node; 1940} 1941 1942/* 1943 * Check all nodes whether it contains reclaimable pages or not. 1944 * For quick scan, we make use of scan_nodes. This will allow us to skip 1945 * unused nodes. But scan_nodes is lazily updated and may not cotain 1946 * enough new information. We need to do double check. 1947 */ 1948static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1949{ 1950 int nid; 1951 1952 /* 1953 * quick check...making use of scan_node. 1954 * We can skip unused nodes. 1955 */ 1956 if (!nodes_empty(memcg->scan_nodes)) { 1957 for (nid = first_node(memcg->scan_nodes); 1958 nid < MAX_NUMNODES; 1959 nid = next_node(nid, memcg->scan_nodes)) { 1960 1961 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1962 return true; 1963 } 1964 } 1965 /* 1966 * Check rest of nodes. 1967 */ 1968 for_each_node_state(nid, N_MEMORY) { 1969 if (node_isset(nid, memcg->scan_nodes)) 1970 continue; 1971 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap)) 1972 return true; 1973 } 1974 return false; 1975} 1976 1977#else 1978int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) 1979{ 1980 return 0; 1981} 1982 1983static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap) 1984{ 1985 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap); 1986} 1987#endif 1988 1989static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, 1990 struct zone *zone, 1991 gfp_t gfp_mask, 1992 unsigned long *total_scanned) 1993{ 1994 struct mem_cgroup *victim = NULL; 1995 int total = 0; 1996 int loop = 0; 1997 unsigned long excess; 1998 unsigned long nr_scanned; 1999 struct mem_cgroup_reclaim_cookie reclaim = { 2000 .zone = zone, 2001 .priority = 0, 2002 }; 2003 2004 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT; 2005 2006 while (1) { 2007 victim = mem_cgroup_iter(root_memcg, victim, &reclaim); 2008 if (!victim) { 2009 loop++; 2010 if (loop >= 2) { 2011 /* 2012 * If we have not been able to reclaim 2013 * anything, it might because there are 2014 * no reclaimable pages under this hierarchy 2015 */ 2016 if (!total) 2017 break; 2018 /* 2019 * We want to do more targeted reclaim. 2020 * excess >> 2 is not to excessive so as to 2021 * reclaim too much, nor too less that we keep 2022 * coming back to reclaim from this cgroup 2023 */ 2024 if (total >= (excess >> 2) || 2025 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) 2026 break; 2027 } 2028 continue; 2029 } 2030 if (!mem_cgroup_reclaimable(victim, false)) 2031 continue; 2032 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, 2033 zone, &nr_scanned); 2034 *total_scanned += nr_scanned; 2035 if (!res_counter_soft_limit_excess(&root_memcg->res)) 2036 break; 2037 } 2038 mem_cgroup_iter_break(root_memcg, victim); 2039 return total; 2040} 2041 2042#ifdef CONFIG_LOCKDEP 2043static struct lockdep_map memcg_oom_lock_dep_map = { 2044 .name = "memcg_oom_lock", 2045}; 2046#endif 2047 2048static DEFINE_SPINLOCK(memcg_oom_lock); 2049 2050/* 2051 * Check OOM-Killer is already running under our hierarchy. 2052 * If someone is running, return false. 2053 */ 2054static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) 2055{ 2056 struct mem_cgroup *iter, *failed = NULL; 2057 2058 spin_lock(&memcg_oom_lock); 2059 2060 for_each_mem_cgroup_tree(iter, memcg) { 2061 if (iter->oom_lock) { 2062 /* 2063 * this subtree of our hierarchy is already locked 2064 * so we cannot give a lock. 2065 */ 2066 failed = iter; 2067 mem_cgroup_iter_break(memcg, iter); 2068 break; 2069 } else 2070 iter->oom_lock = true; 2071 } 2072 2073 if (failed) { 2074 /* 2075 * OK, we failed to lock the whole subtree so we have 2076 * to clean up what we set up to the failing subtree 2077 */ 2078 for_each_mem_cgroup_tree(iter, memcg) { 2079 if (iter == failed) { 2080 mem_cgroup_iter_break(memcg, iter); 2081 break; 2082 } 2083 iter->oom_lock = false; 2084 } 2085 } else 2086 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); 2087 2088 spin_unlock(&memcg_oom_lock); 2089 2090 return !failed; 2091} 2092 2093static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) 2094{ 2095 struct mem_cgroup *iter; 2096 2097 spin_lock(&memcg_oom_lock); 2098 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); 2099 for_each_mem_cgroup_tree(iter, memcg) 2100 iter->oom_lock = false; 2101 spin_unlock(&memcg_oom_lock); 2102} 2103 2104static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) 2105{ 2106 struct mem_cgroup *iter; 2107 2108 for_each_mem_cgroup_tree(iter, memcg) 2109 atomic_inc(&iter->under_oom); 2110} 2111 2112static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) 2113{ 2114 struct mem_cgroup *iter; 2115 2116 /* 2117 * When a new child is created while the hierarchy is under oom, 2118 * mem_cgroup_oom_lock() may not be called. We have to use 2119 * atomic_add_unless() here. 2120 */ 2121 for_each_mem_cgroup_tree(iter, memcg) 2122 atomic_add_unless(&iter->under_oom, -1, 0); 2123} 2124 2125static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); 2126 2127struct oom_wait_info { 2128 struct mem_cgroup *memcg; 2129 wait_queue_t wait; 2130}; 2131 2132static int memcg_oom_wake_function(wait_queue_t *wait, 2133 unsigned mode, int sync, void *arg) 2134{ 2135 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; 2136 struct mem_cgroup *oom_wait_memcg; 2137 struct oom_wait_info *oom_wait_info; 2138 2139 oom_wait_info = container_of(wait, struct oom_wait_info, wait); 2140 oom_wait_memcg = oom_wait_info->memcg; 2141 2142 /* 2143 * Both of oom_wait_info->memcg and wake_memcg are stable under us. 2144 * Then we can use css_is_ancestor without taking care of RCU. 2145 */ 2146 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg) 2147 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg)) 2148 return 0; 2149 return autoremove_wake_function(wait, mode, sync, arg); 2150} 2151 2152static void memcg_wakeup_oom(struct mem_cgroup *memcg) 2153{ 2154 atomic_inc(&memcg->oom_wakeups); 2155 /* for filtering, pass "memcg" as argument. */ 2156 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); 2157} 2158 2159static void memcg_oom_recover(struct mem_cgroup *memcg) 2160{ 2161 if (memcg && atomic_read(&memcg->under_oom)) 2162 memcg_wakeup_oom(memcg); 2163} 2164 2165static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) 2166{ 2167 if (!current->memcg_oom.may_oom) 2168 return; 2169 /* 2170 * We are in the middle of the charge context here, so we 2171 * don't want to block when potentially sitting on a callstack 2172 * that holds all kinds of filesystem and mm locks. 2173 * 2174 * Also, the caller may handle a failed allocation gracefully 2175 * (like optional page cache readahead) and so an OOM killer 2176 * invocation might not even be necessary. 2177 * 2178 * That's why we don't do anything here except remember the 2179 * OOM context and then deal with it at the end of the page 2180 * fault when the stack is unwound, the locks are released, 2181 * and when we know whether the fault was overall successful. 2182 */ 2183 css_get(&memcg->css); 2184 current->memcg_oom.memcg = memcg; 2185 current->memcg_oom.gfp_mask = mask; 2186 current->memcg_oom.order = order; 2187} 2188 2189/** 2190 * mem_cgroup_oom_synchronize - complete memcg OOM handling 2191 * @handle: actually kill/wait or just clean up the OOM state 2192 * 2193 * This has to be called at the end of a page fault if the memcg OOM 2194 * handler was enabled. 2195 * 2196 * Memcg supports userspace OOM handling where failed allocations must 2197 * sleep on a waitqueue until the userspace task resolves the 2198 * situation. Sleeping directly in the charge context with all kinds 2199 * of locks held is not a good idea, instead we remember an OOM state 2200 * in the task and mem_cgroup_oom_synchronize() has to be called at 2201 * the end of the page fault to complete the OOM handling. 2202 * 2203 * Returns %true if an ongoing memcg OOM situation was detected and 2204 * completed, %false otherwise. 2205 */ 2206bool mem_cgroup_oom_synchronize(bool handle) 2207{ 2208 struct mem_cgroup *memcg = current->memcg_oom.memcg; 2209 struct oom_wait_info owait; 2210 bool locked; 2211 2212 /* OOM is global, do not handle */ 2213 if (!memcg) 2214 return false; 2215 2216 if (!handle) 2217 goto cleanup; 2218 2219 owait.memcg = memcg; 2220 owait.wait.flags = 0; 2221 owait.wait.func = memcg_oom_wake_function; 2222 owait.wait.private = current; 2223 INIT_LIST_HEAD(&owait.wait.task_list); 2224 2225 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); 2226 mem_cgroup_mark_under_oom(memcg); 2227 2228 locked = mem_cgroup_oom_trylock(memcg); 2229 2230 if (locked) 2231 mem_cgroup_oom_notify(memcg); 2232 2233 if (locked && !memcg->oom_kill_disable) { 2234 mem_cgroup_unmark_under_oom(memcg); 2235 finish_wait(&memcg_oom_waitq, &owait.wait); 2236 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, 2237 current->memcg_oom.order); 2238 } else { 2239 schedule(); 2240 mem_cgroup_unmark_under_oom(memcg); 2241 finish_wait(&memcg_oom_waitq, &owait.wait); 2242 } 2243 2244 if (locked) { 2245 mem_cgroup_oom_unlock(memcg); 2246 /* 2247 * There is no guarantee that an OOM-lock contender 2248 * sees the wakeups triggered by the OOM kill 2249 * uncharges. Wake any sleepers explicitely. 2250 */ 2251 memcg_oom_recover(memcg); 2252 } 2253cleanup: 2254 current->memcg_oom.memcg = NULL; 2255 css_put(&memcg->css); 2256 return true; 2257} 2258 2259/* 2260 * Used to update mapped file or writeback or other statistics. 2261 * 2262 * Notes: Race condition 2263 * 2264 * We usually use lock_page_cgroup() for accessing page_cgroup member but 2265 * it tends to be costly. But considering some conditions, we doesn't need 2266 * to do so _always_. 2267 * 2268 * Considering "charge", lock_page_cgroup() is not required because all 2269 * file-stat operations happen after a page is attached to radix-tree. There 2270 * are no race with "charge". 2271 * 2272 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup 2273 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even 2274 * if there are race with "uncharge". Statistics itself is properly handled 2275 * by flags. 2276 * 2277 * Considering "move", this is an only case we see a race. To make the race 2278 * small, we check memcg->moving_account and detect there are possibility 2279 * of race or not. If there is, we take a lock. 2280 */ 2281 2282void __mem_cgroup_begin_update_page_stat(struct page *page, 2283 bool *locked, unsigned long *flags) 2284{ 2285 struct mem_cgroup *memcg; 2286 struct page_cgroup *pc; 2287 2288 pc = lookup_page_cgroup(page); 2289again: 2290 memcg = pc->mem_cgroup; 2291 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2292 return; 2293 /* 2294 * If this memory cgroup is not under account moving, we don't 2295 * need to take move_lock_mem_cgroup(). Because we already hold 2296 * rcu_read_lock(), any calls to move_account will be delayed until 2297 * rcu_read_unlock(). 2298 */ 2299 VM_BUG_ON(!rcu_read_lock_held()); 2300 if (atomic_read(&memcg->moving_account) <= 0) 2301 return; 2302 2303 move_lock_mem_cgroup(memcg, flags); 2304 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) { 2305 move_unlock_mem_cgroup(memcg, flags); 2306 goto again; 2307 } 2308 *locked = true; 2309} 2310 2311void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags) 2312{ 2313 struct page_cgroup *pc = lookup_page_cgroup(page); 2314 2315 /* 2316 * It's guaranteed that pc->mem_cgroup never changes while 2317 * lock is held because a routine modifies pc->mem_cgroup 2318 * should take move_lock_mem_cgroup(). 2319 */ 2320 move_unlock_mem_cgroup(pc->mem_cgroup, flags); 2321} 2322 2323void mem_cgroup_update_page_stat(struct page *page, 2324 enum mem_cgroup_stat_index idx, int val) 2325{ 2326 struct mem_cgroup *memcg; 2327 struct page_cgroup *pc = lookup_page_cgroup(page); 2328 unsigned long uninitialized_var(flags); 2329 2330 if (mem_cgroup_disabled()) 2331 return; 2332 2333 VM_BUG_ON(!rcu_read_lock_held()); 2334 memcg = pc->mem_cgroup; 2335 if (unlikely(!memcg || !PageCgroupUsed(pc))) 2336 return; 2337 2338 this_cpu_add(memcg->stat->count[idx], val); 2339} 2340 2341/* 2342 * size of first charge trial. "32" comes from vmscan.c's magic value. 2343 * TODO: maybe necessary to use big numbers in big irons. 2344 */ 2345#define CHARGE_BATCH 32U 2346struct memcg_stock_pcp { 2347 struct mem_cgroup *cached; /* this never be root cgroup */ 2348 unsigned int nr_pages; 2349 struct work_struct work; 2350 unsigned long flags; 2351#define FLUSHING_CACHED_CHARGE 0 2352}; 2353static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); 2354static DEFINE_MUTEX(percpu_charge_mutex); 2355 2356/** 2357 * consume_stock: Try to consume stocked charge on this cpu. 2358 * @memcg: memcg to consume from. 2359 * @nr_pages: how many pages to charge. 2360 * 2361 * The charges will only happen if @memcg matches the current cpu's memcg 2362 * stock, and at least @nr_pages are available in that stock. Failure to 2363 * service an allocation will refill the stock. 2364 * 2365 * returns true if successful, false otherwise. 2366 */ 2367static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2368{ 2369 struct memcg_stock_pcp *stock; 2370 bool ret = true; 2371 2372 if (nr_pages > CHARGE_BATCH) 2373 return false; 2374 2375 stock = &get_cpu_var(memcg_stock); 2376 if (memcg == stock->cached && stock->nr_pages >= nr_pages) 2377 stock->nr_pages -= nr_pages; 2378 else /* need to call res_counter_charge */ 2379 ret = false; 2380 put_cpu_var(memcg_stock); 2381 return ret; 2382} 2383 2384/* 2385 * Returns stocks cached in percpu to res_counter and reset cached information. 2386 */ 2387static void drain_stock(struct memcg_stock_pcp *stock) 2388{ 2389 struct mem_cgroup *old = stock->cached; 2390 2391 if (stock->nr_pages) { 2392 unsigned long bytes = stock->nr_pages * PAGE_SIZE; 2393 2394 res_counter_uncharge(&old->res, bytes); 2395 if (do_swap_account) 2396 res_counter_uncharge(&old->memsw, bytes); 2397 stock->nr_pages = 0; 2398 } 2399 stock->cached = NULL; 2400} 2401 2402/* 2403 * This must be called under preempt disabled or must be called by 2404 * a thread which is pinned to local cpu. 2405 */ 2406static void drain_local_stock(struct work_struct *dummy) 2407{ 2408 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); 2409 drain_stock(stock); 2410 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); 2411} 2412 2413static void __init memcg_stock_init(void) 2414{ 2415 int cpu; 2416 2417 for_each_possible_cpu(cpu) { 2418 struct memcg_stock_pcp *stock = 2419 &per_cpu(memcg_stock, cpu); 2420 INIT_WORK(&stock->work, drain_local_stock); 2421 } 2422} 2423 2424/* 2425 * Cache charges(val) which is from res_counter, to local per_cpu area. 2426 * This will be consumed by consume_stock() function, later. 2427 */ 2428static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) 2429{ 2430 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); 2431 2432 if (stock->cached != memcg) { /* reset if necessary */ 2433 drain_stock(stock); 2434 stock->cached = memcg; 2435 } 2436 stock->nr_pages += nr_pages; 2437 put_cpu_var(memcg_stock); 2438} 2439 2440/* 2441 * Drains all per-CPU charge caches for given root_memcg resp. subtree 2442 * of the hierarchy under it. sync flag says whether we should block 2443 * until the work is done. 2444 */ 2445static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync) 2446{ 2447 int cpu, curcpu; 2448 2449 /* Notify other cpus that system-wide "drain" is running */ 2450 get_online_cpus(); 2451 curcpu = get_cpu(); 2452 for_each_online_cpu(cpu) { 2453 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2454 struct mem_cgroup *memcg; 2455 2456 memcg = stock->cached; 2457 if (!memcg || !stock->nr_pages) 2458 continue; 2459 if (!mem_cgroup_same_or_subtree(root_memcg, memcg)) 2460 continue; 2461 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { 2462 if (cpu == curcpu) 2463 drain_local_stock(&stock->work); 2464 else 2465 schedule_work_on(cpu, &stock->work); 2466 } 2467 } 2468 put_cpu(); 2469 2470 if (!sync) 2471 goto out; 2472 2473 for_each_online_cpu(cpu) { 2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); 2475 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) 2476 flush_work(&stock->work); 2477 } 2478out: 2479 put_online_cpus(); 2480} 2481 2482/* 2483 * Tries to drain stocked charges in other cpus. This function is asynchronous 2484 * and just put a work per cpu for draining localy on each cpu. Caller can 2485 * expects some charges will be back to res_counter later but cannot wait for 2486 * it. 2487 */ 2488static void drain_all_stock_async(struct mem_cgroup *root_memcg) 2489{ 2490 /* 2491 * If someone calls draining, avoid adding more kworker runs. 2492 */ 2493 if (!mutex_trylock(&percpu_charge_mutex)) 2494 return; 2495 drain_all_stock(root_memcg, false); 2496 mutex_unlock(&percpu_charge_mutex); 2497} 2498 2499/* This is a synchronous drain interface. */ 2500static void drain_all_stock_sync(struct mem_cgroup *root_memcg) 2501{ 2502 /* called when force_empty is called */ 2503 mutex_lock(&percpu_charge_mutex); 2504 drain_all_stock(root_memcg, true); 2505 mutex_unlock(&percpu_charge_mutex); 2506} 2507 2508/* 2509 * This function drains percpu counter value from DEAD cpu and 2510 * move it to local cpu. Note that this function can be preempted. 2511 */ 2512static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) 2513{ 2514 int i; 2515 2516 spin_lock(&memcg->pcp_counter_lock); 2517 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 2518 long x = per_cpu(memcg->stat->count[i], cpu); 2519 2520 per_cpu(memcg->stat->count[i], cpu) = 0; 2521 memcg->nocpu_base.count[i] += x; 2522 } 2523 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 2524 unsigned long x = per_cpu(memcg->stat->events[i], cpu); 2525 2526 per_cpu(memcg->stat->events[i], cpu) = 0; 2527 memcg->nocpu_base.events[i] += x; 2528 } 2529 spin_unlock(&memcg->pcp_counter_lock); 2530} 2531 2532static int memcg_cpu_hotplug_callback(struct notifier_block *nb, 2533 unsigned long action, 2534 void *hcpu) 2535{ 2536 int cpu = (unsigned long)hcpu; 2537 struct memcg_stock_pcp *stock; 2538 struct mem_cgroup *iter; 2539 2540 if (action == CPU_ONLINE) 2541 return NOTIFY_OK; 2542 2543 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 2544 return NOTIFY_OK; 2545 2546 for_each_mem_cgroup(iter) 2547 mem_cgroup_drain_pcp_counter(iter, cpu); 2548 2549 stock = &per_cpu(memcg_stock, cpu); 2550 drain_stock(stock); 2551 return NOTIFY_OK; 2552} 2553 2554 2555/* See mem_cgroup_try_charge() for details */ 2556enum { 2557 CHARGE_OK, /* success */ 2558 CHARGE_RETRY, /* need to retry but retry is not bad */ 2559 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */ 2560 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */ 2561}; 2562 2563static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, 2564 unsigned int nr_pages, unsigned int min_pages, 2565 bool invoke_oom) 2566{ 2567 unsigned long csize = nr_pages * PAGE_SIZE; 2568 struct mem_cgroup *mem_over_limit; 2569 struct res_counter *fail_res; 2570 unsigned long flags = 0; 2571 int ret; 2572 2573 ret = res_counter_charge(&memcg->res, csize, &fail_res); 2574 2575 if (likely(!ret)) { 2576 if (!do_swap_account) 2577 return CHARGE_OK; 2578 ret = res_counter_charge(&memcg->memsw, csize, &fail_res); 2579 if (likely(!ret)) 2580 return CHARGE_OK; 2581 2582 res_counter_uncharge(&memcg->res, csize); 2583 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw); 2584 flags |= MEM_CGROUP_RECLAIM_NOSWAP; 2585 } else 2586 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res); 2587 /* 2588 * Never reclaim on behalf of optional batching, retry with a 2589 * single page instead. 2590 */ 2591 if (nr_pages > min_pages) 2592 return CHARGE_RETRY; 2593 2594 if (!(gfp_mask & __GFP_WAIT)) 2595 return CHARGE_WOULDBLOCK; 2596 2597 if (gfp_mask & __GFP_NORETRY) 2598 return CHARGE_NOMEM; 2599 2600 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags); 2601 if (mem_cgroup_margin(mem_over_limit) >= nr_pages) 2602 return CHARGE_RETRY; 2603 /* 2604 * Even though the limit is exceeded at this point, reclaim 2605 * may have been able to free some pages. Retry the charge 2606 * before killing the task. 2607 * 2608 * Only for regular pages, though: huge pages are rather 2609 * unlikely to succeed so close to the limit, and we fall back 2610 * to regular pages anyway in case of failure. 2611 */ 2612 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret) 2613 return CHARGE_RETRY; 2614 2615 /* 2616 * At task move, charge accounts can be doubly counted. So, it's 2617 * better to wait until the end of task_move if something is going on. 2618 */ 2619 if (mem_cgroup_wait_acct_move(mem_over_limit)) 2620 return CHARGE_RETRY; 2621 2622 if (invoke_oom) 2623 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize)); 2624 2625 return CHARGE_NOMEM; 2626} 2627 2628/** 2629 * mem_cgroup_try_charge - try charging a memcg 2630 * @memcg: memcg to charge 2631 * @nr_pages: number of pages to charge 2632 * @oom: trigger OOM if reclaim fails 2633 * 2634 * Returns 0 if @memcg was charged successfully, -EINTR if the charge 2635 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed. 2636 */ 2637static int mem_cgroup_try_charge(struct mem_cgroup *memcg, 2638 gfp_t gfp_mask, 2639 unsigned int nr_pages, 2640 bool oom) 2641{ 2642 unsigned int batch = max(CHARGE_BATCH, nr_pages); 2643 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES; 2644 int ret; 2645 2646 if (mem_cgroup_is_root(memcg)) 2647 goto done; 2648 /* 2649 * Unlike in global OOM situations, memcg is not in a physical 2650 * memory shortage. Allow dying and OOM-killed tasks to 2651 * bypass the last charges so that they can exit quickly and 2652 * free their memory. 2653 */ 2654 if (unlikely(test_thread_flag(TIF_MEMDIE) || 2655 fatal_signal_pending(current) || 2656 current->flags & PF_EXITING)) 2657 goto bypass; 2658 2659 if (unlikely(task_in_memcg_oom(current))) 2660 goto nomem; 2661 2662 if (gfp_mask & __GFP_NOFAIL) 2663 oom = false; 2664again: 2665 if (consume_stock(memcg, nr_pages)) 2666 goto done; 2667 2668 do { 2669 bool invoke_oom = oom && !nr_oom_retries; 2670 2671 /* If killed, bypass charge */ 2672 if (fatal_signal_pending(current)) 2673 goto bypass; 2674 2675 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, 2676 nr_pages, invoke_oom); 2677 switch (ret) { 2678 case CHARGE_OK: 2679 break; 2680 case CHARGE_RETRY: /* not in OOM situation but retry */ 2681 batch = nr_pages; 2682 goto again; 2683 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */ 2684 goto nomem; 2685 case CHARGE_NOMEM: /* OOM routine works */ 2686 if (!oom || invoke_oom) 2687 goto nomem; 2688 nr_oom_retries--; 2689 break; 2690 } 2691 } while (ret != CHARGE_OK); 2692 2693 if (batch > nr_pages) 2694 refill_stock(memcg, batch - nr_pages); 2695done: 2696 return 0; 2697nomem: 2698 if (!(gfp_mask & __GFP_NOFAIL)) 2699 return -ENOMEM; 2700bypass: 2701 return -EINTR; 2702} 2703 2704/** 2705 * mem_cgroup_try_charge_mm - try charging a mm 2706 * @mm: mm_struct to charge 2707 * @nr_pages: number of pages to charge 2708 * @oom: trigger OOM if reclaim fails 2709 * 2710 * Returns the charged mem_cgroup associated with the given mm_struct or 2711 * NULL the charge failed. 2712 */ 2713static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm, 2714 gfp_t gfp_mask, 2715 unsigned int nr_pages, 2716 bool oom) 2717 2718{ 2719 struct mem_cgroup *memcg; 2720 int ret; 2721 2722 memcg = get_mem_cgroup_from_mm(mm); 2723 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom); 2724 css_put(&memcg->css); 2725 if (ret == -EINTR) 2726 memcg = root_mem_cgroup; 2727 else if (ret) 2728 memcg = NULL; 2729 2730 return memcg; 2731} 2732 2733/* 2734 * Somemtimes we have to undo a charge we got by try_charge(). 2735 * This function is for that and do uncharge, put css's refcnt. 2736 * gotten by try_charge(). 2737 */ 2738static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg, 2739 unsigned int nr_pages) 2740{ 2741 if (!mem_cgroup_is_root(memcg)) { 2742 unsigned long bytes = nr_pages * PAGE_SIZE; 2743 2744 res_counter_uncharge(&memcg->res, bytes); 2745 if (do_swap_account) 2746 res_counter_uncharge(&memcg->memsw, bytes); 2747 } 2748} 2749 2750/* 2751 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup. 2752 * This is useful when moving usage to parent cgroup. 2753 */ 2754static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg, 2755 unsigned int nr_pages) 2756{ 2757 unsigned long bytes = nr_pages * PAGE_SIZE; 2758 2759 if (mem_cgroup_is_root(memcg)) 2760 return; 2761 2762 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes); 2763 if (do_swap_account) 2764 res_counter_uncharge_until(&memcg->memsw, 2765 memcg->memsw.parent, bytes); 2766} 2767 2768/* 2769 * A helper function to get mem_cgroup from ID. must be called under 2770 * rcu_read_lock(). The caller is responsible for calling 2771 * css_tryget_online() if the mem_cgroup is used for charging. (dropping 2772 * refcnt from swap can be called against removed memcg.) 2773 */ 2774static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) 2775{ 2776 /* ID 0 is unused ID */ 2777 if (!id) 2778 return NULL; 2779 return mem_cgroup_from_id(id); 2780} 2781 2782struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) 2783{ 2784 struct mem_cgroup *memcg = NULL; 2785 struct page_cgroup *pc; 2786 unsigned short id; 2787 swp_entry_t ent; 2788 2789 VM_BUG_ON_PAGE(!PageLocked(page), page); 2790 2791 pc = lookup_page_cgroup(page); 2792 lock_page_cgroup(pc); 2793 if (PageCgroupUsed(pc)) { 2794 memcg = pc->mem_cgroup; 2795 if (memcg && !css_tryget_online(&memcg->css)) 2796 memcg = NULL; 2797 } else if (PageSwapCache(page)) { 2798 ent.val = page_private(page); 2799 id = lookup_swap_cgroup_id(ent); 2800 rcu_read_lock(); 2801 memcg = mem_cgroup_lookup(id); 2802 if (memcg && !css_tryget_online(&memcg->css)) 2803 memcg = NULL; 2804 rcu_read_unlock(); 2805 } 2806 unlock_page_cgroup(pc); 2807 return memcg; 2808} 2809 2810static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg, 2811 struct page *page, 2812 unsigned int nr_pages, 2813 enum charge_type ctype, 2814 bool lrucare) 2815{ 2816 struct page_cgroup *pc = lookup_page_cgroup(page); 2817 struct zone *uninitialized_var(zone); 2818 struct lruvec *lruvec; 2819 bool was_on_lru = false; 2820 bool anon; 2821 2822 lock_page_cgroup(pc); 2823 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page); 2824 /* 2825 * we don't need page_cgroup_lock about tail pages, becase they are not 2826 * accessed by any other context at this point. 2827 */ 2828 2829 /* 2830 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page 2831 * may already be on some other mem_cgroup's LRU. Take care of it. 2832 */ 2833 if (lrucare) { 2834 zone = page_zone(page); 2835 spin_lock_irq(&zone->lru_lock); 2836 if (PageLRU(page)) { 2837 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2838 ClearPageLRU(page); 2839 del_page_from_lru_list(page, lruvec, page_lru(page)); 2840 was_on_lru = true; 2841 } 2842 } 2843 2844 pc->mem_cgroup = memcg; 2845 /* 2846 * We access a page_cgroup asynchronously without lock_page_cgroup(). 2847 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup 2848 * is accessed after testing USED bit. To make pc->mem_cgroup visible 2849 * before USED bit, we need memory barrier here. 2850 * See mem_cgroup_add_lru_list(), etc. 2851 */ 2852 smp_wmb(); 2853 SetPageCgroupUsed(pc); 2854 2855 if (lrucare) { 2856 if (was_on_lru) { 2857 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup); 2858 VM_BUG_ON_PAGE(PageLRU(page), page); 2859 SetPageLRU(page); 2860 add_page_to_lru_list(page, lruvec, page_lru(page)); 2861 } 2862 spin_unlock_irq(&zone->lru_lock); 2863 } 2864 2865 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON) 2866 anon = true; 2867 else 2868 anon = false; 2869 2870 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages); 2871 unlock_page_cgroup(pc); 2872 2873 /* 2874 * "charge_statistics" updated event counter. Then, check it. 2875 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree. 2876 * if they exceeds softlimit. 2877 */ 2878 memcg_check_events(memcg, page); 2879} 2880 2881static DEFINE_MUTEX(set_limit_mutex); 2882 2883#ifdef CONFIG_MEMCG_KMEM 2884/* 2885 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or 2886 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists. 2887 */ 2888static DEFINE_MUTEX(memcg_slab_mutex); 2889 2890static DEFINE_MUTEX(activate_kmem_mutex); 2891 2892static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg) 2893{ 2894 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) && 2895 memcg_kmem_is_active(memcg); 2896} 2897 2898/* 2899 * This is a bit cumbersome, but it is rarely used and avoids a backpointer 2900 * in the memcg_cache_params struct. 2901 */ 2902static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) 2903{ 2904 struct kmem_cache *cachep; 2905 2906 VM_BUG_ON(p->is_root_cache); 2907 cachep = p->root_cache; 2908 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); 2909} 2910 2911#ifdef CONFIG_SLABINFO 2912static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v) 2913{ 2914 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 2915 struct memcg_cache_params *params; 2916 2917 if (!memcg_can_account_kmem(memcg)) 2918 return -EIO; 2919 2920 print_slabinfo_header(m); 2921 2922 mutex_lock(&memcg_slab_mutex); 2923 list_for_each_entry(params, &memcg->memcg_slab_caches, list) 2924 cache_show(memcg_params_to_cache(params), m); 2925 mutex_unlock(&memcg_slab_mutex); 2926 2927 return 0; 2928} 2929#endif 2930 2931static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size) 2932{ 2933 struct res_counter *fail_res; 2934 int ret = 0; 2935 2936 ret = res_counter_charge(&memcg->kmem, size, &fail_res); 2937 if (ret) 2938 return ret; 2939 2940 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT, 2941 oom_gfp_allowed(gfp)); 2942 if (ret == -EINTR) { 2943 /* 2944 * mem_cgroup_try_charge() chosed to bypass to root due to 2945 * OOM kill or fatal signal. Since our only options are to 2946 * either fail the allocation or charge it to this cgroup, do 2947 * it as a temporary condition. But we can't fail. From a 2948 * kmem/slab perspective, the cache has already been selected, 2949 * by mem_cgroup_kmem_get_cache(), so it is too late to change 2950 * our minds. 2951 * 2952 * This condition will only trigger if the task entered 2953 * memcg_charge_kmem in a sane state, but was OOM-killed during 2954 * mem_cgroup_try_charge() above. Tasks that were already 2955 * dying when the allocation triggers should have been already 2956 * directed to the root cgroup in memcontrol.h 2957 */ 2958 res_counter_charge_nofail(&memcg->res, size, &fail_res); 2959 if (do_swap_account) 2960 res_counter_charge_nofail(&memcg->memsw, size, 2961 &fail_res); 2962 ret = 0; 2963 } else if (ret) 2964 res_counter_uncharge(&memcg->kmem, size); 2965 2966 return ret; 2967} 2968 2969static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size) 2970{ 2971 res_counter_uncharge(&memcg->res, size); 2972 if (do_swap_account) 2973 res_counter_uncharge(&memcg->memsw, size); 2974 2975 /* Not down to 0 */ 2976 if (res_counter_uncharge(&memcg->kmem, size)) 2977 return; 2978 2979 /* 2980 * Releases a reference taken in kmem_cgroup_css_offline in case 2981 * this last uncharge is racing with the offlining code or it is 2982 * outliving the memcg existence. 2983 * 2984 * The memory barrier imposed by test&clear is paired with the 2985 * explicit one in memcg_kmem_mark_dead(). 2986 */ 2987 if (memcg_kmem_test_and_clear_dead(memcg)) 2988 css_put(&memcg->css); 2989} 2990 2991/* 2992 * helper for acessing a memcg's index. It will be used as an index in the 2993 * child cache array in kmem_cache, and also to derive its name. This function 2994 * will return -1 when this is not a kmem-limited memcg. 2995 */ 2996int memcg_cache_id(struct mem_cgroup *memcg) 2997{ 2998 return memcg ? memcg->kmemcg_id : -1; 2999} 3000 3001static size_t memcg_caches_array_size(int num_groups) 3002{ 3003 ssize_t size; 3004 if (num_groups <= 0) 3005 return 0; 3006 3007 size = 2 * num_groups; 3008 if (size < MEMCG_CACHES_MIN_SIZE) 3009 size = MEMCG_CACHES_MIN_SIZE; 3010 else if (size > MEMCG_CACHES_MAX_SIZE) 3011 size = MEMCG_CACHES_MAX_SIZE; 3012 3013 return size; 3014} 3015 3016/* 3017 * We should update the current array size iff all caches updates succeed. This 3018 * can only be done from the slab side. The slab mutex needs to be held when 3019 * calling this. 3020 */ 3021void memcg_update_array_size(int num) 3022{ 3023 if (num > memcg_limited_groups_array_size) 3024 memcg_limited_groups_array_size = memcg_caches_array_size(num); 3025} 3026 3027int memcg_update_cache_size(struct kmem_cache *s, int num_groups) 3028{ 3029 struct memcg_cache_params *cur_params = s->memcg_params; 3030 3031 VM_BUG_ON(!is_root_cache(s)); 3032 3033 if (num_groups > memcg_limited_groups_array_size) { 3034 int i; 3035 struct memcg_cache_params *new_params; 3036 ssize_t size = memcg_caches_array_size(num_groups); 3037 3038 size *= sizeof(void *); 3039 size += offsetof(struct memcg_cache_params, memcg_caches); 3040 3041 new_params = kzalloc(size, GFP_KERNEL); 3042 if (!new_params) 3043 return -ENOMEM; 3044 3045 new_params->is_root_cache = true; 3046 3047 /* 3048 * There is the chance it will be bigger than 3049 * memcg_limited_groups_array_size, if we failed an allocation 3050 * in a cache, in which case all caches updated before it, will 3051 * have a bigger array. 3052 * 3053 * But if that is the case, the data after 3054 * memcg_limited_groups_array_size is certainly unused 3055 */ 3056 for (i = 0; i < memcg_limited_groups_array_size; i++) { 3057 if (!cur_params->memcg_caches[i]) 3058 continue; 3059 new_params->memcg_caches[i] = 3060 cur_params->memcg_caches[i]; 3061 } 3062 3063 /* 3064 * Ideally, we would wait until all caches succeed, and only 3065 * then free the old one. But this is not worth the extra 3066 * pointer per-cache we'd have to have for this. 3067 * 3068 * It is not a big deal if some caches are left with a size 3069 * bigger than the others. And all updates will reset this 3070 * anyway. 3071 */ 3072 rcu_assign_pointer(s->memcg_params, new_params); 3073 if (cur_params) 3074 kfree_rcu(cur_params, rcu_head); 3075 } 3076 return 0; 3077} 3078 3079int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s, 3080 struct kmem_cache *root_cache) 3081{ 3082 size_t size; 3083 3084 if (!memcg_kmem_enabled()) 3085 return 0; 3086 3087 if (!memcg) { 3088 size = offsetof(struct memcg_cache_params, memcg_caches); 3089 size += memcg_limited_groups_array_size * sizeof(void *); 3090 } else 3091 size = sizeof(struct memcg_cache_params); 3092 3093 s->memcg_params = kzalloc(size, GFP_KERNEL); 3094 if (!s->memcg_params) 3095 return -ENOMEM; 3096 3097 if (memcg) { 3098 s->memcg_params->memcg = memcg; 3099 s->memcg_params->root_cache = root_cache; 3100 css_get(&memcg->css); 3101 } else 3102 s->memcg_params->is_root_cache = true; 3103 3104 return 0; 3105} 3106 3107void memcg_free_cache_params(struct kmem_cache *s) 3108{ 3109 if (!s->memcg_params) 3110 return; 3111 if (!s->memcg_params->is_root_cache) 3112 css_put(&s->memcg_params->memcg->css); 3113 kfree(s->memcg_params); 3114} 3115 3116static void memcg_register_cache(struct mem_cgroup *memcg, 3117 struct kmem_cache *root_cache) 3118{ 3119 static char memcg_name_buf[NAME_MAX + 1]; /* protected by 3120 memcg_slab_mutex */ 3121 struct kmem_cache *cachep; 3122 int id; 3123 3124 lockdep_assert_held(&memcg_slab_mutex); 3125 3126 id = memcg_cache_id(memcg); 3127 3128 /* 3129 * Since per-memcg caches are created asynchronously on first 3130 * allocation (see memcg_kmem_get_cache()), several threads can try to 3131 * create the same cache, but only one of them may succeed. 3132 */ 3133 if (cache_from_memcg_idx(root_cache, id)) 3134 return; 3135 3136 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); 3137 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); 3138 /* 3139 * If we could not create a memcg cache, do not complain, because 3140 * that's not critical at all as we can always proceed with the root 3141 * cache. 3142 */ 3143 if (!cachep) 3144 return; 3145 3146 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); 3147 3148 /* 3149 * Since readers won't lock (see cache_from_memcg_idx()), we need a 3150 * barrier here to ensure nobody will see the kmem_cache partially 3151 * initialized. 3152 */ 3153 smp_wmb(); 3154 3155 BUG_ON(root_cache->memcg_params->memcg_caches[id]); 3156 root_cache->memcg_params->memcg_caches[id] = cachep; 3157} 3158 3159static void memcg_unregister_cache(struct kmem_cache *cachep) 3160{ 3161 struct kmem_cache *root_cache; 3162 struct mem_cgroup *memcg; 3163 int id; 3164 3165 lockdep_assert_held(&memcg_slab_mutex); 3166 3167 BUG_ON(is_root_cache(cachep)); 3168 3169 root_cache = cachep->memcg_params->root_cache; 3170 memcg = cachep->memcg_params->memcg; 3171 id = memcg_cache_id(memcg); 3172 3173 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); 3174 root_cache->memcg_params->memcg_caches[id] = NULL; 3175 3176 list_del(&cachep->memcg_params->list); 3177 3178 kmem_cache_destroy(cachep); 3179} 3180 3181/* 3182 * During the creation a new cache, we need to disable our accounting mechanism 3183 * altogether. This is true even if we are not creating, but rather just 3184 * enqueing new caches to be created. 3185 * 3186 * This is because that process will trigger allocations; some visible, like 3187 * explicit kmallocs to auxiliary data structures, name strings and internal 3188 * cache structures; some well concealed, like INIT_WORK() that can allocate 3189 * objects during debug. 3190 * 3191 * If any allocation happens during memcg_kmem_get_cache, we will recurse back 3192 * to it. This may not be a bounded recursion: since the first cache creation 3193 * failed to complete (waiting on the allocation), we'll just try to create the 3194 * cache again, failing at the same point. 3195 * 3196 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of 3197 * memcg_kmem_skip_account. So we enclose anything that might allocate memory 3198 * inside the following two functions. 3199 */ 3200static inline void memcg_stop_kmem_account(void) 3201{ 3202 VM_BUG_ON(!current->mm); 3203 current->memcg_kmem_skip_account++; 3204} 3205 3206static inline void memcg_resume_kmem_account(void) 3207{ 3208 VM_BUG_ON(!current->mm); 3209 current->memcg_kmem_skip_account--; 3210} 3211 3212int __memcg_cleanup_cache_params(struct kmem_cache *s) 3213{ 3214 struct kmem_cache *c; 3215 int i, failed = 0; 3216 3217 mutex_lock(&memcg_slab_mutex); 3218 for_each_memcg_cache_index(i) { 3219 c = cache_from_memcg_idx(s, i); 3220 if (!c) 3221 continue; 3222 3223 memcg_unregister_cache(c); 3224 3225 if (cache_from_memcg_idx(s, i)) 3226 failed++; 3227 } 3228 mutex_unlock(&memcg_slab_mutex); 3229 return failed; 3230} 3231 3232static void memcg_unregister_all_caches(struct mem_cgroup *memcg) 3233{ 3234 struct kmem_cache *cachep; 3235 struct memcg_cache_params *params, *tmp; 3236 3237 if (!memcg_kmem_is_active(memcg)) 3238 return; 3239 3240 mutex_lock(&memcg_slab_mutex); 3241 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { 3242 cachep = memcg_params_to_cache(params); 3243 kmem_cache_shrink(cachep); 3244 if (atomic_read(&cachep->memcg_params->nr_pages) == 0) 3245 memcg_unregister_cache(cachep); 3246 } 3247 mutex_unlock(&memcg_slab_mutex); 3248} 3249 3250struct memcg_register_cache_work { 3251 struct mem_cgroup *memcg; 3252 struct kmem_cache *cachep; 3253 struct work_struct work; 3254}; 3255 3256static void memcg_register_cache_func(struct work_struct *w) 3257{ 3258 struct memcg_register_cache_work *cw = 3259 container_of(w, struct memcg_register_cache_work, work); 3260 struct mem_cgroup *memcg = cw->memcg; 3261 struct kmem_cache *cachep = cw->cachep; 3262 3263 mutex_lock(&memcg_slab_mutex); 3264 memcg_register_cache(memcg, cachep); 3265 mutex_unlock(&memcg_slab_mutex); 3266 3267 css_put(&memcg->css); 3268 kfree(cw); 3269} 3270 3271/* 3272 * Enqueue the creation of a per-memcg kmem_cache. 3273 */ 3274static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, 3275 struct kmem_cache *cachep) 3276{ 3277 struct memcg_register_cache_work *cw; 3278 3279 cw = kmalloc(sizeof(*cw), GFP_NOWAIT); 3280 if (cw == NULL) { 3281 css_put(&memcg->css); 3282 return; 3283 } 3284 3285 cw->memcg = memcg; 3286 cw->cachep = cachep; 3287 3288 INIT_WORK(&cw->work, memcg_register_cache_func); 3289 schedule_work(&cw->work); 3290} 3291 3292static void memcg_schedule_register_cache(struct mem_cgroup *memcg, 3293 struct kmem_cache *cachep) 3294{ 3295 /* 3296 * We need to stop accounting when we kmalloc, because if the 3297 * corresponding kmalloc cache is not yet created, the first allocation 3298 * in __memcg_schedule_register_cache will recurse. 3299 * 3300 * However, it is better to enclose the whole function. Depending on 3301 * the debugging options enabled, INIT_WORK(), for instance, can 3302 * trigger an allocation. This too, will make us recurse. Because at 3303 * this point we can't allow ourselves back into memcg_kmem_get_cache, 3304 * the safest choice is to do it like this, wrapping the whole function. 3305 */ 3306 memcg_stop_kmem_account(); 3307 __memcg_schedule_register_cache(memcg, cachep); 3308 memcg_resume_kmem_account(); 3309} 3310 3311int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) 3312{ 3313 int res; 3314 3315 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, 3316 PAGE_SIZE << order); 3317 if (!res) 3318 atomic_add(1 << order, &cachep->memcg_params->nr_pages); 3319 return res; 3320} 3321 3322void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) 3323{ 3324 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order); 3325 atomic_sub(1 << order, &cachep->memcg_params->nr_pages); 3326} 3327 3328/* 3329 * Return the kmem_cache we're supposed to use for a slab allocation. 3330 * We try to use the current memcg's version of the cache. 3331 * 3332 * If the cache does not exist yet, if we are the first user of it, 3333 * we either create it immediately, if possible, or create it asynchronously 3334 * in a workqueue. 3335 * In the latter case, we will let the current allocation go through with 3336 * the original cache. 3337 * 3338 * Can't be called in interrupt context or from kernel threads. 3339 * This function needs to be called with rcu_read_lock() held. 3340 */ 3341struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, 3342 gfp_t gfp) 3343{ 3344 struct mem_cgroup *memcg; 3345 struct kmem_cache *memcg_cachep; 3346 3347 VM_BUG_ON(!cachep->memcg_params); 3348 VM_BUG_ON(!cachep->memcg_params->is_root_cache); 3349 3350 if (!current->mm || current->memcg_kmem_skip_account) 3351 return cachep; 3352 3353 rcu_read_lock(); 3354 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner)); 3355 3356 if (!memcg_can_account_kmem(memcg)) 3357 goto out; 3358 3359 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); 3360 if (likely(memcg_cachep)) { 3361 cachep = memcg_cachep; 3362 goto out; 3363 } 3364 3365 /* The corresponding put will be done in the workqueue. */ 3366 if (!css_tryget_online(&memcg->css)) 3367 goto out; 3368 rcu_read_unlock(); 3369 3370 /* 3371 * If we are in a safe context (can wait, and not in interrupt 3372 * context), we could be be predictable and return right away. 3373 * This would guarantee that the allocation being performed 3374 * already belongs in the new cache. 3375 * 3376 * However, there are some clashes that can arrive from locking. 3377 * For instance, because we acquire the slab_mutex while doing 3378 * memcg_create_kmem_cache, this means no further allocation 3379 * could happen with the slab_mutex held. So it's better to 3380 * defer everything. 3381 */ 3382 memcg_schedule_register_cache(memcg, cachep); 3383 return cachep; 3384out: 3385 rcu_read_unlock(); 3386 return cachep; 3387} 3388 3389/* 3390 * We need to verify if the allocation against current->mm->owner's memcg is 3391 * possible for the given order. But the page is not allocated yet, so we'll 3392 * need a further commit step to do the final arrangements. 3393 * 3394 * It is possible for the task to switch cgroups in this mean time, so at 3395 * commit time, we can't rely on task conversion any longer. We'll then use 3396 * the handle argument to return to the caller which cgroup we should commit 3397 * against. We could also return the memcg directly and avoid the pointer 3398 * passing, but a boolean return value gives better semantics considering 3399 * the compiled-out case as well. 3400 * 3401 * Returning true means the allocation is possible. 3402 */ 3403bool 3404__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) 3405{ 3406 struct mem_cgroup *memcg; 3407 int ret; 3408 3409 *_memcg = NULL; 3410 3411 /* 3412 * Disabling accounting is only relevant for some specific memcg 3413 * internal allocations. Therefore we would initially not have such 3414 * check here, since direct calls to the page allocator that are 3415 * accounted to kmemcg (alloc_kmem_pages and friends) only happen 3416 * outside memcg core. We are mostly concerned with cache allocations, 3417 * and by having this test at memcg_kmem_get_cache, we are already able 3418 * to relay the allocation to the root cache and bypass the memcg cache 3419 * altogether. 3420 * 3421 * There is one exception, though: the SLUB allocator does not create 3422 * large order caches, but rather service large kmallocs directly from 3423 * the page allocator. Therefore, the following sequence when backed by 3424 * the SLUB allocator: 3425 * 3426 * memcg_stop_kmem_account(); 3427 * kmalloc(<large_number>) 3428 * memcg_resume_kmem_account(); 3429 * 3430 * would effectively ignore the fact that we should skip accounting, 3431 * since it will drive us directly to this function without passing 3432 * through the cache selector memcg_kmem_get_cache. Such large 3433 * allocations are extremely rare but can happen, for instance, for the 3434 * cache arrays. We bring this test here. 3435 */ 3436 if (!current->mm || current->memcg_kmem_skip_account) 3437 return true; 3438 3439 memcg = get_mem_cgroup_from_mm(current->mm); 3440 3441 if (!memcg_can_account_kmem(memcg)) { 3442 css_put(&memcg->css); 3443 return true; 3444 } 3445 3446 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order); 3447 if (!ret) 3448 *_memcg = memcg; 3449 3450 css_put(&memcg->css); 3451 return (ret == 0); 3452} 3453 3454void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, 3455 int order) 3456{ 3457 struct page_cgroup *pc; 3458 3459 VM_BUG_ON(mem_cgroup_is_root(memcg)); 3460 3461 /* The page allocation failed. Revert */ 3462 if (!page) { 3463 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3464 return; 3465 } 3466 3467 pc = lookup_page_cgroup(page); 3468 lock_page_cgroup(pc); 3469 pc->mem_cgroup = memcg; 3470 SetPageCgroupUsed(pc); 3471 unlock_page_cgroup(pc); 3472} 3473 3474void __memcg_kmem_uncharge_pages(struct page *page, int order) 3475{ 3476 struct mem_cgroup *memcg = NULL; 3477 struct page_cgroup *pc; 3478 3479 3480 pc = lookup_page_cgroup(page); 3481 /* 3482 * Fast unlocked return. Theoretically might have changed, have to 3483 * check again after locking. 3484 */ 3485 if (!PageCgroupUsed(pc)) 3486 return; 3487 3488 lock_page_cgroup(pc); 3489 if (PageCgroupUsed(pc)) { 3490 memcg = pc->mem_cgroup; 3491 ClearPageCgroupUsed(pc); 3492 } 3493 unlock_page_cgroup(pc); 3494 3495 /* 3496 * We trust that only if there is a memcg associated with the page, it 3497 * is a valid allocation 3498 */ 3499 if (!memcg) 3500 return; 3501 3502 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); 3503 memcg_uncharge_kmem(memcg, PAGE_SIZE << order); 3504} 3505#else 3506static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg) 3507{ 3508} 3509#endif /* CONFIG_MEMCG_KMEM */ 3510 3511#ifdef CONFIG_TRANSPARENT_HUGEPAGE 3512 3513#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION) 3514/* 3515 * Because tail pages are not marked as "used", set it. We're under 3516 * zone->lru_lock, 'splitting on pmd' and compound_lock. 3517 * charge/uncharge will be never happen and move_account() is done under 3518 * compound_lock(), so we don't have to take care of races. 3519 */ 3520void mem_cgroup_split_huge_fixup(struct page *head) 3521{ 3522 struct page_cgroup *head_pc = lookup_page_cgroup(head); 3523 struct page_cgroup *pc; 3524 struct mem_cgroup *memcg; 3525 int i; 3526 3527 if (mem_cgroup_disabled()) 3528 return; 3529 3530 memcg = head_pc->mem_cgroup; 3531 for (i = 1; i < HPAGE_PMD_NR; i++) { 3532 pc = head_pc + i; 3533 pc->mem_cgroup = memcg; 3534 smp_wmb();/* see __commit_charge() */ 3535 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT; 3536 } 3537 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], 3538 HPAGE_PMD_NR); 3539} 3540#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3541 3542/** 3543 * mem_cgroup_move_account - move account of the page 3544 * @page: the page 3545 * @nr_pages: number of regular pages (>1 for huge pages) 3546 * @pc: page_cgroup of the page. 3547 * @from: mem_cgroup which the page is moved from. 3548 * @to: mem_cgroup which the page is moved to. @from != @to. 3549 * 3550 * The caller must confirm following. 3551 * - page is not on LRU (isolate_page() is useful.) 3552 * - compound_lock is held when nr_pages > 1 3553 * 3554 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" 3555 * from old cgroup. 3556 */ 3557static int mem_cgroup_move_account(struct page *page, 3558 unsigned int nr_pages, 3559 struct page_cgroup *pc, 3560 struct mem_cgroup *from, 3561 struct mem_cgroup *to) 3562{ 3563 unsigned long flags; 3564 int ret; 3565 bool anon = PageAnon(page); 3566 3567 VM_BUG_ON(from == to); 3568 VM_BUG_ON_PAGE(PageLRU(page), page); 3569 /* 3570 * The page is isolated from LRU. So, collapse function 3571 * will not handle this page. But page splitting can happen. 3572 * Do this check under compound_page_lock(). The caller should 3573 * hold it. 3574 */ 3575 ret = -EBUSY; 3576 if (nr_pages > 1 && !PageTransHuge(page)) 3577 goto out; 3578 3579 lock_page_cgroup(pc); 3580 3581 ret = -EINVAL; 3582 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from) 3583 goto unlock; 3584 3585 move_lock_mem_cgroup(from, &flags); 3586 3587 if (!anon && page_mapped(page)) { 3588 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3589 nr_pages); 3590 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], 3591 nr_pages); 3592 } 3593 3594 if (PageWriteback(page)) { 3595 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3596 nr_pages); 3597 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], 3598 nr_pages); 3599 } 3600 3601 mem_cgroup_charge_statistics(from, page, anon, -nr_pages); 3602 3603 /* caller should have done css_get */ 3604 pc->mem_cgroup = to; 3605 mem_cgroup_charge_statistics(to, page, anon, nr_pages); 3606 move_unlock_mem_cgroup(from, &flags); 3607 ret = 0; 3608unlock: 3609 unlock_page_cgroup(pc); 3610 /* 3611 * check events 3612 */ 3613 memcg_check_events(to, page); 3614 memcg_check_events(from, page); 3615out: 3616 return ret; 3617} 3618 3619/** 3620 * mem_cgroup_move_parent - moves page to the parent group 3621 * @page: the page to move 3622 * @pc: page_cgroup of the page 3623 * @child: page's cgroup 3624 * 3625 * move charges to its parent or the root cgroup if the group has no 3626 * parent (aka use_hierarchy==0). 3627 * Although this might fail (get_page_unless_zero, isolate_lru_page or 3628 * mem_cgroup_move_account fails) the failure is always temporary and 3629 * it signals a race with a page removal/uncharge or migration. In the 3630 * first case the page is on the way out and it will vanish from the LRU 3631 * on the next attempt and the call should be retried later. 3632 * Isolation from the LRU fails only if page has been isolated from 3633 * the LRU since we looked at it and that usually means either global 3634 * reclaim or migration going on. The page will either get back to the 3635 * LRU or vanish. 3636 * Finaly mem_cgroup_move_account fails only if the page got uncharged 3637 * (!PageCgroupUsed) or moved to a different group. The page will 3638 * disappear in the next attempt. 3639 */ 3640static int mem_cgroup_move_parent(struct page *page, 3641 struct page_cgroup *pc, 3642 struct mem_cgroup *child) 3643{ 3644 struct mem_cgroup *parent; 3645 unsigned int nr_pages; 3646 unsigned long uninitialized_var(flags); 3647 int ret; 3648 3649 VM_BUG_ON(mem_cgroup_is_root(child)); 3650 3651 ret = -EBUSY; 3652 if (!get_page_unless_zero(page)) 3653 goto out; 3654 if (isolate_lru_page(page)) 3655 goto put; 3656 3657 nr_pages = hpage_nr_pages(page); 3658 3659 parent = parent_mem_cgroup(child); 3660 /* 3661 * If no parent, move charges to root cgroup. 3662 */ 3663 if (!parent) 3664 parent = root_mem_cgroup; 3665 3666 if (nr_pages > 1) { 3667 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3668 flags = compound_lock_irqsave(page); 3669 } 3670 3671 ret = mem_cgroup_move_account(page, nr_pages, 3672 pc, child, parent); 3673 if (!ret) 3674 __mem_cgroup_cancel_local_charge(child, nr_pages); 3675 3676 if (nr_pages > 1) 3677 compound_unlock_irqrestore(page, flags); 3678 putback_lru_page(page); 3679put: 3680 put_page(page); 3681out: 3682 return ret; 3683} 3684 3685int mem_cgroup_charge_anon(struct page *page, 3686 struct mm_struct *mm, gfp_t gfp_mask) 3687{ 3688 unsigned int nr_pages = 1; 3689 struct mem_cgroup *memcg; 3690 bool oom = true; 3691 3692 if (mem_cgroup_disabled()) 3693 return 0; 3694 3695 VM_BUG_ON_PAGE(page_mapped(page), page); 3696 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); 3697 VM_BUG_ON(!mm); 3698 3699 if (PageTransHuge(page)) { 3700 nr_pages <<= compound_order(page); 3701 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3702 /* 3703 * Never OOM-kill a process for a huge page. The 3704 * fault handler will fall back to regular pages. 3705 */ 3706 oom = false; 3707 } 3708 3709 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom); 3710 if (!memcg) 3711 return -ENOMEM; 3712 __mem_cgroup_commit_charge(memcg, page, nr_pages, 3713 MEM_CGROUP_CHARGE_TYPE_ANON, false); 3714 return 0; 3715} 3716 3717/* 3718 * While swap-in, try_charge -> commit or cancel, the page is locked. 3719 * And when try_charge() successfully returns, one refcnt to memcg without 3720 * struct page_cgroup is acquired. This refcnt will be consumed by 3721 * "commit()" or removed by "cancel()" 3722 */ 3723static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm, 3724 struct page *page, 3725 gfp_t mask, 3726 struct mem_cgroup **memcgp) 3727{ 3728 struct mem_cgroup *memcg = NULL; 3729 struct page_cgroup *pc; 3730 int ret; 3731 3732 pc = lookup_page_cgroup(page); 3733 /* 3734 * Every swap fault against a single page tries to charge the 3735 * page, bail as early as possible. shmem_unuse() encounters 3736 * already charged pages, too. The USED bit is protected by 3737 * the page lock, which serializes swap cache removal, which 3738 * in turn serializes uncharging. 3739 */ 3740 if (PageCgroupUsed(pc)) 3741 goto out; 3742 if (do_swap_account) 3743 memcg = try_get_mem_cgroup_from_page(page); 3744 if (!memcg) 3745 memcg = get_mem_cgroup_from_mm(mm); 3746 ret = mem_cgroup_try_charge(memcg, mask, 1, true); 3747 css_put(&memcg->css); 3748 if (ret == -EINTR) 3749 memcg = root_mem_cgroup; 3750 else if (ret) 3751 return ret; 3752out: 3753 *memcgp = memcg; 3754 return 0; 3755} 3756 3757int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page, 3758 gfp_t gfp_mask, struct mem_cgroup **memcgp) 3759{ 3760 if (mem_cgroup_disabled()) { 3761 *memcgp = NULL; 3762 return 0; 3763 } 3764 /* 3765 * A racing thread's fault, or swapoff, may have already 3766 * updated the pte, and even removed page from swap cache: in 3767 * those cases unuse_pte()'s pte_same() test will fail; but 3768 * there's also a KSM case which does need to charge the page. 3769 */ 3770 if (!PageSwapCache(page)) { 3771 struct mem_cgroup *memcg; 3772 3773 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); 3774 if (!memcg) 3775 return -ENOMEM; 3776 *memcgp = memcg; 3777 return 0; 3778 } 3779 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp); 3780} 3781 3782void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg) 3783{ 3784 if (mem_cgroup_disabled()) 3785 return; 3786 if (!memcg) 3787 return; 3788 __mem_cgroup_cancel_charge(memcg, 1); 3789} 3790 3791static void 3792__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg, 3793 enum charge_type ctype) 3794{ 3795 if (mem_cgroup_disabled()) 3796 return; 3797 if (!memcg) 3798 return; 3799 3800 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true); 3801 /* 3802 * Now swap is on-memory. This means this page may be 3803 * counted both as mem and swap....double count. 3804 * Fix it by uncharging from memsw. Basically, this SwapCache is stable 3805 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page() 3806 * may call delete_from_swap_cache() before reach here. 3807 */ 3808 if (do_swap_account && PageSwapCache(page)) { 3809 swp_entry_t ent = {.val = page_private(page)}; 3810 mem_cgroup_uncharge_swap(ent); 3811 } 3812} 3813 3814void mem_cgroup_commit_charge_swapin(struct page *page, 3815 struct mem_cgroup *memcg) 3816{ 3817 __mem_cgroup_commit_charge_swapin(page, memcg, 3818 MEM_CGROUP_CHARGE_TYPE_ANON); 3819} 3820 3821int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm, 3822 gfp_t gfp_mask) 3823{ 3824 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 3825 struct mem_cgroup *memcg; 3826 int ret; 3827 3828 if (mem_cgroup_disabled()) 3829 return 0; 3830 if (PageCompound(page)) 3831 return 0; 3832 3833 if (PageSwapCache(page)) { /* shmem */ 3834 ret = __mem_cgroup_try_charge_swapin(mm, page, 3835 gfp_mask, &memcg); 3836 if (ret) 3837 return ret; 3838 __mem_cgroup_commit_charge_swapin(page, memcg, type); 3839 return 0; 3840 } 3841 3842 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true); 3843 if (!memcg) 3844 return -ENOMEM; 3845 __mem_cgroup_commit_charge(memcg, page, 1, type, false); 3846 return 0; 3847} 3848 3849static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg, 3850 unsigned int nr_pages, 3851 const enum charge_type ctype) 3852{ 3853 struct memcg_batch_info *batch = NULL; 3854 bool uncharge_memsw = true; 3855 3856 /* If swapout, usage of swap doesn't decrease */ 3857 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) 3858 uncharge_memsw = false; 3859 3860 batch = &current->memcg_batch; 3861 /* 3862 * In usual, we do css_get() when we remember memcg pointer. 3863 * But in this case, we keep res->usage until end of a series of 3864 * uncharges. Then, it's ok to ignore memcg's refcnt. 3865 */ 3866 if (!batch->memcg) 3867 batch->memcg = memcg; 3868 /* 3869 * do_batch > 0 when unmapping pages or inode invalidate/truncate. 3870 * In those cases, all pages freed continuously can be expected to be in 3871 * the same cgroup and we have chance to coalesce uncharges. 3872 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE) 3873 * because we want to do uncharge as soon as possible. 3874 */ 3875 3876 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE)) 3877 goto direct_uncharge; 3878 3879 if (nr_pages > 1) 3880 goto direct_uncharge; 3881 3882 /* 3883 * In typical case, batch->memcg == mem. This means we can 3884 * merge a series of uncharges to an uncharge of res_counter. 3885 * If not, we uncharge res_counter ony by one. 3886 */ 3887 if (batch->memcg != memcg) 3888 goto direct_uncharge; 3889 /* remember freed charge and uncharge it later */ 3890 batch->nr_pages++; 3891 if (uncharge_memsw) 3892 batch->memsw_nr_pages++; 3893 return; 3894direct_uncharge: 3895 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE); 3896 if (uncharge_memsw) 3897 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE); 3898 if (unlikely(batch->memcg != memcg)) 3899 memcg_oom_recover(memcg); 3900} 3901 3902/* 3903 * uncharge if !page_mapped(page) 3904 */ 3905static struct mem_cgroup * 3906__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype, 3907 bool end_migration) 3908{ 3909 struct mem_cgroup *memcg = NULL; 3910 unsigned int nr_pages = 1; 3911 struct page_cgroup *pc; 3912 bool anon; 3913 3914 if (mem_cgroup_disabled()) 3915 return NULL; 3916 3917 if (PageTransHuge(page)) { 3918 nr_pages <<= compound_order(page); 3919 VM_BUG_ON_PAGE(!PageTransHuge(page), page); 3920 } 3921 /* 3922 * Check if our page_cgroup is valid 3923 */ 3924 pc = lookup_page_cgroup(page); 3925 if (unlikely(!PageCgroupUsed(pc))) 3926 return NULL; 3927 3928 lock_page_cgroup(pc); 3929 3930 memcg = pc->mem_cgroup; 3931 3932 if (!PageCgroupUsed(pc)) 3933 goto unlock_out; 3934 3935 anon = PageAnon(page); 3936 3937 switch (ctype) { 3938 case MEM_CGROUP_CHARGE_TYPE_ANON: 3939 /* 3940 * Generally PageAnon tells if it's the anon statistics to be 3941 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is 3942 * used before page reached the stage of being marked PageAnon. 3943 */ 3944 anon = true; 3945 /* fallthrough */ 3946 case MEM_CGROUP_CHARGE_TYPE_DROP: 3947 /* See mem_cgroup_prepare_migration() */ 3948 if (page_mapped(page)) 3949 goto unlock_out; 3950 /* 3951 * Pages under migration may not be uncharged. But 3952 * end_migration() /must/ be the one uncharging the 3953 * unused post-migration page and so it has to call 3954 * here with the migration bit still set. See the 3955 * res_counter handling below. 3956 */ 3957 if (!end_migration && PageCgroupMigration(pc)) 3958 goto unlock_out; 3959 break; 3960 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT: 3961 if (!PageAnon(page)) { /* Shared memory */ 3962 if (page->mapping && !page_is_file_cache(page)) 3963 goto unlock_out; 3964 } else if (page_mapped(page)) /* Anon */ 3965 goto unlock_out; 3966 break; 3967 default: 3968 break; 3969 } 3970 3971 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages); 3972 3973 ClearPageCgroupUsed(pc); 3974 /* 3975 * pc->mem_cgroup is not cleared here. It will be accessed when it's 3976 * freed from LRU. This is safe because uncharged page is expected not 3977 * to be reused (freed soon). Exception is SwapCache, it's handled by 3978 * special functions. 3979 */ 3980 3981 unlock_page_cgroup(pc); 3982 /* 3983 * even after unlock, we have memcg->res.usage here and this memcg 3984 * will never be freed, so it's safe to call css_get(). 3985 */ 3986 memcg_check_events(memcg, page); 3987 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) { 3988 mem_cgroup_swap_statistics(memcg, true); 3989 css_get(&memcg->css); 3990 } 3991 /* 3992 * Migration does not charge the res_counter for the 3993 * replacement page, so leave it alone when phasing out the 3994 * page that is unused after the migration. 3995 */ 3996 if (!end_migration && !mem_cgroup_is_root(memcg)) 3997 mem_cgroup_do_uncharge(memcg, nr_pages, ctype); 3998 3999 return memcg; 4000 4001unlock_out: 4002 unlock_page_cgroup(pc); 4003 return NULL; 4004} 4005 4006void mem_cgroup_uncharge_page(struct page *page) 4007{ 4008 /* early check. */ 4009 if (page_mapped(page)) 4010 return; 4011 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page); 4012 /* 4013 * If the page is in swap cache, uncharge should be deferred 4014 * to the swap path, which also properly accounts swap usage 4015 * and handles memcg lifetime. 4016 * 4017 * Note that this check is not stable and reclaim may add the 4018 * page to swap cache at any time after this. However, if the 4019 * page is not in swap cache by the time page->mapcount hits 4020 * 0, there won't be any page table references to the swap 4021 * slot, and reclaim will free it and not actually write the 4022 * page to disk. 4023 */ 4024 if (PageSwapCache(page)) 4025 return; 4026 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false); 4027} 4028 4029void mem_cgroup_uncharge_cache_page(struct page *page) 4030{ 4031 VM_BUG_ON_PAGE(page_mapped(page), page); 4032 VM_BUG_ON_PAGE(page->mapping, page); 4033 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false); 4034} 4035 4036/* 4037 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate. 4038 * In that cases, pages are freed continuously and we can expect pages 4039 * are in the same memcg. All these calls itself limits the number of 4040 * pages freed at once, then uncharge_start/end() is called properly. 4041 * This may be called prural(2) times in a context, 4042 */ 4043 4044void mem_cgroup_uncharge_start(void) 4045{ 4046 current->memcg_batch.do_batch++; 4047 /* We can do nest. */ 4048 if (current->memcg_batch.do_batch == 1) { 4049 current->memcg_batch.memcg = NULL; 4050 current->memcg_batch.nr_pages = 0; 4051 current->memcg_batch.memsw_nr_pages = 0; 4052 } 4053} 4054 4055void mem_cgroup_uncharge_end(void) 4056{ 4057 struct memcg_batch_info *batch = &current->memcg_batch; 4058 4059 if (!batch->do_batch) 4060 return; 4061 4062 batch->do_batch--; 4063 if (batch->do_batch) /* If stacked, do nothing. */ 4064 return; 4065 4066 if (!batch->memcg) 4067 return; 4068 /* 4069 * This "batch->memcg" is valid without any css_get/put etc... 4070 * bacause we hide charges behind us. 4071 */ 4072 if (batch->nr_pages) 4073 res_counter_uncharge(&batch->memcg->res, 4074 batch->nr_pages * PAGE_SIZE); 4075 if (batch->memsw_nr_pages) 4076 res_counter_uncharge(&batch->memcg->memsw, 4077 batch->memsw_nr_pages * PAGE_SIZE); 4078 memcg_oom_recover(batch->memcg); 4079 /* forget this pointer (for sanity check) */ 4080 batch->memcg = NULL; 4081} 4082 4083#ifdef CONFIG_SWAP 4084/* 4085 * called after __delete_from_swap_cache() and drop "page" account. 4086 * memcg information is recorded to swap_cgroup of "ent" 4087 */ 4088void 4089mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) 4090{ 4091 struct mem_cgroup *memcg; 4092 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT; 4093 4094 if (!swapout) /* this was a swap cache but the swap is unused ! */ 4095 ctype = MEM_CGROUP_CHARGE_TYPE_DROP; 4096 4097 memcg = __mem_cgroup_uncharge_common(page, ctype, false); 4098 4099 /* 4100 * record memcg information, if swapout && memcg != NULL, 4101 * css_get() was called in uncharge(). 4102 */ 4103 if (do_swap_account && swapout && memcg) 4104 swap_cgroup_record(ent, mem_cgroup_id(memcg)); 4105} 4106#endif 4107 4108#ifdef CONFIG_MEMCG_SWAP 4109/* 4110 * called from swap_entry_free(). remove record in swap_cgroup and 4111 * uncharge "memsw" account. 4112 */ 4113void mem_cgroup_uncharge_swap(swp_entry_t ent) 4114{ 4115 struct mem_cgroup *memcg; 4116 unsigned short id; 4117 4118 if (!do_swap_account) 4119 return; 4120 4121 id = swap_cgroup_record(ent, 0); 4122 rcu_read_lock(); 4123 memcg = mem_cgroup_lookup(id); 4124 if (memcg) { 4125 /* 4126 * We uncharge this because swap is freed. This memcg can 4127 * be obsolete one. We avoid calling css_tryget_online(). 4128 */ 4129 if (!mem_cgroup_is_root(memcg)) 4130 res_counter_uncharge(&memcg->memsw, PAGE_SIZE); 4131 mem_cgroup_swap_statistics(memcg, false); 4132 css_put(&memcg->css); 4133 } 4134 rcu_read_unlock(); 4135} 4136 4137/** 4138 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. 4139 * @entry: swap entry to be moved 4140 * @from: mem_cgroup which the entry is moved from 4141 * @to: mem_cgroup which the entry is moved to 4142 * 4143 * It succeeds only when the swap_cgroup's record for this entry is the same 4144 * as the mem_cgroup's id of @from. 4145 * 4146 * Returns 0 on success, -EINVAL on failure. 4147 * 4148 * The caller must have charged to @to, IOW, called res_counter_charge() about 4149 * both res and memsw, and called css_get(). 4150 */ 4151static int mem_cgroup_move_swap_account(swp_entry_t entry, 4152 struct mem_cgroup *from, struct mem_cgroup *to) 4153{ 4154 unsigned short old_id, new_id; 4155 4156 old_id = mem_cgroup_id(from); 4157 new_id = mem_cgroup_id(to); 4158 4159 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { 4160 mem_cgroup_swap_statistics(from, false); 4161 mem_cgroup_swap_statistics(to, true); 4162 /* 4163 * This function is only called from task migration context now. 4164 * It postpones res_counter and refcount handling till the end 4165 * of task migration(mem_cgroup_clear_mc()) for performance 4166 * improvement. But we cannot postpone css_get(to) because if 4167 * the process that has been moved to @to does swap-in, the 4168 * refcount of @to might be decreased to 0. 4169 * 4170 * We are in attach() phase, so the cgroup is guaranteed to be 4171 * alive, so we can just call css_get(). 4172 */ 4173 css_get(&to->css); 4174 return 0; 4175 } 4176 return -EINVAL; 4177} 4178#else 4179static inline int mem_cgroup_move_swap_account(swp_entry_t entry, 4180 struct mem_cgroup *from, struct mem_cgroup *to) 4181{ 4182 return -EINVAL; 4183} 4184#endif 4185 4186/* 4187 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old 4188 * page belongs to. 4189 */ 4190void mem_cgroup_prepare_migration(struct page *page, struct page *newpage, 4191 struct mem_cgroup **memcgp) 4192{ 4193 struct mem_cgroup *memcg = NULL; 4194 unsigned int nr_pages = 1; 4195 struct page_cgroup *pc; 4196 enum charge_type ctype; 4197 4198 *memcgp = NULL; 4199 4200 if (mem_cgroup_disabled()) 4201 return; 4202 4203 if (PageTransHuge(page)) 4204 nr_pages <<= compound_order(page); 4205 4206 pc = lookup_page_cgroup(page); 4207 lock_page_cgroup(pc); 4208 if (PageCgroupUsed(pc)) { 4209 memcg = pc->mem_cgroup; 4210 css_get(&memcg->css); 4211 /* 4212 * At migrating an anonymous page, its mapcount goes down 4213 * to 0 and uncharge() will be called. But, even if it's fully 4214 * unmapped, migration may fail and this page has to be 4215 * charged again. We set MIGRATION flag here and delay uncharge 4216 * until end_migration() is called 4217 * 4218 * Corner Case Thinking 4219 * A) 4220 * When the old page was mapped as Anon and it's unmap-and-freed 4221 * while migration was ongoing. 4222 * If unmap finds the old page, uncharge() of it will be delayed 4223 * until end_migration(). If unmap finds a new page, it's 4224 * uncharged when it make mapcount to be 1->0. If unmap code 4225 * finds swap_migration_entry, the new page will not be mapped 4226 * and end_migration() will find it(mapcount==0). 4227 * 4228 * B) 4229 * When the old page was mapped but migraion fails, the kernel 4230 * remaps it. A charge for it is kept by MIGRATION flag even 4231 * if mapcount goes down to 0. We can do remap successfully 4232 * without charging it again. 4233 * 4234 * C) 4235 * The "old" page is under lock_page() until the end of 4236 * migration, so, the old page itself will not be swapped-out. 4237 * If the new page is swapped out before end_migraton, our 4238 * hook to usual swap-out path will catch the event. 4239 */ 4240 if (PageAnon(page)) 4241 SetPageCgroupMigration(pc); 4242 } 4243 unlock_page_cgroup(pc); 4244 /* 4245 * If the page is not charged at this point, 4246 * we return here. 4247 */ 4248 if (!memcg) 4249 return; 4250 4251 *memcgp = memcg; 4252 /* 4253 * We charge new page before it's used/mapped. So, even if unlock_page() 4254 * is called before end_migration, we can catch all events on this new 4255 * page. In the case new page is migrated but not remapped, new page's 4256 * mapcount will be finally 0 and we call uncharge in end_migration(). 4257 */ 4258 if (PageAnon(page)) 4259 ctype = MEM_CGROUP_CHARGE_TYPE_ANON; 4260 else 4261 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE; 4262 /* 4263 * The page is committed to the memcg, but it's not actually 4264 * charged to the res_counter since we plan on replacing the 4265 * old one and only one page is going to be left afterwards. 4266 */ 4267 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false); 4268} 4269 4270/* remove redundant charge if migration failed*/ 4271void mem_cgroup_end_migration(struct mem_cgroup *memcg, 4272 struct page *oldpage, struct page *newpage, bool migration_ok) 4273{ 4274 struct page *used, *unused; 4275 struct page_cgroup *pc; 4276 bool anon; 4277 4278 if (!memcg) 4279 return; 4280 4281 if (!migration_ok) { 4282 used = oldpage; 4283 unused = newpage; 4284 } else { 4285 used = newpage; 4286 unused = oldpage; 4287 } 4288 anon = PageAnon(used); 4289 __mem_cgroup_uncharge_common(unused, 4290 anon ? MEM_CGROUP_CHARGE_TYPE_ANON 4291 : MEM_CGROUP_CHARGE_TYPE_CACHE, 4292 true); 4293 css_put(&memcg->css); 4294 /* 4295 * We disallowed uncharge of pages under migration because mapcount 4296 * of the page goes down to zero, temporarly. 4297 * Clear the flag and check the page should be charged. 4298 */ 4299 pc = lookup_page_cgroup(oldpage); 4300 lock_page_cgroup(pc); 4301 ClearPageCgroupMigration(pc); 4302 unlock_page_cgroup(pc); 4303 4304 /* 4305 * If a page is a file cache, radix-tree replacement is very atomic 4306 * and we can skip this check. When it was an Anon page, its mapcount 4307 * goes down to 0. But because we added MIGRATION flage, it's not 4308 * uncharged yet. There are several case but page->mapcount check 4309 * and USED bit check in mem_cgroup_uncharge_page() will do enough 4310 * check. (see prepare_charge() also) 4311 */ 4312 if (anon) 4313 mem_cgroup_uncharge_page(used); 4314} 4315 4316/* 4317 * At replace page cache, newpage is not under any memcg but it's on 4318 * LRU. So, this function doesn't touch res_counter but handles LRU 4319 * in correct way. Both pages are locked so we cannot race with uncharge. 4320 */ 4321void mem_cgroup_replace_page_cache(struct page *oldpage, 4322 struct page *newpage) 4323{ 4324 struct mem_cgroup *memcg = NULL; 4325 struct page_cgroup *pc; 4326 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE; 4327 4328 if (mem_cgroup_disabled()) 4329 return; 4330 4331 pc = lookup_page_cgroup(oldpage); 4332 /* fix accounting on old pages */ 4333 lock_page_cgroup(pc); 4334 if (PageCgroupUsed(pc)) { 4335 memcg = pc->mem_cgroup; 4336 mem_cgroup_charge_statistics(memcg, oldpage, false, -1); 4337 ClearPageCgroupUsed(pc); 4338 } 4339 unlock_page_cgroup(pc); 4340 4341 /* 4342 * When called from shmem_replace_page(), in some cases the 4343 * oldpage has already been charged, and in some cases not. 4344 */ 4345 if (!memcg) 4346 return; 4347 /* 4348 * Even if newpage->mapping was NULL before starting replacement, 4349 * the newpage may be on LRU(or pagevec for LRU) already. We lock 4350 * LRU while we overwrite pc->mem_cgroup. 4351 */ 4352 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true); 4353} 4354 4355#ifdef CONFIG_DEBUG_VM 4356static struct page_cgroup *lookup_page_cgroup_used(struct page *page) 4357{ 4358 struct page_cgroup *pc; 4359 4360 pc = lookup_page_cgroup(page); 4361 /* 4362 * Can be NULL while feeding pages into the page allocator for 4363 * the first time, i.e. during boot or memory hotplug; 4364 * or when mem_cgroup_disabled(). 4365 */ 4366 if (likely(pc) && PageCgroupUsed(pc)) 4367 return pc; 4368 return NULL; 4369} 4370 4371bool mem_cgroup_bad_page_check(struct page *page) 4372{ 4373 if (mem_cgroup_disabled()) 4374 return false; 4375 4376 return lookup_page_cgroup_used(page) != NULL; 4377} 4378 4379void mem_cgroup_print_bad_page(struct page *page) 4380{ 4381 struct page_cgroup *pc; 4382 4383 pc = lookup_page_cgroup_used(page); 4384 if (pc) { 4385 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n", 4386 pc, pc->flags, pc->mem_cgroup); 4387 } 4388} 4389#endif 4390 4391static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, 4392 unsigned long long val) 4393{ 4394 int retry_count; 4395 u64 memswlimit, memlimit; 4396 int ret = 0; 4397 int children = mem_cgroup_count_children(memcg); 4398 u64 curusage, oldusage; 4399 int enlarge; 4400 4401 /* 4402 * For keeping hierarchical_reclaim simple, how long we should retry 4403 * is depends on callers. We set our retry-count to be function 4404 * of # of children which we should visit in this loop. 4405 */ 4406 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children; 4407 4408 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4409 4410 enlarge = 0; 4411 while (retry_count) { 4412 if (signal_pending(current)) { 4413 ret = -EINTR; 4414 break; 4415 } 4416 /* 4417 * Rather than hide all in some function, I do this in 4418 * open coded manner. You see what this really does. 4419 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4420 */ 4421 mutex_lock(&set_limit_mutex); 4422 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4423 if (memswlimit < val) { 4424 ret = -EINVAL; 4425 mutex_unlock(&set_limit_mutex); 4426 break; 4427 } 4428 4429 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4430 if (memlimit < val) 4431 enlarge = 1; 4432 4433 ret = res_counter_set_limit(&memcg->res, val); 4434 if (!ret) { 4435 if (memswlimit == val) 4436 memcg->memsw_is_minimum = true; 4437 else 4438 memcg->memsw_is_minimum = false; 4439 } 4440 mutex_unlock(&set_limit_mutex); 4441 4442 if (!ret) 4443 break; 4444 4445 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4446 MEM_CGROUP_RECLAIM_SHRINK); 4447 curusage = res_counter_read_u64(&memcg->res, RES_USAGE); 4448 /* Usage is reduced ? */ 4449 if (curusage >= oldusage) 4450 retry_count--; 4451 else 4452 oldusage = curusage; 4453 } 4454 if (!ret && enlarge) 4455 memcg_oom_recover(memcg); 4456 4457 return ret; 4458} 4459 4460static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, 4461 unsigned long long val) 4462{ 4463 int retry_count; 4464 u64 memlimit, memswlimit, oldusage, curusage; 4465 int children = mem_cgroup_count_children(memcg); 4466 int ret = -EBUSY; 4467 int enlarge = 0; 4468 4469 /* see mem_cgroup_resize_res_limit */ 4470 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES; 4471 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4472 while (retry_count) { 4473 if (signal_pending(current)) { 4474 ret = -EINTR; 4475 break; 4476 } 4477 /* 4478 * Rather than hide all in some function, I do this in 4479 * open coded manner. You see what this really does. 4480 * We have to guarantee memcg->res.limit <= memcg->memsw.limit. 4481 */ 4482 mutex_lock(&set_limit_mutex); 4483 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT); 4484 if (memlimit > val) { 4485 ret = -EINVAL; 4486 mutex_unlock(&set_limit_mutex); 4487 break; 4488 } 4489 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 4490 if (memswlimit < val) 4491 enlarge = 1; 4492 ret = res_counter_set_limit(&memcg->memsw, val); 4493 if (!ret) { 4494 if (memlimit == val) 4495 memcg->memsw_is_minimum = true; 4496 else 4497 memcg->memsw_is_minimum = false; 4498 } 4499 mutex_unlock(&set_limit_mutex); 4500 4501 if (!ret) 4502 break; 4503 4504 mem_cgroup_reclaim(memcg, GFP_KERNEL, 4505 MEM_CGROUP_RECLAIM_NOSWAP | 4506 MEM_CGROUP_RECLAIM_SHRINK); 4507 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE); 4508 /* Usage is reduced ? */ 4509 if (curusage >= oldusage) 4510 retry_count--; 4511 else 4512 oldusage = curusage; 4513 } 4514 if (!ret && enlarge) 4515 memcg_oom_recover(memcg); 4516 return ret; 4517} 4518 4519unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, 4520 gfp_t gfp_mask, 4521 unsigned long *total_scanned) 4522{ 4523 unsigned long nr_reclaimed = 0; 4524 struct mem_cgroup_per_zone *mz, *next_mz = NULL; 4525 unsigned long reclaimed; 4526 int loop = 0; 4527 struct mem_cgroup_tree_per_zone *mctz; 4528 unsigned long long excess; 4529 unsigned long nr_scanned; 4530 4531 if (order > 0) 4532 return 0; 4533 4534 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); 4535 /* 4536 * This loop can run a while, specially if mem_cgroup's continuously 4537 * keep exceeding their soft limit and putting the system under 4538 * pressure 4539 */ 4540 do { 4541 if (next_mz) 4542 mz = next_mz; 4543 else 4544 mz = mem_cgroup_largest_soft_limit_node(mctz); 4545 if (!mz) 4546 break; 4547 4548 nr_scanned = 0; 4549 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, 4550 gfp_mask, &nr_scanned); 4551 nr_reclaimed += reclaimed; 4552 *total_scanned += nr_scanned; 4553 spin_lock(&mctz->lock); 4554 4555 /* 4556 * If we failed to reclaim anything from this memory cgroup 4557 * it is time to move on to the next cgroup 4558 */ 4559 next_mz = NULL; 4560 if (!reclaimed) { 4561 do { 4562 /* 4563 * Loop until we find yet another one. 4564 * 4565 * By the time we get the soft_limit lock 4566 * again, someone might have aded the 4567 * group back on the RB tree. Iterate to 4568 * make sure we get a different mem. 4569 * mem_cgroup_largest_soft_limit_node returns 4570 * NULL if no other cgroup is present on 4571 * the tree 4572 */ 4573 next_mz = 4574 __mem_cgroup_largest_soft_limit_node(mctz); 4575 if (next_mz == mz) 4576 css_put(&next_mz->memcg->css); 4577 else /* next_mz == NULL or other memcg */ 4578 break; 4579 } while (1); 4580 } 4581 __mem_cgroup_remove_exceeded(mz, mctz); 4582 excess = res_counter_soft_limit_excess(&mz->memcg->res); 4583 /* 4584 * One school of thought says that we should not add 4585 * back the node to the tree if reclaim returns 0. 4586 * But our reclaim could return 0, simply because due 4587 * to priority we are exposing a smaller subset of 4588 * memory to reclaim from. Consider this as a longer 4589 * term TODO. 4590 */ 4591 /* If excess == 0, no tree ops */ 4592 __mem_cgroup_insert_exceeded(mz, mctz, excess); 4593 spin_unlock(&mctz->lock); 4594 css_put(&mz->memcg->css); 4595 loop++; 4596 /* 4597 * Could not reclaim anything and there are no more 4598 * mem cgroups to try or we seem to be looping without 4599 * reclaiming anything. 4600 */ 4601 if (!nr_reclaimed && 4602 (next_mz == NULL || 4603 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) 4604 break; 4605 } while (!nr_reclaimed); 4606 if (next_mz) 4607 css_put(&next_mz->memcg->css); 4608 return nr_reclaimed; 4609} 4610 4611/** 4612 * mem_cgroup_force_empty_list - clears LRU of a group 4613 * @memcg: group to clear 4614 * @node: NUMA node 4615 * @zid: zone id 4616 * @lru: lru to to clear 4617 * 4618 * Traverse a specified page_cgroup list and try to drop them all. This doesn't 4619 * reclaim the pages page themselves - pages are moved to the parent (or root) 4620 * group. 4621 */ 4622static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg, 4623 int node, int zid, enum lru_list lru) 4624{ 4625 struct lruvec *lruvec; 4626 unsigned long flags; 4627 struct list_head *list; 4628 struct page *busy; 4629 struct zone *zone; 4630 4631 zone = &NODE_DATA(node)->node_zones[zid]; 4632 lruvec = mem_cgroup_zone_lruvec(zone, memcg); 4633 list = &lruvec->lists[lru]; 4634 4635 busy = NULL; 4636 do { 4637 struct page_cgroup *pc; 4638 struct page *page; 4639 4640 spin_lock_irqsave(&zone->lru_lock, flags); 4641 if (list_empty(list)) { 4642 spin_unlock_irqrestore(&zone->lru_lock, flags); 4643 break; 4644 } 4645 page = list_entry(list->prev, struct page, lru); 4646 if (busy == page) { 4647 list_move(&page->lru, list); 4648 busy = NULL; 4649 spin_unlock_irqrestore(&zone->lru_lock, flags); 4650 continue; 4651 } 4652 spin_unlock_irqrestore(&zone->lru_lock, flags); 4653 4654 pc = lookup_page_cgroup(page); 4655 4656 if (mem_cgroup_move_parent(page, pc, memcg)) { 4657 /* found lock contention or "pc" is obsolete. */ 4658 busy = page; 4659 } else 4660 busy = NULL; 4661 cond_resched(); 4662 } while (!list_empty(list)); 4663} 4664 4665/* 4666 * make mem_cgroup's charge to be 0 if there is no task by moving 4667 * all the charges and pages to the parent. 4668 * This enables deleting this mem_cgroup. 4669 * 4670 * Caller is responsible for holding css reference on the memcg. 4671 */ 4672static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg) 4673{ 4674 int node, zid; 4675 u64 usage; 4676 4677 do { 4678 /* This is for making all *used* pages to be on LRU. */ 4679 lru_add_drain_all(); 4680 drain_all_stock_sync(memcg); 4681 mem_cgroup_start_move(memcg); 4682 for_each_node_state(node, N_MEMORY) { 4683 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 4684 enum lru_list lru; 4685 for_each_lru(lru) { 4686 mem_cgroup_force_empty_list(memcg, 4687 node, zid, lru); 4688 } 4689 } 4690 } 4691 mem_cgroup_end_move(memcg); 4692 memcg_oom_recover(memcg); 4693 cond_resched(); 4694 4695 /* 4696 * Kernel memory may not necessarily be trackable to a specific 4697 * process. So they are not migrated, and therefore we can't 4698 * expect their value to drop to 0 here. 4699 * Having res filled up with kmem only is enough. 4700 * 4701 * This is a safety check because mem_cgroup_force_empty_list 4702 * could have raced with mem_cgroup_replace_page_cache callers 4703 * so the lru seemed empty but the page could have been added 4704 * right after the check. RES_USAGE should be safe as we always 4705 * charge before adding to the LRU. 4706 */ 4707 usage = res_counter_read_u64(&memcg->res, RES_USAGE) - 4708 res_counter_read_u64(&memcg->kmem, RES_USAGE); 4709 } while (usage > 0); 4710} 4711 4712/* 4713 * Test whether @memcg has children, dead or alive. Note that this 4714 * function doesn't care whether @memcg has use_hierarchy enabled and 4715 * returns %true if there are child csses according to the cgroup 4716 * hierarchy. Testing use_hierarchy is the caller's responsiblity. 4717 */ 4718static inline bool memcg_has_children(struct mem_cgroup *memcg) 4719{ 4720 bool ret; 4721 4722 /* 4723 * The lock does not prevent addition or deletion of children, but 4724 * it prevents a new child from being initialized based on this 4725 * parent in css_online(), so it's enough to decide whether 4726 * hierarchically inherited attributes can still be changed or not. 4727 */ 4728 lockdep_assert_held(&memcg_create_mutex); 4729 4730 rcu_read_lock(); 4731 ret = css_next_child(NULL, &memcg->css); 4732 rcu_read_unlock(); 4733 return ret; 4734} 4735 4736/* 4737 * Reclaims as many pages from the given memcg as possible and moves 4738 * the rest to the parent. 4739 * 4740 * Caller is responsible for holding css reference for memcg. 4741 */ 4742static int mem_cgroup_force_empty(struct mem_cgroup *memcg) 4743{ 4744 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; 4745 4746 /* we call try-to-free pages for make this cgroup empty */ 4747 lru_add_drain_all(); 4748 /* try to free all pages in this cgroup */ 4749 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) { 4750 int progress; 4751 4752 if (signal_pending(current)) 4753 return -EINTR; 4754 4755 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL, 4756 false); 4757 if (!progress) { 4758 nr_retries--; 4759 /* maybe some writeback is necessary */ 4760 congestion_wait(BLK_RW_ASYNC, HZ/10); 4761 } 4762 4763 } 4764 4765 return 0; 4766} 4767 4768static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, 4769 char *buf, size_t nbytes, 4770 loff_t off) 4771{ 4772 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 4773 4774 if (mem_cgroup_is_root(memcg)) 4775 return -EINVAL; 4776 return mem_cgroup_force_empty(memcg) ?: nbytes; 4777} 4778 4779static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, 4780 struct cftype *cft) 4781{ 4782 return mem_cgroup_from_css(css)->use_hierarchy; 4783} 4784 4785static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, 4786 struct cftype *cft, u64 val) 4787{ 4788 int retval = 0; 4789 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4790 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); 4791 4792 mutex_lock(&memcg_create_mutex); 4793 4794 if (memcg->use_hierarchy == val) 4795 goto out; 4796 4797 /* 4798 * If parent's use_hierarchy is set, we can't make any modifications 4799 * in the child subtrees. If it is unset, then the change can 4800 * occur, provided the current cgroup has no children. 4801 * 4802 * For the root cgroup, parent_mem is NULL, we allow value to be 4803 * set if there are no children. 4804 */ 4805 if ((!parent_memcg || !parent_memcg->use_hierarchy) && 4806 (val == 1 || val == 0)) { 4807 if (!memcg_has_children(memcg)) 4808 memcg->use_hierarchy = val; 4809 else 4810 retval = -EBUSY; 4811 } else 4812 retval = -EINVAL; 4813 4814out: 4815 mutex_unlock(&memcg_create_mutex); 4816 4817 return retval; 4818} 4819 4820 4821static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg, 4822 enum mem_cgroup_stat_index idx) 4823{ 4824 struct mem_cgroup *iter; 4825 long val = 0; 4826 4827 /* Per-cpu values can be negative, use a signed accumulator */ 4828 for_each_mem_cgroup_tree(iter, memcg) 4829 val += mem_cgroup_read_stat(iter, idx); 4830 4831 if (val < 0) /* race ? */ 4832 val = 0; 4833 return val; 4834} 4835 4836static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) 4837{ 4838 u64 val; 4839 4840 if (!mem_cgroup_is_root(memcg)) { 4841 if (!swap) 4842 return res_counter_read_u64(&memcg->res, RES_USAGE); 4843 else 4844 return res_counter_read_u64(&memcg->memsw, RES_USAGE); 4845 } 4846 4847 /* 4848 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS 4849 * as well as in MEM_CGROUP_STAT_RSS_HUGE. 4850 */ 4851 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE); 4852 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS); 4853 4854 if (swap) 4855 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP); 4856 4857 return val << PAGE_SHIFT; 4858} 4859 4860static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, 4861 struct cftype *cft) 4862{ 4863 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 4864 u64 val; 4865 int name; 4866 enum res_type type; 4867 4868 type = MEMFILE_TYPE(cft->private); 4869 name = MEMFILE_ATTR(cft->private); 4870 4871 switch (type) { 4872 case _MEM: 4873 if (name == RES_USAGE) 4874 val = mem_cgroup_usage(memcg, false); 4875 else 4876 val = res_counter_read_u64(&memcg->res, name); 4877 break; 4878 case _MEMSWAP: 4879 if (name == RES_USAGE) 4880 val = mem_cgroup_usage(memcg, true); 4881 else 4882 val = res_counter_read_u64(&memcg->memsw, name); 4883 break; 4884 case _KMEM: 4885 val = res_counter_read_u64(&memcg->kmem, name); 4886 break; 4887 default: 4888 BUG(); 4889 } 4890 4891 return val; 4892} 4893 4894#ifdef CONFIG_MEMCG_KMEM 4895/* should be called with activate_kmem_mutex held */ 4896static int __memcg_activate_kmem(struct mem_cgroup *memcg, 4897 unsigned long long limit) 4898{ 4899 int err = 0; 4900 int memcg_id; 4901 4902 if (memcg_kmem_is_active(memcg)) 4903 return 0; 4904 4905 /* 4906 * We are going to allocate memory for data shared by all memory 4907 * cgroups so let's stop accounting here. 4908 */ 4909 memcg_stop_kmem_account(); 4910 4911 /* 4912 * For simplicity, we won't allow this to be disabled. It also can't 4913 * be changed if the cgroup has children already, or if tasks had 4914 * already joined. 4915 * 4916 * If tasks join before we set the limit, a person looking at 4917 * kmem.usage_in_bytes will have no way to determine when it took 4918 * place, which makes the value quite meaningless. 4919 * 4920 * After it first became limited, changes in the value of the limit are 4921 * of course permitted. 4922 */ 4923 mutex_lock(&memcg_create_mutex); 4924 if (cgroup_has_tasks(memcg->css.cgroup) || 4925 (memcg->use_hierarchy && memcg_has_children(memcg))) 4926 err = -EBUSY; 4927 mutex_unlock(&memcg_create_mutex); 4928 if (err) 4929 goto out; 4930 4931 memcg_id = ida_simple_get(&kmem_limited_groups, 4932 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); 4933 if (memcg_id < 0) { 4934 err = memcg_id; 4935 goto out; 4936 } 4937 4938 /* 4939 * Make sure we have enough space for this cgroup in each root cache's 4940 * memcg_params. 4941 */ 4942 mutex_lock(&memcg_slab_mutex); 4943 err = memcg_update_all_caches(memcg_id + 1); 4944 mutex_unlock(&memcg_slab_mutex); 4945 if (err) 4946 goto out_rmid; 4947 4948 memcg->kmemcg_id = memcg_id; 4949 INIT_LIST_HEAD(&memcg->memcg_slab_caches); 4950 4951 /* 4952 * We couldn't have accounted to this cgroup, because it hasn't got the 4953 * active bit set yet, so this should succeed. 4954 */ 4955 err = res_counter_set_limit(&memcg->kmem, limit); 4956 VM_BUG_ON(err); 4957 4958 static_key_slow_inc(&memcg_kmem_enabled_key); 4959 /* 4960 * Setting the active bit after enabling static branching will 4961 * guarantee no one starts accounting before all call sites are 4962 * patched. 4963 */ 4964 memcg_kmem_set_active(memcg); 4965out: 4966 memcg_resume_kmem_account(); 4967 return err; 4968 4969out_rmid: 4970 ida_simple_remove(&kmem_limited_groups, memcg_id); 4971 goto out; 4972} 4973 4974static int memcg_activate_kmem(struct mem_cgroup *memcg, 4975 unsigned long long limit) 4976{ 4977 int ret; 4978 4979 mutex_lock(&activate_kmem_mutex); 4980 ret = __memcg_activate_kmem(memcg, limit); 4981 mutex_unlock(&activate_kmem_mutex); 4982 return ret; 4983} 4984 4985static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 4986 unsigned long long val) 4987{ 4988 int ret; 4989 4990 if (!memcg_kmem_is_active(memcg)) 4991 ret = memcg_activate_kmem(memcg, val); 4992 else 4993 ret = res_counter_set_limit(&memcg->kmem, val); 4994 return ret; 4995} 4996 4997static int memcg_propagate_kmem(struct mem_cgroup *memcg) 4998{ 4999 int ret = 0; 5000 struct mem_cgroup *parent = parent_mem_cgroup(memcg); 5001 5002 if (!parent) 5003 return 0; 5004 5005 mutex_lock(&activate_kmem_mutex); 5006 /* 5007 * If the parent cgroup is not kmem-active now, it cannot be activated 5008 * after this point, because it has at least one child already. 5009 */ 5010 if (memcg_kmem_is_active(parent)) 5011 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX); 5012 mutex_unlock(&activate_kmem_mutex); 5013 return ret; 5014} 5015#else 5016static int memcg_update_kmem_limit(struct mem_cgroup *memcg, 5017 unsigned long long val) 5018{ 5019 return -EINVAL; 5020} 5021#endif /* CONFIG_MEMCG_KMEM */ 5022 5023/* 5024 * The user of this function is... 5025 * RES_LIMIT. 5026 */ 5027static ssize_t mem_cgroup_write(struct kernfs_open_file *of, 5028 char *buf, size_t nbytes, loff_t off) 5029{ 5030 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5031 enum res_type type; 5032 int name; 5033 unsigned long long val; 5034 int ret; 5035 5036 buf = strstrip(buf); 5037 type = MEMFILE_TYPE(of_cft(of)->private); 5038 name = MEMFILE_ATTR(of_cft(of)->private); 5039 5040 switch (name) { 5041 case RES_LIMIT: 5042 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ 5043 ret = -EINVAL; 5044 break; 5045 } 5046 /* This function does all necessary parse...reuse it */ 5047 ret = res_counter_memparse_write_strategy(buf, &val); 5048 if (ret) 5049 break; 5050 if (type == _MEM) 5051 ret = mem_cgroup_resize_limit(memcg, val); 5052 else if (type == _MEMSWAP) 5053 ret = mem_cgroup_resize_memsw_limit(memcg, val); 5054 else if (type == _KMEM) 5055 ret = memcg_update_kmem_limit(memcg, val); 5056 else 5057 return -EINVAL; 5058 break; 5059 case RES_SOFT_LIMIT: 5060 ret = res_counter_memparse_write_strategy(buf, &val); 5061 if (ret) 5062 break; 5063 /* 5064 * For memsw, soft limits are hard to implement in terms 5065 * of semantics, for now, we support soft limits for 5066 * control without swap 5067 */ 5068 if (type == _MEM) 5069 ret = res_counter_set_soft_limit(&memcg->res, val); 5070 else 5071 ret = -EINVAL; 5072 break; 5073 default: 5074 ret = -EINVAL; /* should be BUG() ? */ 5075 break; 5076 } 5077 return ret ?: nbytes; 5078} 5079 5080static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg, 5081 unsigned long long *mem_limit, unsigned long long *memsw_limit) 5082{ 5083 unsigned long long min_limit, min_memsw_limit, tmp; 5084 5085 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT); 5086 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5087 if (!memcg->use_hierarchy) 5088 goto out; 5089 5090 while (memcg->css.parent) { 5091 memcg = mem_cgroup_from_css(memcg->css.parent); 5092 if (!memcg->use_hierarchy) 5093 break; 5094 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT); 5095 min_limit = min(min_limit, tmp); 5096 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT); 5097 min_memsw_limit = min(min_memsw_limit, tmp); 5098 } 5099out: 5100 *mem_limit = min_limit; 5101 *memsw_limit = min_memsw_limit; 5102} 5103 5104static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, 5105 size_t nbytes, loff_t off) 5106{ 5107 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); 5108 int name; 5109 enum res_type type; 5110 5111 type = MEMFILE_TYPE(of_cft(of)->private); 5112 name = MEMFILE_ATTR(of_cft(of)->private); 5113 5114 switch (name) { 5115 case RES_MAX_USAGE: 5116 if (type == _MEM) 5117 res_counter_reset_max(&memcg->res); 5118 else if (type == _MEMSWAP) 5119 res_counter_reset_max(&memcg->memsw); 5120 else if (type == _KMEM) 5121 res_counter_reset_max(&memcg->kmem); 5122 else 5123 return -EINVAL; 5124 break; 5125 case RES_FAILCNT: 5126 if (type == _MEM) 5127 res_counter_reset_failcnt(&memcg->res); 5128 else if (type == _MEMSWAP) 5129 res_counter_reset_failcnt(&memcg->memsw); 5130 else if (type == _KMEM) 5131 res_counter_reset_failcnt(&memcg->kmem); 5132 else 5133 return -EINVAL; 5134 break; 5135 } 5136 5137 return nbytes; 5138} 5139 5140static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, 5141 struct cftype *cft) 5142{ 5143 return mem_cgroup_from_css(css)->move_charge_at_immigrate; 5144} 5145 5146#ifdef CONFIG_MMU 5147static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5148 struct cftype *cft, u64 val) 5149{ 5150 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5151 5152 if (val >= (1 << NR_MOVE_TYPE)) 5153 return -EINVAL; 5154 5155 /* 5156 * No kind of locking is needed in here, because ->can_attach() will 5157 * check this value once in the beginning of the process, and then carry 5158 * on with stale data. This means that changes to this value will only 5159 * affect task migrations starting after the change. 5160 */ 5161 memcg->move_charge_at_immigrate = val; 5162 return 0; 5163} 5164#else 5165static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, 5166 struct cftype *cft, u64 val) 5167{ 5168 return -ENOSYS; 5169} 5170#endif 5171 5172#ifdef CONFIG_NUMA 5173static int memcg_numa_stat_show(struct seq_file *m, void *v) 5174{ 5175 struct numa_stat { 5176 const char *name; 5177 unsigned int lru_mask; 5178 }; 5179 5180 static const struct numa_stat stats[] = { 5181 { "total", LRU_ALL }, 5182 { "file", LRU_ALL_FILE }, 5183 { "anon", LRU_ALL_ANON }, 5184 { "unevictable", BIT(LRU_UNEVICTABLE) }, 5185 }; 5186 const struct numa_stat *stat; 5187 int nid; 5188 unsigned long nr; 5189 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5190 5191 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5192 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); 5193 seq_printf(m, "%s=%lu", stat->name, nr); 5194 for_each_node_state(nid, N_MEMORY) { 5195 nr = mem_cgroup_node_nr_lru_pages(memcg, nid, 5196 stat->lru_mask); 5197 seq_printf(m, " N%d=%lu", nid, nr); 5198 } 5199 seq_putc(m, '\n'); 5200 } 5201 5202 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { 5203 struct mem_cgroup *iter; 5204 5205 nr = 0; 5206 for_each_mem_cgroup_tree(iter, memcg) 5207 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); 5208 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); 5209 for_each_node_state(nid, N_MEMORY) { 5210 nr = 0; 5211 for_each_mem_cgroup_tree(iter, memcg) 5212 nr += mem_cgroup_node_nr_lru_pages( 5213 iter, nid, stat->lru_mask); 5214 seq_printf(m, " N%d=%lu", nid, nr); 5215 } 5216 seq_putc(m, '\n'); 5217 } 5218 5219 return 0; 5220} 5221#endif /* CONFIG_NUMA */ 5222 5223static inline void mem_cgroup_lru_names_not_uptodate(void) 5224{ 5225 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); 5226} 5227 5228static int memcg_stat_show(struct seq_file *m, void *v) 5229{ 5230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); 5231 struct mem_cgroup *mi; 5232 unsigned int i; 5233 5234 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5235 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5236 continue; 5237 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], 5238 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); 5239 } 5240 5241 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) 5242 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], 5243 mem_cgroup_read_events(memcg, i)); 5244 5245 for (i = 0; i < NR_LRU_LISTS; i++) 5246 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], 5247 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); 5248 5249 /* Hierarchical information */ 5250 { 5251 unsigned long long limit, memsw_limit; 5252 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit); 5253 seq_printf(m, "hierarchical_memory_limit %llu\n", limit); 5254 if (do_swap_account) 5255 seq_printf(m, "hierarchical_memsw_limit %llu\n", 5256 memsw_limit); 5257 } 5258 5259 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { 5260 long long val = 0; 5261 5262 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) 5263 continue; 5264 for_each_mem_cgroup_tree(mi, memcg) 5265 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; 5266 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); 5267 } 5268 5269 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { 5270 unsigned long long val = 0; 5271 5272 for_each_mem_cgroup_tree(mi, memcg) 5273 val += mem_cgroup_read_events(mi, i); 5274 seq_printf(m, "total_%s %llu\n", 5275 mem_cgroup_events_names[i], val); 5276 } 5277 5278 for (i = 0; i < NR_LRU_LISTS; i++) { 5279 unsigned long long val = 0; 5280 5281 for_each_mem_cgroup_tree(mi, memcg) 5282 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; 5283 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); 5284 } 5285 5286#ifdef CONFIG_DEBUG_VM 5287 { 5288 int nid, zid; 5289 struct mem_cgroup_per_zone *mz; 5290 struct zone_reclaim_stat *rstat; 5291 unsigned long recent_rotated[2] = {0, 0}; 5292 unsigned long recent_scanned[2] = {0, 0}; 5293 5294 for_each_online_node(nid) 5295 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 5296 mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; 5297 rstat = &mz->lruvec.reclaim_stat; 5298 5299 recent_rotated[0] += rstat->recent_rotated[0]; 5300 recent_rotated[1] += rstat->recent_rotated[1]; 5301 recent_scanned[0] += rstat->recent_scanned[0]; 5302 recent_scanned[1] += rstat->recent_scanned[1]; 5303 } 5304 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); 5305 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); 5306 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); 5307 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); 5308 } 5309#endif 5310 5311 return 0; 5312} 5313 5314static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, 5315 struct cftype *cft) 5316{ 5317 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5318 5319 return mem_cgroup_swappiness(memcg); 5320} 5321 5322static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, 5323 struct cftype *cft, u64 val) 5324{ 5325 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5326 5327 if (val > 100) 5328 return -EINVAL; 5329 5330 if (css->parent) 5331 memcg->swappiness = val; 5332 else 5333 vm_swappiness = val; 5334 5335 return 0; 5336} 5337 5338static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) 5339{ 5340 struct mem_cgroup_threshold_ary *t; 5341 u64 usage; 5342 int i; 5343 5344 rcu_read_lock(); 5345 if (!swap) 5346 t = rcu_dereference(memcg->thresholds.primary); 5347 else 5348 t = rcu_dereference(memcg->memsw_thresholds.primary); 5349 5350 if (!t) 5351 goto unlock; 5352 5353 usage = mem_cgroup_usage(memcg, swap); 5354 5355 /* 5356 * current_threshold points to threshold just below or equal to usage. 5357 * If it's not true, a threshold was crossed after last 5358 * call of __mem_cgroup_threshold(). 5359 */ 5360 i = t->current_threshold; 5361 5362 /* 5363 * Iterate backward over array of thresholds starting from 5364 * current_threshold and check if a threshold is crossed. 5365 * If none of thresholds below usage is crossed, we read 5366 * only one element of the array here. 5367 */ 5368 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) 5369 eventfd_signal(t->entries[i].eventfd, 1); 5370 5371 /* i = current_threshold + 1 */ 5372 i++; 5373 5374 /* 5375 * Iterate forward over array of thresholds starting from 5376 * current_threshold+1 and check if a threshold is crossed. 5377 * If none of thresholds above usage is crossed, we read 5378 * only one element of the array here. 5379 */ 5380 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) 5381 eventfd_signal(t->entries[i].eventfd, 1); 5382 5383 /* Update current_threshold */ 5384 t->current_threshold = i - 1; 5385unlock: 5386 rcu_read_unlock(); 5387} 5388 5389static void mem_cgroup_threshold(struct mem_cgroup *memcg) 5390{ 5391 while (memcg) { 5392 __mem_cgroup_threshold(memcg, false); 5393 if (do_swap_account) 5394 __mem_cgroup_threshold(memcg, true); 5395 5396 memcg = parent_mem_cgroup(memcg); 5397 } 5398} 5399 5400static int compare_thresholds(const void *a, const void *b) 5401{ 5402 const struct mem_cgroup_threshold *_a = a; 5403 const struct mem_cgroup_threshold *_b = b; 5404 5405 if (_a->threshold > _b->threshold) 5406 return 1; 5407 5408 if (_a->threshold < _b->threshold) 5409 return -1; 5410 5411 return 0; 5412} 5413 5414static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) 5415{ 5416 struct mem_cgroup_eventfd_list *ev; 5417 5418 spin_lock(&memcg_oom_lock); 5419 5420 list_for_each_entry(ev, &memcg->oom_notify, list) 5421 eventfd_signal(ev->eventfd, 1); 5422 5423 spin_unlock(&memcg_oom_lock); 5424 return 0; 5425} 5426 5427static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) 5428{ 5429 struct mem_cgroup *iter; 5430 5431 for_each_mem_cgroup_tree(iter, memcg) 5432 mem_cgroup_oom_notify_cb(iter); 5433} 5434 5435static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 5436 struct eventfd_ctx *eventfd, const char *args, enum res_type type) 5437{ 5438 struct mem_cgroup_thresholds *thresholds; 5439 struct mem_cgroup_threshold_ary *new; 5440 u64 threshold, usage; 5441 int i, size, ret; 5442 5443 ret = res_counter_memparse_write_strategy(args, &threshold); 5444 if (ret) 5445 return ret; 5446 5447 mutex_lock(&memcg->thresholds_lock); 5448 5449 if (type == _MEM) 5450 thresholds = &memcg->thresholds; 5451 else if (type == _MEMSWAP) 5452 thresholds = &memcg->memsw_thresholds; 5453 else 5454 BUG(); 5455 5456 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5457 5458 /* Check if a threshold crossed before adding a new one */ 5459 if (thresholds->primary) 5460 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5461 5462 size = thresholds->primary ? thresholds->primary->size + 1 : 1; 5463 5464 /* Allocate memory for new array of thresholds */ 5465 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), 5466 GFP_KERNEL); 5467 if (!new) { 5468 ret = -ENOMEM; 5469 goto unlock; 5470 } 5471 new->size = size; 5472 5473 /* Copy thresholds (if any) to new array */ 5474 if (thresholds->primary) { 5475 memcpy(new->entries, thresholds->primary->entries, (size - 1) * 5476 sizeof(struct mem_cgroup_threshold)); 5477 } 5478 5479 /* Add new threshold */ 5480 new->entries[size - 1].eventfd = eventfd; 5481 new->entries[size - 1].threshold = threshold; 5482 5483 /* Sort thresholds. Registering of new threshold isn't time-critical */ 5484 sort(new->entries, size, sizeof(struct mem_cgroup_threshold), 5485 compare_thresholds, NULL); 5486 5487 /* Find current threshold */ 5488 new->current_threshold = -1; 5489 for (i = 0; i < size; i++) { 5490 if (new->entries[i].threshold <= usage) { 5491 /* 5492 * new->current_threshold will not be used until 5493 * rcu_assign_pointer(), so it's safe to increment 5494 * it here. 5495 */ 5496 ++new->current_threshold; 5497 } else 5498 break; 5499 } 5500 5501 /* Free old spare buffer and save old primary buffer as spare */ 5502 kfree(thresholds->spare); 5503 thresholds->spare = thresholds->primary; 5504 5505 rcu_assign_pointer(thresholds->primary, new); 5506 5507 /* To be sure that nobody uses thresholds */ 5508 synchronize_rcu(); 5509 5510unlock: 5511 mutex_unlock(&memcg->thresholds_lock); 5512 5513 return ret; 5514} 5515 5516static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, 5517 struct eventfd_ctx *eventfd, const char *args) 5518{ 5519 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); 5520} 5521 5522static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, 5523 struct eventfd_ctx *eventfd, const char *args) 5524{ 5525 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); 5526} 5527 5528static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5529 struct eventfd_ctx *eventfd, enum res_type type) 5530{ 5531 struct mem_cgroup_thresholds *thresholds; 5532 struct mem_cgroup_threshold_ary *new; 5533 u64 usage; 5534 int i, j, size; 5535 5536 mutex_lock(&memcg->thresholds_lock); 5537 if (type == _MEM) 5538 thresholds = &memcg->thresholds; 5539 else if (type == _MEMSWAP) 5540 thresholds = &memcg->memsw_thresholds; 5541 else 5542 BUG(); 5543 5544 if (!thresholds->primary) 5545 goto unlock; 5546 5547 usage = mem_cgroup_usage(memcg, type == _MEMSWAP); 5548 5549 /* Check if a threshold crossed before removing */ 5550 __mem_cgroup_threshold(memcg, type == _MEMSWAP); 5551 5552 /* Calculate new number of threshold */ 5553 size = 0; 5554 for (i = 0; i < thresholds->primary->size; i++) { 5555 if (thresholds->primary->entries[i].eventfd != eventfd) 5556 size++; 5557 } 5558 5559 new = thresholds->spare; 5560 5561 /* Set thresholds array to NULL if we don't have thresholds */ 5562 if (!size) { 5563 kfree(new); 5564 new = NULL; 5565 goto swap_buffers; 5566 } 5567 5568 new->size = size; 5569 5570 /* Copy thresholds and find current threshold */ 5571 new->current_threshold = -1; 5572 for (i = 0, j = 0; i < thresholds->primary->size; i++) { 5573 if (thresholds->primary->entries[i].eventfd == eventfd) 5574 continue; 5575 5576 new->entries[j] = thresholds->primary->entries[i]; 5577 if (new->entries[j].threshold <= usage) { 5578 /* 5579 * new->current_threshold will not be used 5580 * until rcu_assign_pointer(), so it's safe to increment 5581 * it here. 5582 */ 5583 ++new->current_threshold; 5584 } 5585 j++; 5586 } 5587 5588swap_buffers: 5589 /* Swap primary and spare array */ 5590 thresholds->spare = thresholds->primary; 5591 /* If all events are unregistered, free the spare array */ 5592 if (!new) { 5593 kfree(thresholds->spare); 5594 thresholds->spare = NULL; 5595 } 5596 5597 rcu_assign_pointer(thresholds->primary, new); 5598 5599 /* To be sure that nobody uses thresholds */ 5600 synchronize_rcu(); 5601unlock: 5602 mutex_unlock(&memcg->thresholds_lock); 5603} 5604 5605static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5606 struct eventfd_ctx *eventfd) 5607{ 5608 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); 5609} 5610 5611static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, 5612 struct eventfd_ctx *eventfd) 5613{ 5614 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); 5615} 5616 5617static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, 5618 struct eventfd_ctx *eventfd, const char *args) 5619{ 5620 struct mem_cgroup_eventfd_list *event; 5621 5622 event = kmalloc(sizeof(*event), GFP_KERNEL); 5623 if (!event) 5624 return -ENOMEM; 5625 5626 spin_lock(&memcg_oom_lock); 5627 5628 event->eventfd = eventfd; 5629 list_add(&event->list, &memcg->oom_notify); 5630 5631 /* already in OOM ? */ 5632 if (atomic_read(&memcg->under_oom)) 5633 eventfd_signal(eventfd, 1); 5634 spin_unlock(&memcg_oom_lock); 5635 5636 return 0; 5637} 5638 5639static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, 5640 struct eventfd_ctx *eventfd) 5641{ 5642 struct mem_cgroup_eventfd_list *ev, *tmp; 5643 5644 spin_lock(&memcg_oom_lock); 5645 5646 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { 5647 if (ev->eventfd == eventfd) { 5648 list_del(&ev->list); 5649 kfree(ev); 5650 } 5651 } 5652 5653 spin_unlock(&memcg_oom_lock); 5654} 5655 5656static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) 5657{ 5658 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); 5659 5660 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); 5661 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); 5662 return 0; 5663} 5664 5665static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, 5666 struct cftype *cft, u64 val) 5667{ 5668 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5669 5670 /* cannot set to root cgroup and only 0 and 1 are allowed */ 5671 if (!css->parent || !((val == 0) || (val == 1))) 5672 return -EINVAL; 5673 5674 memcg->oom_kill_disable = val; 5675 if (!val) 5676 memcg_oom_recover(memcg); 5677 5678 return 0; 5679} 5680 5681#ifdef CONFIG_MEMCG_KMEM 5682static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5683{ 5684 int ret; 5685 5686 memcg->kmemcg_id = -1; 5687 ret = memcg_propagate_kmem(memcg); 5688 if (ret) 5689 return ret; 5690 5691 return mem_cgroup_sockets_init(memcg, ss); 5692} 5693 5694static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5695{ 5696 mem_cgroup_sockets_destroy(memcg); 5697} 5698 5699static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5700{ 5701 if (!memcg_kmem_is_active(memcg)) 5702 return; 5703 5704 /* 5705 * kmem charges can outlive the cgroup. In the case of slab 5706 * pages, for instance, a page contain objects from various 5707 * processes. As we prevent from taking a reference for every 5708 * such allocation we have to be careful when doing uncharge 5709 * (see memcg_uncharge_kmem) and here during offlining. 5710 * 5711 * The idea is that that only the _last_ uncharge which sees 5712 * the dead memcg will drop the last reference. An additional 5713 * reference is taken here before the group is marked dead 5714 * which is then paired with css_put during uncharge resp. here. 5715 * 5716 * Although this might sound strange as this path is called from 5717 * css_offline() when the referencemight have dropped down to 0 and 5718 * shouldn't be incremented anymore (css_tryget_online() would 5719 * fail) we do not have other options because of the kmem 5720 * allocations lifetime. 5721 */ 5722 css_get(&memcg->css); 5723 5724 memcg_kmem_mark_dead(memcg); 5725 5726 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0) 5727 return; 5728 5729 if (memcg_kmem_test_and_clear_dead(memcg)) 5730 css_put(&memcg->css); 5731} 5732#else 5733static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) 5734{ 5735 return 0; 5736} 5737 5738static void memcg_destroy_kmem(struct mem_cgroup *memcg) 5739{ 5740} 5741 5742static void kmem_cgroup_css_offline(struct mem_cgroup *memcg) 5743{ 5744} 5745#endif 5746 5747/* 5748 * DO NOT USE IN NEW FILES. 5749 * 5750 * "cgroup.event_control" implementation. 5751 * 5752 * This is way over-engineered. It tries to support fully configurable 5753 * events for each user. Such level of flexibility is completely 5754 * unnecessary especially in the light of the planned unified hierarchy. 5755 * 5756 * Please deprecate this and replace with something simpler if at all 5757 * possible. 5758 */ 5759 5760/* 5761 * Unregister event and free resources. 5762 * 5763 * Gets called from workqueue. 5764 */ 5765static void memcg_event_remove(struct work_struct *work) 5766{ 5767 struct mem_cgroup_event *event = 5768 container_of(work, struct mem_cgroup_event, remove); 5769 struct mem_cgroup *memcg = event->memcg; 5770 5771 remove_wait_queue(event->wqh, &event->wait); 5772 5773 event->unregister_event(memcg, event->eventfd); 5774 5775 /* Notify userspace the event is going away. */ 5776 eventfd_signal(event->eventfd, 1); 5777 5778 eventfd_ctx_put(event->eventfd); 5779 kfree(event); 5780 css_put(&memcg->css); 5781} 5782 5783/* 5784 * Gets called on POLLHUP on eventfd when user closes it. 5785 * 5786 * Called with wqh->lock held and interrupts disabled. 5787 */ 5788static int memcg_event_wake(wait_queue_t *wait, unsigned mode, 5789 int sync, void *key) 5790{ 5791 struct mem_cgroup_event *event = 5792 container_of(wait, struct mem_cgroup_event, wait); 5793 struct mem_cgroup *memcg = event->memcg; 5794 unsigned long flags = (unsigned long)key; 5795 5796 if (flags & POLLHUP) { 5797 /* 5798 * If the event has been detached at cgroup removal, we 5799 * can simply return knowing the other side will cleanup 5800 * for us. 5801 * 5802 * We can't race against event freeing since the other 5803 * side will require wqh->lock via remove_wait_queue(), 5804 * which we hold. 5805 */ 5806 spin_lock(&memcg->event_list_lock); 5807 if (!list_empty(&event->list)) { 5808 list_del_init(&event->list); 5809 /* 5810 * We are in atomic context, but cgroup_event_remove() 5811 * may sleep, so we have to call it in workqueue. 5812 */ 5813 schedule_work(&event->remove); 5814 } 5815 spin_unlock(&memcg->event_list_lock); 5816 } 5817 5818 return 0; 5819} 5820 5821static void memcg_event_ptable_queue_proc(struct file *file, 5822 wait_queue_head_t *wqh, poll_table *pt) 5823{ 5824 struct mem_cgroup_event *event = 5825 container_of(pt, struct mem_cgroup_event, pt); 5826 5827 event->wqh = wqh; 5828 add_wait_queue(wqh, &event->wait); 5829} 5830 5831/* 5832 * DO NOT USE IN NEW FILES. 5833 * 5834 * Parse input and register new cgroup event handler. 5835 * 5836 * Input must be in format '<event_fd> <control_fd> <args>'. 5837 * Interpretation of args is defined by control file implementation. 5838 */ 5839static ssize_t memcg_write_event_control(struct kernfs_open_file *of, 5840 char *buf, size_t nbytes, loff_t off) 5841{ 5842 struct cgroup_subsys_state *css = of_css(of); 5843 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 5844 struct mem_cgroup_event *event; 5845 struct cgroup_subsys_state *cfile_css; 5846 unsigned int efd, cfd; 5847 struct fd efile; 5848 struct fd cfile; 5849 const char *name; 5850 char *endp; 5851 int ret; 5852 5853 buf = strstrip(buf); 5854 5855 efd = simple_strtoul(buf, &endp, 10); 5856 if (*endp != ' ') 5857 return -EINVAL; 5858 buf = endp + 1; 5859 5860 cfd = simple_strtoul(buf, &endp, 10); 5861 if ((*endp != ' ') && (*endp != '\0')) 5862 return -EINVAL; 5863 buf = endp + 1; 5864 5865 event = kzalloc(sizeof(*event), GFP_KERNEL); 5866 if (!event) 5867 return -ENOMEM; 5868 5869 event->memcg = memcg; 5870 INIT_LIST_HEAD(&event->list); 5871 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); 5872 init_waitqueue_func_entry(&event->wait, memcg_event_wake); 5873 INIT_WORK(&event->remove, memcg_event_remove); 5874 5875 efile = fdget(efd); 5876 if (!efile.file) { 5877 ret = -EBADF; 5878 goto out_kfree; 5879 } 5880 5881 event->eventfd = eventfd_ctx_fileget(efile.file); 5882 if (IS_ERR(event->eventfd)) { 5883 ret = PTR_ERR(event->eventfd); 5884 goto out_put_efile; 5885 } 5886 5887 cfile = fdget(cfd); 5888 if (!cfile.file) { 5889 ret = -EBADF; 5890 goto out_put_eventfd; 5891 } 5892 5893 /* the process need read permission on control file */ 5894 /* AV: shouldn't we check that it's been opened for read instead? */ 5895 ret = inode_permission(file_inode(cfile.file), MAY_READ); 5896 if (ret < 0) 5897 goto out_put_cfile; 5898 5899 /* 5900 * Determine the event callbacks and set them in @event. This used 5901 * to be done via struct cftype but cgroup core no longer knows 5902 * about these events. The following is crude but the whole thing 5903 * is for compatibility anyway. 5904 * 5905 * DO NOT ADD NEW FILES. 5906 */ 5907 name = cfile.file->f_dentry->d_name.name; 5908 5909 if (!strcmp(name, "memory.usage_in_bytes")) { 5910 event->register_event = mem_cgroup_usage_register_event; 5911 event->unregister_event = mem_cgroup_usage_unregister_event; 5912 } else if (!strcmp(name, "memory.oom_control")) { 5913 event->register_event = mem_cgroup_oom_register_event; 5914 event->unregister_event = mem_cgroup_oom_unregister_event; 5915 } else if (!strcmp(name, "memory.pressure_level")) { 5916 event->register_event = vmpressure_register_event; 5917 event->unregister_event = vmpressure_unregister_event; 5918 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { 5919 event->register_event = memsw_cgroup_usage_register_event; 5920 event->unregister_event = memsw_cgroup_usage_unregister_event; 5921 } else { 5922 ret = -EINVAL; 5923 goto out_put_cfile; 5924 } 5925 5926 /* 5927 * Verify @cfile should belong to @css. Also, remaining events are 5928 * automatically removed on cgroup destruction but the removal is 5929 * asynchronous, so take an extra ref on @css. 5930 */ 5931 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent, 5932 &memory_cgrp_subsys); 5933 ret = -EINVAL; 5934 if (IS_ERR(cfile_css)) 5935 goto out_put_cfile; 5936 if (cfile_css != css) { 5937 css_put(cfile_css); 5938 goto out_put_cfile; 5939 } 5940 5941 ret = event->register_event(memcg, event->eventfd, buf); 5942 if (ret) 5943 goto out_put_css; 5944 5945 efile.file->f_op->poll(efile.file, &event->pt); 5946 5947 spin_lock(&memcg->event_list_lock); 5948 list_add(&event->list, &memcg->event_list); 5949 spin_unlock(&memcg->event_list_lock); 5950 5951 fdput(cfile); 5952 fdput(efile); 5953 5954 return nbytes; 5955 5956out_put_css: 5957 css_put(css); 5958out_put_cfile: 5959 fdput(cfile); 5960out_put_eventfd: 5961 eventfd_ctx_put(event->eventfd); 5962out_put_efile: 5963 fdput(efile); 5964out_kfree: 5965 kfree(event); 5966 5967 return ret; 5968} 5969 5970static struct cftype mem_cgroup_files[] = { 5971 { 5972 .name = "usage_in_bytes", 5973 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), 5974 .read_u64 = mem_cgroup_read_u64, 5975 }, 5976 { 5977 .name = "max_usage_in_bytes", 5978 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), 5979 .write = mem_cgroup_reset, 5980 .read_u64 = mem_cgroup_read_u64, 5981 }, 5982 { 5983 .name = "limit_in_bytes", 5984 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), 5985 .write = mem_cgroup_write, 5986 .read_u64 = mem_cgroup_read_u64, 5987 }, 5988 { 5989 .name = "soft_limit_in_bytes", 5990 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), 5991 .write = mem_cgroup_write, 5992 .read_u64 = mem_cgroup_read_u64, 5993 }, 5994 { 5995 .name = "failcnt", 5996 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), 5997 .write = mem_cgroup_reset, 5998 .read_u64 = mem_cgroup_read_u64, 5999 }, 6000 { 6001 .name = "stat", 6002 .seq_show = memcg_stat_show, 6003 }, 6004 { 6005 .name = "force_empty", 6006 .write = mem_cgroup_force_empty_write, 6007 }, 6008 { 6009 .name = "use_hierarchy", 6010 .flags = CFTYPE_INSANE, 6011 .write_u64 = mem_cgroup_hierarchy_write, 6012 .read_u64 = mem_cgroup_hierarchy_read, 6013 }, 6014 { 6015 .name = "cgroup.event_control", /* XXX: for compat */ 6016 .write = memcg_write_event_control, 6017 .flags = CFTYPE_NO_PREFIX, 6018 .mode = S_IWUGO, 6019 }, 6020 { 6021 .name = "swappiness", 6022 .read_u64 = mem_cgroup_swappiness_read, 6023 .write_u64 = mem_cgroup_swappiness_write, 6024 }, 6025 { 6026 .name = "move_charge_at_immigrate", 6027 .read_u64 = mem_cgroup_move_charge_read, 6028 .write_u64 = mem_cgroup_move_charge_write, 6029 }, 6030 { 6031 .name = "oom_control", 6032 .seq_show = mem_cgroup_oom_control_read, 6033 .write_u64 = mem_cgroup_oom_control_write, 6034 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), 6035 }, 6036 { 6037 .name = "pressure_level", 6038 }, 6039#ifdef CONFIG_NUMA 6040 { 6041 .name = "numa_stat", 6042 .seq_show = memcg_numa_stat_show, 6043 }, 6044#endif 6045#ifdef CONFIG_MEMCG_KMEM 6046 { 6047 .name = "kmem.limit_in_bytes", 6048 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), 6049 .write = mem_cgroup_write, 6050 .read_u64 = mem_cgroup_read_u64, 6051 }, 6052 { 6053 .name = "kmem.usage_in_bytes", 6054 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), 6055 .read_u64 = mem_cgroup_read_u64, 6056 }, 6057 { 6058 .name = "kmem.failcnt", 6059 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), 6060 .write = mem_cgroup_reset, 6061 .read_u64 = mem_cgroup_read_u64, 6062 }, 6063 { 6064 .name = "kmem.max_usage_in_bytes", 6065 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), 6066 .write = mem_cgroup_reset, 6067 .read_u64 = mem_cgroup_read_u64, 6068 }, 6069#ifdef CONFIG_SLABINFO 6070 { 6071 .name = "kmem.slabinfo", 6072 .seq_show = mem_cgroup_slabinfo_read, 6073 }, 6074#endif 6075#endif 6076 { }, /* terminate */ 6077}; 6078 6079#ifdef CONFIG_MEMCG_SWAP 6080static struct cftype memsw_cgroup_files[] = { 6081 { 6082 .name = "memsw.usage_in_bytes", 6083 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), 6084 .read_u64 = mem_cgroup_read_u64, 6085 }, 6086 { 6087 .name = "memsw.max_usage_in_bytes", 6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), 6089 .write = mem_cgroup_reset, 6090 .read_u64 = mem_cgroup_read_u64, 6091 }, 6092 { 6093 .name = "memsw.limit_in_bytes", 6094 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), 6095 .write = mem_cgroup_write, 6096 .read_u64 = mem_cgroup_read_u64, 6097 }, 6098 { 6099 .name = "memsw.failcnt", 6100 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), 6101 .write = mem_cgroup_reset, 6102 .read_u64 = mem_cgroup_read_u64, 6103 }, 6104 { }, /* terminate */ 6105}; 6106#endif 6107static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6108{ 6109 struct mem_cgroup_per_node *pn; 6110 struct mem_cgroup_per_zone *mz; 6111 int zone, tmp = node; 6112 /* 6113 * This routine is called against possible nodes. 6114 * But it's BUG to call kmalloc() against offline node. 6115 * 6116 * TODO: this routine can waste much memory for nodes which will 6117 * never be onlined. It's better to use memory hotplug callback 6118 * function. 6119 */ 6120 if (!node_state(node, N_NORMAL_MEMORY)) 6121 tmp = -1; 6122 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); 6123 if (!pn) 6124 return 1; 6125 6126 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6127 mz = &pn->zoneinfo[zone]; 6128 lruvec_init(&mz->lruvec); 6129 mz->usage_in_excess = 0; 6130 mz->on_tree = false; 6131 mz->memcg = memcg; 6132 } 6133 memcg->nodeinfo[node] = pn; 6134 return 0; 6135} 6136 6137static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) 6138{ 6139 kfree(memcg->nodeinfo[node]); 6140} 6141 6142static struct mem_cgroup *mem_cgroup_alloc(void) 6143{ 6144 struct mem_cgroup *memcg; 6145 size_t size; 6146 6147 size = sizeof(struct mem_cgroup); 6148 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); 6149 6150 memcg = kzalloc(size, GFP_KERNEL); 6151 if (!memcg) 6152 return NULL; 6153 6154 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); 6155 if (!memcg->stat) 6156 goto out_free; 6157 spin_lock_init(&memcg->pcp_counter_lock); 6158 return memcg; 6159 6160out_free: 6161 kfree(memcg); 6162 return NULL; 6163} 6164 6165/* 6166 * At destroying mem_cgroup, references from swap_cgroup can remain. 6167 * (scanning all at force_empty is too costly...) 6168 * 6169 * Instead of clearing all references at force_empty, we remember 6170 * the number of reference from swap_cgroup and free mem_cgroup when 6171 * it goes down to 0. 6172 * 6173 * Removal of cgroup itself succeeds regardless of refs from swap. 6174 */ 6175 6176static void __mem_cgroup_free(struct mem_cgroup *memcg) 6177{ 6178 int node; 6179 6180 mem_cgroup_remove_from_trees(memcg); 6181 6182 for_each_node(node) 6183 free_mem_cgroup_per_zone_info(memcg, node); 6184 6185 free_percpu(memcg->stat); 6186 6187 /* 6188 * We need to make sure that (at least for now), the jump label 6189 * destruction code runs outside of the cgroup lock. This is because 6190 * get_online_cpus(), which is called from the static_branch update, 6191 * can't be called inside the cgroup_lock. cpusets are the ones 6192 * enforcing this dependency, so if they ever change, we might as well. 6193 * 6194 * schedule_work() will guarantee this happens. Be careful if you need 6195 * to move this code around, and make sure it is outside 6196 * the cgroup_lock. 6197 */ 6198 disarm_static_keys(memcg); 6199 kfree(memcg); 6200} 6201 6202/* 6203 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. 6204 */ 6205struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 6206{ 6207 if (!memcg->res.parent) 6208 return NULL; 6209 return mem_cgroup_from_res_counter(memcg->res.parent, res); 6210} 6211EXPORT_SYMBOL(parent_mem_cgroup); 6212 6213static void __init mem_cgroup_soft_limit_tree_init(void) 6214{ 6215 struct mem_cgroup_tree_per_node *rtpn; 6216 struct mem_cgroup_tree_per_zone *rtpz; 6217 int tmp, node, zone; 6218 6219 for_each_node(node) { 6220 tmp = node; 6221 if (!node_state(node, N_NORMAL_MEMORY)) 6222 tmp = -1; 6223 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); 6224 BUG_ON(!rtpn); 6225 6226 soft_limit_tree.rb_tree_per_node[node] = rtpn; 6227 6228 for (zone = 0; zone < MAX_NR_ZONES; zone++) { 6229 rtpz = &rtpn->rb_tree_per_zone[zone]; 6230 rtpz->rb_root = RB_ROOT; 6231 spin_lock_init(&rtpz->lock); 6232 } 6233 } 6234} 6235 6236static struct cgroup_subsys_state * __ref 6237mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 6238{ 6239 struct mem_cgroup *memcg; 6240 long error = -ENOMEM; 6241 int node; 6242 6243 memcg = mem_cgroup_alloc(); 6244 if (!memcg) 6245 return ERR_PTR(error); 6246 6247 for_each_node(node) 6248 if (alloc_mem_cgroup_per_zone_info(memcg, node)) 6249 goto free_out; 6250 6251 /* root ? */ 6252 if (parent_css == NULL) { 6253 root_mem_cgroup = memcg; 6254 res_counter_init(&memcg->res, NULL); 6255 res_counter_init(&memcg->memsw, NULL); 6256 res_counter_init(&memcg->kmem, NULL); 6257 } 6258 6259 memcg->last_scanned_node = MAX_NUMNODES; 6260 INIT_LIST_HEAD(&memcg->oom_notify); 6261 memcg->move_charge_at_immigrate = 0; 6262 mutex_init(&memcg->thresholds_lock); 6263 spin_lock_init(&memcg->move_lock); 6264 vmpressure_init(&memcg->vmpressure); 6265 INIT_LIST_HEAD(&memcg->event_list); 6266 spin_lock_init(&memcg->event_list_lock); 6267 6268 return &memcg->css; 6269 6270free_out: 6271 __mem_cgroup_free(memcg); 6272 return ERR_PTR(error); 6273} 6274 6275static int 6276mem_cgroup_css_online(struct cgroup_subsys_state *css) 6277{ 6278 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6279 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); 6280 6281 if (css->id > MEM_CGROUP_ID_MAX) 6282 return -ENOSPC; 6283 6284 if (!parent) 6285 return 0; 6286 6287 mutex_lock(&memcg_create_mutex); 6288 6289 memcg->use_hierarchy = parent->use_hierarchy; 6290 memcg->oom_kill_disable = parent->oom_kill_disable; 6291 memcg->swappiness = mem_cgroup_swappiness(parent); 6292 6293 if (parent->use_hierarchy) { 6294 res_counter_init(&memcg->res, &parent->res); 6295 res_counter_init(&memcg->memsw, &parent->memsw); 6296 res_counter_init(&memcg->kmem, &parent->kmem); 6297 6298 /* 6299 * No need to take a reference to the parent because cgroup 6300 * core guarantees its existence. 6301 */ 6302 } else { 6303 res_counter_init(&memcg->res, NULL); 6304 res_counter_init(&memcg->memsw, NULL); 6305 res_counter_init(&memcg->kmem, NULL); 6306 /* 6307 * Deeper hierachy with use_hierarchy == false doesn't make 6308 * much sense so let cgroup subsystem know about this 6309 * unfortunate state in our controller. 6310 */ 6311 if (parent != root_mem_cgroup) 6312 memory_cgrp_subsys.broken_hierarchy = true; 6313 } 6314 mutex_unlock(&memcg_create_mutex); 6315 6316 return memcg_init_kmem(memcg, &memory_cgrp_subsys); 6317} 6318 6319/* 6320 * Announce all parents that a group from their hierarchy is gone. 6321 */ 6322static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg) 6323{ 6324 struct mem_cgroup *parent = memcg; 6325 6326 while ((parent = parent_mem_cgroup(parent))) 6327 mem_cgroup_iter_invalidate(parent); 6328 6329 /* 6330 * if the root memcg is not hierarchical we have to check it 6331 * explicitely. 6332 */ 6333 if (!root_mem_cgroup->use_hierarchy) 6334 mem_cgroup_iter_invalidate(root_mem_cgroup); 6335} 6336 6337static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) 6338{ 6339 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6340 struct mem_cgroup_event *event, *tmp; 6341 struct cgroup_subsys_state *iter; 6342 6343 /* 6344 * Unregister events and notify userspace. 6345 * Notify userspace about cgroup removing only after rmdir of cgroup 6346 * directory to avoid race between userspace and kernelspace. 6347 */ 6348 spin_lock(&memcg->event_list_lock); 6349 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { 6350 list_del_init(&event->list); 6351 schedule_work(&event->remove); 6352 } 6353 spin_unlock(&memcg->event_list_lock); 6354 6355 kmem_cgroup_css_offline(memcg); 6356 6357 mem_cgroup_invalidate_reclaim_iterators(memcg); 6358 6359 /* 6360 * This requires that offlining is serialized. Right now that is 6361 * guaranteed because css_killed_work_fn() holds the cgroup_mutex. 6362 */ 6363 css_for_each_descendant_post(iter, css) 6364 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter)); 6365 6366 memcg_unregister_all_caches(memcg); 6367 vmpressure_cleanup(&memcg->vmpressure); 6368} 6369 6370static void mem_cgroup_css_free(struct cgroup_subsys_state *css) 6371{ 6372 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6373 /* 6374 * XXX: css_offline() would be where we should reparent all 6375 * memory to prepare the cgroup for destruction. However, 6376 * memcg does not do css_tryget_online() and res_counter charging 6377 * under the same RCU lock region, which means that charging 6378 * could race with offlining. Offlining only happens to 6379 * cgroups with no tasks in them but charges can show up 6380 * without any tasks from the swapin path when the target 6381 * memcg is looked up from the swapout record and not from the 6382 * current task as it usually is. A race like this can leak 6383 * charges and put pages with stale cgroup pointers into 6384 * circulation: 6385 * 6386 * #0 #1 6387 * lookup_swap_cgroup_id() 6388 * rcu_read_lock() 6389 * mem_cgroup_lookup() 6390 * css_tryget_online() 6391 * rcu_read_unlock() 6392 * disable css_tryget_online() 6393 * call_rcu() 6394 * offline_css() 6395 * reparent_charges() 6396 * res_counter_charge() 6397 * css_put() 6398 * css_free() 6399 * pc->mem_cgroup = dead memcg 6400 * add page to lru 6401 * 6402 * The bulk of the charges are still moved in offline_css() to 6403 * avoid pinning a lot of pages in case a long-term reference 6404 * like a swapout record is deferring the css_free() to long 6405 * after offlining. But this makes sure we catch any charges 6406 * made after offlining: 6407 */ 6408 mem_cgroup_reparent_charges(memcg); 6409 6410 memcg_destroy_kmem(memcg); 6411 __mem_cgroup_free(memcg); 6412} 6413 6414#ifdef CONFIG_MMU 6415/* Handlers for move charge at task migration. */ 6416#define PRECHARGE_COUNT_AT_ONCE 256 6417static int mem_cgroup_do_precharge(unsigned long count) 6418{ 6419 int ret = 0; 6420 int batch_count = PRECHARGE_COUNT_AT_ONCE; 6421 struct mem_cgroup *memcg = mc.to; 6422 6423 if (mem_cgroup_is_root(memcg)) { 6424 mc.precharge += count; 6425 /* we don't need css_get for root */ 6426 return ret; 6427 } 6428 /* try to charge at once */ 6429 if (count > 1) { 6430 struct res_counter *dummy; 6431 /* 6432 * "memcg" cannot be under rmdir() because we've already checked 6433 * by cgroup_lock_live_cgroup() that it is not removed and we 6434 * are still under the same cgroup_mutex. So we can postpone 6435 * css_get(). 6436 */ 6437 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy)) 6438 goto one_by_one; 6439 if (do_swap_account && res_counter_charge(&memcg->memsw, 6440 PAGE_SIZE * count, &dummy)) { 6441 res_counter_uncharge(&memcg->res, PAGE_SIZE * count); 6442 goto one_by_one; 6443 } 6444 mc.precharge += count; 6445 return ret; 6446 } 6447one_by_one: 6448 /* fall back to one by one charge */ 6449 while (count--) { 6450 if (signal_pending(current)) { 6451 ret = -EINTR; 6452 break; 6453 } 6454 if (!batch_count--) { 6455 batch_count = PRECHARGE_COUNT_AT_ONCE; 6456 cond_resched(); 6457 } 6458 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false); 6459 if (ret) 6460 /* mem_cgroup_clear_mc() will do uncharge later */ 6461 return ret; 6462 mc.precharge++; 6463 } 6464 return ret; 6465} 6466 6467/** 6468 * get_mctgt_type - get target type of moving charge 6469 * @vma: the vma the pte to be checked belongs 6470 * @addr: the address corresponding to the pte to be checked 6471 * @ptent: the pte to be checked 6472 * @target: the pointer the target page or swap ent will be stored(can be NULL) 6473 * 6474 * Returns 6475 * 0(MC_TARGET_NONE): if the pte is not a target for move charge. 6476 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for 6477 * move charge. if @target is not NULL, the page is stored in target->page 6478 * with extra refcnt got(Callers should handle it). 6479 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a 6480 * target for charge migration. if @target is not NULL, the entry is stored 6481 * in target->ent. 6482 * 6483 * Called with pte lock held. 6484 */ 6485union mc_target { 6486 struct page *page; 6487 swp_entry_t ent; 6488}; 6489 6490enum mc_target_type { 6491 MC_TARGET_NONE = 0, 6492 MC_TARGET_PAGE, 6493 MC_TARGET_SWAP, 6494}; 6495 6496static struct page *mc_handle_present_pte(struct vm_area_struct *vma, 6497 unsigned long addr, pte_t ptent) 6498{ 6499 struct page *page = vm_normal_page(vma, addr, ptent); 6500 6501 if (!page || !page_mapped(page)) 6502 return NULL; 6503 if (PageAnon(page)) { 6504 /* we don't move shared anon */ 6505 if (!move_anon()) 6506 return NULL; 6507 } else if (!move_file()) 6508 /* we ignore mapcount for file pages */ 6509 return NULL; 6510 if (!get_page_unless_zero(page)) 6511 return NULL; 6512 6513 return page; 6514} 6515 6516#ifdef CONFIG_SWAP 6517static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6518 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6519{ 6520 struct page *page = NULL; 6521 swp_entry_t ent = pte_to_swp_entry(ptent); 6522 6523 if (!move_anon() || non_swap_entry(ent)) 6524 return NULL; 6525 /* 6526 * Because lookup_swap_cache() updates some statistics counter, 6527 * we call find_get_page() with swapper_space directly. 6528 */ 6529 page = find_get_page(swap_address_space(ent), ent.val); 6530 if (do_swap_account) 6531 entry->val = ent.val; 6532 6533 return page; 6534} 6535#else 6536static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, 6537 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6538{ 6539 return NULL; 6540} 6541#endif 6542 6543static struct page *mc_handle_file_pte(struct vm_area_struct *vma, 6544 unsigned long addr, pte_t ptent, swp_entry_t *entry) 6545{ 6546 struct page *page = NULL; 6547 struct address_space *mapping; 6548 pgoff_t pgoff; 6549 6550 if (!vma->vm_file) /* anonymous vma */ 6551 return NULL; 6552 if (!move_file()) 6553 return NULL; 6554 6555 mapping = vma->vm_file->f_mapping; 6556 if (pte_none(ptent)) 6557 pgoff = linear_page_index(vma, addr); 6558 else /* pte_file(ptent) is true */ 6559 pgoff = pte_to_pgoff(ptent); 6560 6561 /* page is moved even if it's not RSS of this task(page-faulted). */ 6562#ifdef CONFIG_SWAP 6563 /* shmem/tmpfs may report page out on swap: account for that too. */ 6564 if (shmem_mapping(mapping)) { 6565 page = find_get_entry(mapping, pgoff); 6566 if (radix_tree_exceptional_entry(page)) { 6567 swp_entry_t swp = radix_to_swp_entry(page); 6568 if (do_swap_account) 6569 *entry = swp; 6570 page = find_get_page(swap_address_space(swp), swp.val); 6571 } 6572 } else 6573 page = find_get_page(mapping, pgoff); 6574#else 6575 page = find_get_page(mapping, pgoff); 6576#endif 6577 return page; 6578} 6579 6580static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, 6581 unsigned long addr, pte_t ptent, union mc_target *target) 6582{ 6583 struct page *page = NULL; 6584 struct page_cgroup *pc; 6585 enum mc_target_type ret = MC_TARGET_NONE; 6586 swp_entry_t ent = { .val = 0 }; 6587 6588 if (pte_present(ptent)) 6589 page = mc_handle_present_pte(vma, addr, ptent); 6590 else if (is_swap_pte(ptent)) 6591 page = mc_handle_swap_pte(vma, addr, ptent, &ent); 6592 else if (pte_none(ptent) || pte_file(ptent)) 6593 page = mc_handle_file_pte(vma, addr, ptent, &ent); 6594 6595 if (!page && !ent.val) 6596 return ret; 6597 if (page) { 6598 pc = lookup_page_cgroup(page); 6599 /* 6600 * Do only loose check w/o page_cgroup lock. 6601 * mem_cgroup_move_account() checks the pc is valid or not under 6602 * the lock. 6603 */ 6604 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6605 ret = MC_TARGET_PAGE; 6606 if (target) 6607 target->page = page; 6608 } 6609 if (!ret || !target) 6610 put_page(page); 6611 } 6612 /* There is a swap entry and a page doesn't exist or isn't charged */ 6613 if (ent.val && !ret && 6614 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { 6615 ret = MC_TARGET_SWAP; 6616 if (target) 6617 target->ent = ent; 6618 } 6619 return ret; 6620} 6621 6622#ifdef CONFIG_TRANSPARENT_HUGEPAGE 6623/* 6624 * We don't consider swapping or file mapped pages because THP does not 6625 * support them for now. 6626 * Caller should make sure that pmd_trans_huge(pmd) is true. 6627 */ 6628static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6629 unsigned long addr, pmd_t pmd, union mc_target *target) 6630{ 6631 struct page *page = NULL; 6632 struct page_cgroup *pc; 6633 enum mc_target_type ret = MC_TARGET_NONE; 6634 6635 page = pmd_page(pmd); 6636 VM_BUG_ON_PAGE(!page || !PageHead(page), page); 6637 if (!move_anon()) 6638 return ret; 6639 pc = lookup_page_cgroup(page); 6640 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) { 6641 ret = MC_TARGET_PAGE; 6642 if (target) { 6643 get_page(page); 6644 target->page = page; 6645 } 6646 } 6647 return ret; 6648} 6649#else 6650static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, 6651 unsigned long addr, pmd_t pmd, union mc_target *target) 6652{ 6653 return MC_TARGET_NONE; 6654} 6655#endif 6656 6657static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, 6658 unsigned long addr, unsigned long end, 6659 struct mm_walk *walk) 6660{ 6661 struct vm_area_struct *vma = walk->private; 6662 pte_t *pte; 6663 spinlock_t *ptl; 6664 6665 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6666 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) 6667 mc.precharge += HPAGE_PMD_NR; 6668 spin_unlock(ptl); 6669 return 0; 6670 } 6671 6672 if (pmd_trans_unstable(pmd)) 6673 return 0; 6674 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6675 for (; addr != end; pte++, addr += PAGE_SIZE) 6676 if (get_mctgt_type(vma, addr, *pte, NULL)) 6677 mc.precharge++; /* increment precharge temporarily */ 6678 pte_unmap_unlock(pte - 1, ptl); 6679 cond_resched(); 6680 6681 return 0; 6682} 6683 6684static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) 6685{ 6686 unsigned long precharge; 6687 struct vm_area_struct *vma; 6688 6689 down_read(&mm->mmap_sem); 6690 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6691 struct mm_walk mem_cgroup_count_precharge_walk = { 6692 .pmd_entry = mem_cgroup_count_precharge_pte_range, 6693 .mm = mm, 6694 .private = vma, 6695 }; 6696 if (is_vm_hugetlb_page(vma)) 6697 continue; 6698 walk_page_range(vma->vm_start, vma->vm_end, 6699 &mem_cgroup_count_precharge_walk); 6700 } 6701 up_read(&mm->mmap_sem); 6702 6703 precharge = mc.precharge; 6704 mc.precharge = 0; 6705 6706 return precharge; 6707} 6708 6709static int mem_cgroup_precharge_mc(struct mm_struct *mm) 6710{ 6711 unsigned long precharge = mem_cgroup_count_precharge(mm); 6712 6713 VM_BUG_ON(mc.moving_task); 6714 mc.moving_task = current; 6715 return mem_cgroup_do_precharge(precharge); 6716} 6717 6718/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ 6719static void __mem_cgroup_clear_mc(void) 6720{ 6721 struct mem_cgroup *from = mc.from; 6722 struct mem_cgroup *to = mc.to; 6723 int i; 6724 6725 /* we must uncharge all the leftover precharges from mc.to */ 6726 if (mc.precharge) { 6727 __mem_cgroup_cancel_charge(mc.to, mc.precharge); 6728 mc.precharge = 0; 6729 } 6730 /* 6731 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so 6732 * we must uncharge here. 6733 */ 6734 if (mc.moved_charge) { 6735 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge); 6736 mc.moved_charge = 0; 6737 } 6738 /* we must fixup refcnts and charges */ 6739 if (mc.moved_swap) { 6740 /* uncharge swap account from the old cgroup */ 6741 if (!mem_cgroup_is_root(mc.from)) 6742 res_counter_uncharge(&mc.from->memsw, 6743 PAGE_SIZE * mc.moved_swap); 6744 6745 for (i = 0; i < mc.moved_swap; i++) 6746 css_put(&mc.from->css); 6747 6748 if (!mem_cgroup_is_root(mc.to)) { 6749 /* 6750 * we charged both to->res and to->memsw, so we should 6751 * uncharge to->res. 6752 */ 6753 res_counter_uncharge(&mc.to->res, 6754 PAGE_SIZE * mc.moved_swap); 6755 } 6756 /* we've already done css_get(mc.to) */ 6757 mc.moved_swap = 0; 6758 } 6759 memcg_oom_recover(from); 6760 memcg_oom_recover(to); 6761 wake_up_all(&mc.waitq); 6762} 6763 6764static void mem_cgroup_clear_mc(void) 6765{ 6766 struct mem_cgroup *from = mc.from; 6767 6768 /* 6769 * we must clear moving_task before waking up waiters at the end of 6770 * task migration. 6771 */ 6772 mc.moving_task = NULL; 6773 __mem_cgroup_clear_mc(); 6774 spin_lock(&mc.lock); 6775 mc.from = NULL; 6776 mc.to = NULL; 6777 spin_unlock(&mc.lock); 6778 mem_cgroup_end_move(from); 6779} 6780 6781static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6782 struct cgroup_taskset *tset) 6783{ 6784 struct task_struct *p = cgroup_taskset_first(tset); 6785 int ret = 0; 6786 struct mem_cgroup *memcg = mem_cgroup_from_css(css); 6787 unsigned long move_charge_at_immigrate; 6788 6789 /* 6790 * We are now commited to this value whatever it is. Changes in this 6791 * tunable will only affect upcoming migrations, not the current one. 6792 * So we need to save it, and keep it going. 6793 */ 6794 move_charge_at_immigrate = memcg->move_charge_at_immigrate; 6795 if (move_charge_at_immigrate) { 6796 struct mm_struct *mm; 6797 struct mem_cgroup *from = mem_cgroup_from_task(p); 6798 6799 VM_BUG_ON(from == memcg); 6800 6801 mm = get_task_mm(p); 6802 if (!mm) 6803 return 0; 6804 /* We move charges only when we move a owner of the mm */ 6805 if (mm->owner == p) { 6806 VM_BUG_ON(mc.from); 6807 VM_BUG_ON(mc.to); 6808 VM_BUG_ON(mc.precharge); 6809 VM_BUG_ON(mc.moved_charge); 6810 VM_BUG_ON(mc.moved_swap); 6811 mem_cgroup_start_move(from); 6812 spin_lock(&mc.lock); 6813 mc.from = from; 6814 mc.to = memcg; 6815 mc.immigrate_flags = move_charge_at_immigrate; 6816 spin_unlock(&mc.lock); 6817 /* We set mc.moving_task later */ 6818 6819 ret = mem_cgroup_precharge_mc(mm); 6820 if (ret) 6821 mem_cgroup_clear_mc(); 6822 } 6823 mmput(mm); 6824 } 6825 return ret; 6826} 6827 6828static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6829 struct cgroup_taskset *tset) 6830{ 6831 mem_cgroup_clear_mc(); 6832} 6833 6834static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, 6835 unsigned long addr, unsigned long end, 6836 struct mm_walk *walk) 6837{ 6838 int ret = 0; 6839 struct vm_area_struct *vma = walk->private; 6840 pte_t *pte; 6841 spinlock_t *ptl; 6842 enum mc_target_type target_type; 6843 union mc_target target; 6844 struct page *page; 6845 struct page_cgroup *pc; 6846 6847 /* 6848 * We don't take compound_lock() here but no race with splitting thp 6849 * happens because: 6850 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not 6851 * under splitting, which means there's no concurrent thp split, 6852 * - if another thread runs into split_huge_page() just after we 6853 * entered this if-block, the thread must wait for page table lock 6854 * to be unlocked in __split_huge_page_splitting(), where the main 6855 * part of thp split is not executed yet. 6856 */ 6857 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { 6858 if (mc.precharge < HPAGE_PMD_NR) { 6859 spin_unlock(ptl); 6860 return 0; 6861 } 6862 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); 6863 if (target_type == MC_TARGET_PAGE) { 6864 page = target.page; 6865 if (!isolate_lru_page(page)) { 6866 pc = lookup_page_cgroup(page); 6867 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, 6868 pc, mc.from, mc.to)) { 6869 mc.precharge -= HPAGE_PMD_NR; 6870 mc.moved_charge += HPAGE_PMD_NR; 6871 } 6872 putback_lru_page(page); 6873 } 6874 put_page(page); 6875 } 6876 spin_unlock(ptl); 6877 return 0; 6878 } 6879 6880 if (pmd_trans_unstable(pmd)) 6881 return 0; 6882retry: 6883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); 6884 for (; addr != end; addr += PAGE_SIZE) { 6885 pte_t ptent = *(pte++); 6886 swp_entry_t ent; 6887 6888 if (!mc.precharge) 6889 break; 6890 6891 switch (get_mctgt_type(vma, addr, ptent, &target)) { 6892 case MC_TARGET_PAGE: 6893 page = target.page; 6894 if (isolate_lru_page(page)) 6895 goto put; 6896 pc = lookup_page_cgroup(page); 6897 if (!mem_cgroup_move_account(page, 1, pc, 6898 mc.from, mc.to)) { 6899 mc.precharge--; 6900 /* we uncharge from mc.from later. */ 6901 mc.moved_charge++; 6902 } 6903 putback_lru_page(page); 6904put: /* get_mctgt_type() gets the page */ 6905 put_page(page); 6906 break; 6907 case MC_TARGET_SWAP: 6908 ent = target.ent; 6909 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { 6910 mc.precharge--; 6911 /* we fixup refcnts and charges later. */ 6912 mc.moved_swap++; 6913 } 6914 break; 6915 default: 6916 break; 6917 } 6918 } 6919 pte_unmap_unlock(pte - 1, ptl); 6920 cond_resched(); 6921 6922 if (addr != end) { 6923 /* 6924 * We have consumed all precharges we got in can_attach(). 6925 * We try charge one by one, but don't do any additional 6926 * charges to mc.to if we have failed in charge once in attach() 6927 * phase. 6928 */ 6929 ret = mem_cgroup_do_precharge(1); 6930 if (!ret) 6931 goto retry; 6932 } 6933 6934 return ret; 6935} 6936 6937static void mem_cgroup_move_charge(struct mm_struct *mm) 6938{ 6939 struct vm_area_struct *vma; 6940 6941 lru_add_drain_all(); 6942retry: 6943 if (unlikely(!down_read_trylock(&mm->mmap_sem))) { 6944 /* 6945 * Someone who are holding the mmap_sem might be waiting in 6946 * waitq. So we cancel all extra charges, wake up all waiters, 6947 * and retry. Because we cancel precharges, we might not be able 6948 * to move enough charges, but moving charge is a best-effort 6949 * feature anyway, so it wouldn't be a big problem. 6950 */ 6951 __mem_cgroup_clear_mc(); 6952 cond_resched(); 6953 goto retry; 6954 } 6955 for (vma = mm->mmap; vma; vma = vma->vm_next) { 6956 int ret; 6957 struct mm_walk mem_cgroup_move_charge_walk = { 6958 .pmd_entry = mem_cgroup_move_charge_pte_range, 6959 .mm = mm, 6960 .private = vma, 6961 }; 6962 if (is_vm_hugetlb_page(vma)) 6963 continue; 6964 ret = walk_page_range(vma->vm_start, vma->vm_end, 6965 &mem_cgroup_move_charge_walk); 6966 if (ret) 6967 /* 6968 * means we have consumed all precharges and failed in 6969 * doing additional charge. Just abandon here. 6970 */ 6971 break; 6972 } 6973 up_read(&mm->mmap_sem); 6974} 6975 6976static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 6977 struct cgroup_taskset *tset) 6978{ 6979 struct task_struct *p = cgroup_taskset_first(tset); 6980 struct mm_struct *mm = get_task_mm(p); 6981 6982 if (mm) { 6983 if (mc.to) 6984 mem_cgroup_move_charge(mm); 6985 mmput(mm); 6986 } 6987 if (mc.to) 6988 mem_cgroup_clear_mc(); 6989} 6990#else /* !CONFIG_MMU */ 6991static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, 6992 struct cgroup_taskset *tset) 6993{ 6994 return 0; 6995} 6996static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, 6997 struct cgroup_taskset *tset) 6998{ 6999} 7000static void mem_cgroup_move_task(struct cgroup_subsys_state *css, 7001 struct cgroup_taskset *tset) 7002{ 7003} 7004#endif 7005 7006/* 7007 * Cgroup retains root cgroups across [un]mount cycles making it necessary 7008 * to verify sane_behavior flag on each mount attempt. 7009 */ 7010static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) 7011{ 7012 /* 7013 * use_hierarchy is forced with sane_behavior. cgroup core 7014 * guarantees that @root doesn't have any children, so turning it 7015 * on for the root memcg is enough. 7016 */ 7017 if (cgroup_sane_behavior(root_css->cgroup)) 7018 mem_cgroup_from_css(root_css)->use_hierarchy = true; 7019} 7020 7021struct cgroup_subsys memory_cgrp_subsys = { 7022 .css_alloc = mem_cgroup_css_alloc, 7023 .css_online = mem_cgroup_css_online, 7024 .css_offline = mem_cgroup_css_offline, 7025 .css_free = mem_cgroup_css_free, 7026 .can_attach = mem_cgroup_can_attach, 7027 .cancel_attach = mem_cgroup_cancel_attach, 7028 .attach = mem_cgroup_move_task, 7029 .bind = mem_cgroup_bind, 7030 .base_cftypes = mem_cgroup_files, 7031 .early_init = 0, 7032}; 7033 7034#ifdef CONFIG_MEMCG_SWAP 7035static int __init enable_swap_account(char *s) 7036{ 7037 if (!strcmp(s, "1")) 7038 really_do_swap_account = 1; 7039 else if (!strcmp(s, "0")) 7040 really_do_swap_account = 0; 7041 return 1; 7042} 7043__setup("swapaccount=", enable_swap_account); 7044 7045static void __init memsw_file_init(void) 7046{ 7047 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files)); 7048} 7049 7050static void __init enable_swap_cgroup(void) 7051{ 7052 if (!mem_cgroup_disabled() && really_do_swap_account) { 7053 do_swap_account = 1; 7054 memsw_file_init(); 7055 } 7056} 7057 7058#else 7059static void __init enable_swap_cgroup(void) 7060{ 7061} 7062#endif 7063 7064/* 7065 * subsys_initcall() for memory controller. 7066 * 7067 * Some parts like hotcpu_notifier() have to be initialized from this context 7068 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically 7069 * everything that doesn't depend on a specific mem_cgroup structure should 7070 * be initialized from here. 7071 */ 7072static int __init mem_cgroup_init(void) 7073{ 7074 hotcpu_notifier(memcg_cpu_hotplug_callback, 0); 7075 enable_swap_cgroup(); 7076 mem_cgroup_soft_limit_tree_init(); 7077 memcg_stock_init(); 7078 return 0; 7079} 7080subsys_initcall(mem_cgroup_init);