at v3.16 2681 lines 71 kB view raw
1/* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7/* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12#include <linux/export.h> 13#include <linux/compiler.h> 14#include <linux/fs.h> 15#include <linux/uaccess.h> 16#include <linux/aio.h> 17#include <linux/capability.h> 18#include <linux/kernel_stat.h> 19#include <linux/gfp.h> 20#include <linux/mm.h> 21#include <linux/swap.h> 22#include <linux/mman.h> 23#include <linux/pagemap.h> 24#include <linux/file.h> 25#include <linux/uio.h> 26#include <linux/hash.h> 27#include <linux/writeback.h> 28#include <linux/backing-dev.h> 29#include <linux/pagevec.h> 30#include <linux/blkdev.h> 31#include <linux/security.h> 32#include <linux/cpuset.h> 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34#include <linux/memcontrol.h> 35#include <linux/cleancache.h> 36#include <linux/rmap.h> 37#include "internal.h" 38 39#define CREATE_TRACE_POINTS 40#include <trace/events/filemap.h> 41 42/* 43 * FIXME: remove all knowledge of the buffer layer from the core VM 44 */ 45#include <linux/buffer_head.h> /* for try_to_free_buffers */ 46 47#include <asm/mman.h> 48 49/* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61/* 62 * Lock ordering: 63 * 64 * ->i_mmap_mutex (truncate_pagecache) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_mutex (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_mutex 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_perform_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * bdi->wb.list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_mutex 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * ->i_mmap_mutex 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 */ 110 111static void page_cache_tree_delete(struct address_space *mapping, 112 struct page *page, void *shadow) 113{ 114 struct radix_tree_node *node; 115 unsigned long index; 116 unsigned int offset; 117 unsigned int tag; 118 void **slot; 119 120 VM_BUG_ON(!PageLocked(page)); 121 122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 123 124 if (shadow) { 125 mapping->nrshadows++; 126 /* 127 * Make sure the nrshadows update is committed before 128 * the nrpages update so that final truncate racing 129 * with reclaim does not see both counters 0 at the 130 * same time and miss a shadow entry. 131 */ 132 smp_wmb(); 133 } 134 mapping->nrpages--; 135 136 if (!node) { 137 /* Clear direct pointer tags in root node */ 138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 139 radix_tree_replace_slot(slot, shadow); 140 return; 141 } 142 143 /* Clear tree tags for the removed page */ 144 index = page->index; 145 offset = index & RADIX_TREE_MAP_MASK; 146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 147 if (test_bit(offset, node->tags[tag])) 148 radix_tree_tag_clear(&mapping->page_tree, index, tag); 149 } 150 151 /* Delete page, swap shadow entry */ 152 radix_tree_replace_slot(slot, shadow); 153 workingset_node_pages_dec(node); 154 if (shadow) 155 workingset_node_shadows_inc(node); 156 else 157 if (__radix_tree_delete_node(&mapping->page_tree, node)) 158 return; 159 160 /* 161 * Track node that only contains shadow entries. 162 * 163 * Avoid acquiring the list_lru lock if already tracked. The 164 * list_empty() test is safe as node->private_list is 165 * protected by mapping->tree_lock. 166 */ 167 if (!workingset_node_pages(node) && 168 list_empty(&node->private_list)) { 169 node->private_data = mapping; 170 list_lru_add(&workingset_shadow_nodes, &node->private_list); 171 } 172} 173 174/* 175 * Delete a page from the page cache and free it. Caller has to make 176 * sure the page is locked and that nobody else uses it - or that usage 177 * is safe. The caller must hold the mapping's tree_lock. 178 */ 179void __delete_from_page_cache(struct page *page, void *shadow) 180{ 181 struct address_space *mapping = page->mapping; 182 183 trace_mm_filemap_delete_from_page_cache(page); 184 /* 185 * if we're uptodate, flush out into the cleancache, otherwise 186 * invalidate any existing cleancache entries. We can't leave 187 * stale data around in the cleancache once our page is gone 188 */ 189 if (PageUptodate(page) && PageMappedToDisk(page)) 190 cleancache_put_page(page); 191 else 192 cleancache_invalidate_page(mapping, page); 193 194 page_cache_tree_delete(mapping, page, shadow); 195 196 page->mapping = NULL; 197 /* Leave page->index set: truncation lookup relies upon it */ 198 199 __dec_zone_page_state(page, NR_FILE_PAGES); 200 if (PageSwapBacked(page)) 201 __dec_zone_page_state(page, NR_SHMEM); 202 BUG_ON(page_mapped(page)); 203 204 /* 205 * Some filesystems seem to re-dirty the page even after 206 * the VM has canceled the dirty bit (eg ext3 journaling). 207 * 208 * Fix it up by doing a final dirty accounting check after 209 * having removed the page entirely. 210 */ 211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 212 dec_zone_page_state(page, NR_FILE_DIRTY); 213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 214 } 215} 216 217/** 218 * delete_from_page_cache - delete page from page cache 219 * @page: the page which the kernel is trying to remove from page cache 220 * 221 * This must be called only on pages that have been verified to be in the page 222 * cache and locked. It will never put the page into the free list, the caller 223 * has a reference on the page. 224 */ 225void delete_from_page_cache(struct page *page) 226{ 227 struct address_space *mapping = page->mapping; 228 void (*freepage)(struct page *); 229 230 BUG_ON(!PageLocked(page)); 231 232 freepage = mapping->a_ops->freepage; 233 spin_lock_irq(&mapping->tree_lock); 234 __delete_from_page_cache(page, NULL); 235 spin_unlock_irq(&mapping->tree_lock); 236 mem_cgroup_uncharge_cache_page(page); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241} 242EXPORT_SYMBOL(delete_from_page_cache); 243 244static int sleep_on_page(void *word) 245{ 246 io_schedule(); 247 return 0; 248} 249 250static int sleep_on_page_killable(void *word) 251{ 252 sleep_on_page(word); 253 return fatal_signal_pending(current) ? -EINTR : 0; 254} 255 256static int filemap_check_errors(struct address_space *mapping) 257{ 258 int ret = 0; 259 /* Check for outstanding write errors */ 260 if (test_bit(AS_ENOSPC, &mapping->flags) && 261 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 262 ret = -ENOSPC; 263 if (test_bit(AS_EIO, &mapping->flags) && 264 test_and_clear_bit(AS_EIO, &mapping->flags)) 265 ret = -EIO; 266 return ret; 267} 268 269/** 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 271 * @mapping: address space structure to write 272 * @start: offset in bytes where the range starts 273 * @end: offset in bytes where the range ends (inclusive) 274 * @sync_mode: enable synchronous operation 275 * 276 * Start writeback against all of a mapping's dirty pages that lie 277 * within the byte offsets <start, end> inclusive. 278 * 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 280 * opposed to a regular memory cleansing writeback. The difference between 281 * these two operations is that if a dirty page/buffer is encountered, it must 282 * be waited upon, and not just skipped over. 283 */ 284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 285 loff_t end, int sync_mode) 286{ 287 int ret; 288 struct writeback_control wbc = { 289 .sync_mode = sync_mode, 290 .nr_to_write = LONG_MAX, 291 .range_start = start, 292 .range_end = end, 293 }; 294 295 if (!mapping_cap_writeback_dirty(mapping)) 296 return 0; 297 298 ret = do_writepages(mapping, &wbc); 299 return ret; 300} 301 302static inline int __filemap_fdatawrite(struct address_space *mapping, 303 int sync_mode) 304{ 305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 306} 307 308int filemap_fdatawrite(struct address_space *mapping) 309{ 310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 311} 312EXPORT_SYMBOL(filemap_fdatawrite); 313 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 315 loff_t end) 316{ 317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 318} 319EXPORT_SYMBOL(filemap_fdatawrite_range); 320 321/** 322 * filemap_flush - mostly a non-blocking flush 323 * @mapping: target address_space 324 * 325 * This is a mostly non-blocking flush. Not suitable for data-integrity 326 * purposes - I/O may not be started against all dirty pages. 327 */ 328int filemap_flush(struct address_space *mapping) 329{ 330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 331} 332EXPORT_SYMBOL(filemap_flush); 333 334/** 335 * filemap_fdatawait_range - wait for writeback to complete 336 * @mapping: address space structure to wait for 337 * @start_byte: offset in bytes where the range starts 338 * @end_byte: offset in bytes where the range ends (inclusive) 339 * 340 * Walk the list of under-writeback pages of the given address space 341 * in the given range and wait for all of them. 342 */ 343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 344 loff_t end_byte) 345{ 346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 348 struct pagevec pvec; 349 int nr_pages; 350 int ret2, ret = 0; 351 352 if (end_byte < start_byte) 353 goto out; 354 355 pagevec_init(&pvec, 0); 356 while ((index <= end) && 357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 358 PAGECACHE_TAG_WRITEBACK, 359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 360 unsigned i; 361 362 for (i = 0; i < nr_pages; i++) { 363 struct page *page = pvec.pages[i]; 364 365 /* until radix tree lookup accepts end_index */ 366 if (page->index > end) 367 continue; 368 369 wait_on_page_writeback(page); 370 if (TestClearPageError(page)) 371 ret = -EIO; 372 } 373 pagevec_release(&pvec); 374 cond_resched(); 375 } 376out: 377 ret2 = filemap_check_errors(mapping); 378 if (!ret) 379 ret = ret2; 380 381 return ret; 382} 383EXPORT_SYMBOL(filemap_fdatawait_range); 384 385/** 386 * filemap_fdatawait - wait for all under-writeback pages to complete 387 * @mapping: address space structure to wait for 388 * 389 * Walk the list of under-writeback pages of the given address space 390 * and wait for all of them. 391 */ 392int filemap_fdatawait(struct address_space *mapping) 393{ 394 loff_t i_size = i_size_read(mapping->host); 395 396 if (i_size == 0) 397 return 0; 398 399 return filemap_fdatawait_range(mapping, 0, i_size - 1); 400} 401EXPORT_SYMBOL(filemap_fdatawait); 402 403int filemap_write_and_wait(struct address_space *mapping) 404{ 405 int err = 0; 406 407 if (mapping->nrpages) { 408 err = filemap_fdatawrite(mapping); 409 /* 410 * Even if the above returned error, the pages may be 411 * written partially (e.g. -ENOSPC), so we wait for it. 412 * But the -EIO is special case, it may indicate the worst 413 * thing (e.g. bug) happened, so we avoid waiting for it. 414 */ 415 if (err != -EIO) { 416 int err2 = filemap_fdatawait(mapping); 417 if (!err) 418 err = err2; 419 } 420 } else { 421 err = filemap_check_errors(mapping); 422 } 423 return err; 424} 425EXPORT_SYMBOL(filemap_write_and_wait); 426 427/** 428 * filemap_write_and_wait_range - write out & wait on a file range 429 * @mapping: the address_space for the pages 430 * @lstart: offset in bytes where the range starts 431 * @lend: offset in bytes where the range ends (inclusive) 432 * 433 * Write out and wait upon file offsets lstart->lend, inclusive. 434 * 435 * Note that `lend' is inclusive (describes the last byte to be written) so 436 * that this function can be used to write to the very end-of-file (end = -1). 437 */ 438int filemap_write_and_wait_range(struct address_space *mapping, 439 loff_t lstart, loff_t lend) 440{ 441 int err = 0; 442 443 if (mapping->nrpages) { 444 err = __filemap_fdatawrite_range(mapping, lstart, lend, 445 WB_SYNC_ALL); 446 /* See comment of filemap_write_and_wait() */ 447 if (err != -EIO) { 448 int err2 = filemap_fdatawait_range(mapping, 449 lstart, lend); 450 if (!err) 451 err = err2; 452 } 453 } else { 454 err = filemap_check_errors(mapping); 455 } 456 return err; 457} 458EXPORT_SYMBOL(filemap_write_and_wait_range); 459 460/** 461 * replace_page_cache_page - replace a pagecache page with a new one 462 * @old: page to be replaced 463 * @new: page to replace with 464 * @gfp_mask: allocation mode 465 * 466 * This function replaces a page in the pagecache with a new one. On 467 * success it acquires the pagecache reference for the new page and 468 * drops it for the old page. Both the old and new pages must be 469 * locked. This function does not add the new page to the LRU, the 470 * caller must do that. 471 * 472 * The remove + add is atomic. The only way this function can fail is 473 * memory allocation failure. 474 */ 475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 476{ 477 int error; 478 479 VM_BUG_ON_PAGE(!PageLocked(old), old); 480 VM_BUG_ON_PAGE(!PageLocked(new), new); 481 VM_BUG_ON_PAGE(new->mapping, new); 482 483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 484 if (!error) { 485 struct address_space *mapping = old->mapping; 486 void (*freepage)(struct page *); 487 488 pgoff_t offset = old->index; 489 freepage = mapping->a_ops->freepage; 490 491 page_cache_get(new); 492 new->mapping = mapping; 493 new->index = offset; 494 495 spin_lock_irq(&mapping->tree_lock); 496 __delete_from_page_cache(old, NULL); 497 error = radix_tree_insert(&mapping->page_tree, offset, new); 498 BUG_ON(error); 499 mapping->nrpages++; 500 __inc_zone_page_state(new, NR_FILE_PAGES); 501 if (PageSwapBacked(new)) 502 __inc_zone_page_state(new, NR_SHMEM); 503 spin_unlock_irq(&mapping->tree_lock); 504 /* mem_cgroup codes must not be called under tree_lock */ 505 mem_cgroup_replace_page_cache(old, new); 506 radix_tree_preload_end(); 507 if (freepage) 508 freepage(old); 509 page_cache_release(old); 510 } 511 512 return error; 513} 514EXPORT_SYMBOL_GPL(replace_page_cache_page); 515 516static int page_cache_tree_insert(struct address_space *mapping, 517 struct page *page, void **shadowp) 518{ 519 struct radix_tree_node *node; 520 void **slot; 521 int error; 522 523 error = __radix_tree_create(&mapping->page_tree, page->index, 524 &node, &slot); 525 if (error) 526 return error; 527 if (*slot) { 528 void *p; 529 530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 531 if (!radix_tree_exceptional_entry(p)) 532 return -EEXIST; 533 if (shadowp) 534 *shadowp = p; 535 mapping->nrshadows--; 536 if (node) 537 workingset_node_shadows_dec(node); 538 } 539 radix_tree_replace_slot(slot, page); 540 mapping->nrpages++; 541 if (node) { 542 workingset_node_pages_inc(node); 543 /* 544 * Don't track node that contains actual pages. 545 * 546 * Avoid acquiring the list_lru lock if already 547 * untracked. The list_empty() test is safe as 548 * node->private_list is protected by 549 * mapping->tree_lock. 550 */ 551 if (!list_empty(&node->private_list)) 552 list_lru_del(&workingset_shadow_nodes, 553 &node->private_list); 554 } 555 return 0; 556} 557 558static int __add_to_page_cache_locked(struct page *page, 559 struct address_space *mapping, 560 pgoff_t offset, gfp_t gfp_mask, 561 void **shadowp) 562{ 563 int error; 564 565 VM_BUG_ON_PAGE(!PageLocked(page), page); 566 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 567 568 error = mem_cgroup_charge_file(page, current->mm, 569 gfp_mask & GFP_RECLAIM_MASK); 570 if (error) 571 return error; 572 573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 574 if (error) { 575 mem_cgroup_uncharge_cache_page(page); 576 return error; 577 } 578 579 page_cache_get(page); 580 page->mapping = mapping; 581 page->index = offset; 582 583 spin_lock_irq(&mapping->tree_lock); 584 error = page_cache_tree_insert(mapping, page, shadowp); 585 radix_tree_preload_end(); 586 if (unlikely(error)) 587 goto err_insert; 588 __inc_zone_page_state(page, NR_FILE_PAGES); 589 spin_unlock_irq(&mapping->tree_lock); 590 trace_mm_filemap_add_to_page_cache(page); 591 return 0; 592err_insert: 593 page->mapping = NULL; 594 /* Leave page->index set: truncation relies upon it */ 595 spin_unlock_irq(&mapping->tree_lock); 596 mem_cgroup_uncharge_cache_page(page); 597 page_cache_release(page); 598 return error; 599} 600 601/** 602 * add_to_page_cache_locked - add a locked page to the pagecache 603 * @page: page to add 604 * @mapping: the page's address_space 605 * @offset: page index 606 * @gfp_mask: page allocation mode 607 * 608 * This function is used to add a page to the pagecache. It must be locked. 609 * This function does not add the page to the LRU. The caller must do that. 610 */ 611int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 612 pgoff_t offset, gfp_t gfp_mask) 613{ 614 return __add_to_page_cache_locked(page, mapping, offset, 615 gfp_mask, NULL); 616} 617EXPORT_SYMBOL(add_to_page_cache_locked); 618 619int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 620 pgoff_t offset, gfp_t gfp_mask) 621{ 622 void *shadow = NULL; 623 int ret; 624 625 __set_page_locked(page); 626 ret = __add_to_page_cache_locked(page, mapping, offset, 627 gfp_mask, &shadow); 628 if (unlikely(ret)) 629 __clear_page_locked(page); 630 else { 631 /* 632 * The page might have been evicted from cache only 633 * recently, in which case it should be activated like 634 * any other repeatedly accessed page. 635 */ 636 if (shadow && workingset_refault(shadow)) { 637 SetPageActive(page); 638 workingset_activation(page); 639 } else 640 ClearPageActive(page); 641 lru_cache_add(page); 642 } 643 return ret; 644} 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 646 647#ifdef CONFIG_NUMA 648struct page *__page_cache_alloc(gfp_t gfp) 649{ 650 int n; 651 struct page *page; 652 653 if (cpuset_do_page_mem_spread()) { 654 unsigned int cpuset_mems_cookie; 655 do { 656 cpuset_mems_cookie = read_mems_allowed_begin(); 657 n = cpuset_mem_spread_node(); 658 page = alloc_pages_exact_node(n, gfp, 0); 659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 660 661 return page; 662 } 663 return alloc_pages(gfp, 0); 664} 665EXPORT_SYMBOL(__page_cache_alloc); 666#endif 667 668/* 669 * In order to wait for pages to become available there must be 670 * waitqueues associated with pages. By using a hash table of 671 * waitqueues where the bucket discipline is to maintain all 672 * waiters on the same queue and wake all when any of the pages 673 * become available, and for the woken contexts to check to be 674 * sure the appropriate page became available, this saves space 675 * at a cost of "thundering herd" phenomena during rare hash 676 * collisions. 677 */ 678static wait_queue_head_t *page_waitqueue(struct page *page) 679{ 680 const struct zone *zone = page_zone(page); 681 682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 683} 684 685static inline void wake_up_page(struct page *page, int bit) 686{ 687 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 688} 689 690void wait_on_page_bit(struct page *page, int bit_nr) 691{ 692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 693 694 if (test_bit(bit_nr, &page->flags)) 695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 696 TASK_UNINTERRUPTIBLE); 697} 698EXPORT_SYMBOL(wait_on_page_bit); 699 700int wait_on_page_bit_killable(struct page *page, int bit_nr) 701{ 702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 703 704 if (!test_bit(bit_nr, &page->flags)) 705 return 0; 706 707 return __wait_on_bit(page_waitqueue(page), &wait, 708 sleep_on_page_killable, TASK_KILLABLE); 709} 710 711/** 712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 713 * @page: Page defining the wait queue of interest 714 * @waiter: Waiter to add to the queue 715 * 716 * Add an arbitrary @waiter to the wait queue for the nominated @page. 717 */ 718void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 719{ 720 wait_queue_head_t *q = page_waitqueue(page); 721 unsigned long flags; 722 723 spin_lock_irqsave(&q->lock, flags); 724 __add_wait_queue(q, waiter); 725 spin_unlock_irqrestore(&q->lock, flags); 726} 727EXPORT_SYMBOL_GPL(add_page_wait_queue); 728 729/** 730 * unlock_page - unlock a locked page 731 * @page: the page 732 * 733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 735 * mechananism between PageLocked pages and PageWriteback pages is shared. 736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 737 * 738 * The mb is necessary to enforce ordering between the clear_bit and the read 739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 740 */ 741void unlock_page(struct page *page) 742{ 743 VM_BUG_ON_PAGE(!PageLocked(page), page); 744 clear_bit_unlock(PG_locked, &page->flags); 745 smp_mb__after_atomic(); 746 wake_up_page(page, PG_locked); 747} 748EXPORT_SYMBOL(unlock_page); 749 750/** 751 * end_page_writeback - end writeback against a page 752 * @page: the page 753 */ 754void end_page_writeback(struct page *page) 755{ 756 /* 757 * TestClearPageReclaim could be used here but it is an atomic 758 * operation and overkill in this particular case. Failing to 759 * shuffle a page marked for immediate reclaim is too mild to 760 * justify taking an atomic operation penalty at the end of 761 * ever page writeback. 762 */ 763 if (PageReclaim(page)) { 764 ClearPageReclaim(page); 765 rotate_reclaimable_page(page); 766 } 767 768 if (!test_clear_page_writeback(page)) 769 BUG(); 770 771 smp_mb__after_atomic(); 772 wake_up_page(page, PG_writeback); 773} 774EXPORT_SYMBOL(end_page_writeback); 775 776/* 777 * After completing I/O on a page, call this routine to update the page 778 * flags appropriately 779 */ 780void page_endio(struct page *page, int rw, int err) 781{ 782 if (rw == READ) { 783 if (!err) { 784 SetPageUptodate(page); 785 } else { 786 ClearPageUptodate(page); 787 SetPageError(page); 788 } 789 unlock_page(page); 790 } else { /* rw == WRITE */ 791 if (err) { 792 SetPageError(page); 793 if (page->mapping) 794 mapping_set_error(page->mapping, err); 795 } 796 end_page_writeback(page); 797 } 798} 799EXPORT_SYMBOL_GPL(page_endio); 800 801/** 802 * __lock_page - get a lock on the page, assuming we need to sleep to get it 803 * @page: the page to lock 804 */ 805void __lock_page(struct page *page) 806{ 807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 808 809 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 810 TASK_UNINTERRUPTIBLE); 811} 812EXPORT_SYMBOL(__lock_page); 813 814int __lock_page_killable(struct page *page) 815{ 816 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 817 818 return __wait_on_bit_lock(page_waitqueue(page), &wait, 819 sleep_on_page_killable, TASK_KILLABLE); 820} 821EXPORT_SYMBOL_GPL(__lock_page_killable); 822 823int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 824 unsigned int flags) 825{ 826 if (flags & FAULT_FLAG_ALLOW_RETRY) { 827 /* 828 * CAUTION! In this case, mmap_sem is not released 829 * even though return 0. 830 */ 831 if (flags & FAULT_FLAG_RETRY_NOWAIT) 832 return 0; 833 834 up_read(&mm->mmap_sem); 835 if (flags & FAULT_FLAG_KILLABLE) 836 wait_on_page_locked_killable(page); 837 else 838 wait_on_page_locked(page); 839 return 0; 840 } else { 841 if (flags & FAULT_FLAG_KILLABLE) { 842 int ret; 843 844 ret = __lock_page_killable(page); 845 if (ret) { 846 up_read(&mm->mmap_sem); 847 return 0; 848 } 849 } else 850 __lock_page(page); 851 return 1; 852 } 853} 854 855/** 856 * page_cache_next_hole - find the next hole (not-present entry) 857 * @mapping: mapping 858 * @index: index 859 * @max_scan: maximum range to search 860 * 861 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 862 * lowest indexed hole. 863 * 864 * Returns: the index of the hole if found, otherwise returns an index 865 * outside of the set specified (in which case 'return - index >= 866 * max_scan' will be true). In rare cases of index wrap-around, 0 will 867 * be returned. 868 * 869 * page_cache_next_hole may be called under rcu_read_lock. However, 870 * like radix_tree_gang_lookup, this will not atomically search a 871 * snapshot of the tree at a single point in time. For example, if a 872 * hole is created at index 5, then subsequently a hole is created at 873 * index 10, page_cache_next_hole covering both indexes may return 10 874 * if called under rcu_read_lock. 875 */ 876pgoff_t page_cache_next_hole(struct address_space *mapping, 877 pgoff_t index, unsigned long max_scan) 878{ 879 unsigned long i; 880 881 for (i = 0; i < max_scan; i++) { 882 struct page *page; 883 884 page = radix_tree_lookup(&mapping->page_tree, index); 885 if (!page || radix_tree_exceptional_entry(page)) 886 break; 887 index++; 888 if (index == 0) 889 break; 890 } 891 892 return index; 893} 894EXPORT_SYMBOL(page_cache_next_hole); 895 896/** 897 * page_cache_prev_hole - find the prev hole (not-present entry) 898 * @mapping: mapping 899 * @index: index 900 * @max_scan: maximum range to search 901 * 902 * Search backwards in the range [max(index-max_scan+1, 0), index] for 903 * the first hole. 904 * 905 * Returns: the index of the hole if found, otherwise returns an index 906 * outside of the set specified (in which case 'index - return >= 907 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 908 * will be returned. 909 * 910 * page_cache_prev_hole may be called under rcu_read_lock. However, 911 * like radix_tree_gang_lookup, this will not atomically search a 912 * snapshot of the tree at a single point in time. For example, if a 913 * hole is created at index 10, then subsequently a hole is created at 914 * index 5, page_cache_prev_hole covering both indexes may return 5 if 915 * called under rcu_read_lock. 916 */ 917pgoff_t page_cache_prev_hole(struct address_space *mapping, 918 pgoff_t index, unsigned long max_scan) 919{ 920 unsigned long i; 921 922 for (i = 0; i < max_scan; i++) { 923 struct page *page; 924 925 page = radix_tree_lookup(&mapping->page_tree, index); 926 if (!page || radix_tree_exceptional_entry(page)) 927 break; 928 index--; 929 if (index == ULONG_MAX) 930 break; 931 } 932 933 return index; 934} 935EXPORT_SYMBOL(page_cache_prev_hole); 936 937/** 938 * find_get_entry - find and get a page cache entry 939 * @mapping: the address_space to search 940 * @offset: the page cache index 941 * 942 * Looks up the page cache slot at @mapping & @offset. If there is a 943 * page cache page, it is returned with an increased refcount. 944 * 945 * If the slot holds a shadow entry of a previously evicted page, or a 946 * swap entry from shmem/tmpfs, it is returned. 947 * 948 * Otherwise, %NULL is returned. 949 */ 950struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 951{ 952 void **pagep; 953 struct page *page; 954 955 rcu_read_lock(); 956repeat: 957 page = NULL; 958 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 959 if (pagep) { 960 page = radix_tree_deref_slot(pagep); 961 if (unlikely(!page)) 962 goto out; 963 if (radix_tree_exception(page)) { 964 if (radix_tree_deref_retry(page)) 965 goto repeat; 966 /* 967 * A shadow entry of a recently evicted page, 968 * or a swap entry from shmem/tmpfs. Return 969 * it without attempting to raise page count. 970 */ 971 goto out; 972 } 973 if (!page_cache_get_speculative(page)) 974 goto repeat; 975 976 /* 977 * Has the page moved? 978 * This is part of the lockless pagecache protocol. See 979 * include/linux/pagemap.h for details. 980 */ 981 if (unlikely(page != *pagep)) { 982 page_cache_release(page); 983 goto repeat; 984 } 985 } 986out: 987 rcu_read_unlock(); 988 989 return page; 990} 991EXPORT_SYMBOL(find_get_entry); 992 993/** 994 * find_lock_entry - locate, pin and lock a page cache entry 995 * @mapping: the address_space to search 996 * @offset: the page cache index 997 * 998 * Looks up the page cache slot at @mapping & @offset. If there is a 999 * page cache page, it is returned locked and with an increased 1000 * refcount. 1001 * 1002 * If the slot holds a shadow entry of a previously evicted page, or a 1003 * swap entry from shmem/tmpfs, it is returned. 1004 * 1005 * Otherwise, %NULL is returned. 1006 * 1007 * find_lock_entry() may sleep. 1008 */ 1009struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1010{ 1011 struct page *page; 1012 1013repeat: 1014 page = find_get_entry(mapping, offset); 1015 if (page && !radix_tree_exception(page)) { 1016 lock_page(page); 1017 /* Has the page been truncated? */ 1018 if (unlikely(page->mapping != mapping)) { 1019 unlock_page(page); 1020 page_cache_release(page); 1021 goto repeat; 1022 } 1023 VM_BUG_ON_PAGE(page->index != offset, page); 1024 } 1025 return page; 1026} 1027EXPORT_SYMBOL(find_lock_entry); 1028 1029/** 1030 * pagecache_get_page - find and get a page reference 1031 * @mapping: the address_space to search 1032 * @offset: the page index 1033 * @fgp_flags: PCG flags 1034 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation 1035 * @radix_gfp_mask: gfp mask to use for radix tree node allocation 1036 * 1037 * Looks up the page cache slot at @mapping & @offset. 1038 * 1039 * PCG flags modify how the page is returned. 1040 * 1041 * FGP_ACCESSED: the page will be marked accessed 1042 * FGP_LOCK: Page is return locked 1043 * FGP_CREAT: If page is not present then a new page is allocated using 1044 * @cache_gfp_mask and added to the page cache and the VM's LRU 1045 * list. If radix tree nodes are allocated during page cache 1046 * insertion then @radix_gfp_mask is used. The page is returned 1047 * locked and with an increased refcount. Otherwise, %NULL is 1048 * returned. 1049 * 1050 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1051 * if the GFP flags specified for FGP_CREAT are atomic. 1052 * 1053 * If there is a page cache page, it is returned with an increased refcount. 1054 */ 1055struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1056 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask) 1057{ 1058 struct page *page; 1059 1060repeat: 1061 page = find_get_entry(mapping, offset); 1062 if (radix_tree_exceptional_entry(page)) 1063 page = NULL; 1064 if (!page) 1065 goto no_page; 1066 1067 if (fgp_flags & FGP_LOCK) { 1068 if (fgp_flags & FGP_NOWAIT) { 1069 if (!trylock_page(page)) { 1070 page_cache_release(page); 1071 return NULL; 1072 } 1073 } else { 1074 lock_page(page); 1075 } 1076 1077 /* Has the page been truncated? */ 1078 if (unlikely(page->mapping != mapping)) { 1079 unlock_page(page); 1080 page_cache_release(page); 1081 goto repeat; 1082 } 1083 VM_BUG_ON_PAGE(page->index != offset, page); 1084 } 1085 1086 if (page && (fgp_flags & FGP_ACCESSED)) 1087 mark_page_accessed(page); 1088 1089no_page: 1090 if (!page && (fgp_flags & FGP_CREAT)) { 1091 int err; 1092 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1093 cache_gfp_mask |= __GFP_WRITE; 1094 if (fgp_flags & FGP_NOFS) { 1095 cache_gfp_mask &= ~__GFP_FS; 1096 radix_gfp_mask &= ~__GFP_FS; 1097 } 1098 1099 page = __page_cache_alloc(cache_gfp_mask); 1100 if (!page) 1101 return NULL; 1102 1103 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1104 fgp_flags |= FGP_LOCK; 1105 1106 /* Init accessed so avoit atomic mark_page_accessed later */ 1107 if (fgp_flags & FGP_ACCESSED) 1108 init_page_accessed(page); 1109 1110 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask); 1111 if (unlikely(err)) { 1112 page_cache_release(page); 1113 page = NULL; 1114 if (err == -EEXIST) 1115 goto repeat; 1116 } 1117 } 1118 1119 return page; 1120} 1121EXPORT_SYMBOL(pagecache_get_page); 1122 1123/** 1124 * find_get_entries - gang pagecache lookup 1125 * @mapping: The address_space to search 1126 * @start: The starting page cache index 1127 * @nr_entries: The maximum number of entries 1128 * @entries: Where the resulting entries are placed 1129 * @indices: The cache indices corresponding to the entries in @entries 1130 * 1131 * find_get_entries() will search for and return a group of up to 1132 * @nr_entries entries in the mapping. The entries are placed at 1133 * @entries. find_get_entries() takes a reference against any actual 1134 * pages it returns. 1135 * 1136 * The search returns a group of mapping-contiguous page cache entries 1137 * with ascending indexes. There may be holes in the indices due to 1138 * not-present pages. 1139 * 1140 * Any shadow entries of evicted pages, or swap entries from 1141 * shmem/tmpfs, are included in the returned array. 1142 * 1143 * find_get_entries() returns the number of pages and shadow entries 1144 * which were found. 1145 */ 1146unsigned find_get_entries(struct address_space *mapping, 1147 pgoff_t start, unsigned int nr_entries, 1148 struct page **entries, pgoff_t *indices) 1149{ 1150 void **slot; 1151 unsigned int ret = 0; 1152 struct radix_tree_iter iter; 1153 1154 if (!nr_entries) 1155 return 0; 1156 1157 rcu_read_lock(); 1158restart: 1159 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1160 struct page *page; 1161repeat: 1162 page = radix_tree_deref_slot(slot); 1163 if (unlikely(!page)) 1164 continue; 1165 if (radix_tree_exception(page)) { 1166 if (radix_tree_deref_retry(page)) 1167 goto restart; 1168 /* 1169 * A shadow entry of a recently evicted page, 1170 * or a swap entry from shmem/tmpfs. Return 1171 * it without attempting to raise page count. 1172 */ 1173 goto export; 1174 } 1175 if (!page_cache_get_speculative(page)) 1176 goto repeat; 1177 1178 /* Has the page moved? */ 1179 if (unlikely(page != *slot)) { 1180 page_cache_release(page); 1181 goto repeat; 1182 } 1183export: 1184 indices[ret] = iter.index; 1185 entries[ret] = page; 1186 if (++ret == nr_entries) 1187 break; 1188 } 1189 rcu_read_unlock(); 1190 return ret; 1191} 1192 1193/** 1194 * find_get_pages - gang pagecache lookup 1195 * @mapping: The address_space to search 1196 * @start: The starting page index 1197 * @nr_pages: The maximum number of pages 1198 * @pages: Where the resulting pages are placed 1199 * 1200 * find_get_pages() will search for and return a group of up to 1201 * @nr_pages pages in the mapping. The pages are placed at @pages. 1202 * find_get_pages() takes a reference against the returned pages. 1203 * 1204 * The search returns a group of mapping-contiguous pages with ascending 1205 * indexes. There may be holes in the indices due to not-present pages. 1206 * 1207 * find_get_pages() returns the number of pages which were found. 1208 */ 1209unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1210 unsigned int nr_pages, struct page **pages) 1211{ 1212 struct radix_tree_iter iter; 1213 void **slot; 1214 unsigned ret = 0; 1215 1216 if (unlikely(!nr_pages)) 1217 return 0; 1218 1219 rcu_read_lock(); 1220restart: 1221 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1222 struct page *page; 1223repeat: 1224 page = radix_tree_deref_slot(slot); 1225 if (unlikely(!page)) 1226 continue; 1227 1228 if (radix_tree_exception(page)) { 1229 if (radix_tree_deref_retry(page)) { 1230 /* 1231 * Transient condition which can only trigger 1232 * when entry at index 0 moves out of or back 1233 * to root: none yet gotten, safe to restart. 1234 */ 1235 WARN_ON(iter.index); 1236 goto restart; 1237 } 1238 /* 1239 * A shadow entry of a recently evicted page, 1240 * or a swap entry from shmem/tmpfs. Skip 1241 * over it. 1242 */ 1243 continue; 1244 } 1245 1246 if (!page_cache_get_speculative(page)) 1247 goto repeat; 1248 1249 /* Has the page moved? */ 1250 if (unlikely(page != *slot)) { 1251 page_cache_release(page); 1252 goto repeat; 1253 } 1254 1255 pages[ret] = page; 1256 if (++ret == nr_pages) 1257 break; 1258 } 1259 1260 rcu_read_unlock(); 1261 return ret; 1262} 1263 1264/** 1265 * find_get_pages_contig - gang contiguous pagecache lookup 1266 * @mapping: The address_space to search 1267 * @index: The starting page index 1268 * @nr_pages: The maximum number of pages 1269 * @pages: Where the resulting pages are placed 1270 * 1271 * find_get_pages_contig() works exactly like find_get_pages(), except 1272 * that the returned number of pages are guaranteed to be contiguous. 1273 * 1274 * find_get_pages_contig() returns the number of pages which were found. 1275 */ 1276unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1277 unsigned int nr_pages, struct page **pages) 1278{ 1279 struct radix_tree_iter iter; 1280 void **slot; 1281 unsigned int ret = 0; 1282 1283 if (unlikely(!nr_pages)) 1284 return 0; 1285 1286 rcu_read_lock(); 1287restart: 1288 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1289 struct page *page; 1290repeat: 1291 page = radix_tree_deref_slot(slot); 1292 /* The hole, there no reason to continue */ 1293 if (unlikely(!page)) 1294 break; 1295 1296 if (radix_tree_exception(page)) { 1297 if (radix_tree_deref_retry(page)) { 1298 /* 1299 * Transient condition which can only trigger 1300 * when entry at index 0 moves out of or back 1301 * to root: none yet gotten, safe to restart. 1302 */ 1303 goto restart; 1304 } 1305 /* 1306 * A shadow entry of a recently evicted page, 1307 * or a swap entry from shmem/tmpfs. Stop 1308 * looking for contiguous pages. 1309 */ 1310 break; 1311 } 1312 1313 if (!page_cache_get_speculative(page)) 1314 goto repeat; 1315 1316 /* Has the page moved? */ 1317 if (unlikely(page != *slot)) { 1318 page_cache_release(page); 1319 goto repeat; 1320 } 1321 1322 /* 1323 * must check mapping and index after taking the ref. 1324 * otherwise we can get both false positives and false 1325 * negatives, which is just confusing to the caller. 1326 */ 1327 if (page->mapping == NULL || page->index != iter.index) { 1328 page_cache_release(page); 1329 break; 1330 } 1331 1332 pages[ret] = page; 1333 if (++ret == nr_pages) 1334 break; 1335 } 1336 rcu_read_unlock(); 1337 return ret; 1338} 1339EXPORT_SYMBOL(find_get_pages_contig); 1340 1341/** 1342 * find_get_pages_tag - find and return pages that match @tag 1343 * @mapping: the address_space to search 1344 * @index: the starting page index 1345 * @tag: the tag index 1346 * @nr_pages: the maximum number of pages 1347 * @pages: where the resulting pages are placed 1348 * 1349 * Like find_get_pages, except we only return pages which are tagged with 1350 * @tag. We update @index to index the next page for the traversal. 1351 */ 1352unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1353 int tag, unsigned int nr_pages, struct page **pages) 1354{ 1355 struct radix_tree_iter iter; 1356 void **slot; 1357 unsigned ret = 0; 1358 1359 if (unlikely(!nr_pages)) 1360 return 0; 1361 1362 rcu_read_lock(); 1363restart: 1364 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1365 &iter, *index, tag) { 1366 struct page *page; 1367repeat: 1368 page = radix_tree_deref_slot(slot); 1369 if (unlikely(!page)) 1370 continue; 1371 1372 if (radix_tree_exception(page)) { 1373 if (radix_tree_deref_retry(page)) { 1374 /* 1375 * Transient condition which can only trigger 1376 * when entry at index 0 moves out of or back 1377 * to root: none yet gotten, safe to restart. 1378 */ 1379 goto restart; 1380 } 1381 /* 1382 * A shadow entry of a recently evicted page. 1383 * 1384 * Those entries should never be tagged, but 1385 * this tree walk is lockless and the tags are 1386 * looked up in bulk, one radix tree node at a 1387 * time, so there is a sizable window for page 1388 * reclaim to evict a page we saw tagged. 1389 * 1390 * Skip over it. 1391 */ 1392 continue; 1393 } 1394 1395 if (!page_cache_get_speculative(page)) 1396 goto repeat; 1397 1398 /* Has the page moved? */ 1399 if (unlikely(page != *slot)) { 1400 page_cache_release(page); 1401 goto repeat; 1402 } 1403 1404 pages[ret] = page; 1405 if (++ret == nr_pages) 1406 break; 1407 } 1408 1409 rcu_read_unlock(); 1410 1411 if (ret) 1412 *index = pages[ret - 1]->index + 1; 1413 1414 return ret; 1415} 1416EXPORT_SYMBOL(find_get_pages_tag); 1417 1418/* 1419 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1420 * a _large_ part of the i/o request. Imagine the worst scenario: 1421 * 1422 * ---R__________________________________________B__________ 1423 * ^ reading here ^ bad block(assume 4k) 1424 * 1425 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1426 * => failing the whole request => read(R) => read(R+1) => 1427 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1428 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1429 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1430 * 1431 * It is going insane. Fix it by quickly scaling down the readahead size. 1432 */ 1433static void shrink_readahead_size_eio(struct file *filp, 1434 struct file_ra_state *ra) 1435{ 1436 ra->ra_pages /= 4; 1437} 1438 1439/** 1440 * do_generic_file_read - generic file read routine 1441 * @filp: the file to read 1442 * @ppos: current file position 1443 * @iter: data destination 1444 * @written: already copied 1445 * 1446 * This is a generic file read routine, and uses the 1447 * mapping->a_ops->readpage() function for the actual low-level stuff. 1448 * 1449 * This is really ugly. But the goto's actually try to clarify some 1450 * of the logic when it comes to error handling etc. 1451 */ 1452static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1453 struct iov_iter *iter, ssize_t written) 1454{ 1455 struct address_space *mapping = filp->f_mapping; 1456 struct inode *inode = mapping->host; 1457 struct file_ra_state *ra = &filp->f_ra; 1458 pgoff_t index; 1459 pgoff_t last_index; 1460 pgoff_t prev_index; 1461 unsigned long offset; /* offset into pagecache page */ 1462 unsigned int prev_offset; 1463 int error = 0; 1464 1465 index = *ppos >> PAGE_CACHE_SHIFT; 1466 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1467 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1468 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1469 offset = *ppos & ~PAGE_CACHE_MASK; 1470 1471 for (;;) { 1472 struct page *page; 1473 pgoff_t end_index; 1474 loff_t isize; 1475 unsigned long nr, ret; 1476 1477 cond_resched(); 1478find_page: 1479 page = find_get_page(mapping, index); 1480 if (!page) { 1481 page_cache_sync_readahead(mapping, 1482 ra, filp, 1483 index, last_index - index); 1484 page = find_get_page(mapping, index); 1485 if (unlikely(page == NULL)) 1486 goto no_cached_page; 1487 } 1488 if (PageReadahead(page)) { 1489 page_cache_async_readahead(mapping, 1490 ra, filp, page, 1491 index, last_index - index); 1492 } 1493 if (!PageUptodate(page)) { 1494 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1495 !mapping->a_ops->is_partially_uptodate) 1496 goto page_not_up_to_date; 1497 if (!trylock_page(page)) 1498 goto page_not_up_to_date; 1499 /* Did it get truncated before we got the lock? */ 1500 if (!page->mapping) 1501 goto page_not_up_to_date_locked; 1502 if (!mapping->a_ops->is_partially_uptodate(page, 1503 offset, iter->count)) 1504 goto page_not_up_to_date_locked; 1505 unlock_page(page); 1506 } 1507page_ok: 1508 /* 1509 * i_size must be checked after we know the page is Uptodate. 1510 * 1511 * Checking i_size after the check allows us to calculate 1512 * the correct value for "nr", which means the zero-filled 1513 * part of the page is not copied back to userspace (unless 1514 * another truncate extends the file - this is desired though). 1515 */ 1516 1517 isize = i_size_read(inode); 1518 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1519 if (unlikely(!isize || index > end_index)) { 1520 page_cache_release(page); 1521 goto out; 1522 } 1523 1524 /* nr is the maximum number of bytes to copy from this page */ 1525 nr = PAGE_CACHE_SIZE; 1526 if (index == end_index) { 1527 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1528 if (nr <= offset) { 1529 page_cache_release(page); 1530 goto out; 1531 } 1532 } 1533 nr = nr - offset; 1534 1535 /* If users can be writing to this page using arbitrary 1536 * virtual addresses, take care about potential aliasing 1537 * before reading the page on the kernel side. 1538 */ 1539 if (mapping_writably_mapped(mapping)) 1540 flush_dcache_page(page); 1541 1542 /* 1543 * When a sequential read accesses a page several times, 1544 * only mark it as accessed the first time. 1545 */ 1546 if (prev_index != index || offset != prev_offset) 1547 mark_page_accessed(page); 1548 prev_index = index; 1549 1550 /* 1551 * Ok, we have the page, and it's up-to-date, so 1552 * now we can copy it to user space... 1553 */ 1554 1555 ret = copy_page_to_iter(page, offset, nr, iter); 1556 offset += ret; 1557 index += offset >> PAGE_CACHE_SHIFT; 1558 offset &= ~PAGE_CACHE_MASK; 1559 prev_offset = offset; 1560 1561 page_cache_release(page); 1562 written += ret; 1563 if (!iov_iter_count(iter)) 1564 goto out; 1565 if (ret < nr) { 1566 error = -EFAULT; 1567 goto out; 1568 } 1569 continue; 1570 1571page_not_up_to_date: 1572 /* Get exclusive access to the page ... */ 1573 error = lock_page_killable(page); 1574 if (unlikely(error)) 1575 goto readpage_error; 1576 1577page_not_up_to_date_locked: 1578 /* Did it get truncated before we got the lock? */ 1579 if (!page->mapping) { 1580 unlock_page(page); 1581 page_cache_release(page); 1582 continue; 1583 } 1584 1585 /* Did somebody else fill it already? */ 1586 if (PageUptodate(page)) { 1587 unlock_page(page); 1588 goto page_ok; 1589 } 1590 1591readpage: 1592 /* 1593 * A previous I/O error may have been due to temporary 1594 * failures, eg. multipath errors. 1595 * PG_error will be set again if readpage fails. 1596 */ 1597 ClearPageError(page); 1598 /* Start the actual read. The read will unlock the page. */ 1599 error = mapping->a_ops->readpage(filp, page); 1600 1601 if (unlikely(error)) { 1602 if (error == AOP_TRUNCATED_PAGE) { 1603 page_cache_release(page); 1604 error = 0; 1605 goto find_page; 1606 } 1607 goto readpage_error; 1608 } 1609 1610 if (!PageUptodate(page)) { 1611 error = lock_page_killable(page); 1612 if (unlikely(error)) 1613 goto readpage_error; 1614 if (!PageUptodate(page)) { 1615 if (page->mapping == NULL) { 1616 /* 1617 * invalidate_mapping_pages got it 1618 */ 1619 unlock_page(page); 1620 page_cache_release(page); 1621 goto find_page; 1622 } 1623 unlock_page(page); 1624 shrink_readahead_size_eio(filp, ra); 1625 error = -EIO; 1626 goto readpage_error; 1627 } 1628 unlock_page(page); 1629 } 1630 1631 goto page_ok; 1632 1633readpage_error: 1634 /* UHHUH! A synchronous read error occurred. Report it */ 1635 page_cache_release(page); 1636 goto out; 1637 1638no_cached_page: 1639 /* 1640 * Ok, it wasn't cached, so we need to create a new 1641 * page.. 1642 */ 1643 page = page_cache_alloc_cold(mapping); 1644 if (!page) { 1645 error = -ENOMEM; 1646 goto out; 1647 } 1648 error = add_to_page_cache_lru(page, mapping, 1649 index, GFP_KERNEL); 1650 if (error) { 1651 page_cache_release(page); 1652 if (error == -EEXIST) { 1653 error = 0; 1654 goto find_page; 1655 } 1656 goto out; 1657 } 1658 goto readpage; 1659 } 1660 1661out: 1662 ra->prev_pos = prev_index; 1663 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1664 ra->prev_pos |= prev_offset; 1665 1666 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1667 file_accessed(filp); 1668 return written ? written : error; 1669} 1670 1671/** 1672 * generic_file_read_iter - generic filesystem read routine 1673 * @iocb: kernel I/O control block 1674 * @iter: destination for the data read 1675 * 1676 * This is the "read_iter()" routine for all filesystems 1677 * that can use the page cache directly. 1678 */ 1679ssize_t 1680generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1681{ 1682 struct file *file = iocb->ki_filp; 1683 ssize_t retval = 0; 1684 loff_t *ppos = &iocb->ki_pos; 1685 loff_t pos = *ppos; 1686 1687 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1688 if (file->f_flags & O_DIRECT) { 1689 struct address_space *mapping = file->f_mapping; 1690 struct inode *inode = mapping->host; 1691 size_t count = iov_iter_count(iter); 1692 loff_t size; 1693 1694 if (!count) 1695 goto out; /* skip atime */ 1696 size = i_size_read(inode); 1697 retval = filemap_write_and_wait_range(mapping, pos, 1698 pos + count - 1); 1699 if (!retval) { 1700 struct iov_iter data = *iter; 1701 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos); 1702 } 1703 1704 if (retval > 0) { 1705 *ppos = pos + retval; 1706 iov_iter_advance(iter, retval); 1707 } 1708 1709 /* 1710 * Btrfs can have a short DIO read if we encounter 1711 * compressed extents, so if there was an error, or if 1712 * we've already read everything we wanted to, or if 1713 * there was a short read because we hit EOF, go ahead 1714 * and return. Otherwise fallthrough to buffered io for 1715 * the rest of the read. 1716 */ 1717 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) { 1718 file_accessed(file); 1719 goto out; 1720 } 1721 } 1722 1723 retval = do_generic_file_read(file, ppos, iter, retval); 1724out: 1725 return retval; 1726} 1727EXPORT_SYMBOL(generic_file_read_iter); 1728 1729#ifdef CONFIG_MMU 1730/** 1731 * page_cache_read - adds requested page to the page cache if not already there 1732 * @file: file to read 1733 * @offset: page index 1734 * 1735 * This adds the requested page to the page cache if it isn't already there, 1736 * and schedules an I/O to read in its contents from disk. 1737 */ 1738static int page_cache_read(struct file *file, pgoff_t offset) 1739{ 1740 struct address_space *mapping = file->f_mapping; 1741 struct page *page; 1742 int ret; 1743 1744 do { 1745 page = page_cache_alloc_cold(mapping); 1746 if (!page) 1747 return -ENOMEM; 1748 1749 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1750 if (ret == 0) 1751 ret = mapping->a_ops->readpage(file, page); 1752 else if (ret == -EEXIST) 1753 ret = 0; /* losing race to add is OK */ 1754 1755 page_cache_release(page); 1756 1757 } while (ret == AOP_TRUNCATED_PAGE); 1758 1759 return ret; 1760} 1761 1762#define MMAP_LOTSAMISS (100) 1763 1764/* 1765 * Synchronous readahead happens when we don't even find 1766 * a page in the page cache at all. 1767 */ 1768static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1769 struct file_ra_state *ra, 1770 struct file *file, 1771 pgoff_t offset) 1772{ 1773 unsigned long ra_pages; 1774 struct address_space *mapping = file->f_mapping; 1775 1776 /* If we don't want any read-ahead, don't bother */ 1777 if (vma->vm_flags & VM_RAND_READ) 1778 return; 1779 if (!ra->ra_pages) 1780 return; 1781 1782 if (vma->vm_flags & VM_SEQ_READ) { 1783 page_cache_sync_readahead(mapping, ra, file, offset, 1784 ra->ra_pages); 1785 return; 1786 } 1787 1788 /* Avoid banging the cache line if not needed */ 1789 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1790 ra->mmap_miss++; 1791 1792 /* 1793 * Do we miss much more than hit in this file? If so, 1794 * stop bothering with read-ahead. It will only hurt. 1795 */ 1796 if (ra->mmap_miss > MMAP_LOTSAMISS) 1797 return; 1798 1799 /* 1800 * mmap read-around 1801 */ 1802 ra_pages = max_sane_readahead(ra->ra_pages); 1803 ra->start = max_t(long, 0, offset - ra_pages / 2); 1804 ra->size = ra_pages; 1805 ra->async_size = ra_pages / 4; 1806 ra_submit(ra, mapping, file); 1807} 1808 1809/* 1810 * Asynchronous readahead happens when we find the page and PG_readahead, 1811 * so we want to possibly extend the readahead further.. 1812 */ 1813static void do_async_mmap_readahead(struct vm_area_struct *vma, 1814 struct file_ra_state *ra, 1815 struct file *file, 1816 struct page *page, 1817 pgoff_t offset) 1818{ 1819 struct address_space *mapping = file->f_mapping; 1820 1821 /* If we don't want any read-ahead, don't bother */ 1822 if (vma->vm_flags & VM_RAND_READ) 1823 return; 1824 if (ra->mmap_miss > 0) 1825 ra->mmap_miss--; 1826 if (PageReadahead(page)) 1827 page_cache_async_readahead(mapping, ra, file, 1828 page, offset, ra->ra_pages); 1829} 1830 1831/** 1832 * filemap_fault - read in file data for page fault handling 1833 * @vma: vma in which the fault was taken 1834 * @vmf: struct vm_fault containing details of the fault 1835 * 1836 * filemap_fault() is invoked via the vma operations vector for a 1837 * mapped memory region to read in file data during a page fault. 1838 * 1839 * The goto's are kind of ugly, but this streamlines the normal case of having 1840 * it in the page cache, and handles the special cases reasonably without 1841 * having a lot of duplicated code. 1842 */ 1843int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1844{ 1845 int error; 1846 struct file *file = vma->vm_file; 1847 struct address_space *mapping = file->f_mapping; 1848 struct file_ra_state *ra = &file->f_ra; 1849 struct inode *inode = mapping->host; 1850 pgoff_t offset = vmf->pgoff; 1851 struct page *page; 1852 loff_t size; 1853 int ret = 0; 1854 1855 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1856 if (offset >= size >> PAGE_CACHE_SHIFT) 1857 return VM_FAULT_SIGBUS; 1858 1859 /* 1860 * Do we have something in the page cache already? 1861 */ 1862 page = find_get_page(mapping, offset); 1863 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1864 /* 1865 * We found the page, so try async readahead before 1866 * waiting for the lock. 1867 */ 1868 do_async_mmap_readahead(vma, ra, file, page, offset); 1869 } else if (!page) { 1870 /* No page in the page cache at all */ 1871 do_sync_mmap_readahead(vma, ra, file, offset); 1872 count_vm_event(PGMAJFAULT); 1873 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1874 ret = VM_FAULT_MAJOR; 1875retry_find: 1876 page = find_get_page(mapping, offset); 1877 if (!page) 1878 goto no_cached_page; 1879 } 1880 1881 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1882 page_cache_release(page); 1883 return ret | VM_FAULT_RETRY; 1884 } 1885 1886 /* Did it get truncated? */ 1887 if (unlikely(page->mapping != mapping)) { 1888 unlock_page(page); 1889 put_page(page); 1890 goto retry_find; 1891 } 1892 VM_BUG_ON_PAGE(page->index != offset, page); 1893 1894 /* 1895 * We have a locked page in the page cache, now we need to check 1896 * that it's up-to-date. If not, it is going to be due to an error. 1897 */ 1898 if (unlikely(!PageUptodate(page))) 1899 goto page_not_uptodate; 1900 1901 /* 1902 * Found the page and have a reference on it. 1903 * We must recheck i_size under page lock. 1904 */ 1905 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1906 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1907 unlock_page(page); 1908 page_cache_release(page); 1909 return VM_FAULT_SIGBUS; 1910 } 1911 1912 vmf->page = page; 1913 return ret | VM_FAULT_LOCKED; 1914 1915no_cached_page: 1916 /* 1917 * We're only likely to ever get here if MADV_RANDOM is in 1918 * effect. 1919 */ 1920 error = page_cache_read(file, offset); 1921 1922 /* 1923 * The page we want has now been added to the page cache. 1924 * In the unlikely event that someone removed it in the 1925 * meantime, we'll just come back here and read it again. 1926 */ 1927 if (error >= 0) 1928 goto retry_find; 1929 1930 /* 1931 * An error return from page_cache_read can result if the 1932 * system is low on memory, or a problem occurs while trying 1933 * to schedule I/O. 1934 */ 1935 if (error == -ENOMEM) 1936 return VM_FAULT_OOM; 1937 return VM_FAULT_SIGBUS; 1938 1939page_not_uptodate: 1940 /* 1941 * Umm, take care of errors if the page isn't up-to-date. 1942 * Try to re-read it _once_. We do this synchronously, 1943 * because there really aren't any performance issues here 1944 * and we need to check for errors. 1945 */ 1946 ClearPageError(page); 1947 error = mapping->a_ops->readpage(file, page); 1948 if (!error) { 1949 wait_on_page_locked(page); 1950 if (!PageUptodate(page)) 1951 error = -EIO; 1952 } 1953 page_cache_release(page); 1954 1955 if (!error || error == AOP_TRUNCATED_PAGE) 1956 goto retry_find; 1957 1958 /* Things didn't work out. Return zero to tell the mm layer so. */ 1959 shrink_readahead_size_eio(file, ra); 1960 return VM_FAULT_SIGBUS; 1961} 1962EXPORT_SYMBOL(filemap_fault); 1963 1964void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1965{ 1966 struct radix_tree_iter iter; 1967 void **slot; 1968 struct file *file = vma->vm_file; 1969 struct address_space *mapping = file->f_mapping; 1970 loff_t size; 1971 struct page *page; 1972 unsigned long address = (unsigned long) vmf->virtual_address; 1973 unsigned long addr; 1974 pte_t *pte; 1975 1976 rcu_read_lock(); 1977 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 1978 if (iter.index > vmf->max_pgoff) 1979 break; 1980repeat: 1981 page = radix_tree_deref_slot(slot); 1982 if (unlikely(!page)) 1983 goto next; 1984 if (radix_tree_exception(page)) { 1985 if (radix_tree_deref_retry(page)) 1986 break; 1987 else 1988 goto next; 1989 } 1990 1991 if (!page_cache_get_speculative(page)) 1992 goto repeat; 1993 1994 /* Has the page moved? */ 1995 if (unlikely(page != *slot)) { 1996 page_cache_release(page); 1997 goto repeat; 1998 } 1999 2000 if (!PageUptodate(page) || 2001 PageReadahead(page) || 2002 PageHWPoison(page)) 2003 goto skip; 2004 if (!trylock_page(page)) 2005 goto skip; 2006 2007 if (page->mapping != mapping || !PageUptodate(page)) 2008 goto unlock; 2009 2010 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2011 if (page->index >= size >> PAGE_CACHE_SHIFT) 2012 goto unlock; 2013 2014 pte = vmf->pte + page->index - vmf->pgoff; 2015 if (!pte_none(*pte)) 2016 goto unlock; 2017 2018 if (file->f_ra.mmap_miss > 0) 2019 file->f_ra.mmap_miss--; 2020 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2021 do_set_pte(vma, addr, page, pte, false, false); 2022 unlock_page(page); 2023 goto next; 2024unlock: 2025 unlock_page(page); 2026skip: 2027 page_cache_release(page); 2028next: 2029 if (iter.index == vmf->max_pgoff) 2030 break; 2031 } 2032 rcu_read_unlock(); 2033} 2034EXPORT_SYMBOL(filemap_map_pages); 2035 2036int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2037{ 2038 struct page *page = vmf->page; 2039 struct inode *inode = file_inode(vma->vm_file); 2040 int ret = VM_FAULT_LOCKED; 2041 2042 sb_start_pagefault(inode->i_sb); 2043 file_update_time(vma->vm_file); 2044 lock_page(page); 2045 if (page->mapping != inode->i_mapping) { 2046 unlock_page(page); 2047 ret = VM_FAULT_NOPAGE; 2048 goto out; 2049 } 2050 /* 2051 * We mark the page dirty already here so that when freeze is in 2052 * progress, we are guaranteed that writeback during freezing will 2053 * see the dirty page and writeprotect it again. 2054 */ 2055 set_page_dirty(page); 2056 wait_for_stable_page(page); 2057out: 2058 sb_end_pagefault(inode->i_sb); 2059 return ret; 2060} 2061EXPORT_SYMBOL(filemap_page_mkwrite); 2062 2063const struct vm_operations_struct generic_file_vm_ops = { 2064 .fault = filemap_fault, 2065 .map_pages = filemap_map_pages, 2066 .page_mkwrite = filemap_page_mkwrite, 2067 .remap_pages = generic_file_remap_pages, 2068}; 2069 2070/* This is used for a general mmap of a disk file */ 2071 2072int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2073{ 2074 struct address_space *mapping = file->f_mapping; 2075 2076 if (!mapping->a_ops->readpage) 2077 return -ENOEXEC; 2078 file_accessed(file); 2079 vma->vm_ops = &generic_file_vm_ops; 2080 return 0; 2081} 2082 2083/* 2084 * This is for filesystems which do not implement ->writepage. 2085 */ 2086int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2087{ 2088 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2089 return -EINVAL; 2090 return generic_file_mmap(file, vma); 2091} 2092#else 2093int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2094{ 2095 return -ENOSYS; 2096} 2097int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2098{ 2099 return -ENOSYS; 2100} 2101#endif /* CONFIG_MMU */ 2102 2103EXPORT_SYMBOL(generic_file_mmap); 2104EXPORT_SYMBOL(generic_file_readonly_mmap); 2105 2106static struct page *wait_on_page_read(struct page *page) 2107{ 2108 if (!IS_ERR(page)) { 2109 wait_on_page_locked(page); 2110 if (!PageUptodate(page)) { 2111 page_cache_release(page); 2112 page = ERR_PTR(-EIO); 2113 } 2114 } 2115 return page; 2116} 2117 2118static struct page *__read_cache_page(struct address_space *mapping, 2119 pgoff_t index, 2120 int (*filler)(void *, struct page *), 2121 void *data, 2122 gfp_t gfp) 2123{ 2124 struct page *page; 2125 int err; 2126repeat: 2127 page = find_get_page(mapping, index); 2128 if (!page) { 2129 page = __page_cache_alloc(gfp | __GFP_COLD); 2130 if (!page) 2131 return ERR_PTR(-ENOMEM); 2132 err = add_to_page_cache_lru(page, mapping, index, gfp); 2133 if (unlikely(err)) { 2134 page_cache_release(page); 2135 if (err == -EEXIST) 2136 goto repeat; 2137 /* Presumably ENOMEM for radix tree node */ 2138 return ERR_PTR(err); 2139 } 2140 err = filler(data, page); 2141 if (err < 0) { 2142 page_cache_release(page); 2143 page = ERR_PTR(err); 2144 } else { 2145 page = wait_on_page_read(page); 2146 } 2147 } 2148 return page; 2149} 2150 2151static struct page *do_read_cache_page(struct address_space *mapping, 2152 pgoff_t index, 2153 int (*filler)(void *, struct page *), 2154 void *data, 2155 gfp_t gfp) 2156 2157{ 2158 struct page *page; 2159 int err; 2160 2161retry: 2162 page = __read_cache_page(mapping, index, filler, data, gfp); 2163 if (IS_ERR(page)) 2164 return page; 2165 if (PageUptodate(page)) 2166 goto out; 2167 2168 lock_page(page); 2169 if (!page->mapping) { 2170 unlock_page(page); 2171 page_cache_release(page); 2172 goto retry; 2173 } 2174 if (PageUptodate(page)) { 2175 unlock_page(page); 2176 goto out; 2177 } 2178 err = filler(data, page); 2179 if (err < 0) { 2180 page_cache_release(page); 2181 return ERR_PTR(err); 2182 } else { 2183 page = wait_on_page_read(page); 2184 if (IS_ERR(page)) 2185 return page; 2186 } 2187out: 2188 mark_page_accessed(page); 2189 return page; 2190} 2191 2192/** 2193 * read_cache_page - read into page cache, fill it if needed 2194 * @mapping: the page's address_space 2195 * @index: the page index 2196 * @filler: function to perform the read 2197 * @data: first arg to filler(data, page) function, often left as NULL 2198 * 2199 * Read into the page cache. If a page already exists, and PageUptodate() is 2200 * not set, try to fill the page and wait for it to become unlocked. 2201 * 2202 * If the page does not get brought uptodate, return -EIO. 2203 */ 2204struct page *read_cache_page(struct address_space *mapping, 2205 pgoff_t index, 2206 int (*filler)(void *, struct page *), 2207 void *data) 2208{ 2209 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2210} 2211EXPORT_SYMBOL(read_cache_page); 2212 2213/** 2214 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2215 * @mapping: the page's address_space 2216 * @index: the page index 2217 * @gfp: the page allocator flags to use if allocating 2218 * 2219 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2220 * any new page allocations done using the specified allocation flags. 2221 * 2222 * If the page does not get brought uptodate, return -EIO. 2223 */ 2224struct page *read_cache_page_gfp(struct address_space *mapping, 2225 pgoff_t index, 2226 gfp_t gfp) 2227{ 2228 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2229 2230 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2231} 2232EXPORT_SYMBOL(read_cache_page_gfp); 2233 2234/* 2235 * Performs necessary checks before doing a write 2236 * 2237 * Can adjust writing position or amount of bytes to write. 2238 * Returns appropriate error code that caller should return or 2239 * zero in case that write should be allowed. 2240 */ 2241inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2242{ 2243 struct inode *inode = file->f_mapping->host; 2244 unsigned long limit = rlimit(RLIMIT_FSIZE); 2245 2246 if (unlikely(*pos < 0)) 2247 return -EINVAL; 2248 2249 if (!isblk) { 2250 /* FIXME: this is for backwards compatibility with 2.4 */ 2251 if (file->f_flags & O_APPEND) 2252 *pos = i_size_read(inode); 2253 2254 if (limit != RLIM_INFINITY) { 2255 if (*pos >= limit) { 2256 send_sig(SIGXFSZ, current, 0); 2257 return -EFBIG; 2258 } 2259 if (*count > limit - (typeof(limit))*pos) { 2260 *count = limit - (typeof(limit))*pos; 2261 } 2262 } 2263 } 2264 2265 /* 2266 * LFS rule 2267 */ 2268 if (unlikely(*pos + *count > MAX_NON_LFS && 2269 !(file->f_flags & O_LARGEFILE))) { 2270 if (*pos >= MAX_NON_LFS) { 2271 return -EFBIG; 2272 } 2273 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2274 *count = MAX_NON_LFS - (unsigned long)*pos; 2275 } 2276 } 2277 2278 /* 2279 * Are we about to exceed the fs block limit ? 2280 * 2281 * If we have written data it becomes a short write. If we have 2282 * exceeded without writing data we send a signal and return EFBIG. 2283 * Linus frestrict idea will clean these up nicely.. 2284 */ 2285 if (likely(!isblk)) { 2286 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2287 if (*count || *pos > inode->i_sb->s_maxbytes) { 2288 return -EFBIG; 2289 } 2290 /* zero-length writes at ->s_maxbytes are OK */ 2291 } 2292 2293 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2294 *count = inode->i_sb->s_maxbytes - *pos; 2295 } else { 2296#ifdef CONFIG_BLOCK 2297 loff_t isize; 2298 if (bdev_read_only(I_BDEV(inode))) 2299 return -EPERM; 2300 isize = i_size_read(inode); 2301 if (*pos >= isize) { 2302 if (*count || *pos > isize) 2303 return -ENOSPC; 2304 } 2305 2306 if (*pos + *count > isize) 2307 *count = isize - *pos; 2308#else 2309 return -EPERM; 2310#endif 2311 } 2312 return 0; 2313} 2314EXPORT_SYMBOL(generic_write_checks); 2315 2316int pagecache_write_begin(struct file *file, struct address_space *mapping, 2317 loff_t pos, unsigned len, unsigned flags, 2318 struct page **pagep, void **fsdata) 2319{ 2320 const struct address_space_operations *aops = mapping->a_ops; 2321 2322 return aops->write_begin(file, mapping, pos, len, flags, 2323 pagep, fsdata); 2324} 2325EXPORT_SYMBOL(pagecache_write_begin); 2326 2327int pagecache_write_end(struct file *file, struct address_space *mapping, 2328 loff_t pos, unsigned len, unsigned copied, 2329 struct page *page, void *fsdata) 2330{ 2331 const struct address_space_operations *aops = mapping->a_ops; 2332 2333 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2334} 2335EXPORT_SYMBOL(pagecache_write_end); 2336 2337ssize_t 2338generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2339{ 2340 struct file *file = iocb->ki_filp; 2341 struct address_space *mapping = file->f_mapping; 2342 struct inode *inode = mapping->host; 2343 ssize_t written; 2344 size_t write_len; 2345 pgoff_t end; 2346 struct iov_iter data; 2347 2348 write_len = iov_iter_count(from); 2349 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2350 2351 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2352 if (written) 2353 goto out; 2354 2355 /* 2356 * After a write we want buffered reads to be sure to go to disk to get 2357 * the new data. We invalidate clean cached page from the region we're 2358 * about to write. We do this *before* the write so that we can return 2359 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2360 */ 2361 if (mapping->nrpages) { 2362 written = invalidate_inode_pages2_range(mapping, 2363 pos >> PAGE_CACHE_SHIFT, end); 2364 /* 2365 * If a page can not be invalidated, return 0 to fall back 2366 * to buffered write. 2367 */ 2368 if (written) { 2369 if (written == -EBUSY) 2370 return 0; 2371 goto out; 2372 } 2373 } 2374 2375 data = *from; 2376 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos); 2377 2378 /* 2379 * Finally, try again to invalidate clean pages which might have been 2380 * cached by non-direct readahead, or faulted in by get_user_pages() 2381 * if the source of the write was an mmap'ed region of the file 2382 * we're writing. Either one is a pretty crazy thing to do, 2383 * so we don't support it 100%. If this invalidation 2384 * fails, tough, the write still worked... 2385 */ 2386 if (mapping->nrpages) { 2387 invalidate_inode_pages2_range(mapping, 2388 pos >> PAGE_CACHE_SHIFT, end); 2389 } 2390 2391 if (written > 0) { 2392 pos += written; 2393 iov_iter_advance(from, written); 2394 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2395 i_size_write(inode, pos); 2396 mark_inode_dirty(inode); 2397 } 2398 iocb->ki_pos = pos; 2399 } 2400out: 2401 return written; 2402} 2403EXPORT_SYMBOL(generic_file_direct_write); 2404 2405/* 2406 * Find or create a page at the given pagecache position. Return the locked 2407 * page. This function is specifically for buffered writes. 2408 */ 2409struct page *grab_cache_page_write_begin(struct address_space *mapping, 2410 pgoff_t index, unsigned flags) 2411{ 2412 struct page *page; 2413 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2414 2415 if (flags & AOP_FLAG_NOFS) 2416 fgp_flags |= FGP_NOFS; 2417 2418 page = pagecache_get_page(mapping, index, fgp_flags, 2419 mapping_gfp_mask(mapping), 2420 GFP_KERNEL); 2421 if (page) 2422 wait_for_stable_page(page); 2423 2424 return page; 2425} 2426EXPORT_SYMBOL(grab_cache_page_write_begin); 2427 2428ssize_t generic_perform_write(struct file *file, 2429 struct iov_iter *i, loff_t pos) 2430{ 2431 struct address_space *mapping = file->f_mapping; 2432 const struct address_space_operations *a_ops = mapping->a_ops; 2433 long status = 0; 2434 ssize_t written = 0; 2435 unsigned int flags = 0; 2436 2437 /* 2438 * Copies from kernel address space cannot fail (NFSD is a big user). 2439 */ 2440 if (segment_eq(get_fs(), KERNEL_DS)) 2441 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2442 2443 do { 2444 struct page *page; 2445 unsigned long offset; /* Offset into pagecache page */ 2446 unsigned long bytes; /* Bytes to write to page */ 2447 size_t copied; /* Bytes copied from user */ 2448 void *fsdata; 2449 2450 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2451 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2452 iov_iter_count(i)); 2453 2454again: 2455 /* 2456 * Bring in the user page that we will copy from _first_. 2457 * Otherwise there's a nasty deadlock on copying from the 2458 * same page as we're writing to, without it being marked 2459 * up-to-date. 2460 * 2461 * Not only is this an optimisation, but it is also required 2462 * to check that the address is actually valid, when atomic 2463 * usercopies are used, below. 2464 */ 2465 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2466 status = -EFAULT; 2467 break; 2468 } 2469 2470 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2471 &page, &fsdata); 2472 if (unlikely(status < 0)) 2473 break; 2474 2475 if (mapping_writably_mapped(mapping)) 2476 flush_dcache_page(page); 2477 2478 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2479 flush_dcache_page(page); 2480 2481 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2482 page, fsdata); 2483 if (unlikely(status < 0)) 2484 break; 2485 copied = status; 2486 2487 cond_resched(); 2488 2489 iov_iter_advance(i, copied); 2490 if (unlikely(copied == 0)) { 2491 /* 2492 * If we were unable to copy any data at all, we must 2493 * fall back to a single segment length write. 2494 * 2495 * If we didn't fallback here, we could livelock 2496 * because not all segments in the iov can be copied at 2497 * once without a pagefault. 2498 */ 2499 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2500 iov_iter_single_seg_count(i)); 2501 goto again; 2502 } 2503 pos += copied; 2504 written += copied; 2505 2506 balance_dirty_pages_ratelimited(mapping); 2507 if (fatal_signal_pending(current)) { 2508 status = -EINTR; 2509 break; 2510 } 2511 } while (iov_iter_count(i)); 2512 2513 return written ? written : status; 2514} 2515EXPORT_SYMBOL(generic_perform_write); 2516 2517/** 2518 * __generic_file_write_iter - write data to a file 2519 * @iocb: IO state structure (file, offset, etc.) 2520 * @from: iov_iter with data to write 2521 * 2522 * This function does all the work needed for actually writing data to a 2523 * file. It does all basic checks, removes SUID from the file, updates 2524 * modification times and calls proper subroutines depending on whether we 2525 * do direct IO or a standard buffered write. 2526 * 2527 * It expects i_mutex to be grabbed unless we work on a block device or similar 2528 * object which does not need locking at all. 2529 * 2530 * This function does *not* take care of syncing data in case of O_SYNC write. 2531 * A caller has to handle it. This is mainly due to the fact that we want to 2532 * avoid syncing under i_mutex. 2533 */ 2534ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2535{ 2536 struct file *file = iocb->ki_filp; 2537 struct address_space * mapping = file->f_mapping; 2538 struct inode *inode = mapping->host; 2539 loff_t pos = iocb->ki_pos; 2540 ssize_t written = 0; 2541 ssize_t err; 2542 ssize_t status; 2543 size_t count = iov_iter_count(from); 2544 2545 /* We can write back this queue in page reclaim */ 2546 current->backing_dev_info = mapping->backing_dev_info; 2547 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2548 if (err) 2549 goto out; 2550 2551 if (count == 0) 2552 goto out; 2553 2554 iov_iter_truncate(from, count); 2555 2556 err = file_remove_suid(file); 2557 if (err) 2558 goto out; 2559 2560 err = file_update_time(file); 2561 if (err) 2562 goto out; 2563 2564 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2565 if (unlikely(file->f_flags & O_DIRECT)) { 2566 loff_t endbyte; 2567 2568 written = generic_file_direct_write(iocb, from, pos); 2569 if (written < 0 || written == count) 2570 goto out; 2571 2572 /* 2573 * direct-io write to a hole: fall through to buffered I/O 2574 * for completing the rest of the request. 2575 */ 2576 pos += written; 2577 count -= written; 2578 2579 status = generic_perform_write(file, from, pos); 2580 /* 2581 * If generic_perform_write() returned a synchronous error 2582 * then we want to return the number of bytes which were 2583 * direct-written, or the error code if that was zero. Note 2584 * that this differs from normal direct-io semantics, which 2585 * will return -EFOO even if some bytes were written. 2586 */ 2587 if (unlikely(status < 0) && !written) { 2588 err = status; 2589 goto out; 2590 } 2591 iocb->ki_pos = pos + status; 2592 /* 2593 * We need to ensure that the page cache pages are written to 2594 * disk and invalidated to preserve the expected O_DIRECT 2595 * semantics. 2596 */ 2597 endbyte = pos + status - 1; 2598 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2599 if (err == 0) { 2600 written += status; 2601 invalidate_mapping_pages(mapping, 2602 pos >> PAGE_CACHE_SHIFT, 2603 endbyte >> PAGE_CACHE_SHIFT); 2604 } else { 2605 /* 2606 * We don't know how much we wrote, so just return 2607 * the number of bytes which were direct-written 2608 */ 2609 } 2610 } else { 2611 written = generic_perform_write(file, from, pos); 2612 if (likely(written >= 0)) 2613 iocb->ki_pos = pos + written; 2614 } 2615out: 2616 current->backing_dev_info = NULL; 2617 return written ? written : err; 2618} 2619EXPORT_SYMBOL(__generic_file_write_iter); 2620 2621/** 2622 * generic_file_write_iter - write data to a file 2623 * @iocb: IO state structure 2624 * @from: iov_iter with data to write 2625 * 2626 * This is a wrapper around __generic_file_write_iter() to be used by most 2627 * filesystems. It takes care of syncing the file in case of O_SYNC file 2628 * and acquires i_mutex as needed. 2629 */ 2630ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2631{ 2632 struct file *file = iocb->ki_filp; 2633 struct inode *inode = file->f_mapping->host; 2634 ssize_t ret; 2635 2636 mutex_lock(&inode->i_mutex); 2637 ret = __generic_file_write_iter(iocb, from); 2638 mutex_unlock(&inode->i_mutex); 2639 2640 if (ret > 0) { 2641 ssize_t err; 2642 2643 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2644 if (err < 0) 2645 ret = err; 2646 } 2647 return ret; 2648} 2649EXPORT_SYMBOL(generic_file_write_iter); 2650 2651/** 2652 * try_to_release_page() - release old fs-specific metadata on a page 2653 * 2654 * @page: the page which the kernel is trying to free 2655 * @gfp_mask: memory allocation flags (and I/O mode) 2656 * 2657 * The address_space is to try to release any data against the page 2658 * (presumably at page->private). If the release was successful, return `1'. 2659 * Otherwise return zero. 2660 * 2661 * This may also be called if PG_fscache is set on a page, indicating that the 2662 * page is known to the local caching routines. 2663 * 2664 * The @gfp_mask argument specifies whether I/O may be performed to release 2665 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2666 * 2667 */ 2668int try_to_release_page(struct page *page, gfp_t gfp_mask) 2669{ 2670 struct address_space * const mapping = page->mapping; 2671 2672 BUG_ON(!PageLocked(page)); 2673 if (PageWriteback(page)) 2674 return 0; 2675 2676 if (mapping && mapping->a_ops->releasepage) 2677 return mapping->a_ops->releasepage(page, gfp_mask); 2678 return try_to_free_buffers(page); 2679} 2680 2681EXPORT_SYMBOL(try_to_release_page);