at v3.16 41 kB view raw
1#ifndef _LINUX_MMZONE_H 2#define _LINUX_MMZONE_H 3 4#ifndef __ASSEMBLY__ 5#ifndef __GENERATING_BOUNDS_H 6 7#include <linux/spinlock.h> 8#include <linux/list.h> 9#include <linux/wait.h> 10#include <linux/bitops.h> 11#include <linux/cache.h> 12#include <linux/threads.h> 13#include <linux/numa.h> 14#include <linux/init.h> 15#include <linux/seqlock.h> 16#include <linux/nodemask.h> 17#include <linux/pageblock-flags.h> 18#include <linux/page-flags-layout.h> 19#include <linux/atomic.h> 20#include <asm/page.h> 21 22/* Free memory management - zoned buddy allocator. */ 23#ifndef CONFIG_FORCE_MAX_ZONEORDER 24#define MAX_ORDER 11 25#else 26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 27#endif 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 29 30/* 31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 32 * costly to service. That is between allocation orders which should 33 * coalesce naturally under reasonable reclaim pressure and those which 34 * will not. 35 */ 36#define PAGE_ALLOC_COSTLY_ORDER 3 37 38enum { 39 MIGRATE_UNMOVABLE, 40 MIGRATE_RECLAIMABLE, 41 MIGRATE_MOVABLE, 42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 43 MIGRATE_RESERVE = MIGRATE_PCPTYPES, 44#ifdef CONFIG_CMA 45 /* 46 * MIGRATE_CMA migration type is designed to mimic the way 47 * ZONE_MOVABLE works. Only movable pages can be allocated 48 * from MIGRATE_CMA pageblocks and page allocator never 49 * implicitly change migration type of MIGRATE_CMA pageblock. 50 * 51 * The way to use it is to change migratetype of a range of 52 * pageblocks to MIGRATE_CMA which can be done by 53 * __free_pageblock_cma() function. What is important though 54 * is that a range of pageblocks must be aligned to 55 * MAX_ORDER_NR_PAGES should biggest page be bigger then 56 * a single pageblock. 57 */ 58 MIGRATE_CMA, 59#endif 60#ifdef CONFIG_MEMORY_ISOLATION 61 MIGRATE_ISOLATE, /* can't allocate from here */ 62#endif 63 MIGRATE_TYPES 64}; 65 66#ifdef CONFIG_CMA 67# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 68#else 69# define is_migrate_cma(migratetype) false 70#endif 71 72#define for_each_migratetype_order(order, type) \ 73 for (order = 0; order < MAX_ORDER; order++) \ 74 for (type = 0; type < MIGRATE_TYPES; type++) 75 76extern int page_group_by_mobility_disabled; 77 78#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1) 79#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1) 80 81#define get_pageblock_migratetype(page) \ 82 get_pfnblock_flags_mask(page, page_to_pfn(page), \ 83 PB_migrate_end, MIGRATETYPE_MASK) 84 85static inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 86{ 87 BUILD_BUG_ON(PB_migrate_end - PB_migrate != 2); 88 return get_pfnblock_flags_mask(page, pfn, PB_migrate_end, 89 MIGRATETYPE_MASK); 90} 91 92struct free_area { 93 struct list_head free_list[MIGRATE_TYPES]; 94 unsigned long nr_free; 95}; 96 97struct pglist_data; 98 99/* 100 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel. 101 * So add a wild amount of padding here to ensure that they fall into separate 102 * cachelines. There are very few zone structures in the machine, so space 103 * consumption is not a concern here. 104 */ 105#if defined(CONFIG_SMP) 106struct zone_padding { 107 char x[0]; 108} ____cacheline_internodealigned_in_smp; 109#define ZONE_PADDING(name) struct zone_padding name; 110#else 111#define ZONE_PADDING(name) 112#endif 113 114enum zone_stat_item { 115 /* First 128 byte cacheline (assuming 64 bit words) */ 116 NR_FREE_PAGES, 117 NR_ALLOC_BATCH, 118 NR_LRU_BASE, 119 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 120 NR_ACTIVE_ANON, /* " " " " " */ 121 NR_INACTIVE_FILE, /* " " " " " */ 122 NR_ACTIVE_FILE, /* " " " " " */ 123 NR_UNEVICTABLE, /* " " " " " */ 124 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 125 NR_ANON_PAGES, /* Mapped anonymous pages */ 126 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 127 only modified from process context */ 128 NR_FILE_PAGES, 129 NR_FILE_DIRTY, 130 NR_WRITEBACK, 131 NR_SLAB_RECLAIMABLE, 132 NR_SLAB_UNRECLAIMABLE, 133 NR_PAGETABLE, /* used for pagetables */ 134 NR_KERNEL_STACK, 135 /* Second 128 byte cacheline */ 136 NR_UNSTABLE_NFS, /* NFS unstable pages */ 137 NR_BOUNCE, 138 NR_VMSCAN_WRITE, 139 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 140 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 141 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 142 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 143 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 144 NR_DIRTIED, /* page dirtyings since bootup */ 145 NR_WRITTEN, /* page writings since bootup */ 146#ifdef CONFIG_NUMA 147 NUMA_HIT, /* allocated in intended node */ 148 NUMA_MISS, /* allocated in non intended node */ 149 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 150 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 151 NUMA_LOCAL, /* allocation from local node */ 152 NUMA_OTHER, /* allocation from other node */ 153#endif 154 WORKINGSET_REFAULT, 155 WORKINGSET_ACTIVATE, 156 WORKINGSET_NODERECLAIM, 157 NR_ANON_TRANSPARENT_HUGEPAGES, 158 NR_FREE_CMA_PAGES, 159 NR_VM_ZONE_STAT_ITEMS }; 160 161/* 162 * We do arithmetic on the LRU lists in various places in the code, 163 * so it is important to keep the active lists LRU_ACTIVE higher in 164 * the array than the corresponding inactive lists, and to keep 165 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 166 * 167 * This has to be kept in sync with the statistics in zone_stat_item 168 * above and the descriptions in vmstat_text in mm/vmstat.c 169 */ 170#define LRU_BASE 0 171#define LRU_ACTIVE 1 172#define LRU_FILE 2 173 174enum lru_list { 175 LRU_INACTIVE_ANON = LRU_BASE, 176 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 177 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 178 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 179 LRU_UNEVICTABLE, 180 NR_LRU_LISTS 181}; 182 183#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 184 185#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 186 187static inline int is_file_lru(enum lru_list lru) 188{ 189 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 190} 191 192static inline int is_active_lru(enum lru_list lru) 193{ 194 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 195} 196 197static inline int is_unevictable_lru(enum lru_list lru) 198{ 199 return (lru == LRU_UNEVICTABLE); 200} 201 202struct zone_reclaim_stat { 203 /* 204 * The pageout code in vmscan.c keeps track of how many of the 205 * mem/swap backed and file backed pages are referenced. 206 * The higher the rotated/scanned ratio, the more valuable 207 * that cache is. 208 * 209 * The anon LRU stats live in [0], file LRU stats in [1] 210 */ 211 unsigned long recent_rotated[2]; 212 unsigned long recent_scanned[2]; 213}; 214 215struct lruvec { 216 struct list_head lists[NR_LRU_LISTS]; 217 struct zone_reclaim_stat reclaim_stat; 218#ifdef CONFIG_MEMCG 219 struct zone *zone; 220#endif 221}; 222 223/* Mask used at gathering information at once (see memcontrol.c) */ 224#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE)) 225#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON)) 226#define LRU_ALL ((1 << NR_LRU_LISTS) - 1) 227 228/* Isolate clean file */ 229#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1) 230/* Isolate unmapped file */ 231#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 232/* Isolate for asynchronous migration */ 233#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 234/* Isolate unevictable pages */ 235#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 236 237/* LRU Isolation modes. */ 238typedef unsigned __bitwise__ isolate_mode_t; 239 240enum zone_watermarks { 241 WMARK_MIN, 242 WMARK_LOW, 243 WMARK_HIGH, 244 NR_WMARK 245}; 246 247#define min_wmark_pages(z) (z->watermark[WMARK_MIN]) 248#define low_wmark_pages(z) (z->watermark[WMARK_LOW]) 249#define high_wmark_pages(z) (z->watermark[WMARK_HIGH]) 250 251struct per_cpu_pages { 252 int count; /* number of pages in the list */ 253 int high; /* high watermark, emptying needed */ 254 int batch; /* chunk size for buddy add/remove */ 255 256 /* Lists of pages, one per migrate type stored on the pcp-lists */ 257 struct list_head lists[MIGRATE_PCPTYPES]; 258}; 259 260struct per_cpu_pageset { 261 struct per_cpu_pages pcp; 262#ifdef CONFIG_NUMA 263 s8 expire; 264#endif 265#ifdef CONFIG_SMP 266 s8 stat_threshold; 267 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 268#endif 269}; 270 271#endif /* !__GENERATING_BOUNDS.H */ 272 273enum zone_type { 274#ifdef CONFIG_ZONE_DMA 275 /* 276 * ZONE_DMA is used when there are devices that are not able 277 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we 278 * carve out the portion of memory that is needed for these devices. 279 * The range is arch specific. 280 * 281 * Some examples 282 * 283 * Architecture Limit 284 * --------------------------- 285 * parisc, ia64, sparc <4G 286 * s390 <2G 287 * arm Various 288 * alpha Unlimited or 0-16MB. 289 * 290 * i386, x86_64 and multiple other arches 291 * <16M. 292 */ 293 ZONE_DMA, 294#endif 295#ifdef CONFIG_ZONE_DMA32 296 /* 297 * x86_64 needs two ZONE_DMAs because it supports devices that are 298 * only able to do DMA to the lower 16M but also 32 bit devices that 299 * can only do DMA areas below 4G. 300 */ 301 ZONE_DMA32, 302#endif 303 /* 304 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 305 * performed on pages in ZONE_NORMAL if the DMA devices support 306 * transfers to all addressable memory. 307 */ 308 ZONE_NORMAL, 309#ifdef CONFIG_HIGHMEM 310 /* 311 * A memory area that is only addressable by the kernel through 312 * mapping portions into its own address space. This is for example 313 * used by i386 to allow the kernel to address the memory beyond 314 * 900MB. The kernel will set up special mappings (page 315 * table entries on i386) for each page that the kernel needs to 316 * access. 317 */ 318 ZONE_HIGHMEM, 319#endif 320 ZONE_MOVABLE, 321 __MAX_NR_ZONES 322}; 323 324#ifndef __GENERATING_BOUNDS_H 325 326struct zone { 327 /* Fields commonly accessed by the page allocator */ 328 329 /* zone watermarks, access with *_wmark_pages(zone) macros */ 330 unsigned long watermark[NR_WMARK]; 331 332 /* 333 * When free pages are below this point, additional steps are taken 334 * when reading the number of free pages to avoid per-cpu counter 335 * drift allowing watermarks to be breached 336 */ 337 unsigned long percpu_drift_mark; 338 339 /* 340 * We don't know if the memory that we're going to allocate will be freeable 341 * or/and it will be released eventually, so to avoid totally wasting several 342 * GB of ram we must reserve some of the lower zone memory (otherwise we risk 343 * to run OOM on the lower zones despite there's tons of freeable ram 344 * on the higher zones). This array is recalculated at runtime if the 345 * sysctl_lowmem_reserve_ratio sysctl changes. 346 */ 347 unsigned long lowmem_reserve[MAX_NR_ZONES]; 348 349 /* 350 * This is a per-zone reserve of pages that should not be 351 * considered dirtyable memory. 352 */ 353 unsigned long dirty_balance_reserve; 354 355#ifdef CONFIG_NUMA 356 int node; 357 /* 358 * zone reclaim becomes active if more unmapped pages exist. 359 */ 360 unsigned long min_unmapped_pages; 361 unsigned long min_slab_pages; 362#endif 363 struct per_cpu_pageset __percpu *pageset; 364 /* 365 * free areas of different sizes 366 */ 367 spinlock_t lock; 368#if defined CONFIG_COMPACTION || defined CONFIG_CMA 369 /* Set to true when the PG_migrate_skip bits should be cleared */ 370 bool compact_blockskip_flush; 371 372 /* pfn where compaction free scanner should start */ 373 unsigned long compact_cached_free_pfn; 374 /* pfn where async and sync compaction migration scanner should start */ 375 unsigned long compact_cached_migrate_pfn[2]; 376#endif 377#ifdef CONFIG_MEMORY_HOTPLUG 378 /* see spanned/present_pages for more description */ 379 seqlock_t span_seqlock; 380#endif 381 struct free_area free_area[MAX_ORDER]; 382 383#ifndef CONFIG_SPARSEMEM 384 /* 385 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 386 * In SPARSEMEM, this map is stored in struct mem_section 387 */ 388 unsigned long *pageblock_flags; 389#endif /* CONFIG_SPARSEMEM */ 390 391#ifdef CONFIG_COMPACTION 392 /* 393 * On compaction failure, 1<<compact_defer_shift compactions 394 * are skipped before trying again. The number attempted since 395 * last failure is tracked with compact_considered. 396 */ 397 unsigned int compact_considered; 398 unsigned int compact_defer_shift; 399 int compact_order_failed; 400#endif 401 402 ZONE_PADDING(_pad1_) 403 404 /* Fields commonly accessed by the page reclaim scanner */ 405 spinlock_t lru_lock; 406 struct lruvec lruvec; 407 408 /* Evictions & activations on the inactive file list */ 409 atomic_long_t inactive_age; 410 411 unsigned long pages_scanned; /* since last reclaim */ 412 unsigned long flags; /* zone flags, see below */ 413 414 /* Zone statistics */ 415 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 416 417 /* 418 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on 419 * this zone's LRU. Maintained by the pageout code. 420 */ 421 unsigned int inactive_ratio; 422 423 424 ZONE_PADDING(_pad2_) 425 /* Rarely used or read-mostly fields */ 426 427 /* 428 * wait_table -- the array holding the hash table 429 * wait_table_hash_nr_entries -- the size of the hash table array 430 * wait_table_bits -- wait_table_size == (1 << wait_table_bits) 431 * 432 * The purpose of all these is to keep track of the people 433 * waiting for a page to become available and make them 434 * runnable again when possible. The trouble is that this 435 * consumes a lot of space, especially when so few things 436 * wait on pages at a given time. So instead of using 437 * per-page waitqueues, we use a waitqueue hash table. 438 * 439 * The bucket discipline is to sleep on the same queue when 440 * colliding and wake all in that wait queue when removing. 441 * When something wakes, it must check to be sure its page is 442 * truly available, a la thundering herd. The cost of a 443 * collision is great, but given the expected load of the 444 * table, they should be so rare as to be outweighed by the 445 * benefits from the saved space. 446 * 447 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the 448 * primary users of these fields, and in mm/page_alloc.c 449 * free_area_init_core() performs the initialization of them. 450 */ 451 wait_queue_head_t * wait_table; 452 unsigned long wait_table_hash_nr_entries; 453 unsigned long wait_table_bits; 454 455 /* 456 * Discontig memory support fields. 457 */ 458 struct pglist_data *zone_pgdat; 459 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 460 unsigned long zone_start_pfn; 461 462 /* 463 * spanned_pages is the total pages spanned by the zone, including 464 * holes, which is calculated as: 465 * spanned_pages = zone_end_pfn - zone_start_pfn; 466 * 467 * present_pages is physical pages existing within the zone, which 468 * is calculated as: 469 * present_pages = spanned_pages - absent_pages(pages in holes); 470 * 471 * managed_pages is present pages managed by the buddy system, which 472 * is calculated as (reserved_pages includes pages allocated by the 473 * bootmem allocator): 474 * managed_pages = present_pages - reserved_pages; 475 * 476 * So present_pages may be used by memory hotplug or memory power 477 * management logic to figure out unmanaged pages by checking 478 * (present_pages - managed_pages). And managed_pages should be used 479 * by page allocator and vm scanner to calculate all kinds of watermarks 480 * and thresholds. 481 * 482 * Locking rules: 483 * 484 * zone_start_pfn and spanned_pages are protected by span_seqlock. 485 * It is a seqlock because it has to be read outside of zone->lock, 486 * and it is done in the main allocator path. But, it is written 487 * quite infrequently. 488 * 489 * The span_seq lock is declared along with zone->lock because it is 490 * frequently read in proximity to zone->lock. It's good to 491 * give them a chance of being in the same cacheline. 492 * 493 * Write access to present_pages at runtime should be protected by 494 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 495 * present_pages should get_online_mems() to get a stable value. 496 * 497 * Read access to managed_pages should be safe because it's unsigned 498 * long. Write access to zone->managed_pages and totalram_pages are 499 * protected by managed_page_count_lock at runtime. Idealy only 500 * adjust_managed_page_count() should be used instead of directly 501 * touching zone->managed_pages and totalram_pages. 502 */ 503 unsigned long spanned_pages; 504 unsigned long present_pages; 505 unsigned long managed_pages; 506 507 /* 508 * Number of MIGRATE_RESEVE page block. To maintain for just 509 * optimization. Protected by zone->lock. 510 */ 511 int nr_migrate_reserve_block; 512 513 /* 514 * rarely used fields: 515 */ 516 const char *name; 517} ____cacheline_internodealigned_in_smp; 518 519typedef enum { 520 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 521 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */ 522 ZONE_CONGESTED, /* zone has many dirty pages backed by 523 * a congested BDI 524 */ 525 ZONE_TAIL_LRU_DIRTY, /* reclaim scanning has recently found 526 * many dirty file pages at the tail 527 * of the LRU. 528 */ 529 ZONE_WRITEBACK, /* reclaim scanning has recently found 530 * many pages under writeback 531 */ 532} zone_flags_t; 533 534static inline void zone_set_flag(struct zone *zone, zone_flags_t flag) 535{ 536 set_bit(flag, &zone->flags); 537} 538 539static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag) 540{ 541 return test_and_set_bit(flag, &zone->flags); 542} 543 544static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag) 545{ 546 clear_bit(flag, &zone->flags); 547} 548 549static inline int zone_is_reclaim_congested(const struct zone *zone) 550{ 551 return test_bit(ZONE_CONGESTED, &zone->flags); 552} 553 554static inline int zone_is_reclaim_dirty(const struct zone *zone) 555{ 556 return test_bit(ZONE_TAIL_LRU_DIRTY, &zone->flags); 557} 558 559static inline int zone_is_reclaim_writeback(const struct zone *zone) 560{ 561 return test_bit(ZONE_WRITEBACK, &zone->flags); 562} 563 564static inline int zone_is_reclaim_locked(const struct zone *zone) 565{ 566 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags); 567} 568 569static inline int zone_is_oom_locked(const struct zone *zone) 570{ 571 return test_bit(ZONE_OOM_LOCKED, &zone->flags); 572} 573 574static inline unsigned long zone_end_pfn(const struct zone *zone) 575{ 576 return zone->zone_start_pfn + zone->spanned_pages; 577} 578 579static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 580{ 581 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 582} 583 584static inline bool zone_is_initialized(struct zone *zone) 585{ 586 return !!zone->wait_table; 587} 588 589static inline bool zone_is_empty(struct zone *zone) 590{ 591 return zone->spanned_pages == 0; 592} 593 594/* 595 * The "priority" of VM scanning is how much of the queues we will scan in one 596 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 597 * queues ("queue_length >> 12") during an aging round. 598 */ 599#define DEF_PRIORITY 12 600 601/* Maximum number of zones on a zonelist */ 602#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 603 604#ifdef CONFIG_NUMA 605 606/* 607 * The NUMA zonelists are doubled because we need zonelists that restrict the 608 * allocations to a single node for __GFP_THISNODE. 609 * 610 * [0] : Zonelist with fallback 611 * [1] : No fallback (__GFP_THISNODE) 612 */ 613#define MAX_ZONELISTS 2 614 615 616/* 617 * We cache key information from each zonelist for smaller cache 618 * footprint when scanning for free pages in get_page_from_freelist(). 619 * 620 * 1) The BITMAP fullzones tracks which zones in a zonelist have come 621 * up short of free memory since the last time (last_fullzone_zap) 622 * we zero'd fullzones. 623 * 2) The array z_to_n[] maps each zone in the zonelist to its node 624 * id, so that we can efficiently evaluate whether that node is 625 * set in the current tasks mems_allowed. 626 * 627 * Both fullzones and z_to_n[] are one-to-one with the zonelist, 628 * indexed by a zones offset in the zonelist zones[] array. 629 * 630 * The get_page_from_freelist() routine does two scans. During the 631 * first scan, we skip zones whose corresponding bit in 'fullzones' 632 * is set or whose corresponding node in current->mems_allowed (which 633 * comes from cpusets) is not set. During the second scan, we bypass 634 * this zonelist_cache, to ensure we look methodically at each zone. 635 * 636 * Once per second, we zero out (zap) fullzones, forcing us to 637 * reconsider nodes that might have regained more free memory. 638 * The field last_full_zap is the time we last zapped fullzones. 639 * 640 * This mechanism reduces the amount of time we waste repeatedly 641 * reexaming zones for free memory when they just came up low on 642 * memory momentarilly ago. 643 * 644 * The zonelist_cache struct members logically belong in struct 645 * zonelist. However, the mempolicy zonelists constructed for 646 * MPOL_BIND are intentionally variable length (and usually much 647 * shorter). A general purpose mechanism for handling structs with 648 * multiple variable length members is more mechanism than we want 649 * here. We resort to some special case hackery instead. 650 * 651 * The MPOL_BIND zonelists don't need this zonelist_cache (in good 652 * part because they are shorter), so we put the fixed length stuff 653 * at the front of the zonelist struct, ending in a variable length 654 * zones[], as is needed by MPOL_BIND. 655 * 656 * Then we put the optional zonelist cache on the end of the zonelist 657 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in 658 * the fixed length portion at the front of the struct. This pointer 659 * both enables us to find the zonelist cache, and in the case of 660 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL) 661 * to know that the zonelist cache is not there. 662 * 663 * The end result is that struct zonelists come in two flavors: 664 * 1) The full, fixed length version, shown below, and 665 * 2) The custom zonelists for MPOL_BIND. 666 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache. 667 * 668 * Even though there may be multiple CPU cores on a node modifying 669 * fullzones or last_full_zap in the same zonelist_cache at the same 670 * time, we don't lock it. This is just hint data - if it is wrong now 671 * and then, the allocator will still function, perhaps a bit slower. 672 */ 673 674 675struct zonelist_cache { 676 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */ 677 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */ 678 unsigned long last_full_zap; /* when last zap'd (jiffies) */ 679}; 680#else 681#define MAX_ZONELISTS 1 682struct zonelist_cache; 683#endif 684 685/* 686 * This struct contains information about a zone in a zonelist. It is stored 687 * here to avoid dereferences into large structures and lookups of tables 688 */ 689struct zoneref { 690 struct zone *zone; /* Pointer to actual zone */ 691 int zone_idx; /* zone_idx(zoneref->zone) */ 692}; 693 694/* 695 * One allocation request operates on a zonelist. A zonelist 696 * is a list of zones, the first one is the 'goal' of the 697 * allocation, the other zones are fallback zones, in decreasing 698 * priority. 699 * 700 * If zlcache_ptr is not NULL, then it is just the address of zlcache, 701 * as explained above. If zlcache_ptr is NULL, there is no zlcache. 702 * * 703 * To speed the reading of the zonelist, the zonerefs contain the zone index 704 * of the entry being read. Helper functions to access information given 705 * a struct zoneref are 706 * 707 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 708 * zonelist_zone_idx() - Return the index of the zone for an entry 709 * zonelist_node_idx() - Return the index of the node for an entry 710 */ 711struct zonelist { 712 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache 713 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 714#ifdef CONFIG_NUMA 715 struct zonelist_cache zlcache; // optional ... 716#endif 717}; 718 719#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 720struct node_active_region { 721 unsigned long start_pfn; 722 unsigned long end_pfn; 723 int nid; 724}; 725#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 726 727#ifndef CONFIG_DISCONTIGMEM 728/* The array of struct pages - for discontigmem use pgdat->lmem_map */ 729extern struct page *mem_map; 730#endif 731 732/* 733 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM 734 * (mostly NUMA machines?) to denote a higher-level memory zone than the 735 * zone denotes. 736 * 737 * On NUMA machines, each NUMA node would have a pg_data_t to describe 738 * it's memory layout. 739 * 740 * Memory statistics and page replacement data structures are maintained on a 741 * per-zone basis. 742 */ 743struct bootmem_data; 744typedef struct pglist_data { 745 struct zone node_zones[MAX_NR_ZONES]; 746 struct zonelist node_zonelists[MAX_ZONELISTS]; 747 int nr_zones; 748#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */ 749 struct page *node_mem_map; 750#ifdef CONFIG_MEMCG 751 struct page_cgroup *node_page_cgroup; 752#endif 753#endif 754#ifndef CONFIG_NO_BOOTMEM 755 struct bootmem_data *bdata; 756#endif 757#ifdef CONFIG_MEMORY_HOTPLUG 758 /* 759 * Must be held any time you expect node_start_pfn, node_present_pages 760 * or node_spanned_pages stay constant. Holding this will also 761 * guarantee that any pfn_valid() stays that way. 762 * 763 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 764 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG. 765 * 766 * Nests above zone->lock and zone->span_seqlock 767 */ 768 spinlock_t node_size_lock; 769#endif 770 unsigned long node_start_pfn; 771 unsigned long node_present_pages; /* total number of physical pages */ 772 unsigned long node_spanned_pages; /* total size of physical page 773 range, including holes */ 774 int node_id; 775 wait_queue_head_t kswapd_wait; 776 wait_queue_head_t pfmemalloc_wait; 777 struct task_struct *kswapd; /* Protected by 778 mem_hotplug_begin/end() */ 779 int kswapd_max_order; 780 enum zone_type classzone_idx; 781#ifdef CONFIG_NUMA_BALANCING 782 /* Lock serializing the migrate rate limiting window */ 783 spinlock_t numabalancing_migrate_lock; 784 785 /* Rate limiting time interval */ 786 unsigned long numabalancing_migrate_next_window; 787 788 /* Number of pages migrated during the rate limiting time interval */ 789 unsigned long numabalancing_migrate_nr_pages; 790#endif 791} pg_data_t; 792 793#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 794#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 795#ifdef CONFIG_FLAT_NODE_MEM_MAP 796#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 797#else 798#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 799#endif 800#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 801 802#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 803#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 804 805static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 806{ 807 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 808} 809 810static inline bool pgdat_is_empty(pg_data_t *pgdat) 811{ 812 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 813} 814 815#include <linux/memory_hotplug.h> 816 817extern struct mutex zonelists_mutex; 818void build_all_zonelists(pg_data_t *pgdat, struct zone *zone); 819void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx); 820bool zone_watermark_ok(struct zone *z, unsigned int order, 821 unsigned long mark, int classzone_idx, int alloc_flags); 822bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 823 unsigned long mark, int classzone_idx, int alloc_flags); 824enum memmap_context { 825 MEMMAP_EARLY, 826 MEMMAP_HOTPLUG, 827}; 828extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 829 unsigned long size, 830 enum memmap_context context); 831 832extern void lruvec_init(struct lruvec *lruvec); 833 834static inline struct zone *lruvec_zone(struct lruvec *lruvec) 835{ 836#ifdef CONFIG_MEMCG 837 return lruvec->zone; 838#else 839 return container_of(lruvec, struct zone, lruvec); 840#endif 841} 842 843#ifdef CONFIG_HAVE_MEMORY_PRESENT 844void memory_present(int nid, unsigned long start, unsigned long end); 845#else 846static inline void memory_present(int nid, unsigned long start, unsigned long end) {} 847#endif 848 849#ifdef CONFIG_HAVE_MEMORYLESS_NODES 850int local_memory_node(int node_id); 851#else 852static inline int local_memory_node(int node_id) { return node_id; }; 853#endif 854 855#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE 856unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 857#endif 858 859/* 860 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 861 */ 862#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 863 864static inline int populated_zone(struct zone *zone) 865{ 866 return (!!zone->present_pages); 867} 868 869extern int movable_zone; 870 871static inline int zone_movable_is_highmem(void) 872{ 873#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 874 return movable_zone == ZONE_HIGHMEM; 875#else 876 return 0; 877#endif 878} 879 880static inline int is_highmem_idx(enum zone_type idx) 881{ 882#ifdef CONFIG_HIGHMEM 883 return (idx == ZONE_HIGHMEM || 884 (idx == ZONE_MOVABLE && zone_movable_is_highmem())); 885#else 886 return 0; 887#endif 888} 889 890/** 891 * is_highmem - helper function to quickly check if a struct zone is a 892 * highmem zone or not. This is an attempt to keep references 893 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 894 * @zone - pointer to struct zone variable 895 */ 896static inline int is_highmem(struct zone *zone) 897{ 898#ifdef CONFIG_HIGHMEM 899 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones; 900 return zone_off == ZONE_HIGHMEM * sizeof(*zone) || 901 (zone_off == ZONE_MOVABLE * sizeof(*zone) && 902 zone_movable_is_highmem()); 903#else 904 return 0; 905#endif 906} 907 908/* These two functions are used to setup the per zone pages min values */ 909struct ctl_table; 910int min_free_kbytes_sysctl_handler(struct ctl_table *, int, 911 void __user *, size_t *, loff_t *); 912extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1]; 913int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, 914 void __user *, size_t *, loff_t *); 915int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, 916 void __user *, size_t *, loff_t *); 917int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 918 void __user *, size_t *, loff_t *); 919int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 920 void __user *, size_t *, loff_t *); 921 922extern int numa_zonelist_order_handler(struct ctl_table *, int, 923 void __user *, size_t *, loff_t *); 924extern char numa_zonelist_order[]; 925#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */ 926 927#ifndef CONFIG_NEED_MULTIPLE_NODES 928 929extern struct pglist_data contig_page_data; 930#define NODE_DATA(nid) (&contig_page_data) 931#define NODE_MEM_MAP(nid) mem_map 932 933#else /* CONFIG_NEED_MULTIPLE_NODES */ 934 935#include <asm/mmzone.h> 936 937#endif /* !CONFIG_NEED_MULTIPLE_NODES */ 938 939extern struct pglist_data *first_online_pgdat(void); 940extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 941extern struct zone *next_zone(struct zone *zone); 942 943/** 944 * for_each_online_pgdat - helper macro to iterate over all online nodes 945 * @pgdat - pointer to a pg_data_t variable 946 */ 947#define for_each_online_pgdat(pgdat) \ 948 for (pgdat = first_online_pgdat(); \ 949 pgdat; \ 950 pgdat = next_online_pgdat(pgdat)) 951/** 952 * for_each_zone - helper macro to iterate over all memory zones 953 * @zone - pointer to struct zone variable 954 * 955 * The user only needs to declare the zone variable, for_each_zone 956 * fills it in. 957 */ 958#define for_each_zone(zone) \ 959 for (zone = (first_online_pgdat())->node_zones; \ 960 zone; \ 961 zone = next_zone(zone)) 962 963#define for_each_populated_zone(zone) \ 964 for (zone = (first_online_pgdat())->node_zones; \ 965 zone; \ 966 zone = next_zone(zone)) \ 967 if (!populated_zone(zone)) \ 968 ; /* do nothing */ \ 969 else 970 971static inline struct zone *zonelist_zone(struct zoneref *zoneref) 972{ 973 return zoneref->zone; 974} 975 976static inline int zonelist_zone_idx(struct zoneref *zoneref) 977{ 978 return zoneref->zone_idx; 979} 980 981static inline int zonelist_node_idx(struct zoneref *zoneref) 982{ 983#ifdef CONFIG_NUMA 984 /* zone_to_nid not available in this context */ 985 return zoneref->zone->node; 986#else 987 return 0; 988#endif /* CONFIG_NUMA */ 989} 990 991/** 992 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 993 * @z - The cursor used as a starting point for the search 994 * @highest_zoneidx - The zone index of the highest zone to return 995 * @nodes - An optional nodemask to filter the zonelist with 996 * @zone - The first suitable zone found is returned via this parameter 997 * 998 * This function returns the next zone at or below a given zone index that is 999 * within the allowed nodemask using a cursor as the starting point for the 1000 * search. The zoneref returned is a cursor that represents the current zone 1001 * being examined. It should be advanced by one before calling 1002 * next_zones_zonelist again. 1003 */ 1004struct zoneref *next_zones_zonelist(struct zoneref *z, 1005 enum zone_type highest_zoneidx, 1006 nodemask_t *nodes, 1007 struct zone **zone); 1008 1009/** 1010 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1011 * @zonelist - The zonelist to search for a suitable zone 1012 * @highest_zoneidx - The zone index of the highest zone to return 1013 * @nodes - An optional nodemask to filter the zonelist with 1014 * @zone - The first suitable zone found is returned via this parameter 1015 * 1016 * This function returns the first zone at or below a given zone index that is 1017 * within the allowed nodemask. The zoneref returned is a cursor that can be 1018 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1019 * one before calling. 1020 */ 1021static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1022 enum zone_type highest_zoneidx, 1023 nodemask_t *nodes, 1024 struct zone **zone) 1025{ 1026 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes, 1027 zone); 1028} 1029 1030/** 1031 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1032 * @zone - The current zone in the iterator 1033 * @z - The current pointer within zonelist->zones being iterated 1034 * @zlist - The zonelist being iterated 1035 * @highidx - The zone index of the highest zone to return 1036 * @nodemask - Nodemask allowed by the allocator 1037 * 1038 * This iterator iterates though all zones at or below a given zone index and 1039 * within a given nodemask 1040 */ 1041#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1042 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \ 1043 zone; \ 1044 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \ 1045 1046/** 1047 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1048 * @zone - The current zone in the iterator 1049 * @z - The current pointer within zonelist->zones being iterated 1050 * @zlist - The zonelist being iterated 1051 * @highidx - The zone index of the highest zone to return 1052 * 1053 * This iterator iterates though all zones at or below a given zone index. 1054 */ 1055#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1056 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1057 1058#ifdef CONFIG_SPARSEMEM 1059#include <asm/sparsemem.h> 1060#endif 1061 1062#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \ 1063 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1064static inline unsigned long early_pfn_to_nid(unsigned long pfn) 1065{ 1066 return 0; 1067} 1068#endif 1069 1070#ifdef CONFIG_FLATMEM 1071#define pfn_to_nid(pfn) (0) 1072#endif 1073 1074#ifdef CONFIG_SPARSEMEM 1075 1076/* 1077 * SECTION_SHIFT #bits space required to store a section # 1078 * 1079 * PA_SECTION_SHIFT physical address to/from section number 1080 * PFN_SECTION_SHIFT pfn to/from section number 1081 */ 1082#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1083#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1084 1085#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1086 1087#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1088#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1089 1090#define SECTION_BLOCKFLAGS_BITS \ 1091 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1092 1093#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1094#error Allocator MAX_ORDER exceeds SECTION_SIZE 1095#endif 1096 1097#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT) 1098#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT) 1099 1100#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1101#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1102 1103struct page; 1104struct page_cgroup; 1105struct mem_section { 1106 /* 1107 * This is, logically, a pointer to an array of struct 1108 * pages. However, it is stored with some other magic. 1109 * (see sparse.c::sparse_init_one_section()) 1110 * 1111 * Additionally during early boot we encode node id of 1112 * the location of the section here to guide allocation. 1113 * (see sparse.c::memory_present()) 1114 * 1115 * Making it a UL at least makes someone do a cast 1116 * before using it wrong. 1117 */ 1118 unsigned long section_mem_map; 1119 1120 /* See declaration of similar field in struct zone */ 1121 unsigned long *pageblock_flags; 1122#ifdef CONFIG_MEMCG 1123 /* 1124 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use 1125 * section. (see memcontrol.h/page_cgroup.h about this.) 1126 */ 1127 struct page_cgroup *page_cgroup; 1128 unsigned long pad; 1129#endif 1130 /* 1131 * WARNING: mem_section must be a power-of-2 in size for the 1132 * calculation and use of SECTION_ROOT_MASK to make sense. 1133 */ 1134}; 1135 1136#ifdef CONFIG_SPARSEMEM_EXTREME 1137#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1138#else 1139#define SECTIONS_PER_ROOT 1 1140#endif 1141 1142#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1143#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1144#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1145 1146#ifdef CONFIG_SPARSEMEM_EXTREME 1147extern struct mem_section *mem_section[NR_SECTION_ROOTS]; 1148#else 1149extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1150#endif 1151 1152static inline struct mem_section *__nr_to_section(unsigned long nr) 1153{ 1154 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1155 return NULL; 1156 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1157} 1158extern int __section_nr(struct mem_section* ms); 1159extern unsigned long usemap_size(void); 1160 1161/* 1162 * We use the lower bits of the mem_map pointer to store 1163 * a little bit of information. There should be at least 1164 * 3 bits here due to 32-bit alignment. 1165 */ 1166#define SECTION_MARKED_PRESENT (1UL<<0) 1167#define SECTION_HAS_MEM_MAP (1UL<<1) 1168#define SECTION_MAP_LAST_BIT (1UL<<2) 1169#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1170#define SECTION_NID_SHIFT 2 1171 1172static inline struct page *__section_mem_map_addr(struct mem_section *section) 1173{ 1174 unsigned long map = section->section_mem_map; 1175 map &= SECTION_MAP_MASK; 1176 return (struct page *)map; 1177} 1178 1179static inline int present_section(struct mem_section *section) 1180{ 1181 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1182} 1183 1184static inline int present_section_nr(unsigned long nr) 1185{ 1186 return present_section(__nr_to_section(nr)); 1187} 1188 1189static inline int valid_section(struct mem_section *section) 1190{ 1191 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1192} 1193 1194static inline int valid_section_nr(unsigned long nr) 1195{ 1196 return valid_section(__nr_to_section(nr)); 1197} 1198 1199static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1200{ 1201 return __nr_to_section(pfn_to_section_nr(pfn)); 1202} 1203 1204#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1205static inline int pfn_valid(unsigned long pfn) 1206{ 1207 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1208 return 0; 1209 return valid_section(__nr_to_section(pfn_to_section_nr(pfn))); 1210} 1211#endif 1212 1213static inline int pfn_present(unsigned long pfn) 1214{ 1215 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1216 return 0; 1217 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1218} 1219 1220/* 1221 * These are _only_ used during initialisation, therefore they 1222 * can use __initdata ... They could have names to indicate 1223 * this restriction. 1224 */ 1225#ifdef CONFIG_NUMA 1226#define pfn_to_nid(pfn) \ 1227({ \ 1228 unsigned long __pfn_to_nid_pfn = (pfn); \ 1229 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1230}) 1231#else 1232#define pfn_to_nid(pfn) (0) 1233#endif 1234 1235#define early_pfn_valid(pfn) pfn_valid(pfn) 1236void sparse_init(void); 1237#else 1238#define sparse_init() do {} while (0) 1239#define sparse_index_init(_sec, _nid) do {} while (0) 1240#endif /* CONFIG_SPARSEMEM */ 1241 1242#ifdef CONFIG_NODES_SPAN_OTHER_NODES 1243bool early_pfn_in_nid(unsigned long pfn, int nid); 1244#else 1245#define early_pfn_in_nid(pfn, nid) (1) 1246#endif 1247 1248#ifndef early_pfn_valid 1249#define early_pfn_valid(pfn) (1) 1250#endif 1251 1252void memory_present(int nid, unsigned long start, unsigned long end); 1253unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long); 1254 1255/* 1256 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we 1257 * need to check pfn validility within that MAX_ORDER_NR_PAGES block. 1258 * pfn_valid_within() should be used in this case; we optimise this away 1259 * when we have no holes within a MAX_ORDER_NR_PAGES block. 1260 */ 1261#ifdef CONFIG_HOLES_IN_ZONE 1262#define pfn_valid_within(pfn) pfn_valid(pfn) 1263#else 1264#define pfn_valid_within(pfn) (1) 1265#endif 1266 1267#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL 1268/* 1269 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap 1270 * associated with it or not. In FLATMEM, it is expected that holes always 1271 * have valid memmap as long as there is valid PFNs either side of the hole. 1272 * In SPARSEMEM, it is assumed that a valid section has a memmap for the 1273 * entire section. 1274 * 1275 * However, an ARM, and maybe other embedded architectures in the future 1276 * free memmap backing holes to save memory on the assumption the memmap is 1277 * never used. The page_zone linkages are then broken even though pfn_valid() 1278 * returns true. A walker of the full memmap must then do this additional 1279 * check to ensure the memmap they are looking at is sane by making sure 1280 * the zone and PFN linkages are still valid. This is expensive, but walkers 1281 * of the full memmap are extremely rare. 1282 */ 1283int memmap_valid_within(unsigned long pfn, 1284 struct page *page, struct zone *zone); 1285#else 1286static inline int memmap_valid_within(unsigned long pfn, 1287 struct page *page, struct zone *zone) 1288{ 1289 return 1; 1290} 1291#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */ 1292 1293#endif /* !__GENERATING_BOUNDS.H */ 1294#endif /* !__ASSEMBLY__ */ 1295#endif /* _LINUX_MMZONE_H */