at v3.16 14 kB view raw
1/** 2 * @file buffer_sync.c 3 * 4 * @remark Copyright 2002-2009 OProfile authors 5 * @remark Read the file COPYING 6 * 7 * @author John Levon <levon@movementarian.org> 8 * @author Barry Kasindorf 9 * @author Robert Richter <robert.richter@amd.com> 10 * 11 * This is the core of the buffer management. Each 12 * CPU buffer is processed and entered into the 13 * global event buffer. Such processing is necessary 14 * in several circumstances, mentioned below. 15 * 16 * The processing does the job of converting the 17 * transitory EIP value into a persistent dentry/offset 18 * value that the profiler can record at its leisure. 19 * 20 * See fs/dcookies.c for a description of the dentry/offset 21 * objects. 22 */ 23 24#include <linux/mm.h> 25#include <linux/workqueue.h> 26#include <linux/notifier.h> 27#include <linux/dcookies.h> 28#include <linux/profile.h> 29#include <linux/module.h> 30#include <linux/fs.h> 31#include <linux/oprofile.h> 32#include <linux/sched.h> 33#include <linux/gfp.h> 34 35#include "oprofile_stats.h" 36#include "event_buffer.h" 37#include "cpu_buffer.h" 38#include "buffer_sync.h" 39 40static LIST_HEAD(dying_tasks); 41static LIST_HEAD(dead_tasks); 42static cpumask_var_t marked_cpus; 43static DEFINE_SPINLOCK(task_mortuary); 44static void process_task_mortuary(void); 45 46/* Take ownership of the task struct and place it on the 47 * list for processing. Only after two full buffer syncs 48 * does the task eventually get freed, because by then 49 * we are sure we will not reference it again. 50 * Can be invoked from softirq via RCU callback due to 51 * call_rcu() of the task struct, hence the _irqsave. 52 */ 53static int 54task_free_notify(struct notifier_block *self, unsigned long val, void *data) 55{ 56 unsigned long flags; 57 struct task_struct *task = data; 58 spin_lock_irqsave(&task_mortuary, flags); 59 list_add(&task->tasks, &dying_tasks); 60 spin_unlock_irqrestore(&task_mortuary, flags); 61 return NOTIFY_OK; 62} 63 64 65/* The task is on its way out. A sync of the buffer means we can catch 66 * any remaining samples for this task. 67 */ 68static int 69task_exit_notify(struct notifier_block *self, unsigned long val, void *data) 70{ 71 /* To avoid latency problems, we only process the current CPU, 72 * hoping that most samples for the task are on this CPU 73 */ 74 sync_buffer(raw_smp_processor_id()); 75 return 0; 76} 77 78 79/* The task is about to try a do_munmap(). We peek at what it's going to 80 * do, and if it's an executable region, process the samples first, so 81 * we don't lose any. This does not have to be exact, it's a QoI issue 82 * only. 83 */ 84static int 85munmap_notify(struct notifier_block *self, unsigned long val, void *data) 86{ 87 unsigned long addr = (unsigned long)data; 88 struct mm_struct *mm = current->mm; 89 struct vm_area_struct *mpnt; 90 91 down_read(&mm->mmap_sem); 92 93 mpnt = find_vma(mm, addr); 94 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) { 95 up_read(&mm->mmap_sem); 96 /* To avoid latency problems, we only process the current CPU, 97 * hoping that most samples for the task are on this CPU 98 */ 99 sync_buffer(raw_smp_processor_id()); 100 return 0; 101 } 102 103 up_read(&mm->mmap_sem); 104 return 0; 105} 106 107 108/* We need to be told about new modules so we don't attribute to a previously 109 * loaded module, or drop the samples on the floor. 110 */ 111static int 112module_load_notify(struct notifier_block *self, unsigned long val, void *data) 113{ 114#ifdef CONFIG_MODULES 115 if (val != MODULE_STATE_COMING) 116 return 0; 117 118 /* FIXME: should we process all CPU buffers ? */ 119 mutex_lock(&buffer_mutex); 120 add_event_entry(ESCAPE_CODE); 121 add_event_entry(MODULE_LOADED_CODE); 122 mutex_unlock(&buffer_mutex); 123#endif 124 return 0; 125} 126 127 128static struct notifier_block task_free_nb = { 129 .notifier_call = task_free_notify, 130}; 131 132static struct notifier_block task_exit_nb = { 133 .notifier_call = task_exit_notify, 134}; 135 136static struct notifier_block munmap_nb = { 137 .notifier_call = munmap_notify, 138}; 139 140static struct notifier_block module_load_nb = { 141 .notifier_call = module_load_notify, 142}; 143 144static void free_all_tasks(void) 145{ 146 /* make sure we don't leak task structs */ 147 process_task_mortuary(); 148 process_task_mortuary(); 149} 150 151int sync_start(void) 152{ 153 int err; 154 155 if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL)) 156 return -ENOMEM; 157 158 err = task_handoff_register(&task_free_nb); 159 if (err) 160 goto out1; 161 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb); 162 if (err) 163 goto out2; 164 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb); 165 if (err) 166 goto out3; 167 err = register_module_notifier(&module_load_nb); 168 if (err) 169 goto out4; 170 171 start_cpu_work(); 172 173out: 174 return err; 175out4: 176 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 177out3: 178 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 179out2: 180 task_handoff_unregister(&task_free_nb); 181 free_all_tasks(); 182out1: 183 free_cpumask_var(marked_cpus); 184 goto out; 185} 186 187 188void sync_stop(void) 189{ 190 end_cpu_work(); 191 unregister_module_notifier(&module_load_nb); 192 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb); 193 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb); 194 task_handoff_unregister(&task_free_nb); 195 barrier(); /* do all of the above first */ 196 197 flush_cpu_work(); 198 199 free_all_tasks(); 200 free_cpumask_var(marked_cpus); 201} 202 203 204/* Optimisation. We can manage without taking the dcookie sem 205 * because we cannot reach this code without at least one 206 * dcookie user still being registered (namely, the reader 207 * of the event buffer). */ 208static inline unsigned long fast_get_dcookie(struct path *path) 209{ 210 unsigned long cookie; 211 212 if (path->dentry->d_flags & DCACHE_COOKIE) 213 return (unsigned long)path->dentry; 214 get_dcookie(path, &cookie); 215 return cookie; 216} 217 218 219/* Look up the dcookie for the task's mm->exe_file, 220 * which corresponds loosely to "application name". This is 221 * not strictly necessary but allows oprofile to associate 222 * shared-library samples with particular applications 223 */ 224static unsigned long get_exec_dcookie(struct mm_struct *mm) 225{ 226 unsigned long cookie = NO_COOKIE; 227 228 if (mm && mm->exe_file) 229 cookie = fast_get_dcookie(&mm->exe_file->f_path); 230 231 return cookie; 232} 233 234 235/* Convert the EIP value of a sample into a persistent dentry/offset 236 * pair that can then be added to the global event buffer. We make 237 * sure to do this lookup before a mm->mmap modification happens so 238 * we don't lose track. 239 */ 240static unsigned long 241lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset) 242{ 243 unsigned long cookie = NO_COOKIE; 244 struct vm_area_struct *vma; 245 246 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) { 247 248 if (addr < vma->vm_start || addr >= vma->vm_end) 249 continue; 250 251 if (vma->vm_file) { 252 cookie = fast_get_dcookie(&vma->vm_file->f_path); 253 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - 254 vma->vm_start; 255 } else { 256 /* must be an anonymous map */ 257 *offset = addr; 258 } 259 260 break; 261 } 262 263 if (!vma) 264 cookie = INVALID_COOKIE; 265 266 return cookie; 267} 268 269static unsigned long last_cookie = INVALID_COOKIE; 270 271static void add_cpu_switch(int i) 272{ 273 add_event_entry(ESCAPE_CODE); 274 add_event_entry(CPU_SWITCH_CODE); 275 add_event_entry(i); 276 last_cookie = INVALID_COOKIE; 277} 278 279static void add_kernel_ctx_switch(unsigned int in_kernel) 280{ 281 add_event_entry(ESCAPE_CODE); 282 if (in_kernel) 283 add_event_entry(KERNEL_ENTER_SWITCH_CODE); 284 else 285 add_event_entry(KERNEL_EXIT_SWITCH_CODE); 286} 287 288static void 289add_user_ctx_switch(struct task_struct const *task, unsigned long cookie) 290{ 291 add_event_entry(ESCAPE_CODE); 292 add_event_entry(CTX_SWITCH_CODE); 293 add_event_entry(task->pid); 294 add_event_entry(cookie); 295 /* Another code for daemon back-compat */ 296 add_event_entry(ESCAPE_CODE); 297 add_event_entry(CTX_TGID_CODE); 298 add_event_entry(task->tgid); 299} 300 301 302static void add_cookie_switch(unsigned long cookie) 303{ 304 add_event_entry(ESCAPE_CODE); 305 add_event_entry(COOKIE_SWITCH_CODE); 306 add_event_entry(cookie); 307} 308 309 310static void add_trace_begin(void) 311{ 312 add_event_entry(ESCAPE_CODE); 313 add_event_entry(TRACE_BEGIN_CODE); 314} 315 316static void add_data(struct op_entry *entry, struct mm_struct *mm) 317{ 318 unsigned long code, pc, val; 319 unsigned long cookie; 320 off_t offset; 321 322 if (!op_cpu_buffer_get_data(entry, &code)) 323 return; 324 if (!op_cpu_buffer_get_data(entry, &pc)) 325 return; 326 if (!op_cpu_buffer_get_size(entry)) 327 return; 328 329 if (mm) { 330 cookie = lookup_dcookie(mm, pc, &offset); 331 332 if (cookie == NO_COOKIE) 333 offset = pc; 334 if (cookie == INVALID_COOKIE) { 335 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 336 offset = pc; 337 } 338 if (cookie != last_cookie) { 339 add_cookie_switch(cookie); 340 last_cookie = cookie; 341 } 342 } else 343 offset = pc; 344 345 add_event_entry(ESCAPE_CODE); 346 add_event_entry(code); 347 add_event_entry(offset); /* Offset from Dcookie */ 348 349 while (op_cpu_buffer_get_data(entry, &val)) 350 add_event_entry(val); 351} 352 353static inline void add_sample_entry(unsigned long offset, unsigned long event) 354{ 355 add_event_entry(offset); 356 add_event_entry(event); 357} 358 359 360/* 361 * Add a sample to the global event buffer. If possible the 362 * sample is converted into a persistent dentry/offset pair 363 * for later lookup from userspace. Return 0 on failure. 364 */ 365static int 366add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel) 367{ 368 unsigned long cookie; 369 off_t offset; 370 371 if (in_kernel) { 372 add_sample_entry(s->eip, s->event); 373 return 1; 374 } 375 376 /* add userspace sample */ 377 378 if (!mm) { 379 atomic_inc(&oprofile_stats.sample_lost_no_mm); 380 return 0; 381 } 382 383 cookie = lookup_dcookie(mm, s->eip, &offset); 384 385 if (cookie == INVALID_COOKIE) { 386 atomic_inc(&oprofile_stats.sample_lost_no_mapping); 387 return 0; 388 } 389 390 if (cookie != last_cookie) { 391 add_cookie_switch(cookie); 392 last_cookie = cookie; 393 } 394 395 add_sample_entry(offset, s->event); 396 397 return 1; 398} 399 400 401static void release_mm(struct mm_struct *mm) 402{ 403 if (!mm) 404 return; 405 up_read(&mm->mmap_sem); 406 mmput(mm); 407} 408 409 410static struct mm_struct *take_tasks_mm(struct task_struct *task) 411{ 412 struct mm_struct *mm = get_task_mm(task); 413 if (mm) 414 down_read(&mm->mmap_sem); 415 return mm; 416} 417 418 419static inline int is_code(unsigned long val) 420{ 421 return val == ESCAPE_CODE; 422} 423 424 425/* Move tasks along towards death. Any tasks on dead_tasks 426 * will definitely have no remaining references in any 427 * CPU buffers at this point, because we use two lists, 428 * and to have reached the list, it must have gone through 429 * one full sync already. 430 */ 431static void process_task_mortuary(void) 432{ 433 unsigned long flags; 434 LIST_HEAD(local_dead_tasks); 435 struct task_struct *task; 436 struct task_struct *ttask; 437 438 spin_lock_irqsave(&task_mortuary, flags); 439 440 list_splice_init(&dead_tasks, &local_dead_tasks); 441 list_splice_init(&dying_tasks, &dead_tasks); 442 443 spin_unlock_irqrestore(&task_mortuary, flags); 444 445 list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) { 446 list_del(&task->tasks); 447 free_task(task); 448 } 449} 450 451 452static void mark_done(int cpu) 453{ 454 int i; 455 456 cpumask_set_cpu(cpu, marked_cpus); 457 458 for_each_online_cpu(i) { 459 if (!cpumask_test_cpu(i, marked_cpus)) 460 return; 461 } 462 463 /* All CPUs have been processed at least once, 464 * we can process the mortuary once 465 */ 466 process_task_mortuary(); 467 468 cpumask_clear(marked_cpus); 469} 470 471 472/* FIXME: this is not sufficient if we implement syscall barrier backtrace 473 * traversal, the code switch to sb_sample_start at first kernel enter/exit 474 * switch so we need a fifth state and some special handling in sync_buffer() 475 */ 476typedef enum { 477 sb_bt_ignore = -2, 478 sb_buffer_start, 479 sb_bt_start, 480 sb_sample_start, 481} sync_buffer_state; 482 483/* Sync one of the CPU's buffers into the global event buffer. 484 * Here we need to go through each batch of samples punctuated 485 * by context switch notes, taking the task's mmap_sem and doing 486 * lookup in task->mm->mmap to convert EIP into dcookie/offset 487 * value. 488 */ 489void sync_buffer(int cpu) 490{ 491 struct mm_struct *mm = NULL; 492 struct mm_struct *oldmm; 493 unsigned long val; 494 struct task_struct *new; 495 unsigned long cookie = 0; 496 int in_kernel = 1; 497 sync_buffer_state state = sb_buffer_start; 498 unsigned int i; 499 unsigned long available; 500 unsigned long flags; 501 struct op_entry entry; 502 struct op_sample *sample; 503 504 mutex_lock(&buffer_mutex); 505 506 add_cpu_switch(cpu); 507 508 op_cpu_buffer_reset(cpu); 509 available = op_cpu_buffer_entries(cpu); 510 511 for (i = 0; i < available; ++i) { 512 sample = op_cpu_buffer_read_entry(&entry, cpu); 513 if (!sample) 514 break; 515 516 if (is_code(sample->eip)) { 517 flags = sample->event; 518 if (flags & TRACE_BEGIN) { 519 state = sb_bt_start; 520 add_trace_begin(); 521 } 522 if (flags & KERNEL_CTX_SWITCH) { 523 /* kernel/userspace switch */ 524 in_kernel = flags & IS_KERNEL; 525 if (state == sb_buffer_start) 526 state = sb_sample_start; 527 add_kernel_ctx_switch(flags & IS_KERNEL); 528 } 529 if (flags & USER_CTX_SWITCH 530 && op_cpu_buffer_get_data(&entry, &val)) { 531 /* userspace context switch */ 532 new = (struct task_struct *)val; 533 oldmm = mm; 534 release_mm(oldmm); 535 mm = take_tasks_mm(new); 536 if (mm != oldmm) 537 cookie = get_exec_dcookie(mm); 538 add_user_ctx_switch(new, cookie); 539 } 540 if (op_cpu_buffer_get_size(&entry)) 541 add_data(&entry, mm); 542 continue; 543 } 544 545 if (state < sb_bt_start) 546 /* ignore sample */ 547 continue; 548 549 if (add_sample(mm, sample, in_kernel)) 550 continue; 551 552 /* ignore backtraces if failed to add a sample */ 553 if (state == sb_bt_start) { 554 state = sb_bt_ignore; 555 atomic_inc(&oprofile_stats.bt_lost_no_mapping); 556 } 557 } 558 release_mm(mm); 559 560 mark_done(cpu); 561 562 mutex_unlock(&buffer_mutex); 563} 564 565/* The function can be used to add a buffer worth of data directly to 566 * the kernel buffer. The buffer is assumed to be a circular buffer. 567 * Take the entries from index start and end at index end, wrapping 568 * at max_entries. 569 */ 570void oprofile_put_buff(unsigned long *buf, unsigned int start, 571 unsigned int stop, unsigned int max) 572{ 573 int i; 574 575 i = start; 576 577 mutex_lock(&buffer_mutex); 578 while (i != stop) { 579 add_event_entry(buf[i++]); 580 581 if (i >= max) 582 i = 0; 583 } 584 585 mutex_unlock(&buffer_mutex); 586} 587